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Method for sensitivity analysis of photonic crystal devices
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We present a new method for sensitivity analysis of photonic crystal devices. The algorithm is based on
a finite-difference frequency-domain model and uses the adjoint variable method and perturbation theory
techniques. We show that our method is highly efficient and accurate and can be applied to calculation of the
sensitivity of transmission parameters of resonant nanophotonic devices. © 2004 Optical Society of America
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For practical implementations of photonic crystal de-
vices, it is of fundamental importance to determine
the sensitivity of the device properties to fabrication-
related disorders.1 – 5 In principle, the sensitivity can
be determined by varying the device parameters in
the vicinity of the design point, and by calculating the
response functions of the resulting perturbed devices.
However, such a direct approach is computationally in-
efficient, since it requires a full analysis for each varia-
tion of the design parameters. Moreover, in practice,
it is important to determine the sensitivity with re-
spect to variations of geometrical parameters. In the
commonly used finite-difference time-domain method,
a variation of the device size by a single grid point
may already lead to large structural change. Con-
sequently, to determine the sensitivity accurately in
the direct approach, a high-resolution grid is typically
needed, further increasing the computational cost.

In this Letter we introduce a new approach for sensi-
tivity analysis of photonic crystal structures based on
the adjoint variable method6 (AVM) and perturbation
theory in a frequency-domain solver for Maxwell’s
equations. In this approach, once a simulation for the
device properties is performed, the sensitivity with
respect to any number of design parameters is calcu-
lated with very small additional computational cost.
Furthermore, this approach determines the sensitivity
with respect to geometrical parameter variations accu-
rately without the need for the use of high-resolution
grids. We expect this approach to be important for
fast computational prototyping and optimization of
practical photonic crystal and nanophotonic devices.

In the frequency domain the wave equation for the
electric f ield is

�2= 3 = 3 1k0
2er�E � = 3 M 1 jvm0J , (1)

where k0
2 � v2e0m0 and J (M) is the electric (mag-

netic) source current. To solve this equation we use
a finite-difference frequency-domain method.7 The
fields are discretized on a nonuniform orthogonal
grid truncated by a perfectly matched layer in its
coordinate stretching formulation.8 The equation for
the f ield at each grid point involves only the f ields at
the six (four in two dimensions) adjacent grid points.
Thus the resulting system matrix is sparse.
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The system of linear equations resulting from dis-
cretizing Eq. (1) is of the general form

Z�s�I � V , (2)

where Z is the system matrix, s is the vector of design
parameters, I is the vector of unknown fields, and V is
the source, which does not depend on s (=sV � 0), since
we focus on variations of the device structure. The
response function of interest is a function of the f ield
T � T �I�s�� and therefore has no explicit dependence
on s. The objective of the sensitivity analysis is to
determine =sT . Using the AVM, one can show that6

=sT � 2ÎT �=sZ�I , (3)

ZT Î � �=IT �T , (4)

where I, obtained from Eq. (2), is the vector of f ields
at the current design point and Î is the solution to
the so-called adjoint problem [Eq. (4)]. In our case the
matrix Z obtained from Eq. (1) is symmetric. Thus
Eq. (4) requires that one determine the f ield when the
source is the adjoint excitation V̂ � �=IT �T , which is
the gradient of the response with respect to the f ields.
As an example, if the response function is defined as
the f ield intensity at a given monitor point, the adjoint
excitation will be nonzero only at the monitor point.

A particularly eff icient approach to solve Eqs. (2)
and (4) is the use of a direct sparse matrix method
that requires only a single LU decomposition of Z and
two backsubstitutions. Having calculated I and Î, we
obtain the sensitivity with respect to any number of de-
sign parameters by calculating =sZ, which has a negli-
gible computational cost. Thus, when a direct solver
is used, the only additional cost required for the sensi-
tivity analysis is one backsubstitution for the solution
of Eq. (4), which is typically at least an order of mag-
nitude smaller than the cost of the LU decomposition.

