
Online Convex Optimization with Unconstrained
Domains and Losses

Ashok Cutkosky
Department of Computer Science

Stanford University
ashokc@cs.stanford.edu

Kwabena Boahen
Department of Bioengineering

Stanford University
boahen@stanford.edu

Abstract

We propose an online convex optimization algorithm (RESCALEDEXP) that achieves
optimal regret in the unconstrained setting without prior knowledge of any bounds
on the loss functions. We prove a lower bound showing an exponential sep-
aration between the regret of existing algorithms that require a known bound
on the loss functions and any algorithm that does not require such knowledge.
RESCALEDEXP matches this lower bound asymptotically in the number of itera-
tions. RESCALEDEXP is naturally hyperparameter-free and we demonstrate empir-
ically that it matches prior optimization algorithms that require hyperparameter
optimization.

1 Online Convex Optimization

Online Convex Optimization (OCO) [1, 2] provides an elegant framework for modeling noisy,
antagonistic or changing environments. The problem can be stated formally with the help of the
following definitions:

Convex Set: A setW is convex ifW is contained in some real vector space and tw+(1− t)w′ ∈W
for all w,w′ ∈W and t ∈ [0, 1].

Convex Function: f :W → R is a convex function if f(tw + (1− t)w′) ≤ tf(w) + (1− t)f(w′)
for all w,w′ ∈W and t ∈ [0, 1].

An OCO problem is a game of repeated rounds in which on round t a learner first chooses an element
wt in some convex space W , then receives a convex loss function `t, and suffers loss `t(wt). The
regret of the learner with respect to some other u ∈W is defined by

RT (u) =

T∑
t=1

`t(wt)− `t(u)

The objective is to design an algorithm that can achieve low regret with respect to any u, even in the
face of adversarially chosen `t.

Many practical problems can be formulated as OCO problems. For example, the stochastic optimiza-
tion problems found widely throughout machine learning have exactly the same form, but with i.i.d.
loss functions, a subset of the OCO problems. In this setting the goal is to identify a vector w? with
low generalization error (E[`(w?)− `(u)]). We can solve this by running an OCO algorithm for T
rounds and setting w? to be the average value of wt. By online-to-batch conversion results [3, 4],
the generalization error is bounded by the expectation of the regret over the `t divided by T . Thus,
OCO algorithms can be used to solve stochastic optimization problems while also performing well in
non-i.i.d. settings.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

The regret of an OCO problem is upper-bounded by the regret on a corresponding Online Linear
Optimization (OLO) problem, in which each `t is further constrained to be a linear function:
`t(w) = gt · wt for some gt. The reduction follows, with the help of one more definition:

Subgradient: g ∈W is a subgradient of f at w, denoted g ∈ ∂f(w), if and only if f(w)+ g · (w′−
w) ≤ f(w′) for all w′. Note that ∂f(w) 6= ∅ if f is convex.1

To reduce OCO to OLO, suppose gt ∈ ∂`t(wt), and consider replacing `t(w) with the linear
approximation gt · w. Then using the definition of subgradient,

RT (u) =

T∑
t=1

`t(wt)− `t(u) ≤
T∑
t=1

gt(wt − u) =
T∑
t=1

gtwt − gtu

so that replacing `t(w) with gt · w can only make the problem more difficult. All of the analysis in
this paper therefore addresses OLO, accessing convex losses functions only through subgradients.

There are two major factors that influence the regret of OLO algorithms: the size of the space W
and the size of the subgradients gt. When W is a bounded set (the “constrained” case), then given
B = maxw∈W ‖w‖, there exist OLO algorithms [5, 6] that can achieve RT (u) ≤ O

(
BLmax

√
T
)

without knowing Lmax = maxt ‖gt‖. When W is unbounded (the “unconstrained” case), then
given Lmax, there exist algorithms [7, 8, 9] that achieve RT (u) ≤ Õ(‖u‖ log(‖u‖)Lmax

√
T) or

Rt(u) ≤ Õ(‖u‖
√
log(‖u‖)Lmax

√
T), where Õ hides factors that depend logarithmically on Lmax

and T . These algorithms are known to be optimal (up to constants) for their respective regimes
[10, 7]. All algorithms for the unconstrained setting to-date require knowledge of Lmax to achieve
these optimal bounds.2 Thus a natural question is: can we achieve O(‖u‖ log(‖u‖)) regret in the
unconstrained, unknown-Lmax setting? This problem has been posed as a COLT 2016 open problem
[12], and is solved in this paper.

A simple approach is to maintain an estimate of Lmax and double it whenever we see a new gt that
violates the assumed bound (the so-called “doubling trick”), thereby turning a known-Lmax algorithm
into an unknown-Lmax algorithm. This strategy fails for previous known-Lmax algorithms because
their analysis makes strong use of the assumption that each and every ‖gt‖ is bounded by Lmax. The
existence of even a small number of bound-violating gt can throw off the entire analysis.

In this paper, we prove that it is actually impossible to achieve regret

O

(
‖u‖ log(‖u‖)Lmax

√
T + Lmax exp

[(
maxt

‖gt‖
L(t)

)1/2−ε])
for any ε > 0 where Lmax

and L(t) = maxt′<t ‖gt′‖ are unknown in advance (Section 2). This immediately rules out the
“ideal” bound of Õ(‖u‖

√
log(‖u‖)Lmax

√
T) which is possible in the known-Lmax case. Secondly,

we provide an algorithm, RESCALEDEXP, that matches our lower bound without prior knowledge of
Lmax, leading to a naturally hyperparameter-free algorithm (Section 3). To our knowledge, this is the
first algorithm to address the unknown-Lmax issue while maintaining O(‖u‖ log ‖u‖) dependence
on u. Finally, we present empirical results showing that RESCALEDEXP performs well in practice
(Section 4).

2 Lower Bound with Unknown Lmax

The following theorem rules out algorithms that achieve regret O(u log(u)Lmax

√
T) without prior

knowledge of Lmax. In fact, any such algorithm must pay an up-front penalty that is exponential in
T . This lower bound resolves a COLT 2016 open problem (Parameter-Free and Scale-Free Online
Algorithms) [12] in the negative.

1In full generality, a subgradient is an element of the dual space W ∗. However, we will only consider
cases where the subgradient is naturally identified with an element in the original space W (e.g. W is finite
dimensional) so that the definition in terms of dot-products suffices.

2There are algorithms that do not require Lmax, but achieve only regret O(‖u‖2) [11]

2

Theorem 1. For any constants c, k, ε > 0, there exists a T and an adversarial strategy picking
gt ∈ R in response to wt ∈ R such that regret is:

RT (u) =

T∑
t=1

gtwt − gtu

≥ (k + c‖u‖ log ‖u‖)Lmax

√
T log(Lmax + 1) + kLmax exp((2T)

1/2−ε)

≥ (k + c‖u‖ log ‖u‖)Lmax

√
T log(Lmax + 1) + kLmax exp

[(
max
t

‖gt‖
L(t)

)1/2−ε
]

for some u ∈ R where Lmax = maxt≤T ‖gt‖ and L(t) = maxt′<t ‖gt′‖.

Proof. We prove the theorem by showing that for sufficiently large T , the adversary can “checkmate”
the learner by presenting it only with the subgradient gt = −1. If the learner fails to have wt increase
quickly, then there is a u � 1 against which the learner has high regret. On the other hand, if the
learner ever does make wt higher than a particular threshold, the adversary immediately punishes the
learner with a subgradient gt = 2T , again resulting in high regret.

