
COMMUNICATING AND COMPUTING WITH SPIKES IN NEUROMORPHIC

SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sam Fok

June 2018

This dissertation is online at: http://purl.stanford.edu/qk018rf9117

© 2018 by Sam Fok. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/qk018rf9117

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Kwabena Boahen, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Oussama Khatib

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Krishna Shenoy

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

We provide an overview of neuromorphic engineering and describe two contributions to Braindrop,

a state-of-the-art neuromorphic system. First, we describe a method for performing summing and

weighting of spike trains by accumulative thinning, a deterministic procedure for merging and drop-

ping spikes. Previous methods relied on probabilistic thinning, which results in Poissonian statistics.

As a result, when the thinned spike-train is filtered with a first-order low-pass synapse, the signal-

to-noise ratio (SNR) scales as the square-root of its rate. For our accumulative thinning method,

the SNR depends on the weight w; it scales linearly in the best-case scenario (w → 0) and as the

square-root in the worst-case (w → 1). We find that a three-quarter power scaling minimizes energy

consumption.

Second, we present a serial H-tree router for two-dimensional (2D) arrays. Existing routing

mechanisms for 2D arrays either use low-overhead grids with one or two shared wires per row

or column (e.g., RAM) or high-overhead meshes with many wires connecting neighboring clients

(e.g., supercomputers). Neither is suitable for intermediate-complexity clients (e.g., small clusters of

silicon neurons). We present a router tailored to 2D arrays of such clients. It uses a tree laid out in a

fractal pattern (H-tree), which requires less wiring per signal than a grid, and adopts serial-signaling,

which keeps link-width constant, regardless of payload size. To route from the tree’s leaves to its

root (or vise versa), each node prepends (consumes) a delay-insensitive 1-of-4 code that signals the

route’s previous (next) branch; additional codes carry payload. We employ this serial H-tree router

to service a 16×16 array of silicon-neuron clusters, each with 16 spike-generating analog somas, 4

spike-consuming analog synapses, and one 128-bit SRAM. Fabricated in a 28-nm CMOS process,

the router communicates 26.8M soma-generated and 18.3M synapse-targeted spikes per second while

occupying 43% of the client’s 35.1×36.1µm2.

iv

Acknowledgments

I thank Chris Eliasmith and Terry Stewart of the Center for Theoretical Neuroscience at the Univer-

sity of Waterloo for the development and assistance with the Neural Engineering Framework that

motivated the Braindrop project. I thank Rajit Manohar of the Computer Systems Lab at Yale

University for instruction on asynchronous circuit design and for the CAD tools that allow their

synthesis and verification in a synchronous world. I thank my colleagues at the Brains in Silicon

Lab of Stanford University for countless coffee walks and their stimulating discussions. In particular,

I could not have asked for better teammates than Ben Benjamin, Alex Neckar, and Nick Oza on

the Braindrop project. And finally I have been immensely fortunate to have Kwabena Boahen as

advisor and thank him for his tireless drive for understanding. The works herein were made possible

by grants from the Office of Naval Research and the National Science Foundation.

v

Contents

Abstract iv

Acknowledgments v

1 Artificial Intelligence and Neuromorphic Engineering 1

2 Summing and Weighting Spike Trains 5

2.1 Summing and Weighting . 6

2.2 Discrete to Continuous . 8

2.2.1 Poisson Process . 15

2.2.2 Periodic Process . 16

2.2.3 p-Thinned Periodic Process . 17

2.2.4 d-Thinned Poisson Process . 19

2.2.5 Approximation Quality . 21

2.3 Optimizing for Power . 21

2.4 Discussion . 22

3 A Serial H-Tree Router for Two-Dimensional Arrays 24

3.1 Router Functionality and Overhead . 24

3.2 Tree Paths versus Grid Addresses . 26

3.3 Serial Communication Protocol . 28

3.4 Router Logical Design . 29

3.4.1 Transmitter . 29

3.4.2 Receiver . 31

3.5 Router Application . 33

3.5.1 Transmitter Leaf . 33

3.5.2 Receiver Leaf . 33

3.5.3 Serial–Parallel Conversion . 34

3.6 Synthesis and Validation . 35

vi

3.7 Discussion . 36

4 Conclusions 43

A Spike Summing and Weighting 44

A.1 periodic SNR approximation . 44

A.2 p-thinning SNR approximation . 45

A.3 d-thinning SNR expansion . 45

B AER Transmitter Design Space 47

B.1 AEXT Control Data decomposed (CD) . 47

B.1.1 AEXT CD noTW CYC . 47

B.1.2 AEXT CD noTW . 56

B.1.3 AEXT CD TW . 61

B.2 AEXT Control Data Combined . 67

B.3 AEXT ASPR NODE . 67

B.4 AEXT ASPR PFWD/MERGE (PM) . 67

B.5 AEXT ASPR PM PFWD unpipelined . 68

B.6 AEXT ASPR PM PFWD pipelined hq . 69

B.7 AEXT ASPR PM PFWD hu . 71

B.8 AEXT ASPR PM MERGE unpipelined . 73

B.9 AEXT ASPR PM MERGE pipelined a a . 74

B.10 AEXT ASPR PM MERGE pipelined ah . 76

B.11 AEXT ASPR PFWD PREPEND/FWD/SIMPLE MERGE 78

B.12 AEXT ASPR PFWD PREPEND . 78

B.13 AEXT PFWD FWD . 78

B.14 AEXT ASPR PFWD SIMPLE MERGE . 78

B.15 AEXT ASPR MERGE . 79

C AER Receiver Design Space 80

C.1 Receiver tree structure . 80

C.2 AERV CD noTW cyclic control (CYC) . 82

C.3 AERV CD noTW CYC NODE . 83

C.4 AERV CD noTW CYC LEAF . 88

C.5 AERV CD noTW CYC LEAF (no data) . 92

C.6 AERV Control Data decomposed (CD) no tailword (noTW) 94

C.7 AERV CD noTW SPLIT . 95

C.8 AERV CD noTW CTRL . 97

C.9 AERV CD noTW LEAF . 98

vii

C.10 AERV ASPR BCAST pipelined . 99

C.11 AERV ASPR BCAST unpipelined . 101

C.12 AERV PSAR . 102

C.13 AERV PSAR decomposed into ROUTE, READ HEAD, FWD BODY (RHB) . . . 102

C.14 AERV PSAR RHB ROUTE unpipelined . 103

C.15 AERV PSAR RHB READ HEAD . 104

C.16 AERV PSAR RHB FWD BODY unpipelined . 105

C.17 AERV PSAR RHB FWD BODY pipelined . 106

C.18 AERV PSAR decomposed into ROUTE PULL CTRL PULL (RCP) 107

C.19 AERV PSAR RCP ROUTE . 108

C.20 AERV PSAR PULL CTRL . 109

C.21 AERV PSAR RCP PULL unpipelined . 110

D AER Interface Design Space 112

D.1 OUT e1ofN . 112

D.2 OUT a1ofN . 113

D.3 Deserializer . 114

D.4 Ring Deserializer . 114

D.5 SPLIT . 116

D.6 NODE . 117

D.7 C . 119

D.8 RING . 119

D.9 CHAIN Deserializer . 124

D.10 HEAD . 125

D.11 NODE . 127

D.12 TAIL . 130

D.13 Split Chain Deserializer . 131

D.14 SPLIT . 133

D.15 NODE . 134

D.16 Serializer . 136

D.17 Ring serializer . 136

D.18 Ring serializer NODE . 137

D.19 Ring serializer sequencer . 139

D.20 Ring serializer 2 . 140

D.21 Ring serializer 2 NODE . 141

D.22 Ring serializer 2 MERGE . 141

D.23 Chain serializer . 143

D.24 Chain serializer NODE . 144

viii

D.25 Chain serializer TAIL . 146

D.26 Chain serializer C . 147

D.27 Serial merge . 147

D.28 Memory . 148

E Serial Router Supplement 150

E.1 Half-Cycle Slack Buffer . 150

E.2 Greedy but Fair N-way Arbiter using Tree/Ring Sequencing 151

E.3 NODE . 152

E.3.1 PRODUCER . 152

E.3.2 CONSUMER . 155

Bibliography 157

ix

List of Tables

2.1 Renewal Process ISI CV and Synapse SNR . 9

3.1 Node Transistor Counts & Binary:4-ary Ratios for Large N 28

3.2 Handshaking Expansion (HSE) Syntax . 38

3.3 Communicating Hardware Processes (CHP) Syntax 38

x

List of Figures

1.1 Artificial Neural Network . 2

1.2 Digital Logic . 3

1.3 Ion Channels and Subthreshold Transistors . 4

2.1 Spiking Neural Network . 6

2.2 Summing by merging. 7

2.3 Probabilistic (p) vs Deterministic (d) Thinning. 9

2.4 Renewal Process-Driven Synapse . 12

2.5 Rate-Estimate SNR. 13

2.6 Theory vs numerical simulations. 16

2.7 SNR Approximation. 21

2.8 d-Thinned Poisson Power. 23

3.1 Grid Addresses and Tree Paths . 25

3.2 Serial Link Description at Two Levels of Abstraction 27

3.3 Router Process Decomposition . 39

3.4 Four-Way Arbiter . 40

3.5 Serial–Parallel Conversion . 40

3.6 Tree Router Layout . 41

3.7 Postlayout Transmitter and Receiver SPICE Simulations 42

3.8 Fabrication and validation . 42

xi

1

Artificial Intelligence and

Neuromorphic Engineering

Humans have long analogized the human brain to their computational tools and sought to imbue

