TABLE OF CONTENTS

1	ELASTIC MODULI OF LAMINATES	1
1.1	Stress and strain transformation	1
1.2	Transformation relations for stiffness components	4
1.3	Trace and other invariants	7
1.4	Transformed stiffness components	11
1.5	Transformation in 3D	14
1.6	2D and 3D traces	19
1.7	Laminated plates	24
1.8	Invariants of laminates	30
1.9	Quasi-Isotropic laminates	34
1.10	Flexural stiffness of symmetric laminates	37
1.11	General laminates	40
1.12	Homogenization	45
1.13	In-plane and flexural problems	48
1.14	Conclusions	51
1.15 Sample problems and tools		51
1.	.15.1 Stiffness of laminates .15.2 Accuracy of trace-based laminate stiffness	52
2	LAMINATE STRENGTH	59
2.1	Basic ply strength data	60
2.2	Quadratic criteria in stress space	62
2.3	Quadratic criteria in strain space	67

2.4	Transformation of failure envelopes				
2.5	Strength/stress ratio and failure index				
2.6	First Ply Failure envelopes for laminates				
2.7	Strength of laminates after First Ply Failure – ultimate failure envelopes				
2.8	Progressive versus simultaneous degradation	85			
2.9	Omni Strain failure envelopes for laminates	87			
2.10	Unit Circle failure criterion for laminates	93			
2.11	Sample problems and tools	99			
3 I	AMINATE DESIGN	113			
3.1	Carpet plot of legacy quad-axial laminates	115			
3.2	Bi-axial laminates	123			
3.3 3.3 3.3 3.3	 Tri-axial sub-laminates 3.1 Tri-axial regular 3.2 Tri-axial hard 3.3 Tri-axial soft 3.4 Matching Tri-axial with Legacy Quad 	127 129 131 132 133			
3.4	Double-double helix sub-laminates	136			
3.5	Double-double helix hybrids	145			
3.6 sub-la	Comparison between the legacy quad- and double-double aminates	helix 147			
3.7	Replacement of legacy laminates by double-double	154			
3.8	Hard and soft $[\pi/4]$ 15				
3.9	Homogenization as an enabler 16				
3.10	Knock-down factor for double-double laminates 16				
3.11	Search engines for best laminate 1				

3.12	2 Summary	175	
3.13	Tools for best laminates in smooth and notched strength	177	
4	COMPOSITE GRID/SKIN STRUCTURES	185	
4.1	Stiffness of composites grids	188	
4.2	Three common grids	190	
4.3	Composite grids with skins	198	
4.4	Efficiency of grid/skin constructions	207	
4.5	Failure envelopes	213	
4.6	Conclusions	216	
4.7	Sample problems and tools	218	
5 TRACE-BASED SCALING AND BEAM OPTIMIZATION USING PROFILERANK 223			
5.1	Introduction	223	
5.2	Weight optimization using ProfileRank	224	
5.3	Trace-based scaling	238	
5.4	Scaling results and master curve of optimal weight	242	
5.5	Summary and discussion	250	
Refe	erences	252	
6	TRACE-BASED DIRECT SIZING METHOD	253	
6.1	Background	253	
6.2	Laminate sizing	259	
6.3	Material selection	268	
6.4	Case studies	271	

6.4	4.1 A bi-axially loaded panel	271
6.4	4.2 Shear case study	281
6.5	Final remarks and perspectives	283
6.6	References	284
7 A	A UNIFIED AND EFFICIENT DESIGN, TEST, AND	
MAN	NUFACTURE OF COMPOSITE LATTICE STRUCTURE	S AND
PAN	ELS	287
7.1	Ellipsoidal Panel Lattice Structure	289
7.2	Tube Lattice Structure	293
7.3	Box Lattice Structure	296
7.4	Double Panel	297
7.5	Basic Recipe	300
7.6	Importing IGES Panel Geometry into TrueGrid [®]	301
7.7	COBELLS Command	305
7.8	Element Properties	309
7.9	Analysis Steps	310
7.10	Boundary Spline Curve	311
7.11	Loads and Boundary Conditions	312
7.12	Variable Thickness	314
7.13	Tape Paths	316
8 A	APPENDIX A - 3D_BEAM MANUAL	319
8.1	Introduction	319
8.2	General description	320
8.2	2.1 Coordinate systems	320
8.2	2.2 Element, node and element group	322
8.2	2.3 Directions of six degree of freedoms and forces	322

8.2 8.2 8.2	2.4 2.5 2.6	Brick, brick node and ply Ply orientations Material property input	323 323 324
8.3	۶lo	w chart	325
8.4	Ноч	v to run 3D_Beam?	326
8.4	1.1	Option setting	327
8.4	1.2	Pre-processor	328
8.4	1.3	Main-solver	330
8.4	1.4	Post-processor	333
8.4	1.5	New run	334
8.5	Exa	mples	335
8.5	5.1	Case 1: Cantilever Rectangular box beam	335
8.5	5.2	Case 2: Cantilever beam with circular cross section	340
8.5	5.3	Case 3: Composite beam under three-point bending	344
8.5	5.4	Case 4: ProfileRank for aluminum beam	348

<u>Chapters 1 to 4</u> **Stephen W. Tsai** Department of Aeronautics & Astronautics Stanford University – USA <u>stsai@stanford.edu</u>

<u>Chapters 1 to 4</u> José Daniel D. Melo Department of Materials Engineering Federal University of Rio Grande do Norte – BRAZIL *Visiting Scholar* Department of Aeronautics & Astronautics Stanford University – USA jddmelo@gmail.com

<u>Chapter 5</u> Sangwook Sihn University of Dayton Research Institute – USA Sangwook.Sihn@udri.udayton.edu

<u>Chapter 6</u> Albertino Jose Castanho Arteiro University of Porto – PORTUGAL aarteiro@fe.up.pt

<u>Chapter 7</u> **Robert Rainsberger** XYZ Scientific Applications, Inc. – USA r.rainsberger@yahoo.com

Dr. Arteiro wish to thank the support from FCT - Fundação para a Ciência e a Tecnologia through National Funds (project MITP-TB/PFM/0005/2013) for encouragement and support during the preparation of this work.