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Abstract— Existing routing mechanisms for two-dimensional
(2D) arrays either use low-overhead grids with one or two
shared wires per row or column (e.g., RAM) or high-overhead
meshes with many wires connecting neighboring clients (e.g., su-
percomputers). Neither is suitable for intermediate-complexity
clients (e.g., small clusters of silicon neurons). We present a
router tailored to 2D arrays of such clients. It uses a tree
laid out in a fractal pattern (H-tree), which requires less
wiring per signal than a grid, and adopts serial-signaling,
which keeps link-width constant, regardless of payload size.
To route from the tree’s leaves to its root (or vise versa), each
node prepends (consumes) a delay-insensitive 1-of-4 code that
signals the route’s previous (next) branch; additional codes
carry payload. We employ this serial H-tree router to service
a 16×16 array of silicon-neuron clusters, each with 16 spike-
generating analog somas, 4 spike-consuming analog synapses,
and one 128-bit SRAM. Fabricated in a 28-nm CMOS process,
the router communicates 26.8M soma-generated and 18.3M
synapse-targeted spikes per second while occupying 43% of
the client’s 35.1×36.1µm2.

I. ROUTER FUNCTIONALITY AND OVERHEAD

Advances in CMOS fabrication processes enable increases
in the number and complexity of computational units in
highly distributed and parallel architectures (e.g., neuromor-
phic processors; [1]–[3]), which calls for a corresponding
increase in scalability and sophistication of routing mecha-
nisms. Router area should be a reasonable fraction of the
total system—router architecture is therefore dictated by
client complexity. In this regard, high-overhead routers (e.g.,
meshes with parallel interfaces) capable of communicating
arbitrary data-types at high bandwidths, are unsuited for
intermediate-complexity clients with lower data-rate require-
ments. To provide multiple-data-type functionality for such
clients, we adapt existing low-overhead routers.

Low-overhead routers contain a transmitter and a re-
ceiver [4]. The transmitter merges data from all of the clients
into a single stream and adds source-identifying addresses
to each datum to form a packet. The receiver takes a stream
of packets, parses each destination-identifying address, and
delivers the datum to the specified client.

For N clients, a low-overhead router’s circuitry scales as
O(
√
N) by sharing resources. Clients are tiled in a two-

dimensional (2D) array and share row and column wires
within the array and transceiver circuitry at the edge of the
array [4], [5] (Fig. 1, GRID ADDR). Sharing works correctly
if certain timing assumptions are met [6], [7], but these
assumptions are difficult to satisfy for long wires, which
are susceptible to phenomena such as charge relaxation,
whereby a significant voltage difference arises between the
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Fig. 1. Grid Addresses and Tree Paths: clients (white and gray squares)
are tiled in a 2D array and routed to (or from) using a grid or a tree.
GRID ADDR: A client’s address is encoded by concatenating its x and
y positions (in binary). Addressing circuitry is placed at the array’s edge
(black rectangles) and scales as O(

√
N) for N clients (N = 16 shown).

TREE PATH: A client’s path is encoded by traversing the tree from the root
to leaf (indexed by n = 3 and n = 0, respectively, in Algorithms 1 & 2).
Each up and left (down and right) branch appends a 0 (1). Shaded squares
indicate differences between tree and grid binary-number assignments (e.g.,
the bottom left client’s grid-address is 0011, but its tree-path is 1010).
Routing circuitry is embedded within the array (black triangles) and scales
as O(N). TREE WIRE: Wire segments are annotated with their lengths.

wire’s two ends [8]. For this reason, grids do not readily
scale to large arrays.

Our router presented herein switches from grid addresses
to tree paths (Fig. 1, TREE PATH), trading an increase in
logic circuitry for enhanced scalabilty and functionality.
The increase in logic circuitry—from O(

√
N) to O(N)

for N clients—is worthwhile for emerging intermediate-
complexity clients that use thick-oxide transistors for ultra-
low power analog computation and much smaller thin-
oxide transistors for ultra-fast digital communication [9].
The enhanced scalability arises because its asynchronous
implementation’s timing assumptions are easily met. And
the enhanced functionality arises because its serial proto-
col supports multiple datatypes, whereas the grid’s parallel
protocol limits payload size. For backward compatibility,
converting grid addresses into tree paths and vice versa is
straightforward (Algorithms 1 & 2).

In Section II, we describe how grid addresses and tree
paths are encoded, show that both require O(N) wiring,
and justify our choice of a 4-ary tree over a binary tree.
In Section III, we describe the serial link our router uses.
In Section IV, we describe the logical design of the router’s
nodes. In Section V, we describe how the router’s leaves were
customized for a neuromorphic application. In Section VI,
we describe the router’s logical and physical synthesis and
its verification and validation. In Section VII, we conclude
the paper with a discussion of our results.



Algorithm 1 Converts Path
(p) to Address (x,y)
Require: l = length(p)

for n = 0 to l/2− 1 do
x[n]← p[2n]
y[n]← p[2n+ 1]

end for

Algorithm 2 Converts Ad-
dress (x,y) to Path (p)
Require: l = length(p)

for n = 0 to l/2− 1 do
p[2n]← x[n]
p[2n+ 1]← y[n]

end for

II. TREE PATHS VERSUS GRID ADDRESSES

A 2D array can be routed to (or from) using a grid or
a tree. We consider N clients, of unit width and height,
arranged on a square grid (Fig. 1, WIRING).