their tools with human-like, artificial intelligence (AI). For the industrial age, the brain was like

a steam-powered system of pipes and actuators driving the body; for the digital age, the brain is

like a digital computer, storing and processing bits of data. However, instead of conceptualizing

the brain in terms of the current means of computation, neuromorphic engineers move in the other

direction and conceive of computational methods from the structure and function of the brain. The

neuromorphic approach comes with good reason: on a power budget of 20W (slightly more than

one-half cup of sugar per day), the brain, with 86 billion neurons [18] and thousands of synaptic

connections per neuron, still roundly beats existing methods at tasks we take for granted like walking

around, having intelligible conversations, and making sense of the world.

That the brain has useful lessons for computation was not as widely accepted in the recent

past as it is today in 2018. However, since AlexNet won the ImageNet challenge in 2012 and beat

the nearest competitor by an unheard of margin (10.8 percent) [23], brain-inspired artificial neural

networks (ANNs) and the hardware to run them have returned the mainstream conscious as a viable

approach for AI. ANNs like AlexNet are loosely based on the connectivity of cortex in the brain

and contain from thousands of simple units, called ”neurons”, arranged and connected in layers

(Fig. 1.1). Each neuron computes a simple nonlinear function of the sum of its inputs, and each

connection weights the source neuron’s output, or activation, and delivers it as input to a destination

neuron.

Prior to AlexNet’s success, algorithms geared towards AI were largely not brain-inspired and

hardware design efforts were concentrated on powerful, general-purpose central processing units

(CPUs), which operate synchronously and digitally: a central clock governs the flow of data and

1

1. ARTIFICIAL INTELLIGENCE AND NEUROMORPHIC ENGINEERING 2

Input Output

Figure 1.1: Artificial Neural Network
Inputs are passed through layers of neurons and connections. Neurons compute simple nonlinear
functions of their summed input while connections weight signals passing through them.

instructions through the computer and numbers are represented in binary. The 0s and 1s of bi-

nary correspond to the power supply voltage and ground of digital logic (Fig. 1.2). Further, these

CPUs instantiate part of the broader Von Neumann computer architecture, which separates state

(the memory) from computation (the CPU) and excel at sequential programs, or programs that

require executing steps one at a time. Although Von Neumann (of the Von Neumann architecture)

himself noted the differences between a computer’s architecture and the brain’s as well as the poten-

tial of a more brain-like architecture [44], there was little economic incentive to develop alternative

computing architectures. The computing industry adopted the silicon semiconductor metal-oxide-

semiconductor field-effect transistor (MOSFET) as their physical substrate, which permitted expo-

nentially increasing transistor counts in a chip over time—dubbed Moore’s Law. When computer

architects could expect to double a designs’ performance every two to three years by switching to

the latest silicon manufacturing process, alternative designs remained out of consideration. As a

result, after decades of Moore’s law, the digital computer approach has become synonymous with

computation; the information age is synonymous with the digital age.

However, physical devices have physical limits, so developing brain-like architectures makes more

economic sense as the semiconductor industry takes longer and spends more to shrink transistors.

Specifically, at the smallest transistor sizes, the cost per transistor no longer decreases with transistor

size, so it is no longer economically viable to rely on device shrinkage for performance gains. In

the vacuum after nearly 50 years of Moore’s law, AlexNet succeeded by matching a brain-inspired

ANN structure, the convolutional neural network (CNN), with non-CPU hardware, the graphical

processing unit (GPU), that was well-suited to the network’s architecture. An ANN operates by

passing inputs through thousands of neurons and millions of parameters simultaneously, and moving

all of that data around is a poor fit for CPUs which are bottlenecked by the separation between state

1. ARTIFICIAL INTELLIGENCE AND NEUROMORPHIC ENGINEERING 3

1

0 0

1

Figure 1.2: Digital Logic
left: Digital computing relies on transistor networks (black boxes) to switch an output node be-
tween a connection to the power supply (top, blue), representing the binary value 1, and a connection
to ground (bottom, red), representing the binary value 0. right: In this simple digital circuit, an
inverter, the output is the inverted input.

and computation. A GPU better serves ANNs by matching the structure of the ANN dataflow—

GPU inputs flow through many simple cores in parallel instead of one complicated core sequentially.

AlexNet’s success on a GPU convincingly demonstrating the utility of brain-inspired computational

approaches and hardware.

Though people now recognize the value of highly-parallel, brain-like computing, there remain

significant differences between the brain’s architecture and today’s hardware. To realize an ANN’s

thresholding, weighting, and summing operations efficiently, computer architects have developed

application-specific integrated circuits (ASICs) [21], but these ASICs still rely on the predominant,

synchronous-digital paradigm. However, from Carver Mead’s work in the 1980s and 90s [34], neu-

romorphic engineers recognize that the physics underlying transistors and the physics underlying

ion channels in a biological neurons membrane are qualitatively matched. Specifically, electrons or

holes passing through a subthreshold MOSFET and ions passing through a neuron’s membrane are

both diffusion driven phenomena [33]. As a result, both are voltage controlled current sources with

an exponential dependence of current on voltage (Fig. 1.3). That is, subthreshold MOSFETs are

analogous to ion currents through a neuron’s membrane.

With subthreshold MOSFETs as their building blocks, neuromorphic engineers push the brain

analogy deeper than network-level structures and build silicon neurons that follow the inherent

dynamics of biological neurons—spiking dynamics. In contrast to simple and static artificial neu-

rons, biological neurons are continuous dynamical systems governed by electrochemical gradients

and voltage-sensitive ion-channel proteins embedded in their membranes. Their most prominent

behavior is the generation and emission of stereotyped, traveling depolarizations (spikes) along their

projections (axons) to other neurons.

Neuromorphic engineers construct large scale spiking neural networks (SNNs) to leverage the

minimal power consumption of subthreshold MOSFETs for useful computation and to understand

the value of dynamics and spiking for brain-like computation with a forward engineering approach.

While the predominant ANN approach running on synchronous-digital hardware has led to im-

pressive achievements in image classification, speech classification, game playing, driving autonomy,

1. ARTIFICIAL INTELLIGENCE AND NEUROMORPHIC ENGINEERING 4

Figure 1.3: Ion Channels and Subthreshold Transistors
left: Adapted from [34]. Comparison between sodium channel conductance in a neuron for a given
membrane potential and a transistor’s source to drain current for a given gate voltage show similar
exponential relationships between voltage and current. right: the gate voltage to drain current
relationship in a more modern, 28nm process transistor.

and many other fields, practitioners are still working to push such AI systems into highly power-

constrained environments (and hence limited connectivity) that require real-time operation. The

femtowatt power for subthreshold MOSFETs provide an attractive means for computing on mini-

mal power budgets (Fig. 1.3, right), and by systematically building SNNs from low-power spiking

dynamical circuits, neuromorphic engineers also address the critique [20] leveled at Neuroscience

that reverse engineering and modeling techniques have yet to yield a mechanistic understanding of

the brain. Such a mechanistic understanding is inherent to the systematic construction of SNNs

practiced by neuromorphic engineers.