Let T be large enough such that both of the following hold:
T
4 exp(T 1/2

4 log(2)c) > k log(2)
√
T + k exp((2T)1/2−ε) (1)

T
2 exp(T 1/2

4 log(2)c) > 2kT exp((2T)1/2−ε) + 2kT
√
T log(2T + 1) (2)

The adversary plays the following strategy: for all t ≤ T , so long as wt < 1
2 exp(T

1/2/4 log(2)c),
give gt = −1. As soon as wt ≥ 1

2 exp(T
1/2/4 log(2)c), give gt = 2T and gt = 0 for all subsequent

t. Let’s analyze the regret at time T in these two cases.

Case 1: wt < 1
2 exp(T

1/2/4 log(2)c) for all t:

In this case, let u = exp(T 1/2/4 log(2)c). Then Lmax = 1, maxt
‖gt‖
L(t) = 1, and using (1) the

learner’s regret is at least

RT (u) ≥ Tu− T
1

2
exp(T 1/2

4 log(2)c)

= 1
2Tu

= cu log(u)
√
T log(2) + T

4 exp(T 1/2

4 log(2)c)

> cu log(u)Lmax

√
T log(Lmax + 1) + kLmax

√
T log(Lmax + 1) + kLmax exp((2T)

1/2−ε)

= (k + cu log u)Lmax

√
T log(Lmax + 1) + kLmax exp

[
(2T)

1/2−ε
]

Case 2: wt ≥ 1
2 exp(T

1/2/4 log(2)c) for some t:

In this case, Lmax = 2T and maxt
‖gt‖
L(t) = 2T . For u = 0, using (2), the regret is at least

RT (u) ≥ T
2 exp(T 1/2

4 log(2)c)

≥ 2kT exp((2T)1/2−ε) + 2kT
√
T log(2T + 1)

= kLmax exp((2T)
1/2−ε) + kLmax

√
T log(Lmax + 1)

= (k + cu log u)Lmax

√
T log(Lmax + 1) + kLmax exp

[
(2T)

1/2−ε
]

The exponential lower-bound arises because the learner has to move exponentially fast in order
to deal with exponentially far away u, but then experiences exponential regret if the adversary
provides a gradient of unprecedented magnitude in the opposite direction. However, if we play
against an adversary that is constrained to give loss vectors ‖gt‖ ≤ Lmax for some Lmax that does
not grow with time, or if the losses do not grow too quickly, then we can still achieve RT (u) =

O(‖u‖ log(‖u‖)Lmax

√
T) asymptotically without knowing Lmax. In the following sections we

describe an algorithm that accomplishes this.

3

3 RESCALEDEXP

Our algorithm, RESCALEDEXP, adapts to the unknown Lmax using a guess-and-double strategy that
is robust to a small number of bound-violating gts. We initialize a guess L for Lmax to ‖g1‖. Then
we run a novel known-Lmax algorithm that can achieve good regret in the unconstrained u setting.
As soon as we see a gt with ‖gt‖ > 2L, we update our guess to ‖gt‖ and restart the known-Lmax

algorithm. To prove that this scheme is effective, we show (Lemma 3) that our known-Lmax algorithm
does not suffer too much regret when it sees a gt that violates its assumed bound.

Our known-Lmax algorithm uses the Follow-the-Regularized-Leader (FTRL) framework. FTRL is
an intuitive way to design OCO algorithms [13]: Given functions ψt : W → R, at time T we play
wT = argmin

[
ψT−1(w) +

∑T−1
t=1 `t(w)

]
. The functions ψt are called regularizers. A large number

of OCO algorithms (e.g. gradient descent) can be cleanly formulated as instances of this framework.

Our known-Lmax algorithm is FTRL with regularizers ψt(w) = ψ(w)/ηt, where ψ(w) = (‖w‖+
1) log(‖w‖+ 1)− ‖w‖ and ηt is a scale-factor that we adapt over time. Specifically, we set η−1t =

k
√
2
√
Mt + ‖g‖21:t, where we use the compressed sum notations g1:T =

∑T
t=1 gt and ‖g‖21:T =∑T

t=1 ‖gt‖2. Mt is defined recursively by M0 = 0 and Mt = max(Mt−1, ‖g1:t‖/p − ‖g‖21:t), so
that Mt ≥Mt−1, and Mt + ‖g‖21:t ≥ ‖g1:t‖/p. k and p are constants: k =

√
2 and p = L−1max.

RESCALEDEXP’s strategy is to maintain an estimate Lt of Lmax at all time steps. Whenever it
observes ‖gt‖ ≥ 2Lt, it updates Lt+1 = ‖gt‖. We call periods during which Lt is constant epochs.
Every time it updates Lt, it restarts our known-Lmax algorithm with p = 1

Lt
, beginning a new epoch.

Notice that since Lt at least doubles every epoch, there will be at most log2(Lmax/L1) + 1 total
epochs. To address edge cases, we set wt = 0 until we suffer a non-constant loss function, and we set
the initial value of Lt to be the first non-zero gt. Pseudo-code is given in Algorithm 1, and Theorem
2 states our regret bound. For simplicity, we re-index so that that g1 is the first non-zero gradient
received. No regret is suffered when gt = 0 so this does not affect our analysis.

Algorithm 1 RESCALEDEXP

Initialize: k ←
√
2, M0 ← 0, w1 ← 0, t? ← 1 // t? is the start-time of the current epoch.

for t = 1 to T do
Play wt, receive subgradient gt ∈ ∂`t(wt).
if t = 1 then
L1 ← ‖g1‖
p← 1/L1

end if
Mt ← max(Mt−1, ‖gt?:t‖/p− ‖g‖2t?:t).
ηt ← 1

k
√

2(Mt+‖g‖2t?:t)

//Set wt+1 using FTRL update
wt+1 ← − gt?:t

‖gt?:t‖ [exp(ηt‖gt?:t‖)− 1] // = argminw
[
ψ(w)
ηt

+ gt?:tw
]

if ‖gt‖ > 2Lt then
//Begin a new epoch: update L and restart FTRL
Lt+1 ← ‖gt‖
p← 1/Lt+1

t? ← t+ 1
Mt ← 0
wt+1 ← 0

else
Lt+1 ← Lt

end if
end for

Theorem 2. Let W be a separable real inner-product space with corresponding norm ‖ · ‖ and
suppose (with mild abuse of notation) every loss function `t :W → R has some subgradient gt ∈W ∗
at wt such that gt(w) = gt ·w for some gt ∈W . Let Mmax = maxtMt. Then if Lmax = maxt ‖gt‖

4

and L(t) = maxt′<t ‖gt‖, rescaledexp achieves regret:

RT (u) ≤ (2ψ(u) + 96)

(
log2

(
Lmax

L1

)
+ 1

)√
Mmax + ‖g‖21:T

+ 8Lmax

(
log2

(
Lmax

L1

)
+ 1

)
min

[
exp

(
8max

t

‖gt‖2

L(t)2

)
, exp(

√
T/2)

]
= O

(
Lmax log

(
Lmax

L1

)[
(‖u‖ log(‖u‖) + 2)

√
T + exp

(
8max

t

‖gt‖2

L(t)2

)])
The conditions on W in Theorem 2 are fairly mild. In particular they are satisfied whenever W is
finite-dimensional and in most kernel method settings [14]. In the kernel method setting, W is an
RKHS of functions X → R and our losses take the form `t(w) = `t(〈w, kxt〉) where kxt is the
representing element in W of some xt ∈ X , so that gt = gtkxt where gt ∈ ∂`t(〈w, kxt〉).

