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Large omnidirectional band gaps in metallodielectric photonic crystals
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Using a finite-difference time-domain method, we study the band-structure and transmission properties of
three-dimensional metallodielectric photonic crystals. The metallodielectric crystals are modeled as perfect
electrical conducting objects embedded in dielectric media. We investigate two different lattice geometries: the
face-centered-cubi@fcc) lattice and the diamond lattice. Partial gaps are predicted in the fcc lattice, in excel-
lent agreement with recent experiments. Complete gaps are found in a diamond lattice of isolated metal
spheres. The gaps appear between the second and third bands and their sizes can be larger than 60% when the
radius of the spheres exceeds 21% of the cubic unit cell size. A possible fabrication scheme for this structure
is proposed and transmission calculations are perforf&@l63-182606)02040-1

[. INTRODUCTION complex structures containing dielectric and/or metallic
objects’ The general procedure involves approximating
Recently there has been a drive by experimental groups thaxwell’s equations in real space using finite differences,
incorporate metals into all-dielectric photonic crystaidln  imposing appropriate boundary conditions, and explicitly
particular, Brown and McMahon have recently demonstratedime marching the fields to obtain the direct time-domain
the existence of a large photonic band gap along(fid)  response, from which a wide variety of information can be
direction of a face-centered-cubffcc) structure composed extracted.
of metal spheres embedded in dielectric médi. transmis- For simplicity, we use Yee's discretization scheme to
sion experiments were performed along only one directiongolye Maxwell’'s curl equation¥ All field variables are de-
the possible omnidirectional nature of this gap was not defineq on a rectangular grid. Electric and magnetic fields are
termmgd. TheoreUcaI support would be very useful in they mporally separated by one-half time step. In addition, they
determination of the completeness of the photonic gap ande "ghatially interlaced by half a grid cell. Based on this
ggg‘:g;?éycl&;?aelsdﬁ{%”l ;gg %?;'mézigg% r?;ﬂgg!f)d'elecmc scheme, center differen?es in both space and time are applied
Metals, however, offer new challenges for the theoreticaf® aPProximate Maxwell S equations. Smce all grid cel[s are
rlectangular in shape, arbitrary geometries are approximated

investigation of photonic band-gap materials. Among sever > - A ;
approaches in recent yeér‘g, three-dimensional cal- aby staircases. The_ validity f_;md limitations of staircase ap-
i_proximations are discussed in Ref. 11.

culationé 8 concentrate only on structures with spatial per

ods comparable to the plasma wavelength, which usually lies Inside the metallic objects, all electric-field components
in the ultraviolet region. In this particular frequency range,a’e Set to zero at each time step, since every electric-field

dispersion and absorption effects must be taken into accou§@mponent vanishes in a perfect conductor. With the metal-
in order to obtain the correct electromagnetic response. Howdielectric interface placed at the integer grid plan in Yee's
ever, instead of working in the range of the plasma freattice, the tangential components of the electric field and the
guency, we have chosen to investigate the existence of pha#ormal component of the magnetic field vanish at the inter-
tonic band gaps in metallodielectric structures in theface. The correct boundary condition is therefore ensured.
microwave region, which is several orders of magnitude In order to compute the field at any given grid point, we
lower than the plasma frequency. Our choice was motivateghust know the value of the field at every adjacent point on
by recent experiments in the microwave redichwhere the grid. With a finite computational cell, information from
metals are essentially lossless and can be accurately modelggdes outside the cell is not available. Fields at the nodes on
as perfectly electrical conductors. ~ the boundaries therefore have to be updated using boundary
In this paper. we apply simple schemes based on finitegonditions. Depending on the purpose of the simulation, ei-
difference time-domaiFDTD) methods to calculate both ther absorbing or periodic boundary conditions are applied.
the photonic bands and the associated field distribution ofhjs and other aspects of the computational methods specific
perfect crystals. The FDTD methods are also used to obtaify ejther transmission or band-structure calculations are dis-
transmission spectra through finite-thickness samples in oyssed below.
der to make direct comparisons with experiments. After a
brief description of the computational methods in Sec. II, we
will present results for a variety of fcc and diamond crystals A. Transmission calculations

in Sec. Mll. While the methods described above can be applied to
Il COMPUTATIONAL METHOD study propagation of ele_ctromagnenc waves in arbltra_ry
structures, we are primarily concerned here with transmis-