Prior to my joining the field, neuromorphic engineers developed efficient and scalable neuromor-

phic systems as culminated in Neurogrid with a million neurons and a billion synapses [2]. However, a

million neurons and billion synapses are difficult to use without systematic means of mapping higher

level computations onto the spiking neurons. By combining Neurogrid with an existing means, the

Neural Engineering Framework (NEF) [15], we demonstrated the NEF principles on Neurogrid [12]

and demoed a robot arm controller with Neurogrid’s spiking silicon neurons [35]. From the lessons

of marrying Neurogrid and NEF, we began our next project to build Braindrop, a chip architected

specifically for large scale SNNs as systematically arranged with NEF. In this thesis, I present two

contributions to the Braindrop chip that push forward our understanding of spiking communica-

tion and computation in neuromorphic systems. Chapter 2 describes the statistical consequences of

spiking communication and computation in first-order dynamical systems, and Chapter 3 describes

a router network for communicating spikes and programming packets.

2

Summing and Weighting Spike

Trains

Similar to ANNs like AlexNet, SNNs rely on numerous neurons (providing thresholding) and connec-

tions (providing weighting and summing) (Fig. 2.1, architecture & weight matrix). Whereas

these synchronous-digital designs operate at high-precision (scales exponentially with the number

of bits) thousands of times faster than real-time (processing image or speech data in large batches),

the hybrid analog-digital brain operates at vastly lower-precision (1-3 bits per spike [9]) in real-

time. Similarly, ANN algorithms perform well at low precisions [13, 19] and real-time operation is

appropriate for applications at the edge (processing a single user’s speech).

Neuromorphic engineers seek to realize efficient and robust hardware architectures and com-

putational frameworks by emulating the brain’s hybrid analog-digital approach, trading precision

and speed for energy efficiency [2, 3, 15]. Specifically, spiking-analog somas provide thresholding

while consuming femtoamps of current, and all-or-nothing spikes—a unary representation—permit

weighting with a random number generator and a comparator as well as summing by merging with

a multiplexer (Fig. 2.1, operations). Although such probabilistic (p) thinning, is cheap to imple-

ment,1 it may be just as costly in energy as a conventional, binary multiply-accumulate unit when

controlling for precision [29] due to quadratic—as opposed to logarithmic—scaling.

In this chapter, we describe an alternative, deterministic (d) thinning method and demonstrate

its advantages over probabilistic thinning by analyzing each method’s statistical consequences. In

Section 2.1, we describe the weighting and summing operations and analyze each operation’s output

statistics by treating spikes as points in a temporal point-process. In Section 2.2, we analyze the

1A spike train with rate λ is thinned by dropping a fraction (1 − w) of the spikes to produce a spike train with
rate wλ, thus weighting the spike train by w. Although this method applies to positive signals, it is readily extended
to negative signals by permitting spikes to be signed. Zero is still implicitly represented by an absence of spikes (i.e.,
zero represents itself).

5

2. SUMMING AND WEIGHTING SPIKE TRAINS 6

Time

×
+w22

×
+w21

×
+w20

×
+w10

×
+w00

×
+w01

×
+w02

×
+w11

synapse

neuron
soma
dendrite

×

+

0.5

×
+w12

ARCHITECTURE WEIGHT MATRIX OPERATIONS

axon

Figure 2.1: Spiking Neural Network
architecture: Spikes flow through axons and synapses (red) while currents flow through dendrites
and somas (blue). weight matrix: Spike trains are weighted (⊗) and summed (�) as they travel
from one layer to the next. operations: Weighting is by thinning and summing is by merging.
Conversion from spike trains to currents is by low-pass filtering in synapses, whose currents set-
tle around the input spike-rate λ. Conversion from currents back to spikes is by integration and
thresholding in somas, whose spiking threshold is φ.

statistical effects of thinning spike-trains on synaptic signals and show that the two methods produce

different SNR scaling. In Section 2.3, we analyze and optimize the power requirements for the two

methods. In Section 2.4, we discuss our results and conclude the chapter.

2.1 Summing and Weighting

An accumulator implements summing and weighting in an ANN by combining merging with d-

thinning. Merging produces a more Poissonian spike-train, while d-thinning produces a more periodic

spike-train. It is crucial that merging occur before thinning. That is, instead of merging the outputs

of N accumulators together, we merge N spike trains and feed the resulting spike train into a single

accumulator (unlike in Figure 2.1, weight matrix). This ordering preserves the accumulators’

more periodic-like spike-train statistics.

Summing by merging (Fig. 2.1, merging) produces more Poissonian spike-trains (Fig. 2.1, peri-

odic & poisson input). That is, the interspike-intervals (ISIs) become independent and identically

distributed (IID) exponential random variables (i.e. from a renewal process). Consider the case

when all N spike-trains have the same rate λ
N . Pick one as a reference and superpose the remaining

N −1 on it with random offsets Tj , drawn independently from a uniform distribution on {0, Nλ } (i.e,

within the reference spike-train’s first ISI). The resulting, merged spike-train’s first ISI is given by

∆T1 = min(T1, T2, . . . , TN−1). Its cumulative distribution function (CDF) is

2. SUMMING AND WEIGHTING SPIKE TRAINS 7

In A

Out

PERIODIC INPUT POISSON INPUT

In B

Time

MERGING

Figure 2.2: Summing by merging.
Merging: Spike-trains are merged, to producing an output spike-train whose rate is the sum of
the input rates. Periodic vs poisson input: As N , the number of (equal-rate) spike trains
increases, the cumulative distribution functions (CDFs) of empirical output ISIs (Tout), transition
from degenerate (dashed line) to exponential (dotted line) versus remaining exponential. CDFs
include 10,000 samples of Tout, normalized by their mean.

P (∆T1 ≤ t) = P (min(T1, T2, . . . , TN−1) ≤ t)

= 1− P (T1 > t ∧ T2 > t ∧ . . . ∨ TN−1 > t)

= 1−
∫ N

λ

t

∫ N
λ

t

. . .

∫ N
λ

t

(
λ

N

)N
dt1dt2 . . . dtN

= 1−
(
λ

N

)N (
N

λ
− t
)N

= 1−
(

1− λt

N

)N
=

N→∞
1− e−λt

recognizing that limN→∞
(
1 + x

N

)N
= ex. This exponential distribution describes other ISIs in the

merged spike-train as well since its first ISI is not special (i.e., its ISIs are identically distributed).

It also arises when the spike rates are not equal, provided that consecutive spikes are never from the

same neuron, which is satisfied if no neuron fires more than N times faster than the mean.

To see that ISIs are also independent for sufficiently large N , consider the merged, equal-rate

periodic spike-trains again. The number of unique ISIs is exactly N ; once all N unique ISIs have

been traversed, they will repeat. However, this will take a longer and longer time as N tends to

infinity. Once this time-scale exceeds several synaptic time constants, the ISIs can be effectively

considered to be independent.2

p and d-thinning (Fig. 2.1, thinning), produce more Poissonian and more periodic spike-trains

for decreasing weight w, respectively (Fig. 2.1, p-thin & d-thin). That is, the resulting spike-train’s

2It is crucial that the individual spike-train rates tend to 0 as the number of spike-trains tends to infinity in
contrast to scaling the spike amplitudes (represented by delta functions). If only the spikes themselves are scaled,
the superposed independent sources will not converge to a Poisson process—even in the limit [26]. As a consequence,
spike times will synchronize more strongly through multiple, feed-forward layers of a neural network [14].

2. SUMMING AND WEIGHTING SPIKE TRAINS 8

ISIs’ (X) coefficient of variation (CV(X)) approaches 1 and 0, respectively.3 An ISI in a p-thinned

spike-train, is given by ∆Tout =
∑S
j ∆Tinj , where ∆Tinj are the IID pre-thinned ISIs, and S is the

number of ISIs skipped before a spike makes it through. Since S is geometrically distributed with

parameter w,

IE [∆Tout] = IE [∆Tin] /w

Var(∆Tout) = (wVar(∆Tin) + IE[∆Tin]2(1− w))/w2

CVpthin(∆Tout) =

√
w

Var(∆Tin)

IE[∆Tin]2
+ (1− w) =

√
wCV(∆Tin)2 + (1− w)

w interpolates between CVpoi(∆Tout) = 1 and CV(∆Tin). As w → 0, CVpthin(∆Tout) → 1, while

as w → 1, CVpthin(∆Tout) → CV(∆Tin) (i.e, all input spikes are output). For example, when

a periodic spike-train (CVper(∆Tout) = 1) is p-thinned, CVpthin(∆Tout) =
√

1− w (Table 2.1, p-

thinned periodic), becoming more Poisson as w → 0.