Given equal link-widths, the tree requires less wiring than
the grid. To calculate the length of the tree’s wiring, Wt,
we start from the N unit centers: N 1

2 -unit segments project
horizontally from each center. At the second level, N

2
1
2 -

unit segments project vertically. At the third level, N
4 1-

unit segments project horizontally. This geometric pattern
continues up to the root; each level alternates between
horizontal and vertical orientation and halves the number of
segments from the previous, lower level, while doubling the
segment-length every other level. Overall, we have

Wt =
1

2

(
N+

N

2

)
+ 1

(
N

4
+
N

8

)
+ 2

(
N

16
+
N

32

)
+ . . . =

3

2
N

as N scales up (coloring matches Fig. 1, WIRING). For
comparison, in the grid, each client adds 2 units of wire
so that Wg = 2N . Therefore, Wt =

3
4Wg: the tree uses up

to 25% less wiring than the grid.1 While the tree’s segments
become longer as we move from leaves to root, they are
shared among more and more leaves.

However, the primary trade-off is the tree’s larger
transistor-count (O(N) versus O(

√
N) for the grid), de-

termined by the node-count times the transistors-per-node.
To reduce the node-count, we opted for a 4-ary tree over a
binary tree. A binary tree has N − 1 nodes whereas a 4-
ary tree has N−1

3 nodes. In general, a k-ary tree has N−1
k−1

nodes and logk(N) levels. Consequently, switching divides
the node-count by three, halves the number of levels, halves
the latency, and doubles the unpipelined throughput.

If switching from binary to 4-ary doubles the transistors-
per-node,2 and divides the node count by three, we would
expect to decrease the overall transistor count by 33%.
However, nodes are not homogeneous; leaf nodes are tailored
to clients’ needs. The total transistor count in an N -client k-
ary tree whose leaf and intermediate nodes have TLk and TIk
transistors each, respectively, is

Ttotk =
N − 1

k − 1

(1− k/N)TIk + (k − 1)TLk
k − k/N

(1)

1In emerging 3D processes, with wire-segments traveling along three
axes, segment-count still halves at each level towards the root, but segment-
length only doubles every third level (c.f. every other level in 2D). As a
result, Wt = 7

24
Wg ≈ 0.29Wg: the tree uses up to 71% less wiring.

2Doubling occurs if combinational gates (e.g., NANDs or NORs)—whose
transistor count is 2× their fan-in—dominate. For sequential gates—whose
state-holding elements are not replicated—the increase is sublinear. When
gates are treed to build wider gates, the increase is supralinear.
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Fig. 2. Serial Link Description at Two Levels of Abstraction. HANDSHAK-
ING: Source drives control line xφ and data lines x0 and x1. Sink drives
control line ye. Arrows point from driver to listener. Two-phase handshakes
(time slots 0 and 4) initiate and terminate packet communication; four-
phase handshakes (1, 2, and 3) send the packet’s bits as 1-of-2 codes. All
transitions are acknowledged (curved gray arrows), so the protocol is delay-
insensitive. ye’s last transition is acknowledged by xφ’s initial transition in
the next packet. A three-bit packet (010) is communicated in this example,
but the protocol supports arbitrary-sized packets and 1-of-D codes using
D data lines. COMMUNICATIONS: A channel connects Source’s output port
(X) to Sink ’s input port (Y ). Source’s dataless communications (X and X)
initiate and terminate packet transmission; such communications are colored
blue and red, respectively, throughout the text. Its datafull communications
(X!0 and X!1) send the packet’s bits. The entire communication sequence
may be consolidated into the single operation (X!!2).

Transmitter Receiver
k 2 4 2 4

TLk 78 208 30 54
TIk 91 255 64 148

Ttot4/Ttot2 0.867 0.550

TABLE I
NODE TRANSISTOR COUNTS & BINARY:4-ARY RATIOS FOR LARGE N

For TLk = TIk = Tk, this expression reduces to N−1
k−1 Tk: the

total number of nodes times the transistors-per-node. Note
that the ratio of leaf to intermedaite nodes is k−1:1−k/N ,
which approaches 1:1 and 3:1 for binary and 4-ary trees,
respectively, as N increases. Thus, based on TLk’s and
TIk’s values for our designs (Tab. I),3 which have different
mixes of combinational and sequential logic and treed gates,
switching from binary to 4-ary increases the average transis-
tor count of the transmitter’s and receiver’s nodes by 2.6×
and 1.6×, respectively. As a result, their overall transistor
count reduces by 13.3% and 45%, respectively (see Tab. I).

We built our serial tree-router with quasi-delay insensi-
tive (QDI) circuits. The only timing assumption made is the
isochronic fork. Signal-propagation delay along branches of
such forks are assumed to be equally insignificant (hence
the iso combining form; precise definitions may be found
in [10], [11]). This assumption is the minimal one neces-
sary for useful computation with asynchronous circuits (i.e.,
Turing complete). No assumptions are made about signal-
propagation delays through gates or nonisochronic wires,
except that they are positive and finite.