Finite-difference time-domain methods are widely used insion of normally incident plane waves through a slab of pho-
analyzing interactions between electromagnetic waves antbnic crystal, since the transmission can be directly measured
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B. Band-structure calculations

y ‘ plane Time domain simulations can also be used to obtain band-
X waves structure information. The computational domain is chosen
z to be a unit cell of the infinite crystal. Fields at nodes outside

the domain are related to fields inside by Bloch’s condition

E(r+at)=e*3E(r,t), 1)

wherer is the position vector of a node in the domadris a
lattice vector, ank is the wave vector. After the initial ex-
citation, fields oscillate in a steady state that is a linear com-
bination of several eigenstates with the same wave véctor
Frequencies of these eigenstates can be obtained by a Fourier
transformation of the time-domain amplitude at a given
point. The resulting spectrum is composed of a discrete set of
peaks, where each peak corresponds to an eigenfrequency.
Similar methods have been used in determining phonon dis-
persion in semiconductdrsand in calculating various elec-
tromagnetic wave properties in ordered and disordered di-
electric structure$?

Modes in the computational cell are excited using one or
several point dipole sources with Gaussian frequency-profile
amplitudes. The oscillation period and the width of the
Gaussian are chosen such that the excitation spectrum covers
the frequency range of interest. In determining the band
structure, we use a short pulse in time that excites a wide
frequency range. Both the dipoles and the point where the

field is recorded are placed away from all the symmetr
.deteCtOI’ planes, so that modespwith differe>|f1t symmetries c;/n be e3>/<-
cited and recorded in one simulation. Instead of exciting sev-
eral modes simultaneously using a pulse with a wide spectral

FIG. 1. Schematic of the computational cell used in the tranSTange, we can also use a narrow soui@, long duration in
mission calculation. time) to selectively excite only one eigenstate at a specific

frequency. The symmetry of the steady state can further be
by experimenté. A schematic of the computational cell is SPecified by placing the dipoles in appropriate symmetrical
shown in Fig. 1. A slab of photonic crystal is placed in the configurations. _
middle of the cell with its top and bottom surfaces normal to AS discretization is performed on a rectangular lattice, a
the z direction. Plane waves propagating along zrexis are natural choice for the computational domain is rectangular.

generated by exciting a plane of identical dipoles in IOhaseForfcc lattices, a cubic unit cell is employed, which contains

On the other side of the crystal, the field amplitude, is moni-four fce primitive cells. As Eq(1) only determines the phase

tored at a single point, marked “detector” in Fig. 1. relations between differentubic cells, the band structure

Mur's second-order absorbing boundary conditidrare obtained is doldedversion for the underlying fcc lattice. To
used at the top and bottom edges of the computational cel btainunfoldedband structures we need to specify the phase

- X lation across differerprimitive cells. This is achieved by
Plane waves hitting these boundaries get absorbed. On ?ﬁacing a dipole in each of the four primitive cells. The di-

other boundaries, we use periodic boundary conditions. BY,,|es are separated by a fec lattice vector, the relative phase

placing one unit cell of a slab of photonic crystal in the patween them satisfying Bloch’s theorem.

computational cell, we can simulate plane waves normally \ye study convergence of the methods by comparing the

incident upon a slab witinfinite extent in thex andy direc-  sjze of the gap for a given structure with different density of

tions. grid points. A detailed convergence study and specific ex-
Instead of studying the steady-state response, one fregmples of the above methods are presented below.