In the case of d-thinning, the spike train becomes more periodic with ∆Tout =
∑1/w
j ∆Tinj .

4

The sum now contains a deterministic number (1/w) of ∆Tin,

IE [∆Tout] = IE [∆Tin] /w

Var(∆Tout) = Var(∆Tin)/w

CVdthin(∆Tout) =

√
w

Var(∆Tin)

IE[∆Tin]2
=
√
wCV (∆Tin)

Now w interpolates between CVper(∆Tout) = 0 and CV(∆Tin). As w → 0, CVdthin(∆Tout) → 0,

while as w → 1, CVdthin(∆Tout) → CV(∆Tin) (as with CVpthin). For example, when a Poisson

spike-train (CVpoi(∆Tin) = 1) is d-thinned, CVdthin(∆Tout) =
√
w, becoming more periodic as

w → 0 (Table 2.1, d-thinned Poisson).

2.2 Discrete to Continuous

Spiking neural networks encode signals in their spike rates, which requires estimating the underlying

spike rate from the train of spikes with methods that respect causality and track temporal changes

in the rate. The first requirement precludes estimating the instantaneous spike-rate as it requires

3CV(X) =
√

Var(X)/IE[X], where IE[X] is X’s expectation (i.e, mean), and Var(X) is its variance. For ISIs in a
periodic spike-train, CVper(X) = 0, and for ISIs in a Poisson spike-train, CVpoi(X) = 1 (Table 2.1).

4When ∆Tin is exponentially distributed, ∆Tout, will be gamma—or more specifically Erlang—distributed as the
sum of IID exponentials.

2. SUMMING AND WEIGHTING SPIKE TRAINS 9

P
-T

H
IN

D
-T

H
IN

In

AV

RN

In

Out

Out

PERIODIC INPUT POISSON INPUT

Time

THINNING

Figure 2.3: Probabilistic (p) vs Deterministic (d) Thinning.
P-thin: Each input spike draws a random number (RN) from a uniform distribution in {0:1}.
If RN is less than the weight (0.5), then the spike is forwarded out. D-thin: Each input spike
increments an accumulated value (AV) by the weight (0.5). If AV exceeds a threshold (1), then
the spike is forwarded out and AV is decremented by the threshold. P-thin periodic vs d-thin
poisson: As the weight decreases, cumulative distribution functions (CDFs) of empirical output ISIs
(Tout), sampled and plotted as in Fig. 2.1, transition from degenerate (dashed lines) to exponential
(dotted lines) versus exponential to degenerate. P-thin poisson and d-thin periodic: CDFs do
not change with the weight.

Table 2.1: Renewal Process ISI CV and Synapse SNR

Renewal Process ISI CV Synapse SNR

Poisson 1
√

2λτ

periodic 0
√

2λτ

coth(1
2λτ)−2λτ

p-thinned periodic
√

1− w
√

2λτ

1−p+p coth(p
2λτ)−2λτ

d-thinned Poisson
√
w

√
2λτ

(1+kλτ)k+(kλτ)k

(1+kλτ)k−(kλτ)k
−2λτ

2. SUMMING AND WEIGHTING SPIKE TRAINS 10

knowing the next future spike-time. The second requirement limits the number of ISI samples

available to the time window times the spike-rate.

We consider methods that obtain an estimate, X, of the rate by computing a running average of

spikes, weighting a spike that happened Tj seconds in the past by h(Tj). That is,

X =

∞∑
j=0

h(Tj) (2.1)

defined at a point in time after an infinite number of spikes from a fixed-rate spike-train have arrived,

which allows us to ignore the initial transient and focus on the steady-state mean. We quantify the

estimate’s quality using its signal-to-noise ratio:

SNR(X) = IE[X]/
√

Var(X) (2.2)

We consider the simplest implementation of h(Tj): a first-order, low-pass filter (LPF) driven by

a train of impulses, s(t) =
∑
j δ(t− tj), where tj is the jth spike’s time. That is,

τ
dx

dt
= −x+ s (2.3)

where x(t) is the LPF’s state (and output) and τ is its time-constant. Upon receiving the jth spike,

δ(t− tj), x(t) jumps by 1/τ and then decays at the rate 1/τ—only x(t)’s mean value settles to the

spike rate—so larger τ result in cleaner but slower estimates. In this case, h(t) = 1
τ e
−t/τu(t), which

yields weights that decay by a factor of e every τ seconds; u(t) is the unit-step function. In addition

to depending on τ , the rate-estimate’s variability also depends on the incoming ISIs’ variability

(Fig. 2.2).

We derive SNR(X) for low-pass filtered Poisson, periodic, p-thinned periodic, and d-thinned

Poisson spike-trains (Table 2.1 & Fig. 2.2). We do not consider p-thinned Poisson nor d-thinned

periodic spike-trains because their statistics do not change with the weight (see Fig. 2.1). It suffices

to find the first and second moments of X for each process since Var(X) = IE[X2]−IE[X]2. To express

Tj in terms of IID random variables, we define ∆Tj = Tj − Tj−1 for j > 0 so that Tj =
∑j
n=0 ∆Tn.

Note that ∆T0 = T0, the elapsed time from the most recent spike, is not an ISI and so is not generally

drawn from the same distribution as the ISIs. Substituting into (2.1) yields

2. SUMMING AND WEIGHTING SPIKE TRAINS 11

X =

∞∑
j=0

h

(
j∑
l=0

∆Tl

)

=
1

τ
e

−∆T0
τ +

1

τ
e−

∆T0+∆T1
τ +

1

τ
e−

∆T0+∆T1+∆T2
τ + . . .

=
1

τ

∞∑
j=0

j∏
l=0

e−
∆Tl
τ (2.4)

Therefore,

X2 =

1

τ

∞∑
j=0

j∏
l=0

e−
∆Tl
τ

2

=
1

τ2

∞∑
j=0

j∏
l=0

e
−2∆Tl
τ +

2

τ2

∞∑
j=0

∞∑
l=j+1

j∏
m=0

e
−2∆Tm

τ

l∏
n=j+1

e
−∆Tn
τ breaking into diagonal and cross terms,

=
1

τ2

∞∑
j=0

j∏
l=0

e
−2∆Tl
τ +

2

τ2

∞∑
j=0

j∏
m=0

e
−2∆Tm

τ

∞∑
l=j+1

l∏
n=j+1

e
−∆Tn
τ

Assuming ∆T0 is identically distributed to the ISIs (i.e., that the ISIs are memoryless as in the

Poisson process), from (2.4),

IE[X] = IE

1

τ

∞∑
j=0

j∏
l=0

e
−∆Tl
τ

=

1

τ

∞∑
j=0

IE

[
j∏
l=0

e−
∆Tl
τ

]

=
1

τ

∞∑
j=0

IE
[
e

−∆T
τ

]j+1

∆Tj are IID

=
1

τ

∞∑
j=1

ϕ∆T

(
i

τ

)j
(2.5)

noting that IE
[
e−∆T/τ

]
= ϕ∆T (s)|s=i/τ , the characteristic function of ∆T evaluated at i/τ .5 From

(2.5),

5The characteristic function is related to the Fourier transform: ϕX(s) = FfX (−s
2π

) since ϕX(s) =
∫
eisxfX(x)dx

for random variable X with probability density function fX(x) and Fg(ω) =
∫
e−2πixωg(x)dx for function g(x).

2. SUMMING AND WEIGHTING SPIKE TRAINS 12

Figure 2.4: Renewal Process-Driven Synapse
Top: Spikes generated by Poisson, p-thinned periodic (p = 0.7), d-thinned Poisson (k = 20), and
periodic point-processes. The underlying spike rates are matched at λ = 5 spikes per τ . Bottom:
Synaptic response to spikes is governed by first-order dynamics (2.3). The mean output converges
to λ, and, in this example, the variability decreases as we go from Poisson to periodic (ordered as
above).