In the device sensitivity analysis we are interested
in the effects of variations of the dielectric function
er � er�r� on the response function of the device. To
calculate the effect of varying the dielectric constant
er1 of a particular device (assuming that the entire
device region has the same dielectric constant er1), it
is straightforward to calculate =sZ, and then, using
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Eq. (3), one obtains

≠T
≠er1

� 2k0
2

X
i
ÎiIi , (5)

where the summation is taken over the volume of this
device.

In practice, it is particularly useful to determine
the tolerance of the device performance to fabrication
disorders. In this case we are interested in the
effect of perturbations resulting from shifting of the
interface between regions with different dielectric
constants. Suppose that we have two regions with
dielectric constants er1 and er2. Since er�r� is a step
function, its derivative is a delta function, so the sum-
mation in Eq. (3) is limited to the interface between
the two media. This surface summation needs to
be carefully defined because of the discontinuity of
the normal component of the electric field E� to the
interface and was recently studied by Johnson et al.9

in the context of perturbation theory. Following their
approach, we showed that

≠T
≠s

� 2k0
2

X
i

Dli21 dh�rsurfi, s�
ds

3 �De12ÊkiEki 2 D�e12
21�D̂�iD�i� , (6)

where De12 � er1 2 er2, D�e12
21� � e0

22�er1
21 2 er2

21�,
Dli is the local grid size normal to the interface, and
the summation is taken over the interface. The func-
tion h � h�rsurf , s� defined on the boundary surface is
the distance that the interface between regions 1 and
2 shifts toward region 2. The summation in Eq. (6) is
well defined, since both Ek and D� are continuous at
the interface.

We focus on two-dimensional calculations as a proof
of principle. For TE polarization we have E � Ezẑ and
the wave equation for the electric f ield becomes8

µ
≠2

≠x2 1
≠2

≠y2 1 k0
2er

∂
Ez � jvm0Jz . (7)

Similarly, for TM polarization we have H � Hzẑ and

∑
≠
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µ
1
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≠
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µ
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∂
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2
∏
Hz � jve0Mz . (8)

In the TM case, I and Î correspond to magnetic
fields. To use Eq. (6) where the sensitivity is calcu-
lated in terms of the electric field, we first solve Eq. (8)
to determine Hz, from which Ek and D� can then be
calculated. The adjoint problem can also be recast in
terms of the magnetic f ield. If the response function
is defined as T � jHobsj

2, where Hobs is the f ield at the
observation point, we can show that the adjoint source
is cMz � �22�jvm0�Hobs

� at the observation point and
zero elsewhere.
To validate our method, we compare it with the di-
rect approach (DA),6 in which sensitivity is simply cal-
culated as

≠T
≠s

�
T �s 1 Ds�2� 2 T �s 2 Ds�2�

Ds
. (9)

We choose a high-resolution grid (160 points per
a, where a is a length used for normalization). In
Fig. 1(a) we show the sensitivity of the response
function, calculated with the DA and our method
for the structure shown in the inset of Fig. 1. We
observe that there is excellent agreement over the
entire frequency range.

Since our method uses a perturbative approach for
the calculation of sensitivity, we expect it to be accu-
rate even when a low-resolution grid is used. To ver-
ify this, we compare our method in a low-resolution
grid (16 points per a) with the benchmark DA in the
high-resolution grid (160 points per a). Results are
shown in Fig. 1(b) for the sensitivity with respect to
object size. The agreement is very good over the en-
tire frequency range in spite of the 10 times coarser
grid. In Fig. 1(b) we also show the result obtained by
the DA in the low-resolution grid. We observe that
the DA, when applied to a low-resolution grid, intro-
duces very large error especially at high frequencies.

Fig. 1. (a) Comparison of the DA and AVM methods
in high-resolution grids (160 points per a). We show
the normalized sensitivity of the transmission def ined
as ≠T�≠s�T�s�21 (s is either the square size L or er1)
as a function of frequency. The structure, a dielectric
block, is shown in the inset, L � 0.9375a, and er1 � 11.56.
(b) Comparison of the DA and AVM methods in low-
resolution grids (16 points per a) with the benchmark DA
in the high-resolution grid (160 points per a) for s � L.
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Fig. 2. Transmission spectrum calculated by the finite-
difference frequency-domain (FDFD) method and the
corresponding Lorentzian f it for a photonic-crystal-based
bandpass optical filter (the device geometry is shown in
the inset). The distance between adjacent rods is a, and
their radius is 0.2a. The radius of the central dielectric
rod is rd � 0.4a. The width of the dielectric waveguides
is 0.35a, and their distance from the center of the closest
rod is 0.4a.