III. SERIAL COMMUNICATION PROTOCOL

To keep link-width constant, we use serial communication.
The path-length grows as we move from leaf to root in a tree.

3The leaf node’s communication is dataless—it requests or acknowledges.



Hence, codes communicated over links closer to the root
have more bits than those communicated over links closer
to the leaves. A parallel protocol thus requires wider links
(i.e. more wires) towards the root, whereas a serial protocol
makes do with a constant width. Further, the latter allows us
to communicate more than just the encoded paths; we can
communicate data (e.g., configuration settings) as well.

Our serial-link follows a fully delay-insensitive version of
the bundled-data protocol in [7] (Fig. 2, HANDSHAKING).
For example, the following source generates a random bit-
stream and segments it into packets of arbitrary length (see
Table II for syntax):

xφ↑; [xe];*[[true −→ x0↑; [¬xe]; x0↓; [xe]
|true −→ x1↑; [¬xe]; x1↓; [xe]
|true −→ xφ↓; [¬xe];xφ↑; [xe]]]

Handshakes that demarcate the beginning and end of packet
transmission are colored blue and red, respectively. If the xφ
branch is executed immediately, or consecutively, the packet
contains no data. A sink that consumes the source’s data
operates as follows.

[yφ]; ye↑;*[[y0 ∨ y1 −→ ye↓; [¬y0 ∧ ¬y1]; ye↑
[] ¬yφ −→ ye↓;[yφ]; ye↑]]

Selection (deterministic) is used instead of arbitration (non-
deterministic) because the source guarantees mutual exclu-
sion between the branches.

At a higher level of abstraction, we describe the source’s
and sink’s operation simply in terms of communications on
ports connected by a channel (Fig. 2, COMMUNICATIONS).
For the source:

X ; *[[true −→ X !0|true −→ X !1|true −→ X ;X ]]

X and X correspond to two-phase handshakes (on xφ and
xe ) that demarcate the packet (see Table III for notation). X !
corresponds to repeated four-phase handshakes (on x0,1 and
xe ) that send the payload. For the sink:

Y ; *[[Y ? −→ Y ?[]Y −→ Y ;Y ]]

Assignment
x↑ / x↓ Set boolean variable x to true / false

Program Composition
s1; s2 Execute segment s1 and then s2
s1, s2 Execute s1 concurrently with s2
*[s] Execute s repeatedly

Boolean Operations
x / ¬x Return the value of x / negated value of x
e1 ∧ e2 Return the logical-and of e1 and e2
e1 ∨ e2 Return the logical-or of e1 and e2

Branching
[e] Wait until boolean expression e is true

[e1 → s1] When e1 becomes true, execute s1
[e1 → s1|e2 → s2] If boolean e1 (e2) is true, execute s1 (s2)

If both are true, execute either s1 or s2
If both are false, wait

[e1 → s1[]e2 → s2] If boolean e1 (e2) is true, execute s1 (s2)
Assume e1 and e2 cannot both be true
If both are false, wait

TABLE II
HANDSHAKING EXPANSION (HSE) SYNTAX

Note the unconventional use of the probe to check whether a
datafull communication is pending. This probe (Y ?) corre-
sponds to y0∨y1, whereas the dataless communication probe
(Y ) corresponds to ¬yφ.

We introduce ?? and !! operators to describe serial read
and write communications concisely (Fig. 2, COMMUNICA-
TIONS). The source and sink are described as

*[[true −→ X !!null|true −→ X !!Rand()]] ‖ *[[Y ??]]

where null is an empty string (i.e. the packet is empty) and
Rand() returns a random, nonnegative integer.

IV. ROUTER LOGICAL DESIGN

The router consists of a transmitter and a receiver, both
composed of a tree of nodes (Fig. 3). The transmitter merges
packets from the clients into a single stream for transmission
to the environment. The receiver does the inverse; it splits
each packet in the stream off to the targeted client. For
conciseness, we describe the nodes’ operation for a binary
tree (TX(2) and RV(2)). It is straightforward to extend these
processes to a k-ary tree (TX(k) and RV(k)).

A. Transmitter

A transmitter node merges packet streams from its children
into a single packet stream for its parent (another node one
level closer to the root, unless the node is itself the root):

TX(2)
≡ *[[C0 −→ P !!(0⊕C0??)|C1 −→ P !!(1⊕C1??)]]

A packet from port C0,1 is interpreted as a string; a ⊕ b
prepends a to b (e.g., 1 ⊕ 01 = 101). Prepending a child’s
port index at that node in the tree to its data builds the overall
path from leaf to root.

Expanding !! and ?? operators, and separating out arbitra-
tion, TX(2) becomes

*[[C0 −→ P ;P !0;C0;[C0 −→ P ;C0]

|C1 −→ P ;P !1;C1;[C1 −→ P ;C1]]

‖*[[C0? −→ P !C0?[]C1? −→ P !C1?]]