2. SUMMING AND WEIGHTING SPIKE TRAINS 13

Figure 2.5: Rate-Estimate SNR.
Periodic & poisson: SNR scales linearly and as the square-root, respectively, with λτ , the number
of spikes per synaptic time-constant τ , for λτ > 1/6. Below this number (inset), periodic switches
from linear (dotted line) to square-root. p-thinned periodic: SNR transitions from periodic to
Poisson behavior (shaded region) as p decreases. d-thinned poisson: SNR transitions from Poisson
to periodic behavior as k increases.

2. SUMMING AND WEIGHTING SPIKE TRAINS 14

IE[X2]

= IE

 1

τ2

∞∑
j=0

j∏
l=0

e
−2∆Tl
τ +

2

τ2

∞∑
j=0

j∏
m=0

e
−2∆Tm

τ

∞∑
l=j+1

l∏
n=j+1

e
−∆Tn
τ

=

1

τ2

∞∑
j=1

IE
[
e

−2∆T
τ

]j
+

2

τ2

∞∑
j=1

IE
[
e

−2∆T
τ

]j ∞∑
l=j+1

IE
[
e

−∆T
τ

]l−j
substituting m = l − j

=
1

τ2

∞∑
j=1

IE
[
e

−2∆T
τ

]j
+

2

τ2

∞∑
j=1

IE
[
e

−2∆T
τ

]j ∞∑
m=1

IE
[
e

−∆T
τ

]m
=

1

τ2

∞∑
j=1

ϕ∆T

(
2i

τ

)j (
1 + 2

∞∑
m=1

ϕ∆T

(
i

τ

)m)
(2.6)

When ∆T0 is not identically distributed to the ISIs (i.e., the ISI distribution has memory), we

split out ∆T0 from (2.4) and (2.5),

X =
1

τ

∞∑
j=0

j∏
l=0

e
−∆Tl
τ =

1

τ
e

−∆T0
τ

1 +

∞∑
j=1

j∏
l=1

e
−∆Tl
τ

X2 =

1

τ2
e

−2∆T0
τ

1 + 2

∞∑
j=1

j∏
l=1

e
−∆Tl
τ +

∞∑
j=1

j∏
l=1

e
−2∆Tl
τ + 2

∞∑
j=1

j∏
m=1

e
−2∆Tm

τ

∞∑
l=j+1

l∏
n=j+1

e
−∆Tn
τ

which results in,

2. SUMMING AND WEIGHTING SPIKE TRAINS 15

IE[X] =
1

τ
IE
[
e

−∆T0
τ

]1 +

∞∑
j=1

IE
[
e

−∆T
τ

]j
=

1

τ
ϕ∆T0

(
i

τ

)1 +

∞∑
j=1

ϕ∆T

(
i

τ

)j (2.7)

IE[X2] =
1

τ2
IE
[
e

−2∆T0
τ

](
1+2

∞∑
j=1

IE
[
e

−∆T
τ

]j
+

∞∑
j=1

IE
[
e

−2∆T
τ

]j
+2

∞∑
j=1

IE
[
e

−2∆T
τ

]j ∞∑
l=1

IE
[
e

−∆T
τ

]l)

=
1

τ2
ϕ∆T0

(
2i

τ

)(
1 + 2

∞∑
j=1

ϕ∆T

(
i

τ

)j

+

∞∑
j=1

ϕ∆T

(
2i

τ

)j
+ 2

∞∑
j=1

ϕ∆T

(
2i

τ

)j ∞∑
l=1

ϕ∆T

(
i

τ

)l)
(2.8)

2.2.1 Poisson Process

With Poisson input, SNR scales with the square-root of the number of spikes per synaptic time-

constant. For an exponential distribution with rate parameter λ, ϕ∆T (s) = λ
λ−is . Using (2.2) and

s = i/τ ,

IE[X] =
1

τ

∞∑
j=1

(
λτ

λτ + 1

)j
=

1

τ

λτ
λτ+1

1− λτ
λτ+1

= λ

That is, the expected rate-estimate matches the input rate. Using (2.6) and s = 2i/τ ,

IE[X2] =
1

τ2

∞∑
j=1

(
λτ

λτ + 2

)j (
1 + 2

∞∑
m=1

(
λτ

λτ + 1

)m)

=
1

τ2

λτ

2
(1 + 2λτ) =

λ

2τ
+ λ2

Therefore, from (2.2),

Var(X) = λ/2τ

SNRpoi(X) =
√

2λτ

(Table 2.1, Poisson & Fig. 2.2, poisson), which we confirm with numerical simulations (Fig. 2.2.1,

2. SUMMING AND WEIGHTING SPIKE TRAINS 16

Figure 2.6: Theory vs numerical simulations.
Empirical SNR measured and averaged over 10,000 spike-train realizations with 30λτ spikes each.
The results (circles) match the corresponding theoretical SNR (solid lines).

poisson). Note that the relevant quantity is λτ , the number of spikes arriving within a time

constant, not the spike rate λ or the synaptic time constant τ individually.

2.2.2 Periodic Process

With periodic input, SNR scales linearly with λτ . While the ISIs are equal, ∆T0 is uniformly

distributed between 0 and 1/λ, so that ϕ∆T0
(s) = eis/λ−1

is/λ . From T0 into the past, every subsequent

spike is 1/λ further from the present, so from (2.7) and (2.8),

IE[X] =
1

τ

e
−1
λτ − 1

−1/λτ

1 +

∞∑
j=1

e
−j
λτ

 = λ

IE[X2] =
1

τ2

e
−2
λτ − 1

−2/λτ

1 + 2

∞∑
j=1

e
−j
λτ +

∞∑
j=1

e
−2j
λτ + 2

∞∑
j=1

e
−2j
λτ

∞∑
l=1

e
−l
λτ

=

λ

2τ

1 + e
−1
λτ

1− e−1
λτ

=
λ

2τ
coth

(
1

2λτ

)

Therefore, from (2.2),

Var(X) =
λ

2τ
coth

(
1

2λτ

)
− λ2 =

λ2

2λτ

(
coth

(
1

2λτ

)
− 2λτ

)
SNRper(X) =

√
2λτ

coth
(

1
2λτ

)
− 2λτ

2. SUMMING AND WEIGHTING SPIKE TRAINS 17

(Table 2.1, periodic & Fig. 2.2, periodic), which we confirm with numerical simulations (Fig. 2.2.1,

periodic).

When λτ is small and large, SNRper(X) scales as the square-root and linearly, respectively. As

λτ approaches zero, SNRper(X) scales similarly to Poisson SNR (
√
λτ):

lim
λτ→0

SNRper(X) = lim
λτ→0

√
2λτ

coth
(

1
2λτ

)
− 2λτ

=
√

2λτ

(i.e., periodic and Poisson inputs are indistinguishable from an SNR perspective). For high λτ , the

limit is not as straightforward—limλτ→∞ coth (1/2λτ) is not defined—but we find that SNRper →
2
√

3λτ (see Appendix A.1). That is, SNR scales linearly with λτ at high λτ . These two approxima-

tions intersect at λτ = 1/6 (Fig. 2.2, periodic, inset). The low λτ approximation is within 10% and

1% of the actual SNR for λτ < 0.0950 and λτ < 0.00995, respectively. The high λτ approximation

is within 10% and 1% of the actual SNR for λτ > 0.253 and λτ > 0.902, respectively. In summary,

SNRper(λτ) ≈

√

2λτ λτ ≤ 1/6

2
√

3λτ λτ > 1/6

2.2.3 p-Thinned Periodic Process

With p-thinned periodic input, SNR transitions from periodic to Poisson with decreasing p (= w).

Instead of using (2.7) and (2.8) directly, we modify X by introducing a random (indicator) variable

Ij =

1 with probability p

0 with probability 1− p

to indicate whether the jth pre-thinned spike is kept or not:

X =
1

τ
e−

∆T0
τ

I0 +

∞∑
j=1

e
− j
λpτ Ij

where ∆T0 is the time to the first, pre-thinned spike and λp is the rate of the pre-thinned spike-train.

Only spikes whose corresponding indicator is 1 will affect the current state. Therefore,

2. SUMMING AND WEIGHTING SPIKE TRAINS 18

IE[X] = IE

1

τ
e

−∆T0
τ

I0 +

∞∑
j=1

e
−j
λpτ Ij

=

1

τ
IE
[
e

−∆T0
τ

]IE[I0] +

∞∑
j=1

e
−j
λpτ IE[Ij]

 (T0, Ij are independent)

=
1

τ

1− e
−1
λpτ

1/λpτ

p+

∞∑
j=0

e
−j
λpτ p

 = pλp = λ

For IE[X2],

IE[X2] = IE

1

τ
e

−∆T0
τ

I0 +

∞∑
j=1

e
−j
λpτ Ij

2

=
λp
2τ

(
1− e−2/λpτ

)
IE

 ∞∑
j=0

e
−j
λpτ Ij

2

The expectation can be broken into diagonal and cross terms.