quency at a time, we choose to send a single pulse of light

with a wide frequency prqfile. The inpident gmplitgde is_cali— Il RESULTS AND DISCUSSIONS
brated at the detector point by running a simulation without
the crystal. Simulations are then performed with the crystal A. fec structures

present, the amplitude at the detector describing the transmit- We study a fcc structure proposed by Brown and
ted wave. The transmitted and incident amplitudes are themcMahon? The structure is constructed by stacking several
transformed into the frequency domain using fast Fourietayers of Teflon(e=2.1), each layer containing a triangular
transformations. The transmission coefficients are detetattice of cylindrical air holes with a metal sphere inserted in
mined by taking the square of the ratio between the twaeach hole. The layers are stacked along(ftidl) direction in
amplitudes. a staggered fashion with akBC repeating unit. The thick-
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FIG. 2. Transmission spectra through a slab of a fcc metallodi-
electric photonic crystal. The solid line is obtained from theoretical
calculation; open circles are data points. The broken line corre-

Frequency (2rc/a)

sponds to experimental results, as described in Ref. 2. (b)

1.0 ) s : 'o'
ness of the slab and the lattice constant of the triangular [ Poe .: g5".3..
arrays are chosen to form a fcc lattice. A detailed description o %87 M A U
of the structure is found in Ref. 2. g i eie.

Using the method described in Sec. Il A, we calculate o os¢ ?"::"
transmission coefficients of normally incident plane waves %) S :’é" s
through a crystal that contains o®eBC repeating unit, in & o4 - . : '
conformity with the experiments. In Fig. 2 the results are > F N R
compared to experimental data, which were obtained using a L?hj 02 | o
cubic unit cell size of 0.43 in. Our simulations show the Eo o
existence of a large gap extending from 9 to 23 GHz, with a 00 L : ; ;
maximum rejection of 22 dB, and the occurrence of a smaller X U L r X W K

gap between 5 and 9 GHz, all in excellent agreement with
experiment. The rapid oscillations in the experimental spec-
trum are due to noise in the measurement. FIG. 3. (a) Spectral amplitude at severklpoints for the fcc
We compute the band structure for the crystal using thenetallodielectric photonic crystalb) Bands for the same fcc struc-
method described in Sec. Il B. A 382x32 cell is used for ture. Each dot corresponds to a peak in the spectral amplitude at a
the calculation. We obtain the band-structure plot by analyzsPecifick point.
ing the spectrum for eadhpoint. The spectra dt, L, andX
are shown in Fig. @) as examples. The band structure is B. Diamond structure

plotted in Fig. 3b), with the wave vector at thé point To search for a metallodielectric photonic crystal with an
parallel to the axis of the air cylinders. A large gap existsomnidirectional gap we consider a diamond lattice of metal
along this direction between the frequencies0.4Zx/a and  spheres. The diamond lattice is a natural choice since large
0.77c/a. In the specific case where the lattice constamé  photonic band gaps have been predicted in all-dielectric
equal to 0.43 in., the gap occurs between 11.5 and 21.2 GHerystals with a diamond structute A schematic of a dia-

in agreement again with the transmission experiments. Thaond lattice is shown in Fig. 4. The radius of the spheres can
small discrepancy between the frequencies at the edges be varied to tune the photonic bands. The spheres do not
the gap arises from the finite size of the experimental samplé@Vverlap with each other if the radius is smaller than 0.21.65
The maxima in the transmission spectrum at the edges of théhere a is the size of the cubic unit cell. We focus our
gap do not correspond exactly with the position of the bandittention on nonoverlapplng_ spheres, as unconnected spheres
edges for the infinite crystal. The smaller gap at lower fre-°Prévent long-range conduction currents. Such currents would
quency finds no corresponding gap in the band structure iﬁo_ntnbute to gndeswable Ohmic losses that increase rapidly
the infinite crystal. It is probably due to a Fabry-Perot osciI—WIth frequencies.

lation in the finite-size sample. Figurél® clearly shows that

there is no omnidirectional gap for this crystal. The gap 1. Band structure

along theL direction does not extend to the directionslbf The band structure is shown in Fig. 5 for the specific case
andW. where the radius is equal to 021The spheres are embed-
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FIG. 4. Schematic of a diamond structure with nonoverlapping

metallic sphere on each lattice site. Frequency (2nC/a)

ded in Teflon(e=2.1). The bands are calculated using a 64 (b)