Although we nearly match our lower-bound exponential term of exp((2T)1/2−ε), in order to have a
practical algorithm we need to do much better. Fortunately, the maxt

‖gt‖2
L(t)2 term may be significantly

smaller when the losses are not fully adversarial. For example, if the loss vectors gt satisfy ‖gt‖ = t2,
then the exponential term in our bound reduces to a manageable constant even though ‖gt‖ is growing
quickly without bound.

To prove Theorem 2, we bound the regret of RESCALEDEXP during each epoch. Recall that during
an epoch, RESCALEDEXP is running FTRL with ψt(w) = ψ(w)/ηt. Therefore our first order of
business is to analyze the regret of FTRL across one of these epochs, which we do in Lemma 3
(proved in appendix):

Lemma 3. Set k =
√
2. Suppose ‖gt‖ ≤ L for t < T , 1/L ≤ p ≤ 2/L, gT ≤ Lmax and Lmax ≥ L.

Let Wmax = maxt∈[1,T] ‖wt‖. Then the regret of FTRL with regularizers ψt(w) = ψ(w)/ηt is:

RT (u) ≤ ψ(u)/ηT + 96
√
MT + ‖g‖21:T + 2Lmax min

[
Wmax, 4 exp

(
4
L2
max

L2

)
, exp(

√
T/2)

]

≤ (2ψ(u) + 96)

√√√√T−1∑
t=1

L|gt|+ L2
max + 8Lmax min

[
exp

(
4L2

max

L2

)
, exp(

√
T/2)

]

≤ Lmax(2((‖u‖+ 1) log(‖u‖+ 1)− ‖u‖) + 96)
√
T + 8Lmax min

[
e

4L2
max
L2 , e

√
T/2

]
Lemma 3 requires us to know the value of L in order to set p. However, the crucial point is that it
encompasses the case in which L is misspecified on the last loss vector. This allows us to show that
RESCALEDEXP does not suffer too much by updating p on-the-fly.

Proof of Theorem 2. The theorem follows by applying Lemma 3 to each epoch in which Lt is
constant.

Let 1 = t1, t2, t3, · · · , tn be the various increasing values of t? (as defined in Algorithm 1), and we
define tn+1 = T + 1. Then define

Ra:b(u) =

b−1∑
t=a

gt(wt − u)

so that RT (u) ≤
∑n
j=1Rtj :tj+1(u). We will bound Rtj :tj+1(u) for each j.

Fix a particular j < n. Then Rtj :tj+1(u) is simply the regret of FTRL with k =
√
2, p = 1

Ltj
,

ηt =
1

k
√

2(Mt+‖g‖2tj :t)
and regularizers ψ(w)/ηt. By definition of Lt, for t ∈ [1, tj+1 − 2] we have

‖gt‖ ≤ 2Ltj . Further, if L = maxt∈[1,tj+1−2] ‖gt‖ we have L ≥ Ltj . Therefore, Ltj ≤ L ≤ 2Ltj
so that 1

L ≤ p ≤ 2
L . Further, we have ‖gtj+1−1‖/Ltj ≤ 2maxt ‖gt‖/L(t). Thus by Lemma 3 we

5

have

Rtj :tj+1(u) ≤ ψ(u)/ηtj+1−1 + 96
√
Mtj+1−1 + ‖g‖2tj :tj+1−1

+ 2Lmax min

[
Wmax, 4 exp

(
4
‖gtj+1−1‖2

L2
tj

)
, exp

(√
tj+1 − tj√

2

)]

≤ ψ(u)/ηtj+1−1 + 96
√
Mmax + ‖g‖2tj :tj+1−1 + 8Lmax min

[
e
8maxt

‖gt‖2

L(t)2 , e
√
T/2

]
≤ (2ψ(u) + 96)

√
Mmax + ‖g‖21:T + 8Lmax min

[
exp

(
8max

t

‖gt‖2

L(t)2

)
, exp(

√
T/2)

]
Summing across epochs, we have

RT (u) =

n∑
j=1

Rtj :tj+1
(u)

≤ n
[
(2ψ(u) + 96)

√
Mmax + ‖g‖21:T + 8Lmax min

[
exp

(
8max

t

‖gt‖2

L(t)2

)
, exp

(√
T/2

)]]

Observe that n ≤ log2(Lmax/L1) + 1 to prove the first line of the theorem. The big-Oh expression
follows from the inequality: Mtj+1−1 ≤ Ltj

∑tj+1−1
t=tj

‖gt‖ ≤ Lmax

∑T
t=1 ‖gt‖.

Our specific choices for k and p are somewhat arbitrary. We suspect (although we do not prove)
that the preceding theorems are true for larger values of k and any p inversely proportional to Lt,
albeit with differing constants. In Section 4 we perform experiments using the values for k, p and Lt
described in Algorithm 1. In keeping with the spirit of designing a hyperparameter-free algorithm, no
attempt was made to empirically optimize these values at any time.

4 Experiments

4.1 Linear Classification

To validate our theoretical results in practice, we evaluated RESCALEDEXP on 8 classification datasets.
The data for each task was pulled from the libsvm website [15], and can be found individually
in a variety of sources [16, 17, 18, 19, 20, 21, 22]. We use linear classifiers with hinge-loss for
each task and we compare RESCALEDEXP to five other optimization algorithms: ADAGRAD [5],
SCALEINVARIANT [23], PISTOL [24], ADAM [25], and ADADELTA [26]. Each of these algorithms
requires tuning of some hyperparameter for unconstrained problems with unknown Lmax (usually a
scale-factor on a learning rate). In contrast, our RESCALEDEXP requires no such tuning.

We evaluate each algorithm with the average loss after one pass through the data, computing a
prediction, an error, and an update to model parameters for each example in the dataset. Note that
this is not the same as a cross-validated error, but is closer to the notion of regret addressed in our
theorems. We plot this average loss versus hyperparameter setting for each dataset in Figures 1 and
2. These data bear out the effectiveness of RESCALEDEXP: while it is not unilaterally the highest
performer on all datasets, it shows remarkable robustness across datasets with zero manual tuning.

4.2 Convolutional Neural Networks

We also evaluated RESCALEDEXP on two convolutional neural network models. These models have
demonstrated remarkable success in computer vision tasks and are becoming increasingly more
popular in a variety of areas, but can require significant hyperparameter tuning to train. We consider
the MNIST [18] and CIFAR-10 [27] image classification tasks.

Our MNIST architecture consisted of two consecutive 5×5 convolution and 2×2 max-pooling layers
followed by a 512-neuron fully-connected layer. Our CIFAR-10 architecture was two consecutive
5× 5 convolution and 3× 3 max-pooling layers followed by a 384-neuron fully-connected layer and
a 192-neuron fully-connected layer.

6

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-2

10-1

100

101

a
v
e
ra

g
e
 l
o
ss

covtype

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-2

10-1

100

a
v
e
ra

g
e
 l
o
ss

gisette_scale

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

0.30

0.35

0.40

0.45

0.50

0.55

0.60

a
v
e
ra

g
e
 l
o
ss

madelon

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-2

10-1

100

a
v
e
ra

g
e
 l
o
ss

mnist

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

Figure 1: Average loss vs hyperparameter setting for each algorithm across each dataset. RESCALED-
EXP has no hyperparameters and so is represented by a flat yellow line. Many of the other algorithms
display large sensitivity to hyperparameter setting.

