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Radiationless interference of an electromagnetic wave occurs in the near field when the feature sizes of the
waves are at the deep subwavelength scale. We present the propagation in such a regime using a wave-
vector space picture. Using this picture, we reproduce the condition to achieve near-field focusing. We also
design the initial field distribution needed for near-field beaming, where an intensity distribution maintains
its shape as it propagates. We conclude the discussion by proposing a possible implementation of the near-
field beaming scheme. © 2009 Optical Society of America

OCIS codes: 070.7345, 240.0240.

Interference is at the heart of many electromagnetic
effects. Although most interference experiments have
been carried out in the far field, there have been
recent theories and experiments pointing out inter-
esting interference effects in the near field. In par-
ticular, Merlin et al. [1-3] showed that such “radia-
tionless interference” can be exploited to create deep
subwavelength focusing. In this Letter, we provide a
description of near-field interference based on wave-
vector space arguments, which provide additional in-
sight to the near-field focusing effect. We also point
out a near-field beaming effect and discuss its pos-
sible experimental implementation.

In near-field interference, one specifies the field (¥)
at the plane z=0 and calculates the field at other
planes z. For this purpose, we represent F(y,z) in
wave-vector space as

1 -
F(y,z) = EfF(ky,z)exp(ikyy)dky. (1)

The connection between F(y,z) and F(y,z=0) is then
straightforwardly calculated in the wave-vector
space, noting that

F(k,,2) = F(k,,0)exp(ik,(k,)2) = F(k,,0)T(k,,2), (2)

where we define the transfer function T7(k,,2)
=exp(ik,(k,)z). In general, k§+k§:(nw/c)25k(2),
where n is the index of refraction of the material, w is
the angular frequency, and c is the speed of light. In
the near-field regime, however, following [1-3] one is
typically concerned with the initial field distribution
F(y,0) that has most of its features in the deep sub-
wavelength regime. Thus most of the relevant k,

components of F(ky,O) satisfy k,>k, giving

k,~ik,. (3)
Thus, T(k,,z) =~exp(-k,z) (light line, Fig. 1). Equation
(2) can be approximated as
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F(ky,z) = F(k,,0)exp(- k,z). (4)

Using this formula, we now discuss focusing and
beaming effects in the near field.

In near-field focusing, the goal is to focus the elec-
tromagnetic beam into a deep subwavelength spot.
Following [1], at the focal length z=L, a focal spot
size on the order of [=2w/q, corresponds to a flat
spectrum in wave-vector space up to k,=q,. To get
such a flat spectrum, noting the specific form of
T(k,,L)=exp(-k,L), one can simply choose F(k,,0) in
the region 0 <k, <q, to be (dark line, Fig. 1)

F(k,,0) = exp(+ k,L), (5)
giving (dotted curve, Fig. 1)
F(k,,L) = F(k,,0)exp(- k,L) = const. (6)

Such a flat spectrum occurs only at z=L. For k,>q,
we simply choose F'(ky,O) to be symmetric around q,.
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Fig. 1.

trum in wave-vector space I:f'(ky,L) (dotted curve) becomes
flat. This occurs at z=L, where the exponentially growing

(Color online) Focusing occurs when the field spec-

part of F‘(ky,O) (dark line) cancels with the exponentially
decaying part of T'(k,,L) (light line).
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As a result,

F'(ky’o) = eXp(_ |ky - q0|L)7 (7)
which corresponds to
Fip,0) L exp(igqy) ®
SR y2+L?

In Eq. (8), the Lorentzian envelope (y2+L?)~! pro-
vides the exponential growth in wave-vector space
needed for focusing, while the oscillating function
exp(iqqy) shifts the center spatial frequency to &,
=q,. This reproduces exactly the result in [1,4]. The
wave-vector space interpretation, however, provides
a somewhat more intuitive picture on the choice of
the form of the initial field.