Assignment
x := d Set variable x to d’s value

Communication
X Communicate on port X (dataless)

X !x Write value of x to X
X ?x Read value from X to x

Y !X ? Read value from X and write it to port Y
X True if a communication is pending and false if not

Program Composition
S1;S2 Execute segment S1 and then S2

S1 ‖ S2 Execute S1 in parallel with S2

S1 • S2 Overlap the execution of S1 and S2 (called bullet)
*[S] Execute S repeatedly

Boolean Operations
¬, ∧, ∨ Same as in Table II
x = d Return true if x ’s value equals d’s and false if not

Branching
→, |, [] Same as in Table II

TABLE III
COMMUNICATING HARDWARE PROCESSES (CHP) SYNTAX
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Fig. 3. Router Process Decomposition. ROUTER: Facilitates communica-
tion between clients tiled in a 2D array and an external environment using
a transmitter and a receiver. TRANSMITTER and RECEIVER: A pair of
4-ary trees provide an input and output port at their leaves for each client.
TX(4) and RV(4): CHP ports (left) and HSE signals (right) that interface
processes running in TRANSMITTER’s and RECEIVER’s nodes with their
environment. TXL(4) and RVL(4): Same as previous but for processes in
the leaves.

Communications that demarcate when packet transmission
begins and ends at the child and parent ports are colored blue
and red, respectively. Putting P !{0, 1} before C0,1 ensures
that the child’s index is prepended to the packet before the
child’s data are forwarded with the P !C0,1? communications.

Further expansion yields the following HSE.

*[[c0φ −→ pφ↑; [pe];p0↑; [¬pe]; p0↓; [pe]; c0e↑;
[¬c0φ]; pφ↓; [¬pe]; c0e↓

|c1φ −→ pφ↑; [pe];p1↑; [¬pe]; p1↓; [pe]; c1e↑;
[¬c1φ]; pφ↓; [¬pe]; c1e↓]],

*[[c00 −→ p0↑; [¬pe]; c0e↓; [¬c00]; p0↓; [pe]; c0e↑
[]c01 −→ p1↑; [¬pe]; c1e↓; [¬c01]; p1↓; [pe]; c1e↑
[]c10 −→ p0↑; [¬pe]; c0e↓; [¬c10]; p0↓; [pe]; c0e↑
[]c11 −→ p1↑; [¬pe]; c1e↓; [¬c11]; p1↓; [pe]; c1e↑]]

Note that the initial parent communication completes ([pe])
and a code is transmitted to the parent before the initial child
communication is acknowledged (c0e↑ or c1e↑). After that,
the selection process relays the child’s data.

We proceed by factorizing the arbitration process into the
arbiter itself and the remaining child-parent communication:

*[[c0φ −→ s0↑; [¬c0φ]; s0↓|c1φ −→ s1↑; [¬c1φ]; s1↓]],
*[[s0 ∧ ¬u −→ pφ↑; [pe];w0↑; p0↑; [¬pe]; u↑;w0↓;

p0↓; [pe]; c0e↑; [¬s0]; pφ↓; [¬pe]; c0e↓;u↓
[]s1 ∧ ¬u −→ pφ↑; [pe];w1↑; p1↑; [¬pe]; u↑;w1↓;
p1↓; [pe]; c1e↑; [¬s1]; pφ↓; [¬pe]; c1e↓;u↓]]

s0,1 are introduced to store the selection result; w0,1 are
introduced to distinguish the state immediately after [pe]
(prepending the index) from that immediately after [pe]
(acknowledging the child); and u is introduced to preserve
mutual exclusion in the selection process when its branches
are implemented as concurrent processes. It prevents the

TOP

ARB2 ARB2

ARB(4) MU

TOP

ARB2

MU

_c0i _c1ic0o c1o

pi_po

aC aC

_i0 _i1

_o0 _o1

MU

Fig. 4. Four-Way Arbiter. ARB(4): Selects one of four clients with one
TOP and two ARB2s; k clients require k−2 ARB2s connected in a binary
tree. TOP: Performs two-way selection with a MU. MU: Selects one of two
active-low (indicated by underscore prefix) inputs ( i0 and i1) using cross-
coupled NOR gates. Four additional transistors filter out metastable signals
before toggling the outputs ( o0 and o1). MU’s custom standard-cell layout
is shown. ARB2: Relays its childrens’ requests to its parent and relays its
parent’s grant to a requesting child, selected beforehand by MU. The two,
lower NOR gates ensure that handshakes on c0i,o and c1i,o do not overlap;
aC are asymmetric C-elements.

s1 branch (i.e. pφ↑; [pe]; . . .) from beginning before the s0
branch completes (i.e. pφ↓; [¬pe]; . . .) when c1φ is high and
the arbiter executes s1↑ immediately after s0↓.

Our 4-ary transmitter tree’s node uses a four-way arbiter
(Fig. 4). Three mutual-exclusion elements are interconnected
in a binary decision-tree by handshaking circuitry (c0:3φ
and s0:3 connect to the two ARB2’s c0,1i inputs and c0,1o
outputs, respectively) [12]. CHP and HSE are omitted for
brevity. For comparison, a binary tree’s node requires just
one mutual-exclusion element—with no additional overhead.

The transmitter node’s HSE (sans ARB(4)) is imple-
mented by the following production rule set (PRS).