These models are highly non-convex, so that none of our theoretical analysis applies. Our use of
RESCALEDEXP is motivated by the fact that in practice convex methods are used to train these models.
We found that RESCALEDEXP can match the performance of other popular algorithms (see Figure 3).

In order to achieve this performance, we made a slight modification to RESCALEDEXP: when we
update Lt, instead of resetting wt to zero, we re-center the algorithm about the previous prediction
point. We provide no theoretical justification for this modification, but only note that it makes
intuitive sense in stochastic optimization problems, where one can reasonably expect that the previous
prediction vector is closer to the optimal value than zero.

5 Conclusions

We have presented RESCALEDEXP, an Online Convex Optimization algorithm that achieves regret
Õ(‖u‖ log(‖u‖)Lmax

√
T + exp(8maxt ‖gt‖2/L(t)2)) where Lmax = maxt ‖gt‖ is unknown in

advance. Since RESCALEDEXP does not use any prior-knowledge about the losses or comparison
vector u, it is hyperparameter free and so does not require any tuning of learning rates. We also prove
a lower-bound showing that any algorithm that addresses the unknown-Lmax scenario must suffer
an exponential penalty in the regret. We compare RESCALEDEXP to prior optimization algorithms
empirically and show that it matches their performance.

While our lower-bound matches our regret bound for RESCALEDEXP in terms of T , clearly there is
much work to be done. For example, when RESCALEDEXP is run on the adversarial loss sequence
presented in Theorem 1, its regret matches the lower-bound, suggesting that the optimality gap could
be improved with superior analysis. We also hope that our lower-bound inspires work in algorithms
that adapt to non-adversarial properties of the losses to avoid the exponential penalty.

7

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-2

10-1

100

a
v
e
ra

g
e
 l
o
ss

ijcnn1

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-1

100

a
v
e
ra

g
e
 l
o
ss

epsilon_normalized

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-1

100

a
v
e
ra

g
e
 l
o
ss

rcv1_train.multiclass

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

10-5 10-4 10-3 10-2 10-1 100 101 102 103

hyperparameter setting

10-1

100

a
v
e
ra

g
e
 l
o
ss

SenseIT Vehicle Combined

PiSTOL

Scale Invariant

ADAM

AdaDelta

AdaGrad

RescaledExp

Figure 2: Average loss vs hyperparameter setting, continued from Figure 1.

Figure 3: We compare RESCALEDEXP to ADAM, ADAGRAD, and stochastic gradient descent
(SGD), with learning-rate hyperparameter optimization for the latter three algorithms. All algorithms
achieve a final validation accuracy of 99% on MNIST and 84%, 84%, 83% and 85% respectively on
CIFAR-10 (after 40000 iterations).

References
[1] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceed-

ings of the 20th International Conference on Machine Learning (ICML-03), pages 928–936, 2003.

[2] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine
Learning, 4(2):107–194, 2011.

[3] Nick Littlestone. From on-line to batch learning. In Proceedings of the second annual workshop on
Computational learning theory, pages 269–284, 2014.

8

[4] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line learning
algorithms. Information Theory, IEEE Transactions on, 50(9):2050–2057, 2004.

[5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. In Conference on Learning Theory (COLT), 2010.

[6] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization.
In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010.

[7] Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online convex optimiza-
tion. In Advances in neural information processing systems, pages 2402–2410, 2012.

[8] Francesco Orabona. Dimension-free exponentiated gradient. In Advances in Neural Information Processing
Systems, pages 1806–1814, 2013.

[9] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear optimiza-
tion. In Advances in Neural Information Processing Systems, pages 2724–2732, 2013.

[10] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and min-
imax lower bounds for online convex games. In Proceedings of the nineteenth annual conference on
computational learning theory, 2008.

[11] Francesco Orabona and Dávid Pál. Scale-free online learning. arXiv preprint arXiv:1601.01974, 2016.

[12] Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online algorithms. In
Conference on Learning Theory, 2016.

[13] S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, The Hebrew
University of Jerusalem, 2007.

[14] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learning. The
annals of statistics, pages 1171–1220, 2008.

[15] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[16] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003 feature
selection challenge. In Advances in Neural Information Processing Systems, pages 545–552, 2004.

[17] Chih-chung Chang and Chih-Jen Lin. Ijcnn 2001 challenge: Generalization ability and text decoding. In
In Proceedings of IJCNN. IEEE. Citeseer, 2001.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection for text
categorization research. The Journal of Machine Learning Research, 5:361–397, 2004.

[20] Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. Journal of Parallel
and Distributed Computing, 64(7):826–838, 2004.

[21] M. Lichman. UCI machine learning repository, 2013.

[22] Shimon Kogan, Dimitry Levin, Bryan R Routledge, Jacob S Sagi, and Noah A Smith. Predicting risk
from financial reports with regression. In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages
272–280. Association for Computational Linguistics, 2009.

[23] Francesco Orabona, Koby Crammer, and Nicolo Cesa-Bianchi. A generalized online mirror descent with
applications to classification and regression. Machine Learning, 99(3):411–435, 2014.

[24] Francesco Orabona. Simultaneous model selection and optimization through parameter-free stochastic
learning. In Advances in Neural Information Processing Systems, pages 1116–1124, 2014.

[25] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[27] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.

[28] H. Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. arXiv preprint
arXiv:1403.3465, 2014.

9

A Follow-the-Regularized-Leader (FTRL) Regret

Recall that the FTRL algorithm uses the strategy wt+1 = argminψt(w) +
∑t
t′=1 `t′(w), where the functions

ψt are called regularizers.
Theorem 4. FTRL with regularizers ψt and ψ0(w1) = 0 obtains regret:

Rt(u) ≤ ψT (u) +
T∑
t=1

ψt−1(wt+1)− ψt(wt+1) + `t(wt)− `t(wt+1) (3)

Further, if the losses are linear `t(w) = gt · w and ψt(w) = 1
ηt
ψ(w) for some values ηt and fixed function ψ,

then the regret is

Rt(u) ≤
1

ηT
ψ(u) +

T∑
t=1

(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1) (4)

Proof. The first part follows from some algebraic manipulations:
T∑
t=1

`t(u) + ψT (u) ≥ ψT (wT+1) +

T∑
t=1

`t(wT+1)

−
T∑
t=1

`t(u) ≤ ψT (u)− ψT (wT+1)−
T∑
t=1

`t(wT+1)

RT (u) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(u)

≤ ψT (u)− ψT (wT+1) +

T∑
t=1

`t(wt)− `t(wT+1)

= ψT (u)− ψT (wT+1) + `T (wT)− `T (wT+1) +RT−1(wT+1)

≤ ψT (u)− ψT (wT+1) + `T (wT)− `T (wT+1)+

+

T−1∑
t=1

ψt(wt+2)− ψt(wt+1) + `t(wt)− `t(wt+1)

= ψT (u) + `1(w1)− `1(w2)− ψ1(w2)

+

T∑
t=2

ψt−1(wt+1)− ψt(wt+1) + `t(wt)− `t(wt+1)

= ψT (u) +

T∑
t=1

ψt−1(wt+1)− ψt(wt+1) + `t(wt)− `t(wt+1)

where we’re assuming ψ0(w1) = 0 in the last step.

Now let’s specialize to the case of linear losses `t(w) = gt · w and regularizers of the form ψt(w) =
1
ηt
ψ(w)

for some fixed regularizer ψ and varying scalings ηt. Plugging this into the previous bound gives:

Rt(u) ≤
1

ηT
ψ(u) +

T∑
t=1

(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1)

While this formulation of the regret of FTRL is sufficient for our needs, our analysis is not tight. We refer the
reader to [28] for a stronger FTRL bound that can improve constants in some analyses.

