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The PI3K–Akt signaling pathway plays a critical role in
mediating survival signals in a wide range of neuronal cell
types. The recent identification of a number of substrates for
the serine/threonine kinase Akt suggests that it blocks cell
death by both impinging on the cytoplasmic cell death
machinery and by regulating the expression of genes involved
in cell death and survival. In addition, recent experiments
suggest that Akt may also use metabolic pathways to regulate
cell survival.
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Abbreviations
APAF1 apoptosis protease activation factor-1 
BDNF brain-derived neurotrophic factor
CREB cAMP-responsive element binding protein
FasL Fas ligand
FOXO Forkhead box transcription factor, class O
GSK-3 glycogen synthase kinase-3
IAP inhibitor of apoptosis
MAPK mitogen-activated protein kinase
NF-κκB nuclear factor-κB
NGF nerve growth factor
PI3K phosphatidylinositol-3-OH kinase
PIP phosphoinositide phosphate
PKA protein kinase A
PKC protein kinase C
RSK ribosomal S6 kinase
SGK serum glucocorticoid inducible kinase

Introduction
During the development of the mammalian nervous system,
half of all generated neurons undergo a pre-determined pro-
gram of cell death. As the nervous system develops, neurons
that are wired together appropriately and are in contact with
target-derived molecules — either neurotransmitters or
peptide trophic factors — suppress this intrinsic apoptotic
program and survive [1]. 

The physiological interplay between neuronal death and
survival that occurs during the development of the nervous
system has been recapitulated in several in vitro culture
models of primary neurons, including sympathetic, hip-
pocampal, cortical, cerebellar granule and motor neurons.
All of these neuronal types can be successfully cultured in
the presence of defined neurotrophic stimuli, and die
through an apoptotic process after withdrawal of trophic

support. For example, brain-derived neurotrophic factor
(BDNF) is a potent in vitro survival factor for cerebellar
granule neurons. Mice that are genetically deficient for the
BDNF or BDNF receptor genes display an excess of apop-
totic cells in the cerebellum [2,3], indicating that the
in vitro primary culture system may accurately recapitulate
cellular events that occur during normal nervous system
development in vivo [4].

In recent years, these neuronal culture systems have been
used to elucidate several molecular mechanisms by which
survival factors prevent programmed cell death. In this
review, we discuss recent discoveries of transcription-
dependent and -independent mechanisms by which
survival signaling pathways suppress neuronal apoptosis.

The process of cell death: possibility for
regulation at many levels
Many of the components of the apoptotic machinery pre-
exist in cells in a latent form. However, initiating apoptosis
in neurons upon withdrawal of survival factors requires
de novo gene expression, suggesting that some components
or regulators of the apoptotic machinery need to be newly
synthesized before apoptosis occurs [5]. Although the com-
plete subset of genes that is induced by survival factor
withdrawal is not yet known, several inducible genes have
been identified that encode critical components of the
apoptotic machinery. For instance the pro-apoptotic Bcl-2
family member BAX is upregulated during apoptosis of
sympathetic neurons [6]. Other genes that are upregulated
in response to apoptotic stimuli encode extracellular or
transmembrane ligands, such as Fas ligand (FasL), which
in turn regulate the cell death machinery in a paracrine or
autocrine manner [7•,8•]. Alterations in gene expression
are the first detectable changes in neurons deprived of sur-
vival factors, and thus the suppression of the transcription
of specific death genes may be one mechanism by which
survival factors block cell death. 

The execution of apoptosis per se is controlled at least in
part, by Bcl-2 family members that localize to the outer
mitochondrial membrane and control mitochondrial per-
meability [9]. One prevailing model proposes that when
the molecular ratio of pro-survival to pro-death Bcl-2 fam-
ily members is biased towards pro-death Bcl-2 family
members (either through changes in expression level,
localization or activity), the outer mitochondrial membrane
becomes permeable to proteins, including cytochrome c.
Cytochrome c, when released from the mitochondria to the
cytoplasm, participates in the formation of a complex,
known as the ‘apoptosome’, that is composed of dATP,
apoptosis protease activation factor-1 (APAF1), and the
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cysteine protease caspase 9. Formation of the apoptosome
results in the activation of caspase 9, which sets in motion
the activation of a cascade of effector caspases, such as 
caspase 3, that kill the cells by irreversible proteolysis of
critical cellular constituents [1,10] (Figure 1). 