IE

 ∞∑
j=0

e
−j
λpτ Ij

2
 = IE

 ∞∑
j=0

e
−2j
λpτ I2

j +

∞∑
j=0,j 6=l

∞∑
l=0

e
−(j+l)
λpτ IjIl

=

∞∑
j=0

e
−2j
λpτ IE

[
I2
j

]
+

∞∑
j=0,j 6=l

∞∑
l=0

e
−(j+l)
λpτ IE[IjIl]

=

∞∑
j=0

e
−jk
λpτ p+

∞∑
j=0,j 6=l

∞∑
l=0

e
−(j+l)
λpτ p2 (Ij , Il independent for j 6= l)

=
p

1− e
−2
λpτ

+
p2(

1− e
−1
λpτ

)2 −
p2

1− e
−2
λpτ

After substitution back into IE[X2],

2. SUMMING AND WEIGHTING SPIKE TRAINS 19

IE[X2] =
λpp

2τ

(
1− p+ p

1 + e−1/λpτ

1− e−1/λpτ

)
=

λ

2τ

(
1− p+ p coth

(p

2λτ

))

Therefore,

Var(X) =
λ

2τ

(
1− p+ p coth

(p

2λτ

)
− 2λτ

)
SNRpthin(X) =

√
2λτ

1− p+ p coth
(
p

2λτ

)
− 2λτ

(Table 2.1, p-thinned periodic & Fig. 2.2, p-thin.), which we confirm with numerical simulations

(Fig. 2.2.1, p-thin.). As p → 1, SNRpthin → SNRper (i.e., no spikes are dropped), and as p → 0,

SNRpthin → SNRpoi (see Appendix A.2). Therefore,

SNRpthin(X) ≈

SNRpoi(X) at low p

SNRper(X) at high p

2.2.4 d-Thinned Poisson Process

With d-thinned Poisson input, SNR transitions from Poisson to periodic behavior with increasing

k (= 1/w). The d-thinned Poisson process is not memoryless, necessitating the use of (2.7) and

(2.8) and considering ∆T0 and ∆T separately. Expressing ∆T0 = U∆T ∗, where U selects uniformly

within random interval ∆T ∗ (i.e., U ∼ Uniform(0, 1)), which is not identically distributed to ∆T , an

example of the inspection paradox [40]. Although we select a point in time without bias, our point

in time is biased towards falling within larger ISIs simply because they are larger. Accounting for

this bias, ∆T ∗’s probability density function (PDF) is f∆T∗(t) = tf∆T (t)
IE[∆T] . Scaling density function

f∆T (t) by t captures this bias and dividing by IE[∆T] renormalizes the scaled density to a valid

probability density (i.e.
∫
f∆T∗ =

∫
tf∆T (t)dt = IE[∆T]). As a result,

IE
[
e

−∆T0
τ

]
= λτ

(
1−

(
kλτ

1 + kλτ

)k)

IE
[
e

−2∆T0
τ

]
=
λτ

2

(
1−

(
kλτ

2 + kλτ

)k)

and since ϕ∆T (s) =
(

kλ
kλ−is

)kλ
, (2.7) and (2.8) produce

2. SUMMING AND WEIGHTING SPIKE TRAINS 20

IE[X] =
1

τ
λτ

(
1−

(
kλτ

1 + kλτ

)k) ∞∑
j=0

(
kλτ

kλτ + 1

)kλj
= λ

IE[X2] =
1

τ2

λτ

2

(
1−
(

kλτ

2+kλτ

)k) ∞∑
j=0

(
kλτ

2+kλτ

)kj(
1+2

∞∑
l=1

(
kλτ

1+kλτ

)kl)

=
λ

2τ

1 +
(

kλτ
1+kλτ

)k
1−

(
kλτ

1+kλτ

)k =
λ

2τ

(1 + kλτ)k + (kλτ)k

(1 + kλτ)k − (kλτ)k

therefore,

Var(X) =
λ

2τ

(
(1 + kλτ)k + (kλτ)k

(1 + kλτ)k − (kλτ)k
− 2kλτ

k

)
SNRdthin(X) =

√√√√ 2λτ
(1+kλτ)k+(kλτ)k

(1+kλτ)k−(kλτ)k
− 2λτ

(Table 2.1, d-thinned Poisson & Fig. 2.2, d-thin.), which we confirm with numerical simulations

(Fig. 2.2.1, d-thin.). Alternatively (see Appendix A.3), SNRdthin = h SNRpoi(X), where

h =

√
1+k2λτ+. . .+ 1

2k
k−1(k−1)(λτ)k−2 + kk(λτ)k−1

1+(k2−2)λτ+. . .+ 1
6k

k−2(k−1)(k+4)(λτ)k−2 + kk−1(λτ)k−1

At high λτ , d-thinning preserves the input’s information, while at low λτ , a d-thinned Poisson

spike-train is indistinguishable from a Poisson spike-train with the same rate:

h =
λτ→∞

√
kk(λτ)k−1

kk−1(λτ)k−1
=
√
k and h =

λτ→0
1

Therefore, SNRdthin(X) =
λτ→∞

√
kSNRpoi(X) =

√
2kλτ , which is the input spike-train’s SNR, and

SNRdthin(X) =
λτ→0

SNRpoi(X).

At k = 1, SNRdthin(X) = SNRpoi(X) (i.e., all Poissonian input spikes are output). As k → ∞,

SNRdthin(X) → SNRper(X). However, k → ∞ means processing many input, pre-thinned spikes

for each output spike. When accounting for the energy costs associated with processing spikes,

SNRdthin scales as 3
√

(3c/2b)(λτ)2 where c is the fanout of the thinned spike-train and b is the cost

of processing each pre-thinned spike. After optimizing for costs, we find that SNRdthin scales as

(λτ)3/4.

2. SUMMING AND WEIGHTING SPIKE TRAINS 21

Figure 2.7: SNR Approximation.
Relative position of SNRpthin and SNRdthin between SNRpoi and SNRper computed via (2.9). p-
thinned periodic: For low λτ , SNRpthin is more closely approximated by SNRper than SNRpoi

(curves are near rproc = 1), but as λτ increases or p decreases, SNRpthin becomes more closely
approximated by SNRpoi (curves approach rproc = 0). d-thinned poisson: For low λτ , SNRdthin

is more closely approximated by SNRper, but as λτ increases, SNRdthin becomes more closely ap-
proximated by SNRpoi. However, as k increases (i.e, w decreases), SNRdthin moves closer to SNRper,
in contrast to SNRpthin.

2.2.5 Approximation Quality

While p-thinned periodic approaches Poisson and d-thinned Poisson approaches periodic as w → 0,

the convergence depends on λτ . To quantify this, consider

rproc(λτ,w) =
SNRproc(X(λτ,w))− SNRpoi(X(λτ))

SNRper(X(λτ))− SNRpoi(X(λτ))
(2.9)

which measures where the SNR of proc (either pthin or dthin) lies between the Poisson and periodic

limits at a given λτ (Fig. 2.2.5). At rproc = 0, SNRproc = SNRpoi, at rproc = 1, SNRproc = SNRper,

and at rproc = 0.5, SNRproc is halfway between SNRper and SNRpoi.

2.3 Optimizing for Power

The advantages of weighted-summation by d over p-thinning ultimately translate into lower power

consumption. Power is given by P = cinλin + coutλout where cin(out) and λin(out) are the energy cost

per input (output) spike and input (output) spike rate, respectively. cin for p-thinning is set as each

2. SUMMING AND WEIGHTING SPIKE TRAINS 22

input spike incurs a soma communication, weight lookup, random sample, and comparison (between

the weight and the sample). cin for d-thinning is set as each input spike incurs a soma communication,

weight lookup, accumulation lookup, addition (between the weight and accumulation state), and

thresholding. cout is the same for both p and d-thinning: each output spike incurs a target lookup

and set of synapse communications (i.e. the spike fans out).