B Proof of Lemma 3

We start off by computing the FTRL updates with regularizers ψ(w)/ηt:

∇ψ(w) = log(‖w‖+ 1)
w

‖w‖

10

so that

wT+1 = argmin
1

ηT
ψ(w) +

T∑
t=1

gt · w

= − g1:t
‖g1:t‖

(exp(ηT ‖g1:T ‖)− 1)

Our goal will be to show that the terms
(

1
ηt−1

− 1
ηt

)
ψ(wt+1)+ gt · (wt−wt+1) in the sum in (4) are negative.

In particular, note that sequence of ηt is non-increasing so that
(

1
ηt−1

− 1
ηt

)
ψ(wt+1) ≤ 0 for all t. Thus our

strategy will be to bound gt · (wt − wt+1).

B.1 Reduction to one dimension

In order to bound
(

1
ηt−1

− 1
ηt

)
ψ(wt+1) + gt · (wt − wt+1), we first show that it suffices to consider the case

when gt and g1:t−1 are co-linear.

Theorem 5. Let W be a separable inner-product space and suppose (with mild abuse of notation) every loss
function `t :W → R has some subgradient gt ∈W ∗ such that gtw = 〈gt, w〉 for some gt ∈W . Suppose we
run an FTRL algorithm with regularizers 1

ηt
ψ(‖w‖) on loss functions `t such that wt+1 = g1:t

‖g1:t‖
f(ηt‖g1:t‖)

for some function f for all t where ηt = c√
Mt+‖g‖21:t

for some constant c. Then for any gt with ‖gt‖ = L, both

(η−1
t−1 − η

−1
t)ψ(‖wt+1‖) + gt(wt − wt+1) and gt(wt − wt+1) are maximized when gt is a scalar multiple of

g1:t−1.

Proof. The proof is an application of Lagrange multipliers. Our Lagrangian for (η−1
t−1 − η

−1
t)ψ(‖wt+1‖) +

gt(wt − wt+1) is

L = (η−1
t−1 − η

−1
t)ψ(‖wt+1‖) + gt(wt − wt+1) + λ‖gt‖2/2

= (η−1
t−1 − η

−1
t)ψ(f(ηt‖g1:t‖)) + gt

(
wt −

g1:t
‖g1:t‖

f(ηt‖g1:t‖)
)
+ λ
‖gt‖2

2

Fix a countable orthonormal basis of W . For a vector v ∈W we let vi be the projection of v along the ith basis
vector of our countable orthonormal basis. We denote the action of∇L on the ith basis vector by∇Li.

Then we have

∇Li = λgt,i + wt,i − wt+1,i −
gt,i
‖g1:t‖

f(ηt‖g1:t‖)

+
∑
j

gt,j(g1:t)j
‖g1:t‖3

(g1:t)if(ηt‖g1:t‖)

−
∑
j

(g1:t)jgt,j
‖g1:t‖

f ′(ηt‖g1:t‖)

 (g1:t)iηt
‖g1:t‖

−
‖g1:t‖c

(
∂Mt
∂gt,i

+ 2gt,i
)

2(Mt + ‖g‖21:t)3/2

+ (η−1

t−1 − η
−1
t)ψ′(f(ηt‖g1:t‖))f ′(ηt‖g1:t‖)

 (g1:t)iηt
‖g1:t‖

−
‖g1:t‖c

(
∂Mt
∂gt,i

+ 2gt,i
)

2(Mt + ‖g‖21:t)3/2

− ψ(f(ηt‖g1:t‖))

∂Mt
∂gt,i

+ 2gt,i

2c
√
Mt + ‖g‖21:t

= λgt,i + wt,i − wt+1,i +Agt,i +B(g1:t−1)i + C
∂Mt

∂gt,i

where A, B and C do not depend on i. Since wt,i and wt+1,i are scalar multiples of g1:t−1 and g1:t respectively,
we can reassign the variables A and B to write

∇Li = Agt,i +B(g1:t−1)i + C
∂Mt

∂gt,i

11

Now we compute

∂Mt

∂gt,i
=
∂max(Mt−1, ‖g1:t‖/p− ‖g‖21:t)

∂gt,i

=

{
0 :Mt =Mt−1
(g1:t)i
p‖g1:t‖

− 2gt,i :Mt 6=Mt−1

Thus after again reassigning the variables A and B we have
∇Li = Agt,i +B(g1:t−1)i

Therefore we can only have∇L = 0 if gt is a scalar multiple of g1:t−1 as desired.

For gt(wt − wt+1), we apply exactly the same argument. The Lagrangian is

L = gt(wt − wt+1) + λ‖gt‖2/2

= gt

(
wt −

g1:t
‖g1:t‖

f(ηt‖g1:t‖)
)
+ λ
‖gt‖2

2

and differentiating we have

∇Li = λgt,i + wt,i − wt+1,i −
gt,i
‖g1:t‖

f(ηt‖g1:t‖)

+
∑
j

gt,j(g1:t)j
‖g1:t‖3

(g1:t)if(ηt‖g1:t‖)

−
∑
j

(g1:t)jgt,j
‖g1:t‖

f ′(ηt‖g1:t‖)

 (g1:t)iηt
‖g1:t‖

−
‖g1:t‖c

(
∂Mt
∂gt,i

+ 2gt,i
)

2(Mt + ‖g‖21:t)3/2

= λgt,i + wt,i − wt+1,i +Agt,i +B(g1:t−1)i + C

∂Mt

∂gt,i

= Agt,i +B(g1:t−1)i

so that again we are done.

We make the following intuitive definition:
Definition 6. For any vector v ∈W , define sign(v) = v

‖v‖ .

In the next section, we prove bounds on the quantity (η−1
t−1 − η

−1
t)ψ(‖wt+1‖) + gt(wt − wt+1). By Theorem

5 this quantity is maximized when sign(gt) = ±sign(g1:t−1) and so we consider only this case.

B.2 One dimensional FTRL

In this section we analyze the regret of our FTRL algorithm with the end-goal of proving Lemma 3. We make
heavy use of Theorem 5 to allow us to consider only the case sign(gt) = ±sign(g1:t−1). In this setting we may
identify the 1-dimensional space spanned by gt and g1:t−1 with R. Thus whenever we are operating under the
assumption sign(gt) = sign(g1:t−1) we will use | · | in place of ‖ · ‖ and occasionally assume g1:t−1 > 0 as
this holds WLOG. We feel that this notation and assumption aids intuition in visualizing the following results.
Lemma 7. Suppose sign(gt) = sign(g1:t−1). Then

|ηt−1‖g1:t−1‖ − ηt‖g1:t‖| ≤ ηt‖gt‖ (5)
Suppose instead that sign(gt) = −sign(g1:t−1) and also ‖gt‖ ≤ L. Then we still have:

|ηt−1‖g1:t−1‖ − ηt‖g1:t‖| ≤
(
1 +

pL

2

)
ηt‖gt‖ (6)

Proof. First, suppose sign(gt) = sign(g1:t−1). Then sign(g1:t) = sign(g1:t−1). WLOG, assume g1:t−1 > 0.
Notice that ηtg1:t is an increasing function of gt for gt > 0 because ηtg1:t is proportional to either g1:t or

√
g1:t

depending on whether Mt =Mt−1 or not. Then since ηt < ηt−1 we have
|ηt−1g1:t−1 − ηtg1:t| = ηtg1:t − ηt−1g1:t−1

≤ ηtg1:t − ηtg1:t−1

= ηt|gt|

12

so that (5) holds.