Recent experiments have demonstrated that apoptosis can
still be inhibited even after cytochrome c has been released
into the cytoplasm. Proteins of the inhibitor of apoptosis
(IAP) family prevent apoptosis by specifically binding to
and inhibiting the caspases [11]. Du et al. [12••] and
Verhagen et al. [13••] have recently shown that the pro-sur-
vival function of the IAPs is inhibited by Diablo/Smac — a
mitochondrial protein that is released into the cytoplasm
under apoptotic conditions. The release of Diablo pre-
vents IAPs from suppressing caspase activity, and thereby
promotes cell death (Figure 1). In sympathetic neurons,
the release of cytochrome c from the mitochondria is not
sufficient to trigger apoptosis, and a second event is
required for nerve growth factor (NGF) withdrawal to
induce apoptosis, possibly the release of Diablo, or other
closely related proteins, from the mitochondria [12••,14].
In addition to controlling Diablo release from the mito-
chondria, one can speculate that survival factors may also
regulate the expression or activity of Diablo.

The PI3K–Akt pathway: a major pathway
mediating neuronal survival
Trophic factors such as NGF, insulin-like growth factor I,
or BDNF activate a variety of signaling cascades, including
the phosphatidylinositol-3-OH kinase (PI3K)–Akt (Akt;

protein kinase identified in the AKT virus [also known as
protein kinase B]), the Ras–mitogen-activated protein
kinase (MAPK), and the cAMP/protein kinase A (PKA)
pathways [15]. Each of these pathways contributes to cell
survival under certain conditions that depend on the 
neuronal cell type and the survival factor. We discuss the
PI3K–Akt pathway here, as this pathway seems to be 
particularly important for mediating neuronal survival
under a wide variety of circumstances.

Survival factors, by binding to their cognate tyrosine
kinase receptors, elicit the recruitment of PI3K to the
vicinity of the plasma membrane. The catalytic subunit of
PI3K generates the phosphoinositide phosphates PIP2 and
PIP3 at the inner surface of the plasma membrane. PIP2
and PIP3 in turn lead to the activation of several
serine/threonine kinases, including Akt/protein kinase B,
serum glucocorticoid inducible kinase (SGK), ribosomal S6
kinase (RSK), and atypical forms of protein kinase C
(PKC) [16]. Akt is recruited to the inner surface of the 
plasma membrane through the interaction of its pleckstrin
homology domain with the phospholipid products of PI3K.
At the plasma membrane, the activation of Akt is depen-
dent on phosphorylation, which is achieved at least in part
by the protein kinase PDK1 (phosphoinositide-dependent
protein kinase-1).

Over the past five years, the PI3K–Akt pathway has been
found to be sufficient and, in some cases, necessary for the
trophic-factor-induced cell survival of several neuronal cell
types [17–24]. Ginty and co-workers [25••] have shown
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Figure 1

In the absence of survival factors,
transcription factors such as FOXO and p53
induce the expression of target death genes,
including FasL or the pro-apoptotic Bcl-2
family members BIM and BAX. FasL, by
binding to its cognate receptor Fas, triggers,
through the adaptor molecule FADD (Fas-
associated via death domain), the recruitment
and activation of caspase 8, which in turn
either directly activates caspase 3 or induces
the translocation of the Bcl-2 family member
BID to the mitochondria. When pro-apoptotic
Bcl-2 family members such as BAX, BIM,
BAD or BID are in excess over anti-apoptotic
members, they promote the release of at least
two proteins: cytochrome c and Diablo/Smac
from the mitochondria. Cytochrome c binds to
APAF1 which leads to the activation of
caspase 9 and, subsequently, to the activation
of caspase 3. Diablo binds to and inhibits the
IAPs, thereby preventing them from inhibiting
the caspases. Casp, caspase;
cytc, cytochrome c.
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recently that the ability of neurotrophins to promote 
neuronal survival requires a functional PI3K–Akt pathway
both inside the cell body and in the distal axons that are in
contact with the dendrites of target neurons. 