Power for summing-and-weighting as implemented by merging and p-thinning is minimized when

p = 1, (i.e., not weighting at all). Due to the Poisson statistics
(

SNRpoi(X) =
√

2λτ
)

,

Ppthin = cin
SNR2

tgt

2τp
+ cout

SNR2
tgt

2τ
=

1

2τ

(
cin
p

+ cout

)
SNR2

tgt

for a target SNR (SNRtgt) since λout = SNR2
tgt/2τ and λin = λout/p = SNR2

tgt/2τp. However,

regardless of cin or cout, power consumption is minimized when p = 1 since p is restricted to {0, 1}.
In contrast, d-thinning incentives weighting for sufficient λτ . Since SNRdthin(X) =

λτ→0

√
2λτ ,

and SNRdthin(X) =
λτ→∞

√
2kλτ ,

Pdthin =
λτ→0

cin
SNR2

tgt

2τ
k + cout

SNR2
tgt

2τ
=

1

2τ
(cink + cout) SNR2

tgt

Pdthin =
λτ→∞

cin
SNR2

tgt

2τ
+ cout

SNR2
tgt

2kτ
=

1

2τ

(
cin +

cout

k

)
SNR2

tgt

At low λτ , d-thinning power is minimized by k = 1 (i.e., not weighting at all) as with p-thinning.

However, at high λτ , power decreases with increasing k (i.e., weighting improves power consumption).

Between the extremes, the minimum-power k switches from k = 1 to k > 1 depending on cin and

cout (Fig. 2.3).

2.4 Discussion

Although neuromorphic engineers look to biology for inspiration and biological neurons show trial-to-

trial variability often modeled by Poisson statistics, Poisson spike-trains are poor at communicating

information about their underlying rate. Therefore, injecting noise (via p-thinning) simply to mimic

Poisson statistics observed in biological data (e.g., trial-to-trial variability of synaptic transmission)

is an ill-founded pursuit (outside the corresponding biological context [8, 16,43]).

We might seem to be claiming to violate the data-processing inequality as the accumulator ”cleans

up” a Poisson spike-train, but that’s only an artifact of comparing the SNRs between spike trains

resulting from p-thinning and d-thinning. If we instead compared the p-thinning and d-thinning

SNR to their, respective, pre-thinned SNRs, we would see that both procedures decrease SNR (i.e,

2. SUMMING AND WEIGHTING SPIKE TRAINS 23

Figure 2.8: d-Thinned Poisson Power.
Set cin = α and cout = 1 − α so that 0 ≤ α ≤ 1 sweeps linearly between relative output and input
energy costs. left: α = 0.5 (i.e., input and output spikes cost the same) iso-power contours. The
minimum power curve passes through each contour’s peak At low λτ , the minimum power curve
follows SNRpoi(X), but as λτ increases, it lifts above SNRpoi(X) as weighting lowers the power
requirements for a given SNR. center and right: Minimum power curves vary with α. The
relative input-to-output cost determines when it becomes more efficient to start weighting to reduce
the output spike-rate.

we respect the data-processing inequality). Our claim is on the relative drop in SNR—d-thinning

produces a smaller relative decrease in SNR than p-thinning. Therefore, given a choice of p-thinning

or d-thinning for weighting and a choice of summing before weighting or weighting before summing,

summing and then d-thinning is the clear favorite. It results in SNRdthin scaling with the 3/4 power

of λτ instead of as the square root—the case of p-thinning or (d-thinning) before summing. When

Poisson statistics arise, they must arise from with contextual mechanisms embedded within larger

frameworks.

3

A Serial H-Tree Router for

Two-Dimensional Arrays

3.1 Router Functionality and Overhead

Advances in CMOS fabrication processes enable increases in the number and complexity of computa-

tional units in highly distributed and parallel architectures (e.g., neuromorphic processors; [2,37,39]),

which calls for a corresponding increase in scalability and sophistication of routing mechanisms.

Router area should be a reasonable fraction of the total system—router architecture is therefore

dictated by client complexity. In this regard, high-overhead routers (e.g., meshes with parallel

interfaces) capable of communicating arbitrary data-types at high bandwidths, are unsuited for

intermediate-complexity clients with lower data-rate requirements. To provide multiple-data-type

functionality for such clients, we adapt existing low-overhead routers.

Low-overhead routers contain a transmitter and a receiver [4]. The transmitter merges data from

all of the clients into a single stream and adds source-identifying addresses to each datum to form

a packet. The receiver takes a stream of packets, parses each destination-identifying address, and

delivers the datum to the specified client.

For N clients, a low-overhead router’s circuitry scales as O(
√
N) by sharing resources. Clients

are tiled in a two-dimensional (2D) array and share row and column wires within the array and

transceiver circuitry at the edge of the array [4, 27] (Fig. 3.1, grid addr). Sharing works correctly

if certain timing assumptions are met [5, 6], but these assumptions are difficult to satisfy for long

wires, which are susceptible to phenomena such as charge relaxation, whereby a significant voltage

difference arises between the wire’s two ends [25]. For this reason, grids do not readily scale to large

arrays.

Our router presented herein switches from grid addresses to tree paths (Fig. 3.1, tree path),

24

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 25

TREE PATH TREE WIREGRID ADDR

1/2

1/2 1

1
2

1/2

1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1 1

1

0

0 0

1

1

1
0

1

0 1

0 1

0 10 1

0

1

0

10 1

0 1 0 1

0 1

0

1

00 01 10 11

00

01

10

11

x
y

Figure 3.1: Grid Addresses and Tree Paths
Clients (white and gray squares) are tiled in a 2D array and routed to (or from) using a grid or
a tree. GRID ADDR: A client’s address is encoded by concatenating its x and y positions (in
binary). Addressing circuitry is placed at the array’s edge (black rectangles) and scales as O(

√
N)

for N clients (N = 16 shown). TREE PATH: A client’s path is encoded by traversing the tree from
the root to leaf (indexed by n = 3 and n = 0, respectively, in Algorithms 1 & 2). Each up and left
(down and right) branch appends a 0 (1). Shaded squares indicate differences between tree and grid
binary-number assignments (e.g., the bottom left client’s grid-address is 0011, but its tree-path is
1010). Routing circuitry is embedded within the array (black triangles) and scales as O(N). TREE
WIRE: Wire segments are annotated with their lengths.

trading an increase in logic circuitry for enhanced scalabilty and functionality. The increase in logic

circuitry—from O(
√
N) to O(N) for N clients—is worthwhile for emerging intermediate-complexity

clients that use thick-oxide transistors for ultra-low power analog computation and much smaller

thin-oxide transistors for ultra-fast digital communication [3]. The enhanced scalability arises be-

cause its asynchronous implementation’s timing assumptions are easily met. And the enhanced

functionality arises because its serial protocol supports multiple datatypes, whereas the grid’s par-

allel protocol limits payload size. For backward compatibility, converting grid addresses into tree

paths and vice versa is straightforward (Algorithms 1 & 2).

In Section 3.2, we describe how grid addresses and tree paths are encoded, show that both require

O(N) wiring, and justify our choice of a 4-ary tree over a binary tree. In Section 3.3, we describe

the serial link our router uses. In Section 3.4, we describe the logical design of the router’s nodes. In

Section 3.5, we describe how the router’s leaves were customized for a neuromorphic application. In

Section 3.6, we describe the router’s logical and physical synthesis and its verification and validation.

In Section 3.7, we conclude the chapter with a discussion of our results.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 26

Algorithm 1 Converts Path (p) to Address
(x,y)

Require: l = length(p)
for n = 0 to l/2− 1 do

x[n]← p[2n]
y[n]← p[2n+ 1]

end for

Algorithm 2 Converts Address (x,y) to
Path (p)

Require: l = length(p)
for n = 0 to l/2− 1 do

p[2n]← x[n]
p[2n+ 1]← y[n]

end for

3.2 Tree Paths versus Grid Addresses

A 2D array can be routed to (or from) using a grid or a tree. We consider N clients, of unit width

and height, arranged on a square grid (Fig. 3.1, wiring).