Now suppose sign(gt) = −sign(g1:t−1) and ‖gt‖ ≤ L. We consider two cases.

Case 1: ηt|g1:t| ≥ ηt−1|g1:t−1|:

Since ηt−1 ≥ ηt, we have

ηt|g1:t| ≥ ηt−1|g1:t−1|
ηt|g1:t| ≥ ηt|g1:t−1|
|g1:t| ≥ |g1:t−1|
|gt| ≥ |g1:t|

where the last line follows since sign(g1:t−1) = −sign(gt). Therefore:

|ηt−1|g1:t−1| − ηt|g1:t|| ≤ ηt|g1:t| ≤ ηt|gt|
so that we are done.

Case 2: ηt|g1:t| ≤ ηt−1|g1:t−1|:

When gt < −g1:t−1 and ηt|g1:t| ≤ ηt−1|g1:t−1|, |ηt−1|g1:t−1| − ηt|g1:t|| is a decreasing function of |gt|
because ηt|gt:1| is an increasing function of |gt| for gt < −g1:t−1. Therefore it suffices to consider the case
gt ≥ −g1:t−1, so that sign(g1:t) = sign(g1:t−1) and |g1:t| ≤ |g1:t−1|:

Since |g1:t| ≤ |g1:t−1|, we have Mt =Mt−1 so that we can write:

ηt−1g1:t−1 − ηtg1:t = −gtηt + g1:t−1(ηt−1 − ηt)

= |gt|ηt + g1:t−1

 1

k
√
2
√
Mt−1 + ‖g‖21:t−1

− 1

k
√
2
√
Mt + ‖g‖21:t−1 + g2t

= |gt|ηt +

g1:t−1

k
√
2

 1√
Mt−1 + ‖g‖21:t−1

− 1√
Mt−1 + ‖g‖21:t−1 + g2t

≤ |gt|ηt +

g1:t−1

k
√
2
√
Mt + ‖g‖21:t−1 + g2t

√
Mt−1 + ‖g‖21:t−1 + g2t√
Mt−1 + ‖g‖21:t−1

− 1

≤ |gt|ηt + g1:t−1ηt

(
1 +

g2t
2(Mt−1 + ‖g‖21:t−1)

− 1

)
≤ |gt|ηt + ηt

g1:t−1g
2
t

2(Mt−1 + ‖g‖21:t−1)

≤ |gt|ηt(1 +
pL

2
)

we have used the identity
√
X + g2t ≤

√
X +

g2t
2
√
X

between lines 4 and 5, and the last line follows because
|gt| ≤ L and Mt−1 + ‖g‖21:t−1 ≥ |g1:t−1|/p.

Lemma 8. If

‖wT ‖ ≥ exp

(√
pB

k
√
2

)
− 1

then
‖g1:T−1‖ ≥ B

Proof. First note that by definition of MT−1 and ηT−1, ηT−1‖g1:T−1‖ ≤
√
p‖g1:T−1‖
k
√
2

. The proof now follows
from some algebra:

exp

(√
pB

k
√
2

)
≤ ‖wT ‖+ 1

= exp(ηT−1‖g1:T−1‖)

≤ exp

(√
p‖g1:T−1‖
k
√
2

)

Taking squares of logs and rearranging now gives the desired inequality.

13

We have the following immediate corollary:

Corollary 9. Suppose sign(gt) = ±sign(g1:t−1), ‖gt‖ ≤ L, and

‖wt‖ ≥ exp

(√
pL

k
√
2

)
− 1

Then sign(g1:t) = sign(g1:t−1).

Now we begin analysis of the sum term in (4).

Lemma 10. Suppose sign(g1:t) = sign(g1:t−1) and |gt| ≤ L. Then

|wt − wt+1| ≤ |gt|ηt(|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
gtηt

(
1 +

pL

2

)]
Proof. Since sign(g1:t) = sign(g1:t−1), we have:

|wt − wt+1| = |sign(g1:t−1) [exp (ηt−1|g1:t−1|)− 1]− [sign(g1:t) exp (ηt|g1:t|)− 1]|
= |exp (ηt−1|g1:t−1|)− exp (ηt|g1:t|)|
= (|wt+1|+ 1) |exp (ηt−1|g1:t−1| − ηt|g1:t|)− 1|

where the last line uses the definition of wt+1 to observe that |wt+1|+ 1 = exp(ηt|g1:t|). Now we consider
two cases: either ηt−1|g1:t−1| < ηt|g1:t| or not.

Case 1: ηt−1|g1:t−1| < ηt|g1:t|:

By convexity of exp, we have

|wt − wt+1| ≤ (|wt+1|+ 1) |exp (ηt−1|g1:t−1| − ηt|g1:t|)− 1|
≤ (|wt+1|+ 1) |ηt−1|g1:t−1| − ηt|g1:t||

≤ (|wt+1|+ 1)

(
1 +

pL

2

)
ηt|gt|

so that the lemma holds.

Case 2: ηt−1|g1:t−1| ≥ ηt|g1:t|:

Again by convexity of exp we have

|wt − wt+1| ≤ (|wt+1|+ 1) |exp (ηt−1|g1:t−1| − ηt|g1:t|)− 1|
≤ (|wt+1|+ 1) |ηt−1|g1:t−1| − ηt|g1:t|| exp (ηt−1|g1:t−1| − ηt|g1:t|)

≤ (|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
ηt|gt|

(
1 +

pL

2

)]
ηt|gt|

so that the lemma still holds.

The next lemma is the main workhorse of our regret bounds:

Lemma 11. Suppose ‖gt‖ ≤ L and either of the following holds:

1. p ≤ 2
L

, k =
√
2, and ‖wt‖ ≥ 15.

2. k =
√
2, pL ≥ 1, and ‖wt‖ ≥ 4 exp(p2L2).

Then (
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt(wt − wt+1) ≤ 0 (7)

Further, inequality (7) holds for any k and sufficiently large L if ‖wt‖ ≥ exp((pL)2).

Proof. By Theorem 5 it suffices to consider the case sign(gt) = ±sign(g1:t−1), so that we may adopt our
identification with R and use of | · | throughout this proof.

For p ≤ 2
L

, k =
√
2 we have 15 > exp(

√
pL

k
√
2
)− 1 and for sufficiently large L, exp((pL)2) > exp(

√
pL

k
√
2
)− 1.