¬u ∧ (s0 ∨ s1) → pφ↑
(c0e ∧ ¬s0) ∨ (c1e ∧ ¬s1) → pφ↓

s0 ∧ pe ∧ ¬u → w0↑
s1 ∧ pe ∧ ¬u → w1↑

u → w0↓
u → w1↓

c00 ∨ c10 ∨ w0 → p0↑
c01 ∨ c11 ∨ w1 → p1↑

¬(c00 ∨ c10 ∨ w0) → p0↓
¬(c01 ∨ c11 ∨ w1) → p1↓

(w0 ∨ w1) ∧ ¬pe → u↑ ¬(c0e ∨ c1e ∨ pφ) → u↓

s0 ∧ u ∧ pe ∧ ¬c1e → c0e↑
s1 ∧ u ∧ pe ∧ ¬c0e → c1e↑

¬pe → c0e↓
¬pe → c1e↓

B. Receiver

A receiver node splits a packet stream from its parent into
packet streams for its children (another node one level closer
to the leaves, unless the node is a leaf itself):

RV(2)
≡ *[[P??(s, d) • [s = 0 −→ C0!!d[]s = 1 −→ C1!!d]]]

It uses the packet’s first word (written into s) to decide which
child to send the remainder of the packet (written into d ); s
has 1 bit for a binary tree or 2 bits for a 4-ary tree (RV(4)).

We expand RV(2)’s ?? and !! communications as follows.



P ;P?s • [s = 0 −→ C0[]s = 1 −→ C1];

*[[P? ∧ s = 0 −→ C0!P?

[]P? ∧ s = 1 −→ C1!P?
[]P −→ P•[s = 0 −→ C0[]s = 1 −→ C1];

P ;P?s • [s = 0 −→ C0[]s = 1 −→ C1]]]

This process can be expanded further as

*[[p0 ∧ s0 −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓; [c0e]; pe↑
[]p1 ∧ s0 −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓; [c0e]; pe↑
[]p0 ∧ s1 −→ c10↑; [¬c1e]; pe↓; [¬p0]; c10↓; [c1e]; pe↑
[]p1 ∧ s1 −→ c11↑; [¬c1e]; pe↓; [¬p1]; c11↓; [c1e]; pe↑
[]¬pφ −→ s0↓, s1↓;

c0φ↓, c1φ↓; [¬c0e ∧ ¬c1e]; pe↓ ;[pφ]; pe↑;
[p0 −→ s0↑; pe↓; [¬p0]; c0φ↑; [c0e];pe↑
[]p1 −→ s1↑; pe↓; [¬p1]; c1φ↑; [c1e];pe↑]]]

After reset, the process resumes at ; .
To realize these five branches as five concurrent processes,

we must preclude the the first four from starting immediately
after the fifth process executes s0,1↑. We accomplish this by
replacing s0,1 in their guards with c0,1φ, which also indicate
the selected child.
*[[p0 ∧ c0φ −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓; [c0e]; pe↑

[]p1 ∧ c0φ −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓; [c0e]; pe↑
[]p0 ∧ c1φ −→ c10↑; [¬c1e]; pe↓; [¬p0]; c10↓; [c1e]; pe↑
[]p1 ∧ c1φ −→ c11↑; [¬c1e]; pe↓; [¬p1]; c11↓; [c1e]; pe↑
[]¬pφ −→ s0↓, s1↓; ss↓; v↓;

c0φ↓, c1φ↓; [¬c0e ∧ ¬c1e]; pe↓ ;[pφ]; pe↑;
[p0 −→ s0↑; ss↑; pe↓; [¬p0]; v↑; c0φ↑; [c0e];pe↑
[]p1 −→ s1↑; ss↑; pe↓; [¬p1]; v↑; c1φ↑; [c1e];pe↑]]]]

v is introduced to allow c0,1φ to be combinational and ss is
introduced to reduce the length of pe ’s pull-up and pull-down
chains (see PRS below).

The following PRS implements the receiver node’s HSE.

pφ ∧ ¬ss ∨ c0e ∨ c1e → pe↑
(¬pφ ∨ ss) ∧ ¬c0e ∧ ¬c1e → pe↓

s0 ∨ s1 → ss↑ ¬s0 ∧ ¬s1 → ss↓

p0 ∧ ¬v → s0↑
p1 ∧ ¬v → s1↑

¬pφ → s0↓
¬pφ → s1↓

ss ∧ ¬p0 ∧ ¬p1 → v↑ ¬ss → v↓

v ∧ s0 → c0φ↑
v ∧ s1 → c1φ↑

¬v ∨ ¬s0 → c0φ↓
¬v ∨ ¬s1 → c1φ↓

p0 ∧ c0φ → c00↑
p1 ∧ c0φ → c01↑
p0 ∧ c1φ → c10↑
p1 ∧ c1φ → c11↑

¬p0 ∨ ¬c0φ → c00↓
¬p1 ∨ ¬c0φ → c01↓
¬p0 ∨ ¬c1φ → c10↓
¬p1 ∨ ¬c1φ → c11↓

V. ROUTER APPLICATION

We connected a 2D array of spiking-neuron clusters to a
datapath using our asynchronous serial tree-router, a natural
choice for spike communication. A product of continuous,
noisy analog dynamics at biological timescales, spikes are
relatively infrequent (sub-kHz) and asynchronous (there’s
no clock). Each cluster contains 16 spike-generating soma

circuits, 4 spike-consuming synapse circuits, and a configu-
ration memory.