An important point is that the experimental approach used
in most studies to show that Akt is necessary for cell sur-
vival relies on the expression of dominant-interfering
alleles of this protein kinase in neurons. This approach has
substantial limitations because expressing dominant-nega-
tive alleles of Akt probably affects the activity of other
closely related kinases, such as SGK, that are activated by
the same upstream kinase, PDK1 [16]. Indeed, SGK, a 
protein kinase related to Akt and activated by PI3K, is also
involved in mediating survival signals in cerebellar granule
neurons [26•], as well as in other cell types [27]. Because
the selective disruption of Akt or SGK remains a significant
challenge owing to the presence of three distinct genes for
each kinase, the identification of chemical inhibitors of this
family of kinases will prove useful in future efforts to define
the specific functions of Akt, SGK and other PDK1-regu-
lated kinases, such as the RSKs and PKCs [14,28]. 

The identification of Akt substrates has been significantly
aided by the characterization of a consensus peptide motif
(RXRXXpS/T) that is preferred by Akt [29]. Database
searches indicate that this motif is present in a large 
number of proteins; several of these proteins have been
shown to be Akt substrates in vitro and in vivo, including
transcription factors that may regulate the expression of

components of the cell death machinery, Bcl-2 family
members, a regulator of translation (4E BP-1) [30],
endothelial nitric oxide synthase [31], the telomerase
reverse transcriptase subunit [32], the tumor suppressor
BRCA1 [33], and protein kinases such as Raf [34], IκB
kinase [35,36] or glycogen synthase kinase-3 (GSK-3) [37].
As the PI3K–Akt pathway regulates cell proliferation and
metabolism as well as cell survival, however, it will be
important to distinguish which particular Akt targets 
mediate the neuronal survival effects of Akt. 

Forkhead transcription factors of the FOXO
family are directly controlled by phosphorylation
by Akt
A series of recent studies indicate that Akt controls a major
class of transcription factors — the Forkhead box tran-
scription factor, class O (FOXO) subfamily of Forkhead
transcriptional regulators (FKHR, FKHRL1 and AFX),
which are homologous to Daf-16 of Caenorhabditis elegans.
In the nematode, Daf-16 is negatively regulated by the
PI3K–Akt pathway and controls metabolism and lifespan
in this organism [38,39].

Several groups [40••–42••] have independently shown that
Akt directly phosphorylates FOXOs and inhibits their abil-
ity to induce the expression of death genes. In the absence
of survival factors, when Akt is inactive, FOXOs are local-
ized in the nucleus and activate gene transcription
(Figure 1). In the presence of survival factors, Akt becomes
activated, phosphorylates FOXOs at several regulatory
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Figure 2

In the presence of survival factors, the
PI3K–Akt/SGK pathway is activated. Akt and
SGK prevent the execution of apoptosis at
several levels, in both transcription-dependent
and independent manners. Akt and SGK
phosphorylate and inhibit the transcription
factor FOXO, and Akt indirectly inhibits p53,
thereby preventing the expression of their
target death genes. Akt also indirectly
activates NF-κB, leading to the expression of
survival genes, such as A1, Bcl-xL and IAPs. In
addition, Akt acts at a step before cytochrome
c release, preventing the association of the
pro-apoptotic family member BAD with Bcl-xL,
which allows Bcl-xL to promote cell survival.
Furthermore, Akt may act at a step
subsequent to cytochrome c release, 
possibly by phosphorylating caspase 9,
APAF1 or the IAPs. Casp, caspase.
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sites, and elicits the relocalization of FOXOs from the
nucleus to the cytoplasm, away from their target genes
(Figure 2) [40••–42••]. Recent evidence shows that SGK
also phosphorylates the FOXO family member FKHRL1,
but that Akt and SGK differ with respect to the efficacy
with which these kinases phosphorylate the three regula-
tory sites of FKHRL1. As the phosphorylation of each
regulatory site of FKHRL1 appears to be critical for the
efficient exclusion of FKHRL1 from the nucleus, it is likely
that SGK and Akt cooperate to promote cell survival by
coordinately regulating FOXO transcription factors [26•].