Therefore in all cases |wt| ≥ exp(
√
pL

k
√
2
)− 1 so that by Corollary 9 and Lemma 10 we have

gt · (wt − wt+1) ≤ ηtg2t (|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
ηtgt

(
1 +

pL

2

)]
(8)

14

First, we prove that (7) is guaranteed if the following holds:

|wt+1|+ 1 ≥ exp

[
1 + pL

2

k2
exp

(
ηtgt

(
1 +

pL

2

))
+ 1

]
(9)

The previous line (9) is equivalent to:

k2(log(|wt+1|+ 1)− 1) ≥
(
1 +

pL

2

)
exp

(
ηtgt

(
1 +

pL

2

))
(10)

Notice that ψ(wt+1) = (|wt+1|+ 1)(log(|wt+1|+ 1)− 1) + 1 ≥ (|wt+1|+ 1)(log(|wt+1|+ 1)− 1). Then
multiplying (10) by ηt|gt| we have

(|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
ηt|gt|

(
1 +

pL

2

)]
ηt|gt| ≤ k2ηt|gt|ψ(wt+1) (11)

Combining (8) and (11), we see that (9) implies

gt · (wt − wt+1) ≤ k2ηtg2tψ(wt+1)

Now we bound
(

1
ηt−1

− 1
ηt

)
ψ(wt+1):

1

ηt−1
− 1

ηt
= k
√
2

(√
Mt−1 + ‖g‖21:t−1 −

√
Mt + ‖g‖21:t−1 + g2t

)

≤ k
√
2

√Mt + ‖g‖21:t−1 + g2t −
g2t +Mt −Mt−1

2
√
Mt + ‖g‖21:t−1 + g2t

−√Mt + ‖g‖21:t−1 + g2t

≤ −k

√
2

g2t

2
√
Mt + ‖g‖21:t

= −k2ηtg2t

Thus when (9) holds we have(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt(wt − wt+1) ≤ −k2ηtg2tψ(wt+1) + k2η2t g

2
tψ(wt+1) ≤ 0

Therefore our objective is to show that our conditions on wt imply the condition (9) on wt+1.

First, we bound ηtgt in terms of |wt|. Notice that

|wt|+ 1 = exp

 |g1:t−1|

k
√
2
√
Mt−1 + ‖g‖21:t−1

≤ exp

(√
p
√
|g1:t−1

k
√
2

)
2k2 log2(|wt|+ 1)

p
≤ |g1:t−1|

Using this we have:

ηtgt =
gt

k
√
2
√
Mt + ‖g‖21:t

≤ gt

k
√
2
√
Mt−1 + ‖g‖21:t−1 + g2t

≤
gt
√
p

k
√
2
√
|g1:t−1|+ pg2t

≤
L
√
p

k
√
2
√

2k2

p
log2(|wt|+ 1) + pL2

15

so that we can conclude:

ηtgt ≤
Lp

k
√
2
√

2k2 log2(|wt|+ 1) + p2L2
(12)

Further, by Lemma 7 we have

|wt|+ 1

|wt+1|+ 1
= exp(ηt−1|g1:t−1| − ηt|g1:t|)

≤ exp

[
ηtgt

(
1 +

pL

2

)]
Therefore we have

|wt+1|+ 1 ≥ (|wt|+ 1) exp

[
−ηtgt

(
1 +

pL

2

)]
(13)

From (13), we see that (9) is guaranteed if we have

|wt|+ 1 ≥ exp

[
ηtgt

(
1 +

pL

2

)]
exp

[
1 + pL

2

k2
exp

(
ηtgt

(
1 +

pL

2

))
+ 1

]
(14)

If we use our expression (12) in (14), and assume |wt| ≥ exp(L2), we see that there exists some constant C
depending on p and k such that the RHS of (14) is O(exp(L)) and so (14) holds for sufficiently large L.

For p = 2/L, k =
√
2, and wt ≥ 15 we can verify (14) numerically by plugging in the bound (12).

For the case k =
√
2, |wt| ≥ 4 exp(p2L2), we notice that by using (12), we can write (14) entirely in terms of

pL. Graphing both sides numerically as functions of pL then allows us to verify the condition.

We have one final lemma we need before we can start stating some real regret bounds. This lemma can be
viewed as observing that ψ(w) is roughly 1

D
strongly-convex for |w| not much bigger than D.

Lemma 12. Suppose p ≤ 2/L, k =
√
2, ‖wt‖ ≤ D and ‖gt‖ ≤ L Then gt(wt − wt+1) ≤ 6(max(D +

1, exp(1/2)))g2t ηt.

Proof. By Theorem 5 it suffices to consider sign(gt) = ±sign(g1:t−1).

We show that |wt −wt+1| ≤ 6(max(D + 1, exp(1/2)))|gt|ηt so that the result follows by multiplying by |gt|.

From Lemma 7, we have |ηt−1|g1:t−1| − ηt|g1:t|| ≤ ηt|gt|
(
1 + pL

2

)
≤ 2ηt|gt|. Further, note that ηt|gt| ≤

1

k
√

2
= 1

2
. We consider two cases, either sign(g1:t) = sign(g1:t−1) or not.

Case 1: sign(g1:t) = sign(g1:t−1):

|wt − wt+1| = | exp(ηt−1|g1:t−1|)− exp(ηt|g1:t|)|
= (|wt|+ 1)| exp(ηt|g1:t| − ηt−1|g1:t−1|)− 1|
≤ 2(D + 1)ηt|gt| exp(2ηt|gt|)

≤ 2(D + 1)ηt|gt| exp
(

2

k
√
2

)
≤ 6(D + 1)ηt|gt|

Case 2: sign(g1:t) 6= sign(g1:t−1): In this case, we must have |g1:t| ≤ |gt|. Let X =
max(ηt|g1:t|, ηt−1|g1:t−1|). Then by triangle inequality we have

|wt − wt+1| ≤ 2max(|wt|, |wt+1|)
≤ 2(exp(X)− 1)

≤ 2X exp(X)

≤ 2(max(|wt|, |wt+1|) + 1)X

Since |ηt−1|g1:t−1| − ηt|g1:t|| ≤ 2ηtgt, we have X ≤ 2ηtgt + ηt|g1:t| ≤ 3ηt|gt| so that we have

|wt − wt+1| ≤ 6(max(|wt|, |wt+1|) + 1)ηt|gt|

16

Finally, we have |wt+1|+ 1 = exp(ηt|g1:t|) ≤ exp(ηt|gt|) ≤ exp(1/2), so that

|wt − wt+1| ≤ 6ηt|gt|(max(|wt|, |wt+1|) + 1)

≤ 6max(D + 1, exp(1/2))ηt|gt|

Now we are finally in a position to prove Lemma 3, which we re-state below:

Lemma 3. Set k =
√
2. Suppose ‖gt‖ ≤ L for t < T , 1/L ≤ p ≤ 2/L, gT ≤ Lmax and Lmax ≥ L. Let

Wmax = maxt∈[1,T] ‖wt‖. Then the regret of FTRL with regularizers ψt(w) = ψ(w)/ηt is:

RT (u) ≤ ψ(u)/ηT + 96
√
MT + ‖g‖21:T + 2Lmax min

[
Wmax, 4 exp

(
4
L2

max

L2

)
, exp(

√
T/2)

]

≤ (2ψ(u) + 96)

√√√√T−1∑
t=1

L|gt|+ L2
max + 8Lmax min

[
exp

(
4L2

max

L2

)
, exp(

√
T/2)

]

≤ Lmax(2((‖u‖+ 1) log(‖u‖+ 1)− ‖u‖) + 96)
√
T + 8Lmax min

[
e

4L2
max
L2 , e

√
T/2

]

Proof of Lemma 3. We combine Lemma 11 with Lemma 12: if |wt| ≥ 15 we have for all t < T :(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1) < 0

and if |wt| ≤ 15 we have(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1) ≤ gt · (wt − wt+1)

≤ 6× (15 + 1)ηtg
2
t

= 96ηtg
2
t

Therefore for all t < T we have
(

1
ηt−1

− 1
ηt

)
ψ(wt+1) + gt · (wt − wt+1) ≤ 96ηtg

2
t .

RT (u) ≤ ψ(u)/ηT +

T∑
t=1

(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1)

≤ ψ(u)/ηT + 96

T∑
t=1

ηtg
2
t +

(
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1)

We have (
1

ηT−1
− 1

ηT

)
ψ(wT+1) < 0

so that (
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1) ≤ 2LmaxWmax

Further, again using Lemma 11 we have(
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1) < 0

for |wT | ≥ 4 exp(p2L2
max) since k =

√
2.