Clusters are tiled in a 16×16 array. To service the 4,096
somas, 1,024 synapses, and 256 memories, the transmitter’s
and receiver’s trees are six (46 = 4096) and five (45 = 1024)
levels deep, respectively. Half of the receiver’s 1,024 output
ports suffice to service all 1,024 synapses because each
port supplies 2 bits (a 1-of-4 code) whereas each synapse
needs only 1 bit (indicates whether a spike is excitatory or
inhibitory). Thus, 512 ports are left over to service the 256
memories. We customized the transmitter’s and receiver’s
leaf nodes to suit this application as follows.

A. Transmitter Leaf

The transmitter leaf transmits a soma’s spike up the tree
by creating a packet containing the soma’s index. With no
other data to convey, the transmitter node is simplified to

TXL(2) ≡ *[[C0 −→ C0•(P ;P !0); [C0 −→ C0 • P]
|C1 −→ C1•(P ;P !1); [C1 −→ C1 • P]]

Note that our design actually instantiates TXL(4). We omit
its HSE and PRS for brevity.

Somas lock up the transmitter during spike emission.
When emitting a spike, a soma initiates packet transmission
with a two-phase handshake (C0,1). Afterwards, the soma
enters a refractory period for up to a few milliseconds before
executing another two-phase handshake (C0,1) to terminate
transmission. If communications within the transmitter are
slackless, the soma will lock up the transmitter during its
refractory period. To prevent this, we insert a buffer (i.e.,
latch) between the soma and the transmitter’s leaf.

B. Receiver Leaf

The receiver leaf services four synapses as well as a
configuration memory (via a deserializer). We repurpose two
of the receiver node’s 2-bit ports to service the four synapses
and use a third port to communicate with the memory:

DESERIAL xexϕ

C

x[0:3]

y[0:M-1][0:3]ye

DE
_xa _x[0:3]

y[0:3]
_si _so

SERIALxe

SE
ya

x[0:3]

y[0:3]
_si _so

...

...

...

...

SEQ
xa x[0:3]

_so _si

x[0:M-1][0:3]

...

yϕ

yϕ

ye

ye y[0:3]

y[0:3]

DE
_xa _x[0:3]

y[0:3]
_si _so

SE
ya

x[0:3]

y[0:3]
_si _so

Fig. 5. Serial–Parallel Conversion. DESERIAL: Serial input fans out to
a chain of M DEs. An event moves from one to the next with each serial
input; it loops back around through the C-element when parallel output
occurs. SERIAL: Parallel input is divided among a chain of M SEs. As
an event moves from one to the next, it outputs its data to SEQ. The event
loops back around through SEQ when serial transmission is complete.
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Fig. 6. Tree Router Layout. TILE: Neuron cluster and low-level, local router circuits. Analog Neurons: Circuitry for 16 somas and 4 synapses. Config
SRAM : Sixty-four 2-bit words—tiled in 8 rows and 8 columns—for analog circuitry configuration. Local Router: Four transmitter-tree leaves, their parent,
a receiver-tree leaf, and a deserializer (SRAM interface). Cutout : Populated as needed with the transmitter or receiver trees’ higher-level nodes or repeaters.
TILE16×16: Full 2D array. Digital signals enter and exit on its left side, where the datapath is attached. To minimize crosstalk with analog circuitry,
H-tree wires runs over the TILEs’ Local Routers and Config SRAMs. A one-tile horizontal displacement between the two H-trees makes wiring possible
with just metal layers 5 (yellow) and 6 (purple). H-TREES: Placement of two H-trees’ higher-level nodes and repeaters (green for transmitter and blue
for receiver) in tiles (white squares) with routing overlaid. A vertical offset between the H-trees has been added for visual clarity only. TX: Transmitter;
RV: Receiver; REP: Repeater.

RVL(4) ≡ P ;P?s • [s = 2 −→ C2[]s 6= 2 −→ skip];
*[[P? ∧ s = 0 −→ C0!P?

[]P? ∧ s = 1 −→ C1!P?

[]P? ∧ s = 2 −→ C2!P?
[]P −→ P•[s = 2 −→ C2[]s 6= 2 −→ skip];

P ;P?s • [s = 2 −→ C2[]s 6= 2 −→ skip]]]

Only the third port (C2) continues with the serial protocol.
HSE and PRS are omitted for brevity.

Synapses, like somas, require buffering. Depending on its
analog biasing, a synapse may take up to a few milliseconds
to acknowledge an input spike. We add a full cycle of
slack to the otherwise slackless communication from root
to synapse. One half-cycle is built into the leaf; a standard
weak-precharge half-buffer provides the other.

The configuration memory accepts 6 bits of address and
2 bits of data (its 128 bits are organized into eight rows and
eight 2-bit-wide columns). These 8 bits are encoded in four
1-of-4 codes that the deserializer receives in series from the
receiver leaf and presents in parallel to the memory.

C. Serial–Parallel Conversion
The deserializer converts M sequentially delivered 1-of-4

codes into a M×1-of-4 parallel code using a chain of M DEs
(Fig. 5, DESERIAL). For 1-of-2 codes, DE’s HSE is:

*[[si]; [x0 −→ y0↑; xa↑; [¬x0]; so↑; xa↓; [¬si]; y0↓; so↓
[]x1 −→ y1↑; xa↑; [¬x1]; so↑; xa↓; [¬si]; y1↓; so↓]]

For each conversion, si,o propagate an event along the chain
twice. The first time, serial input codes are latched to build
the parallel output. The second time, the parallel output is
cleared, which happens once a C-element that closes the
chain receives the environment’s acknowledge. PRS for a
1-of-2 version of DE is as follows.