When they are not phosphorylated, FOXOs can induce
apoptosis of cerebellar granule neurons [40••], as well as
other cell types [43,44], in a transcription-dependent man-
ner, suggesting that FOXOs act by inducing death genes.
A search of the promoter database using FOXO-binding
sites reveals that the gene encoding FasL contains several
FOXO-binding sites in its promoter, indicating that this
gene may be regulated by FOXOs [40••]. Indeed, FasL
mRNA is strongly induced upon removal of survival factors
in cerebellar granule neurons [7•] — a condition that 
correlates with the presence of FOXOs in the nucleus. In
addition, FOXO-induced cell death is diminished when
FasL signaling is blocked in these neurons [40••]. Other
potential genes that have FOXO-binding sites in their 
promoters are TRAIL (TNF-related apoptosis inducing
ligand), tumor-necrosis factor-α and its receptor, and Fas,
raising the possibility that FOXOs upregulate death
cytokines as well as their cognate receptors. This in turn
may trigger apoptosis, and possibly propagate the apoptotic
signals to neighboring neurons. 

In addition to suppressing the expression of death genes that
might act in a paracrine fashion, Akt may also inhibit the
expression of genes whose products act within the cell to
control the apoptotic machinery. Indeed, a recent study indi-
cates that FOXOs induce the expression of the pro-apoptotic
Bcl-2 family member BIM-1 [45]. However, it is still unclear
whether the BIM-1 promoter contains FOXO-binding sites
or whether FOXO-mediated apoptosis requires the expres-
sion of BIM-1. Nevertheless, as BIM-1 overexpression elicits
apoptosis and BIM-1 is present in neuronal cells [46] (see
also Update), FOXO-induced BIM-1 expression may 
represent a relevant mechanism that at least partly accounts
for FOXO-induced cell death in neurons. 

Finally, the cell-cycle inhibitor p27KIP1 is another recently
identified FOXO target gene that may participate in the
regulation of apoptosis [43,44,47]. The p27KIP1 gene is
strongly upregulated by FOXO and the p27KIP1 promoter
contains several FOXO-binding sites. In addition, p27KIP1
seems to be necessary for apoptosis to occur in response to
survival factor withdrawal, at least in hematopoietic cells
[43]. The mechanism by which p27KIP1 may promote
apoptosis is still unclear, although the effect of p27KIP1 on
apoptosis appear to be independent from the effects
p27KIP1 on cell-cycle progression [48]. 

p53: another transcriptional target of Akt?
A recent study by Yamaguchi et al. [49•] indicates that Akt,
in addition to regulating FOXO-dependent transcription,
also promotes survival in hippocampal neurons by inhibit-
ing the activity of the tumor suppressor p53. Active p53 is
known to induce the expression of death genes, including
the pro-apoptotic Bcl-2 family member BAX [50]. p53
activity was recently shown to be critical in controlling sym-
pathetic neuronal death following deprivation of NGF [6].
In these neurons, withdrawal of NGF leads to BAX tran-
scription [6], and BAX mutant mice display a large excess
of neurons that are resistant to p53-induced apoptosis [51].

These findings raise the possibility that Akt may promote
survival partly by repressing p53 activity, thereby inhibit-
ing BAX transcription. But BAX may not be the only p53
target that mediates the apoptotic effects of p53. Zhou
et al. [52•] have shown that BAX levels are not affected by
Akt activity in a motor neuron cell line. In this case, other
recently identified p53 target death genes, including the
pro-apoptotic Bcl-2 family member Noxa [53] and the
mitochondrial protein p53AIP1 [54], may participate in
p53-mediated neuronal death. At present, the mechanism
by which Akt inhibits the activity of p53 remains unclear
as Akt does not appear to phosphorylate p53 directly [49].
A possible Akt substrate that may explain the ability of Akt
to inhibit p53 is the p53 regulator Mdm2, which contains
two potential Akt phosphorylation sites. 

Akt may induce the expression of survival
genes by activating CREB or NF-κκB
In addition to its function as a suppressor of critical death
genes, under some circumstances activation of the
PI3K–Akt survival pathway also triggers the expression of
survival genes. Recent evidence suggests that the two
transcription factors cAMP-responsive element binding
protein (CREB) and nuclear factor κB (NF-κB), which
induce the expression of survival genes, may be regulated
by Akt [35,36,55]. Although the regulation of CREB and
NF-κB by Akt is still controversial and has not been
reported in neurons, three research groups [56–58] have
shown recently that CREB and NF-κB play an important
role in neuronal survival.

