TABLE OF CONTENTS

Preface	v
Composites Design Tutorial 1 and 2	viii
Who We Are	Х
Nomenclature	xvii

1 Distribution of Micro Stresses and Interfacial Tractions in Unidirectional Composites

1.1	INTRO	DUCTION	1-1
1.2	THEO	RICAL BASIS	1-2
	1.2.1	Idealized Micromechanical model	1-3
	1.2.2	Strain Amplification Factors	1-5
	1.2.3	Analytical Methods for Macro Material Properties	1-10
1.3	NUME	ERICAL ANALYSIS	1-11
1.4	RESUI	LTS AND DISCUSSION	1-13
	1.4.1	Verification of Boundary Conditions	1-13
	1.4.2	Effective Material Properties	1-14
	1.4.3	Micro Stress Distribution in Unit Cell	1-17
	1.4.4	Micro Stress Invariant Distribution in Matrix	1-19
	1.4.5	Interfacial Traction Distribution along Fiber Circumference	1-23
	1.4.6	Effect of Different Interfacial Stiffness on Stress Distribution	1-25
1.5	CONC	LUSION	1-28

2 Effects of Fiber Arrangement on Mechanical Behavior of Unidirectional Composites

2.1	INTRO	DDUCTION	2-1
2.2	METH	OD	2-4
	2.2.1	Generation of Random Fiber Array	2-4
	2.2.2	Real Fiber Array	2-5
	2.2.3	Finite Element Model	2-6
2.3	RESUI	LTS AND DISCUSSION	2-8
	2.3.1	Random Fiber Array	2-8
	2.3.2	Comparison between Random and Real Array	2-9
	2.3.3	Effective Material Properties	2-11
	2.3.4	Distribution of Stress Invariants	2-13

	2.3.5	Maximum Interfacial Normal Traction	
		in Random and Regular Arrays	2-13
	2.3.6	Effect of Loading Angle for Random and Regular Arrays	2-15
	2.3.7	Interfacial Traction Distribution	2-21
	2.3.8	Comparison between Transverse Strength	
		and Interfacial Traction Distribution	2-23
2.4	DISCU	JSSION AND CONCLUSION	2-24

3 Micro-Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites

3.1	INTRODUCTION	3-1
3.2	MICRO-MECHANICS OF FAILURE (MMF)	3-4
	3.2.1 Micro Stresses Calculated from Macro Stresses	3-4
	3.2.2 Fiber Failure Criterion	3-5
	3.2.3 Matrix Failure Criterion	3-7
	3.2.4 Fiber-Matrix Interface Failure Criterion	3-9
3.3	RESULTS AND DISCUSSION	3-10
	3.3.1 Determination of Constituent Strengths in Graphite/ Epoxy	y 3-12
	3.3.2 Determination of Constituent Strengths in Glass/Epoxy	3-16
	3.3.3 Determination of Constituent Strengths	
	through Off-Axis Ply Strength	3-19
	3.3.4 Failure Envelopes of Multidirectional Laminates Predicted	d
	by MMF	3-22
3.4	DISCUSSION AND CONCLUSION	3-25
4	Formulation of Long-Term Creep and	Fatigue
	Strengths Based on ATM	
4.1	INTRODUCTION	4-1
4.2	ACCELERATED TESTING METHODOLOGY	4-2
	4.2.1 Procedure of ATM	4-2
	4.2.2 Applicability of ATM	4-4
	4.2.3 Theoretical Verification of TTSP	4-5
4.3	PROCEDURE FOR FORMULATING MASTER CURVES OF CH	REEP AND
	FATIGUE STRENGTHS	4-7

	4.3.1	Master Curve of Creep Compliance of Matrix Resin	4-7
	4.3.2	Master Curve of Creep Strength of Polymer Composites	4-9
	4.3.3	Master Curve of fatigue Strength of Polymer Composites	4-11
4.4	MAST	ER CURVES OF CREEP AND FATIGUE STRENGTHS	

	FOR U	NIDIRECTIONAL CFRP LAMINATES	4-13
	4.4.1	Master Curve of Storage Modulus of Matrix Resin	4-14
	4.4.2	Matrix Curves of Creep Strength for CFRP Laminates	4-16
	4.4.3	Master Curves of Fatigue Strength of CFRP Laminates	4-18
4.5	MAST	ER CURVES OF CREEP AND FATIGUE STRENGTHS FOR	
	MMF/	ATM ANALYSIS	4-21
4.6	CONC	LUSIONS	4-24
5	Prog	ressive Failure Analysis of Composites	
5.1	INTRO	DUCTION	5-2
5.2	CURR	ENT STRATEGIES IN PROGRESSIVE FAILURE ANALYSIS	5-4
5.3	PROG	RESSIVE FAILURE ANALYSIS BY THE	
	ELEM	ENT-FAILURE METHOD (EFM)	5-16
	5.3.1	Concept of the EFM	5-17
	5.3.2	Implementation of the EFM	5-20
	5.3.3	Plate with a Crack-Like Slit Under Remote Tension	5-25
	5.3.4	Contact of Pin-Loaded Holes	5-27
	5.3.5	Contact in Delaminations	5-30
	5.3.6	Progressive Failure Analysis of Pin-Loaded Composite Joints	5-34
5.4	CONC	LUSION	5-43
	APPEN	IDIX FOR CHAPTER 5	5-55
6	MAF	C: An Integrated Design Tool for Failure and	Life

Prediction of Composites 6.1 INTRODUCTION

6-1

	6.1.1	Micromechanics of Failure(MMF)	6-3
	6.1.2	Accelerated Testing Method (ATM)	6-4
	6.1.3	Evolution of Damage (EOD)	6-5
	6.1.4	Integration of MMF and ATM	6-5
	6.1.5	Integration of MMF and EOD	6-6
	6.1.6	Integration of MMF, ATM and EOD	6-7
6.2	IMPLE	EMENTATION METHODS FOR STRENGTH AND LIFE	
	PREDI	CTION	6-7
6.3	EXAM	PLE CASES	6-13
	6.3.1	Reproduction of Creep Strength Master Curves	6-14
	6.3.2	Open-Hole Tension under Creep Loading	6-15
	6.3.3	MAE versus Simple Methods	6-16
	6.3.4	Effects of Loading Sequence	6-18

	6.3.5	Double-Edge Notched Specimen under Tensile Creep Loading	6-20
6.4	SUMM	ARY AND CONCLUSIONS	6-21
	APPEN	DIX FOR CHAPTER 6	6-26

7 Life Prediction of Composites using MMF and ATM

7.1	INTRODUCTION	7-1
7.2	LIFE PREDICTION PROCEDURE OF COMPOSITES	7-2
7.3	RESULTS: CREEP AND FATIGUE MASTER CURVES	
	FOR TR30S/EPOXY	7-7
7.4	A STANDARD CREEP MASTER CURVE FOR THE MATRIX	7-13
7.5	DISCUSSION AND CONCLUSION	7-15

8 Happy 40th Anniversary

INDICES

AUTHOR INDEX	I-1
SUBJECT INDEX	I-4

APPENDICES

А	THEORY OF COMPOSITES DESIGN	A-1
В	MATERIALS AND PROCESSING	B-1
С	MIC-MAC	C-1
D	MIC-MAC/ FEA	D-1
Е	GENLAM: GENERAL LAMINATE	E-1
F	SUPER MIC-MAC PLUS (SMM+): UPDATES & SAMPLE CASES	F-1

PHOTO GALLERY