¬so ∧ si ∧ x0 → y0↑
¬so ∧ si ∧ x1 → y1↑
¬so ∧ vy → xa↑
y0 ∨ y1 → vy↑
vy ∧ ¬x0 ∧ ¬x1 → so↑

¬si → y0↓
so ∨ ¬vy → xa↓
¬si → y1↓
¬y0 ∧ ¬y1 → vy↓
¬vy → so↓

vy is introduced to shorten transistor chains.
The serializer does the converse of the deserializer: It

uses a chain of M SEs to slice a M×1-of-4 parallel code
into M 1-of-4 codes and forwards them sequentially to the
environment using SEQ (Fig. 5, SERIAL). For 1-of-2 codes,
SE’s HSE is:
*[[si];
[x0 −→ y0↑; [ya]; u↑; y0↓; [¬ya]; so↑; [¬si]; u↓; [¬x0]; so↓
[]x1 −→ y1↑; [ya]; u↑; y1↓; [¬ya]; so↑; [¬si]; u↓; [¬x1]; so↓
]]

u is added to distinguish states before and after the y0,1-ya
handshake. As with the deserializer, si,o propagate an event
along the chain twice for each conversion. The first time,
each SE relays a code to SEQ. The second time, each SE
checks that its parallel-input slice is cleared. SE’s PRS is:

x0 ∧ ¬u ∧ si → y0↑
x1 ∧ ¬u ∧ si → y1↑
si ∧ ya → u↑
u ∧ ¬ya → so↑

u ∧ ¬so → y0↓
u ∧ ¬so → y1↓
¬si → u↓
¬u ∧ ¬x0 ∧ ¬x1 → so↓

SEQ’s HSE is:

*[[si]; so↑; [x0 ∨ x1]; yφ↑; [¬si ∧ ye]; yφ↓; [¬ye]; so↓],
*[[x0 ∧ ye −→ y0↑; [¬ye]; xa↑; [¬x0]; y0↓; [ye]; xa↓
[]x1 ∧ ye −→ y1↑; [¬ye]; xa↑; [¬x1]; y1↓; [ye]; xa↓]]

By closing the chain, it initiates (yφ↑; [ye]) and terminates
(yφ↓; [¬ye]) packet transmission on the event’s first and



second pass, respectively. In between, it forwards codes that
SEs provide. SEQ’s PRS is:

x0 ∨ x1 → yφ↑
(y0 ∨ y1) ∧ ¬ye → xa↑
ye ∧ x0 → y0↑
ye ∧ x1 → y1↑
¬si ∧ ¬ye ∧ ¬yφ → so↓

¬si ∧ ye → yφ↓
ye → xa↓
¬x0 → y0↓
¬x1 → y1↓
si → so↑

VI. SYNTHESIS AND VALIDATION

For logical synthesis, we described logical hierarchy and
PRS in the Asynchronous Compiler Tools (ACT) language.4

We verified logical correctness with PRSIM, a discrete-event
simulator that executes PRS with randomized delays [13],
and then checked for logical-physical consistency in the
presence of transistor parasitic capacitances with CoSIM, a
PRSIM–SPICE co-simulator [13].

For physical synthesis, we decomposed our ACT into
standard cells and generated their layouts with cellTK [14].
Encounter (Cadence) place-and-routed lower-level router
circuitry—4 transmitter leaves (to service 16 somas), their
parent node, a receiver leaf (to service 4 synapses and an
SRAM), and a deserializer (to interface with the SRAM)—
in the lower 43% (547µm2) of the neuron-cluster tile
(1, 261µm2). Of this router area, 14% (76µm2) was reserved
(cutout) for higher-level circuitry (Fig. 6, TILE).

We placed tiles in a 16×16-array and placed the router’s
higher-level nodes in their cutouts, along with repeaters to
drive long wires (Fig. 6, TILE16×16, and H-TREES).
We extracted parasitic resistances and capacitances from
this layout and performed simulations to check for spurious
transitions and to predict the router’s maximum throughput.

Our postlayout simulations predicted that the transmit-
ter and receiver could communicate up to 42.5 and 50.8
Mspike/s, respectively (Fig. 7).5 Codes from (or to) nodes
lower in the tree take longer (e.g., 4.31 ns from the trans-
mitter tree’s leaves versus 1.28 ns from its root) because
the number of communications involved increases (from 6
at the leaf to 1 at the root). On average, 4.5 four-phase
communications are performed, including one for the 2
two-phase communications that demarcate the packet. At
4 phases per communication and 4 transitions per phase,
transversing six nodes involves 432 transitions.6 Thus, the
42.5 Mspike/s cycle-rate corresponds to 56 ps per transition,
in line with expectations for a 28-nm process.