X64x64 grid. We find that there exists a full photonic band 10— e —
gap in which electromagnetic waves are forbidden to propa- ::'i,:' ""j:;' Sescesl,
gate in any direction. The lower edge of the gap is located at < 08 }l:" o '5 ."".....
the W point of the second band and the upper edge is located e} o S i '.",.otz
at the X point of the third band. The gap covers the fre- El‘j 06 E

guency range between 0&/a and 0.68/a. The lower band - [

is almost entirely flat along th¥-U and theW-X lines on 2 :“; ieccies
the surface of the first Brillouin zone. The size of the gap, 2 04T The., . ? ¢ i
defined as the gap width to midgap frequency rééiel/wg), g F «

exceeds 45%, which is significantly larger than the biggest i 02p . *

gap ever reported in conventional all-dielectric photonic [ o

crystals. 0.0 L— i

XU L r X WK
2. Nature of the gap

In the metallodielectric systems studied above, the metal- FIG- 5. (8 Spectral amplitude at severlpoints for the dia-
lic spheres form impenetrable cores for electromagnetiénond structure of metallic spheres witk-0.21a. The spheres are
waves. The field amplitudes for both the upper and the lowefMpedded in Teflorie=2.1) (b) Band diagram for the same dia-
bands therefore are entirely distributed in théform dielec- monq structure. Ea_c_h dot corresponds to a peak in the spectral
tric. This behavior is in sharp contrast to conventional all-amIOIItUOIe at a specific wave vector.
dielectric photonic crystals. In conventional crystals, the gap ) )
originates from the difference in field distribution between amostly localized at the narrow region between the nearest-
low-frequency “dielectric” band, which has most of its dis- Neighbor metal spheres.
placement field concentrated in the high-dielectric region, The large frequency difference between the two modes
and a high-frequency “air’ band, which has its field pen- can be'explalned using the variational theorem in electro-
etrating more into the low-dielectric regidf. magnetism, as described in Ref. 17:

To probe into the origin of the gap in metallodielectric

systems we choose to study the field distributions of the 1

normal modes at th& point in the lower and upper bands. fdr = |VxH|?

Each eigenmode is selectively excited by using sources with w2=6—2_ 2
a narrow spectral width, performed by oscillating the dipole Jdr H

sources at a given frequency for a long duration. The spectra

of the resulting steady states are shown in Fi@).6Each  Equation(2) links the mode frequency with the spatial varia-
spectrum contains only one peak, indicating the presence dion in the magnetic-field distribution. The band associated
a single eigenstate. The cross section of the power density iwith the more extended magnetic field has a lower fre-
the magnetic fields is shown along tkElQ) plane in Fig. quency, while the band with the more localized magnetic
6(b) for both the lower and the upper bands. We see that, ifield has a higher frequency. The origin of the large gap is
the lower band, the field is extended throughout the opethus related to the sharp contrast in the spatial variation of
region in the lattice, while in the upper band, the field isthe field distribution.
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size of the gap increases with the grid density; however, the
rate of convergence decreases as the spheres come closer to
touching.

The convergence behavior is related to the field distribu-
tion of the eigenmodes, which has significant components in
the area between the spheres. An accurate sampling of the
fields in this region is important in order to obtain the precise
frequency value and the gap size. This region, however, be-
comes smaller as the radius of the spheres increases, requir-
ing a higher density of grid points for adequate sampling.
= = - 2 In using a finite-difference scheme to solve Maxwell’'s
equations two types of errors occur. One type is caused by
approximating the curls of the fields with a centered differ-
ence on the grid, while the other type comes from the stair-
case approximation for the metallic structure. In the first
case, the error scales a8s{?, whereds is the grid spacing.

In the second case, the error originates from the uncertainty

. —— ” in representing the size of the air region between the nearest-
neighbor spheres, which scales &s Consequently, the in-
accuracy in the frequency or the gap size also scale3sas

- The overall error in computing the size of the gap is a com-
bination of both errors. We can therefore determine the size
I @940 | of the gap for each individual structure by fitting the results