Next, we propose to follow similar steps to achieve
deep subwavelength near-field beaming. By beaming,
we aim to maintain a constant beam envelope as an
electromagnetic beam propagates over a range of z.
Because T(k,,z) is an exponentially decaying func-

tion in the %, space, we choose F(ky,O) to be a Gauss-
ian (Fig. 2a), with the center spatial frequency g,
>k0, i.e.,

2
. y
F(y,0)= eXp(quy)eXP(— —) . 9)
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Fig. 2. (Color online) a, Near-field beaming scheme in

wave-vector space. Beaming occurs when F(ky,z) (dotted

curve), which is the product of the Gaussian F’(ky,O) (dark
curve) and T'(k,,z) (light curve), maintains the shape and
width as z increases. b, Real part of the field in position
space. It maintains the same Gaussian envelope (dark
curve), but the spatial oscillation of F(k,,z) [dark gray
(blue online) curve] has a longer period than that of F(%,,0)
[light gray (red online) curve].
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F(k,,0)=\2ma exp(— g(ky - q0)2) . (0

Then using Eq. (4), we have

_ 22
F(ky,z) =270 exp(—zqo + —)

20

g z 2
S,

22 V4
F(y,z) =exp| —2zq¢+ — |exp|i{ qo— — |y
20 o
X yz
ex - .
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We can see that the envelope remains Gaussian with
same width for any z, achieving the beaming effect as
desired (Fig. 2).

In general, the beaming effect persists only for a fi-
nite range of z, and here we calculate the maximum
distance z,,,, that the beam can propagate without
distortion. There are two effects that limit the propa-
gating distance. First, the center spatial frequency
q(z) of the Gaussian shifts lower at a constant rate
q(2)=q¢—-z/0, but Eq. (3) is true only when q(z) > k,.
By solving for z,,,,, which makes the center spatial
frequency drop below k(, we get

(12)

Zmax = (qO - kO)O-- (13)

Second, the amplitude of the Gaussian decays expo-
nentially in z, which is characteristic of any evanes-
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Fig. 3. (Color online) Beaming scheme using a TM-
polarized Gaussian beam incident at an oblique angle in-
side an SiC prism. The wave undergoes total internal re-
fraction and gives an evanescent wave with a Gaussian
profile on the air side. Arrows in a and b show the direction
of incident and reflected waves. b, Real part of E,; c, abso-
lute value of E,, normalized such that in each plane of con-
stant z, the maximum amplitude is 1 to emphasize the con-
stant Gaussian envelope.
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cent wave. That means at large z, the Gaussian en-
velope can decay below, and get dominated by, the
very small wave-vector component in the propagat-
ing region k,<q,, which does not decay in z. We can
solve for this limit in z,,,, by setting the decayed am-
plitude of the Gaussian equal to the value of the
wave-vector component at k, =k,

22
exp<_zqo * 2_> = exp(- olko—q0)*/2),  (14)
g

which gives

—_—
Zmax = QOU(l - \/1 - (1 - kO/QO)Z)' (15)

Notice that if q¢> £k, both z,,, from Egs. (13) and
(15) converge to

Zmax =400 - (16)

We now do the analysis for general shapes of input
beams with the form F(y,0)=M(y)exp(iqyy), with
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M(y) symmetric and real. For simplicity, assume the

normalization M(0)=1. We can find the rate that the
center spatial frequency shifts initially using the
first-order Taylor expansion to be

d 1
a9 (17)
dz M//(O)

We can estimate the range z,,,, that the wave can
propagate before the evanescent part is dominated by
the propagating part,

KL ! (18)
Zmax = ogl — .
a5-2k5 \ M(go - ko)

This approximation assumes that the center spatial
frequency does not shift significantly.

The FWHM (W) of F changes as z increases. We
find that the change in the FWHM is constant to first
order (dW/dz=0). The second-order change is

1d*W 1 1 w
2422 __M,<V_V) M"(0) 2

As expected, by setting M to be Gaussian, we get
dW=0, which is required for beaming.

We propose an experimental implementation of the
near-field beaming scheme by shining a Gaussian
beam into an SiC prism. The beam hits the bottom
SiC-air interface at an oblique angle, as shown in
Fig. 3. The polarization is chosen to be TM, so the
field F refers to E,. We choose the material to be SiC
at f=23.4 THz; at this frequency ng;c=10.3 [5]. The
beam width is \o=5 um, and the incident angle is
18°. The incidence angle is chosen such that the cen-
ter spatial frequency qo(=1.5x10%m™!) at the bot-
tom SiC-air interface is much greater than kg
(=0.5x 108 m~1). The large index of SiC at this fre-
quency ensures that such spatial frequency still
propagates in SiC. The beam undergoes total inter-
nal reflection at the SiC-air interface, giving an os-
cillating Gaussian beam on the air side; the Gaussian
beam input gives the factor exp(-y2/20), while the

-— |1 - (19)

oblique angle gives the oscillation exp(igyy). This
beam then undergoes beaming in the air region. We
can see in Fig. 3 that the beam in air indeed main-
tains the same amplitude envelope, and the ampli-
tude variation in the z direction in fact agrees well
with Eq. (12).
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