Post-fabrication in a 28-nm, fully depleted, silicon-on-
insulator process, we brought the chip up and validated the
router’s functionality. (Fig. 8). From two chips, we measured
maximum throughputs of 27.4 and 26.1 Mspikes/s for the
transmitter and 18.1 and 18.5 Mspikes/s for the receiver.
Differences between simulations the chip measurements are

4Available at https://github.com/samfok/AER serial tree router
5In operation, somas generate up to 500 spike/s each, and synapses

consume up to 1000 spikes/s each, so we expect the transmitter and receiver
to communicate 2 and 1 Mspikes/s, respectively

6In our PRSIM simulations, we counted 422 transitions for the transmitter
and serializer and 481 transitions for the deserializer and receiver.
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Fig. 7. Postlayout Transmitter and Receiver SPICE Simulations. Left:
SOMA 0 and 9 (000000 and 000021 in 4-ary) spike simultaneously (Level
0). Their pφ signals propagate up to Level 1 (only SOMA 0’s parent is
shown) and Level 2, where SOMA 0’s subtree is selected. Thus, its pφ signal
propagates to the root (Level 6). Enabled by the environment’s pe signal
(top), which propagates down the tree (not shown), each node forwards
its requesting child’s 1-of-4 coded index (p0:3) and then forwards indices
forwarded by the child (they are all 0 for SOMA 0). Each node clears its
pφ once its child clears its pφ, signaling that there are no more indices

to be forwarded. A node is then free to select another requesting subtree,
as happens at Level 2 for SOMA 9’s subtree. Right: The environment sends
two inhibitory spikes to SYNAPSE 0 by injecting two packets containing
its path appended with 0 (i.e., 000000) at the root. Each node selects the
child indexed by the first 1-of-4 code (p0:3) and forwards the remaining
codes to that child after lowering pφ. Note that the leaf (Level 1) does not
propagate pφ to the synapse (Level 0).

2mm

Fig. 8. Fabrication and validation. Left : Test chip containing analog
neurons, the router presented herein, and a digital datapath. Center: Test
board piggybacked on an FPGA development board (Opal Kelly) that
provides a USB link to a host computer. Right : Visualization of a 32×32-
soma patch of the chip’s spiking activity. Each small square represents a
soma; its brightness reflects the soma’s spike rate. The four, bright soma
clusters are receiving excitatory input from spikes delivered to nearby
synapses.

explained by additional delays introduced by unpipelined
datapath communications.

VII. DISCUSSION

Pioneering researchers developed transmitters and re-
ceivers to write and read spikes to and from 1D or 2D arrays
of silicon neurons using the address-event representation
(AER; [4], [5], [15], [16]). A neuron’s address is transmitted
every time it spikes, hence the name address-event. In 1D,
the spike is identified by a unique address assigned to each
neuron. In 2D, the spike is identified by the neuron’s row
and column addresses and, in first-generation designs, these
addresses are transmitted in parallel.

Second-generation designs communicated row and column
addresses in series. In addition to saving wires by multi-
plexing, this so-called word-serial protocol supports packets
with an arbitrary number of words. Thus, additional column
addresses could be appended to communicate multiple spikes



read from or written to the same row in parallel [6]–
[8]. This so-called burst-mode offered higher throughput,
servicing arrays containing as many as 64k somas and 256k
synapses [1] at rates up to 43.4M spike/s (ignoring off-chip
delays) [17]. Array or chip addresses could be prepended
to further expand the address-space. Thus, an address-event-
based router could service multiple arrays distributed across
multiple chips [18]–[20]. Further, data as well as addresses
could be communicated over the link (or bus) connecting
the transmitter to the receiver [21]. In this fashion, multiple
spikes read in parallel from small groups of neurons have
been transmitted using a single dataword, boosting through-
put, which had plateaued at 50M spike/s [22], to 300M
spike/s [23].

To communicate configuration datawords to or from in-
dividual neurons—or clusters thereof—we could widen the
neuronal interface, but the additional bandwidth would be
largely wasted. Datawords use all of the wires but occur
rarely, whereas spikes occur frequently but only use one
(e.g., a soma’s output) or two (e.g., a synapse’s excitatory or
inhibitory input) wires. We thus keep the neuronal interface
narrow and transmit data serially, saving wires by taking
more time. In addition to supporting multiple data-types
efficiently, a serial protocol places no limit on the number
of bits a dataword can have, unlike a parallel protocol.

We did away with timing-assumptions by switching from
row-column addresses to tree paths. Striking a balance
between node-count and node-complexity, we chose a 4-
ary over a binary tree, which reduced transistor-count by
19.1% overall. Returns diminish for higher degrees because
realizing wider gates requires treeing narrower gates (with
no more than four transistors in series).7 Although its thin-
oxide transistors outnumber the neuron-cluster’s thick-oxide
transistors 1.9:1, the router takes up only 43% of the total
area because thick-oxide transistors are much larger than thin
oxide transistors.

Throughput may be enhanced substantially by pipelining
the otherwise slackless communication from leaf to root
(transmitter) or root to leaf (receiver) and between router
and datapath. Pipelining can be added to the current design
at no additional area cost by replacing repeaters with latches
or placing latches in unused tile cutouts. Subsequent codes
would take no more time than the first one, which takes 1.28
(transmitter) or 1.8 ns (receiver) (Fig. 7). Therefore, with
seven communications per spike, pipelining would increase
throughput from 42.5M to 111.6M spike/s (transmitter) or
from 50.7M to 79.4M spike/s (receiver).
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