Several survival target genes of these transcription factors
have been identified, which may account in part for the
survival effect of the PI3K–Akt pathway. For example, the
genes encoding the pro-survival Bcl-2 family members
Bcl-xL and A1 [59,60] and several IAPs [61] are upregulated
by NF-κB (Figure 2), whereas the genes encoding Bcl-2
[57] and the pro-survival neurotrophin BDNF [62] are
induced by CREB. 

Akt directly inhibits members of the apoptotic
machinery
In addition to its effects on transcription, the PI3K–Akt
pathway also directly regulates the cytoplasmic apoptotic
machinery. Akt has been proposed to act both prior to the
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release of cytochrome c, by regulating Bcl-2 family 
member activity and mitochondrial function, and subsequent
to the release of cytochrome c, by regulating components
of the apoptosome.

Akt phosphorylates the pro-apoptotic Bcl-2 family member
BAD, thereby inhibiting BAD pro-apoptotic functions [63,64].
In the absence of survival factors, BAD is complexed with the
pro-survival Bcl-2 family member, Bcl-xL, thereby preventing
Bcl-xL from promoting cell survival. Upon addition of survival
factors, Akt is activated and phosphorylates BAD at a specific
amino acid residue, serine 136, which creates a binding motif
for the chaperone molecule 14-3-3 (Figure 2). 

The binding of BAD to 14-3-3 allows survival factors to 
elicit a second phosphorylation event at serine 155 [65•].
The kinase responsible for BAD phosphorylation at serine
155 in vivo is not yet known but may be PKA or even Akt
itself. Phosphorylation of BAD at serine 155 is necessary to 
promote the complete release of BAD from Bcl-xL, as the
phosphorylation of serine 155, which is located within the
BH3 (Bcl2-homology 3) domain of BAD, interferes with the
interaction of BAD with Bcl-xL [65•]. Once phosphorylated
at serine 155, BAD is released from Bcl-xL, which then pro-
motes cell survival by inhibiting the release of cytochrome c.

In a motor neuron cell line, Akt is also capable of blocking
apoptosis by acting at a step subsequent to cytochrome c
release [52•]. Akt substrates that function after to
cytochrome c release are not yet defined, but may include
components of the apoptosome and the IAPs. Human 
caspase 9 itself is a substrate of Akt [66], but the importance
of caspase 9 phosphorylation as a general mechanism for sur-
vival is the subject of some controversy, as the Akt
phosphorylation site is not present in rodent caspase 9 [67].
Alternative post-mitochondrial targets for Akt include
APAF-1 and neuronal IAPs, both of which contain Akt 
phosphorylation sites that are conserved across species. An
appealing speculation is that Akt’s phosphorylation of
APAF1 may inhibit its pro-apoptotic function, whereas Akt’s
phosphorylation of IAPs may enhance their pro-survival
function. But it remains to be determined whether APAF1
or IAP are bona fide targets of Akt. It is worth noting that,
because the complete loss of cytochrome c from the mito-
chondria is fatal even in the presence of survival factors,
post-mitochondrial mechanisms used by Akt to promote
survival probably represent fail-safe mechanisms against
transient or low levels of cytochrome c release.

Other effects of Akt: the metabolism hypothesis
Akt may also promote survival in an indirect fashion by
regulating cellular metabolism. Recent studies by Crowder
and Freeman [68•] and Xia and co-workers [69•] suggest
that Akt mediates neuronal survival by repressing the
activity of GSK-3. However, the mechanism by which
active GSK-3 induces apoptosis is not yet clear. GSK-3, by
phosphorylating glycogen synthase, may induce apoptosis
through the regulation of glucose metabolism.

Recent studies indicate that the PI3K–Akt pathway 
may affect cell survival through the general control of 
metabolism [70••,71••]. Survival factor withdrawal triggers
a depletion of ATP and glucose-derived metabolic 
substrates. Thompson and colleagues [70••,71••] have pro-
posed that the control of mitochondrial function and ATP
production by survival factors may be critical for the abili-
ty of these trophic factors to suppress apoptosis.