Fig. 3. (a) V0, (c) V1, V2 (dashed curve) as a function of
the radius of the central dielectric rod rd. Normalized
sensitivities (b) ≠V0�≠rd�V0�a�21, (d) ≠V1�≠rd�V1�a�21,
≠V2�≠rd�V2�a�21 (dashed curve) as a function of rd.

As an application of our method, we calculate the
sensitivity of the resonant frequency and the band-
width of an optical f ilter10 shown in the inset of Fig. 2.
The transmission spectrum of such a device close to
the resonant frequency can be very well approximated
by a Lorentzian shape

T �v� �
V1

2

�v 2 V0�2 1 V2
2

, (10)

as shown in Fig. 2, where V0 is the resonant frequency
and V1 and V2 are bandwidths.

To calculate ≠V0�≠s, ≠V1�≠s, and ≠V2�≠s, we differ-
entiate Eq. (10) to obtain
≠T �vi�
≠s

�
≠T �vi�

≠V0

≠V0

≠s
1

≠T �vi�
≠V1

≠V1

≠s
1

≠T �vi�
≠V2

≠V2

≠s
.

(11)

Here ≠T �vi��≠s is calculated using the method de-
scribed above. In addition, ≠T �vi��≠V0, ≠T �vi��≠V1,
and ≠T �vi��≠V2 can be analytically calculated from
Eq. (10), once the transmission spectrum is fitted
with a Lorentzian. Thus, one can determine ≠V0�≠s,
≠V1�≠s, and ≠V2�≠s accurately by applying Eq. (11)
to at least three frequencies and by solving the
overdetermined system in the least-squares sense.
Alternatively, ≠V0�≠s, ≠V1�≠s, and ≠V2�≠s can be
obtained if we differentiate some other function of
the transmission spectrum such as T21. Depending
on the design point, either ≠T �vi��≠s or ≠T21�vi��≠s
results in a better least-squares f it. In each case we
use the one that provides the best f it to our results.

In Figs. 3(a) and 3(c) we show the calculated V0, V1,
and V2 for the device structure of Fig. 2 as a function
of the radius of the central dielectric rod, rd. The cal-
culated V0, V1, and V2 are consistent with previously
published results.10 In Figs. 3(b) and 3(d) we show
the calculated sensitivities of V0, V1, and V2. We ob-
serve that V1 and V2 are much more sensitive to varia-
tions in rd than is V0. The calculated sensitivities are
consistent with the values obtained by the DA in the
same grid.

This research was supported by the Defense Ad-
vanced Research Projects Agency/Microelectronics Ad-
vanced Research Corporation under the Interconnect
Focus Center. S. Fan’s e-mail address is shanhui@
stanford.edu.

References

1. K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan,
Appl. Phys. Lett. 82, 4414 (2003).

2. A. Chutinan and S. Noda, J. Opt. Soc. Am. B 16, 240
(1999).

3. Z.-Y. Li and Z.-Q. Zhang, Phys. Rev. B 62, 1516
(2000).

4. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C.
McPhedran, N. A. Nicorovici, and C. M. de Sterke,
Phys. Rev. E 62, 5711 (2000).

5. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos,
J. Appl. Phys. 78, 1415 (1995).

6. N. K. Georgieva, S. Glavic, M. H. Bakr, and J. W.
Bandler, IEEE Trans. Microwave Theory Tech. 50,
2751 (2002).

7. S. D. Wu and E. N. Glytsis, J. Opt. Soc. Am. A 19,
2018 (2002).

8. J. Jin, The Finite Element Method in Electromagnetics
(Wiley, New York, 2002).

9. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O.
Weisberg, J. D. Joannopoulos, and Y. Fink, Phys.
Rev. E 65, 066611 (2002).

10. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopou-
los, Appl. Phys. Lett. 78, 3388 (2001).