0 M on a second-order polynominal with argume@t and by
ax extrapolating it to the limit wherés—0, as shown in Fig. 7.

FIG. 6. Field distribution of two eigenstates in the diamond
structures. Shown here are the two states at the edge of the gap at 4. Structural variations
the X point. (a) Spectral amplitude(b) Plot of the power density in We make a systematic examination of the photonic band
the magnetic field on thel10 plane. In both cases, the top panels gtyycture as a function of the radius of the spheres. Calcula-
correspond to the state at the lower edge of the gap; the bottofysng are performed using four different grid spacings and the
panels correspond to the state at the upper edge of the gap.  reqits are plotted in Fig. 7. The extrapolated gap size for
each structure is also shown. The gap increases rapidly as the
spheres become larger and can be much greater than 60%
3. Convergence when the radius exceeds 0221
In the case where the radius exceeds 0.2]1 &% spheres
We study the convergence of our method by calculatingoverlap and form a connected metallic network. As expected,
the size of the gap at th¥ point using four different grid when this occurs, the bands below the gap vanish leaving a
spacings §s): a/32,a/64,a/96, anda/128. Thecalcula- gap fromzerofrequency up to a cut-off frequendy. In the
tions are performed on four structures with different radiispecific case where=022a, the cut-off frequency isf.
and the results are plotted in Fig. 7. For each structure the=0.45c/a.
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FIG. 8. Band diagram and transmission for a diamond structure FIG. 9. Band diagram and transmission for a diamond structure
of metallic spheres with radius=0.21a embedded in Teflofe ~ Of metallic spheres with radius=0.21a embedded in Teflorie

=2.1). The spheres are surrounded by air cylindéasBand dia- =21 The spheres_ are surrour?ded. by cylinders filled with resin
gram for directions-L, T-X, andI'-Z. (b) Transmission through (€=2.9. (&) Band diagram for directions-L, I'-X, andI-Z. (b)
two cubic unit cells along th& direction. Transmission through two cubic unit cells along thelirection.

5. Fabrication at theZ point is normal to the slabs. The gapatextends

_ o ) from frequencyf = 0.54c/a to 0.7Z/a, which yields a gap of
One possible approach for fabricating the diamond strucag 504, The transmission normal to the slab through two cu-
ture is to stack dielectric slabs, as proposed by Brown angic ynit cells is shown in Fig. ®). The maximum rejection
McMahon for the fcc structurBAs an example, we assume s 14 dB, or 7 dB per lattice constant, occurring at a fre-

Teflon slabs withe=2.1. A square lattice of cylindrical air quency of 0.64/a, which is close to the midgap frequency.
holes with a lattice constant of 0.@@an then be drilled on In order to prevent the nearest-neighbor spheres from
each side of the slab to house the metallic spheres. The ho'ﬁilching, Brown has suggested filling the air voids in the
on either side of the slab are shifted by G3&ith respectto  cyjinders with resint Since resin has a higher dielectric con-
each other. Each slab has a thickness of &.2khe holes  siant(e=2.5), the frequencies decrease in both the upper and
have a diameter of 0.42and a depth of 0.z The holes on  |gwer pands. The lower band, however, is affected more
either side intersect each other. Each hole on one side of thgrongly since the associated electric fields are concentrated

staggered fashion so that the spheres extending beyond the g 3q:/a to 0.6%/a, as shown in Fig. @). The maximum
surface of any given slab coincide with the holes at the botrejection also increases to 31 dB, or 15.5 dB per lattice con-

tom of the above slab. Such an arrangement of spheres gegmnt, with the same sample containing two cubic unit cells
erates a diamond lattice. The final step of the fabricationrig. gp)].

process would consist in covering the upper and the lower
surfaces with a slab that is half as thick as the other ones,
with an array of holes on only one side.

Photonic bands along some special directions are shown We have successfully applied a FDTD method to obtain
in Fig. 8@. The degeneracy between theandZ points is  both the band-structure and the transmission properties of
broken by the presence of the air cylinders. The wave vectometallodielectric photonic crystals. Excellent agreement is

IV. SUMMARY
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obtained between our theory and available experimental dataapolation. The point lies directly on top of the curve, which

on a fcc structure. We further predict that a diamond latticevalidates our extrapolation schem.

of metallic spheres will give rise to an omnidirectional pho-

tonic band gap, the size of which can be larger than the size ACKNOWLEDGMENTS
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