Finally, notice that by definition of ηt and L, we must have |ηtg1:t| ≤
√
p|g1:t|
k
√
2
≤
√
T/2, so that ‖wt‖ ≤

exp (ηt|g1:t|) ≤ exp
(√

T/2
)

. Thus we have(
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1) ≤ 2Lmax min(Wmax, 4 exp(4L

2
max/L

2), exp(
√
2T))

17

Now we make the following classic argument:√
Mt + ‖g‖21:t −

√
Mt−1 + ‖g‖21:t−1 ≥

g2t +Mt −Mt−1

2
√
Mt + ‖g‖21:t

≥ g2t

2
√
Mt + ‖g‖21:t

= ηtg
2
t

so that we can bound:

RT (u) ≤ ψ(u)/ηT + 96

T∑
t=1

ηtg
2
t +

(
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1)

≤ ψ(u)/ηT + 96
√
MT + ‖g‖21:T + 2Lmax min(Wmax, 4 exp(4L

2
max/L

2), exp(
√
2T))

To show the remaining two lines of the theorem, we prove by induction that Mt + ‖g‖21:t ≤ L
∑t
t′=1 |gt′ |

for all t < T . The statement is clearly true for t = 1. Suppose it holds for some t. Then notice that
|g1:t+1| ≤ |gt+1|+ |g1:t|. So we have

Mt+1 + ‖g‖21:t+1 = max

(
Mt + ‖g‖21:t+1,

|g1:t+1|
p

)
≤ max

(
Mt + ‖g‖21:t + L|gt+1|, L|g1:t+1|

)
≤ L

t+1∑
t′=1

|gt′ |

Finally, we observe that MT = max
(
MT−1 + ‖g‖21:T−1 + g2T ,

|g1:T |
p

)
≤ L2

max + L
∑T−1
t=1 |gt′ | and the last

two lines of the theorem follow immediately.

C Additional Experimental Details

C.1 Hyperparameter Optimization

For the linear classification tasks, we optimized hyperparameters in a two-step process. First, we tested every
power of 10 from 10−5 to 102. Second, if λ was the best hyperparameter setting in step 1, we additionally tested
βλ for β ∈ {0.2, 0.4, 0.8, 2.0, 4.0, 6.0, 8.0}

For the neural network models, we optimized ADAM and ADAGRAD’s learning rates by testing every power of
10 from 10−5 to 100. For stochastic gradient descent, we used an exponentially decaying learning rate schedule
specified in Tensorflow’s (https://www.tensorflow.org/) MNIST and CIFAR-10 example code.

C.2 Coordinate-wise updates

We proved all our results in arbitrarily many dimensions, leading to a dimension-independent regret bound.
However, it is also possible to achieve dimension-dependent bounds by running an independent version of our
algorithm on each coordinate. Formally, for OLO we have

RT (u) =

T∑
t=1

gt(wt − u) =
d∑
i=1

T∑
t=1

gt,i(wt,i − ui) =
d∑
i=1

R1
T (ui)

where R1
T is the regret of a 1-dimensional instance of the algorithm. This reduction can yield substantially

better regret bounds when the gradients gt are known to be sparse (but can be much worse when they are not).
We use this coordinate-wise update strategy for our linear classification experiments for RESCALEDEXP. We
also considered coordinate-wise updates and non-coordinate wise updates for the other algorithms, taking the
best-performing of the two.

For all algorithms in the linear classification experiments, we found that the difference between coordinate-wise
and non-coordinate wise updates was not very striking. However, for the neural network experiments we found
RESCALEDEXP performed extremely poorly when using coordinate-wise updates, and performed extremely well
with non-coordinate wise updates. We hypothesize that this is due to a combination of non-convexity of the
model and frequent resets at different times for each coordinate.

18

https://www.tensorflow.org/

ADAGRAD RESCALEDEXP ADADELTA SCALEINVARIANT ADAM PISTOL
1.14 1.19 1.21 1.28 1.51 1.53

Table 1: Average normalized loss, using best hyperparameter setting for each algorithm.

C.3 Re-centering RESCALEDEXP

For the non-convex neural network tasks we used a variant of RESCALEDEXP in which we re-center our FTRL
algorithm at the beginning of each epoch. Formally, the pseudo-code is provided below:

Algorithm 2 Re-centered RESCALEDEXP

Initialize: k ←
√
2, M0 ← 0, w1 ← 0, t? ← 1 , w? ← 0

for t = 1 to T do
Play wt, receive subgradient gt ∈ ∂`t(wt).
if t = 1 then
L1 ← ‖g1‖
p← 1/L1

end if
Mt ← max(Mt−1, ‖gt?:t‖/p− ‖g‖2t?:t).
ηt ← 1

k
√

2(Mt+‖g‖2t?:t)

wt+1 ← w? + argminw
[
ψ(w)
ηt

+ gt?:tw
]
= w? − gt?:t

‖gt?:t‖ [exp(ηt‖gt?:t‖)− 1]

if ‖gt‖ > 2Lt then
Lt+1 ← ‖gt‖
p← 1/Lt+1

t? ← t+ 1
Mt ← 0
wt+1 ← 0
w? ← wt−1

else
Lt+1 ← Lt

end if
end for

So long as ‖w? − u‖ ≤ ‖u‖, this algorithm maintains the same regret bound as the non-re-centered version of
RESCALEDEXP. While it is intuitively reasonable to expect this to occur in a stochastic setting, an adversary can
easily subvert this algorithm.

C.4 Aggregating Studies

It is difficult to interpret the results of a study such as our linear classification experiments (see Section 4) in
which no particular algorithm is always the “winner” for every dataset. In particular, consider the case of an
analyst who wishes to run one of these algorithms on some new dataset, and doesn’t have the either the resources
or inclination to implement and tune each algorithm. Which should she choose? We suggest the following
heuristic: pick the algorithm with the lowest loss averaged across datasets.

This heuristic is problematic because datasets in which all algorithms do very poorly will dominate the cross-
dataset average. In order address this issue and compare losses across datasets properly, we compute a normalized
loss for each algorithm and dataset. The normalized loss for an algorithm on a dataset is given by taking the
loss experienced by the algorithm on its best hyperparameter setting on that dataset divided by the lowest loss
observed by any algorithm and hyperparameter setting on that dataset. Thus a normalized loss of 1 on a dataset
indicates that an algorithm outperformed all other algorithms on the dataset (at least for its best hyperparameter
setting). We then average the normalized loss for each algorithm across datasets to obtain the scores for each
algorithm (see Table 1).

These data indicate that while ADAGRAD has a slight edge after tuning, RESCALEDEXP and ADADELTA do
nearly equivalently well (4% and 6% worse performance, respectively). Therefore we suggest that if our intrepid
analyst is willing to perform some hyperparameter tuning, then ADAGRAD may be slightly better, but her choice
doesn’t matter too much. On the other hand, using RESCALEDEXP will allow her to skip any tuning step without
compromising performance.

19

	Online Convex Optimization
	Lower Bound with Unknown Lmax
	rescaledexp
	Experiments
	Linear Classification
	Convolutional Neural Networks

	Conclusions
	Follow-the-Regularized-Leader (FTRL) Regret
	Proof of Lemma 3
	Reduction to one dimension
	One dimensional FTRL

	Additional Experimental Details
	Hyperparameter Optimization
	Coordinate-wise updates
	Re-centering rescaledexp
	Aggregating Studies