Consistent with this theory, Akt promotes survival by act-
ing upstream of cytochrome c release [72•], perhaps in part
through control of ATP production by the mitochondria.
Although this finding was observed in a non-neuronal cell
type and is in apparent contradiction with the report by
Zhou and colleagues [52•], it suggests that under some 
circumstances, Akt may act by regulating ATP production.
If such a view is correct, Akt may prevent the depletion of
metabolites by increasing ATP or glucose levels, allowing
the energy balance to tip towards cell survival. In this
respect, it is also worth noting that Akt can increase glu-
cose transport by promoting the translocation of the
glucose transporter Glut-4 to the membrane [73]. In 
addition, the PI3K–Akt pathway inhibits the expression of
genes encoding enzymes that decrease glucose metabo-
lism, such as phosphoenolpyruvatecarboxykinase, or
glucose 6 phosphatase [74,75], whereas the PI3K–Akt
pathway induces the expression of the glucose transporter
Glut-1 [76], which may also contribute to an Akt-depen-
dent increase in glucose levels. 

Conclusions
Is the PI3K–Akt pathway interconnected with other 
signaling cascades to promote neuronal survival? Certainly
other signaling pathways that are critical to cell survival
such as the Ras–MAPK–RSK or the cAMP/PKA pathway
may also act on substrates that are regulated by Akt, as the
terminal kinases in these pathways phosphorylate similar
and overlapping (although not identical) consensus
sequences. For example, BAD can be phosphorylated at
serine 136 by both PKA and Akt [77], and can also be
phosphorylated by RSK at serine 112 — another site crit-
ical for the suppression of BAD’s pro-apoptotic function
[56,78]. The overlapping substrate specificity of different
survival signaling cascades may explain the frequently
observed synergy between different trophic factors in
neuronal culture systems [79]. In addition, the PI3K–Akt
pathway may use other signaling pathways to promote cell
survival. For example, Akt has been shown to potentiate
calcium influx through L-type calcium channels [80],
which may in turn promote survival of neurons by 
calcium-dependent pathways [81,82]. 

The continuing characterization of novel components of
the apoptotic machinery has raised the possibility for new
connections between survival pathways and the execution
of cell death. For example, Akt may regulate the recently
discovered Diablo/Smac either in a transcriptional or 
post-translational manner. 
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It is not known what role Akt plays in survival in vivo. Does
Akt, when expressed at physiological levels, promote 
survival by regulating a single substrate, thereby acting at
a unique step in the apoptotic program? Or do the many
Akt substrates implicated in apoptosis through overexpres-
sion studies imply that endogenous Akt promotes survival
by phosphorylating several components that each play a
role in apoptosis execution? Available evidence supports a
model in which Akt acts through multiple substrates. Such
pleiotropic activity may represent a safety mechanism that
allows a tight repression of apoptosis, in both acute or 
sustained conditions of survival factor withdrawal. In 
addition, all mechanisms of control by Akt may not be used
under all circumstances; and some targets of Akt may be
more critical than others, depending on the neuron type
and the extent and type of stimulation.

The methodologies that are currently used to identify
potential Akt targets unfortunately rely on overexpression
paradigms to analyze the importance of particular 
phosphorylation events. These approaches do not prove
that Akt targets are necessarily relevant in vivo. Indeed,
the future of the field will rely both on the identification of
new Akt substrates and the in vivo analysis of the 
importance of various Akt substrates. In particular, the
generation of mouse models in which potential Akt targets
are rendered unregulatable through the targeted introduc-
tion of mutations in the relevant Akt phospho-acceptor
sites should help to dissect the relative importance of the
various proposed phosphorylation events in mediating the
Akt survival signal. Because such ‘knock-in’ experiments
are technically challenging and the list of Akt targets 
continually grows longer, it is not clear when we will have
a definitive resolution to the central question: how does
the PI3K–Akt cascade promote survival? The critical
importance of PI3K, Akt and related kinases in promoting
neuronal survival, and the consequent potential for these
molecules as targets for drug discovery suggests, however,
that work towards understanding the mysteries of survival
signaling will continue for some time to come.

Update
Two groups [83•,84•] recently reported that the proapop-
totic Bcl-2 family member Bim is strongly induced in
sympathetic neurons in response to NGF withdrawal.
They showed that sympathetic neurons that are derived
from Bim-deficient mice display a delayed apoptosis upon
NGF deprivation, indicating that Bim induction is critical
for neuronal death upon survival factor withdrawal.

The signaling pathways and transcription factors that 
regulate Bim induction is currently unclear, but c-Jun [84•]
and the FOXO transcription factors [45] have been pro-
posed to participate in the regulation of Bim expression.
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