Given equal link-widths, the tree requires less wiring than the grid. To calculate the length of

the tree’s wiring, Wt, we start from the N unit centers: N 1
2 -unit segments project horizontally from

each center. At the second level, N2
1
2 -unit segments project vertically. At the third level, N4 1-unit

segments project horizontally. This geometric pattern continues up to the root; each level alternates

between horizontal and vertical orientation and halves the number of segments from the previous,

lower level, while doubling the segment-length every other level. Overall, we have

Wt =
1

2

(
N+

N

2

)
+ 1

(
N

4
+
N

8

)
+ 2

(
N

16
+
N

32

)
+ . . . =

3

2
N

as N scales up (coloring matches Fig. 3.1, wiring). For comparison, in the grid, each client adds

2 units of wire so that Wg = 2N . Therefore, Wt = 3
4Wg: the tree uses up to 25% less wiring than

the grid.1 While the tree’s segments become longer as we move from leaves to root, they are shared

among more and more leaves.

However, the primary trade-off is the tree’s larger transistor-count (O(N) versus O(
√
N) for the

grid), determined by the node-count times the transistors-per-node. To reduce the node-count, we

opted for a 4-ary tree over a binary tree. A binary tree has N − 1 nodes whereas a 4-ary tree has
N−1

3 nodes. In general, a k-ary tree has N−1
k−1 nodes and logk(N) levels. Consequently, switching

divides the node-count by three, halves the number of levels, halves the latency, and doubles the

unpipelined throughput.

If switching from binary to 4-ary doubles the transistors-per-node,2 and divides the node count

by three, we would expect to decrease the overall transistor count by 33%. However, nodes are not

homogeneous; leaf nodes are tailored to clients’ needs. The total transistor count in an N -client

1In emerging 3D processes, with wire-segments traveling along three axes, segment-count still halves at each level
towards the root, but segment-length only doubles every third level (c.f. every other level in 2D). As a result,
Wt = 7

24
Wg ≈ 0.29Wg: the tree uses up to 71% less wiring.

2Doubling occurs if combinational gates (e.g., Nands or Nors)—whose transistor count is 2× their fan-in—
dominate. For sequential gates—whose state-holding elements are not replicated—the increase is sublinear. When
gates are treed to build wider gates, the increase is supralinear.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 27

Source
xϕ
xe
x0

Sink
yϕ
ye
y0

x1 y1

Y

SinkSource

X

xϕ

ye

x0

x1

Time

X X!!2

X X!1 X!0X!0 XX

0 1 42 3

HANDSHAKING

COMMUNICATIONS

Figure 3.2: Serial Link Description at Two Levels of Abstraction
handshaking: Source drives control line xφ and data lines x0 and x1. Sink drives control line
ye. Arrows point from driver to listener. Two-phase handshakes (time slots 0 and 4) initiate and
terminate packet communication; four-phase handshakes (1, 2, and 3) send the packet’s bits as 1-of-2
codes. All transitions are acknowledged (curved gray arrows), so the protocol is delay-insensitive.
ye’s last transition is acknowledged by xφ’s initial transition in the next packet. A three-bit packet
(010) is communicated in this example, but the protocol supports arbitrary-sized packets and 1-of-
D codes using D data lines. communications: A channel connects Source’s output port (X) to
Sink’s input port (Y). Source’s dataless communications (X and X) initiate and terminate packet
transmission; such communications are colored blue and red, respectively, throughout the text. Its
datafull communications (X!0 and X!1) send the packet’s bits. The entire communication sequence
may be consolidated into the single operation (X!!2).

k-ary tree whose leaf and intermediate nodes have TLk and TIk transistors each, respectively, is

Ttotk =
N − 1

k − 1

(1− k/N)TIk + (k − 1)TLk

k − k/N
(3.1)

For TLk = TIk = Tk, this expression reduces to N−1
k−1 Tk: the total number of nodes times the

transistors-per-node. Note that the ratio of leaf to intermedaite nodes is k − 1:1 − k/N , which

approaches 1:1 and 3:1 for binary and 4-ary trees, respectively, as N increases. Thus, based on

TLk’s and TIk’s values for our designs (Tab. 3.1),3 which have different mixes of combinational and

sequential logic and treed gates, switching from binary to 4-ary increases the average transistor

count of the transmitter’s and receiver’s nodes by 2.6× and 1.6×, respectively. As a result, their

overall transistor count reduces by 13.3% and 45%, respectively (see Tab. 3.1).

3The leaf node’s communication is dataless—it requests or acknowledges.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 28

Transmitter Receiver
k 2 4 2 4

TLk 78 208 30 54
TIk 91 255 64 148

Ttot4/Ttot2 0.867 0.550

Table 3.1: Node Transistor Counts & Binary:4-ary Ratios for Large NWe built our serial tree-router with quasi-delay insensitive (QDI) circuits. The only timing

assumption made is the isochronic fork. Signal-propagation delay along branches of such forks are

assumed to be equally insignificant (hence the iso combining form; precise definitions may be found

in [30,31]). This assumption is the minimal one necessary for useful computation with asynchronous

circuits (i.e., Turing complete). No assumptions are made about signal-propagation delays through

gates or nonisochronic wires, except that they are positive and finite.

3.3 Serial Communication Protocol

To keep link-width constant, we use serial communication. The path-length grows as we move from

leaf to root in a tree. Hence, codes communicated over links closer to the root have more bits than

those communicated over links closer to the leaves. A parallel protocol thus requires wider links (i.e.

more wires) towards the root, whereas a serial protocol makes do with a constant width. Further,

the latter allows us to communicate more than just the encoded paths; we can communicate data

(e.g., configuration settings) as well.

Our serial-link follows a fully delay-insensitive version of the bundled-data protocol in [6] (Fig. 3.2,

handshaking). For example, the following source generates a random bitstream and segments it

into packets of arbitrary length (see Table 3.2 for syntax):

xφ↑; [xe];*[[true −→ x0↑; [¬xe]; x0↓; [xe]

|true −→ x1↑; [¬xe]; x1↓; [xe]

|true −→ xφ↓; [¬xe];xφ↑; [xe]]]

Handshakes that demarcate the beginning and end of packet transmission are colored blue and red,

respectively. If the xφ branch is executed immediately, or consecutively, the packet contains no data.

A sink that consumes the source’s data operates as follows.

[yφ]; ye↑;*[[y0 ∨ y1 −→ ye↓; [¬y0 ∧ ¬y1]; ye↑
[] ¬yφ −→ ye↓;[yφ]; ye↑]]

Selection (deterministic) is used instead of arbitration (nondeterministic) because the source guar-

antees mutual exclusion between the branches.

At a higher level of abstraction, we describe the source’s and sink’s operation simply in terms of

communications on ports connected by a channel (Fig. 3.2, communications). For the source:

X ; *[[true −→ X !0|true −→ X !1|true −→ X ;X]]

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 29

X and X correspond to two-phase handshakes (on xφ and xe) that demarcate the packet (see

Table 3.3 for notation). X ! corresponds to repeated four-phase handshakes (on x0,1 and xe) that

send the payload. For the sink:

Y ; *[[Y ? −→ Y ?[]Y −→ Y ;Y]]

Note the unconventional use of the probe to check whether a datafull communication is pending.

This probe (Y ?) corresponds to y0∨y1, whereas the dataless communication probe (Y) corresponds

to ¬yφ.

We introduce ?? and !! operators to describe serial read and write communications concisely

(Fig. 3.2, communications). The source and sink are described as

*[[true −→ X !!null|true −→ X !!Rand()]] ‖ *[[Y ??]]

where null is an empty string (i.e. the packet is empty) and Rand() returns a random, nonnegative

integer.

3.4 Router Logical Design

The router consists of a transmitter and a receiver, both composed of a tree of nodes (Fig. 3.4.1).

The transmitter merges packets from the clients into a single stream for transmission to the en-

vironment. The receiver does the inverse; it splits each packet in the stream off to the targeted

client. For conciseness, we describe the nodes’ operation for a binary tree (TX(2) and RV(2)). It is

straightforward to extend these processes to a k-ary tree (TX(k) and RV(k)).

For a design space exporation see appendices B, C, and D. Designs were evaluated by their

transistor costs assuming an array of 4096 neurons, 1024 synapses, and 256 memory banks. With

each group of 1 syanpse and 4 neurons uses 28 bits of memory.

3.4.1 Transmitter

A transmitter node merges packet streams from its children into a single packet stream for its parent

(another node one level closer to the root, unless the node is itself the root):

TX(2)

≡ *[[C0 −→ P !!(0⊕C0??)|C1 −→ P !!(1⊕C1??)]]

A packet from port C0,1 is interpreted as a string; a ⊕ b prepends a to b (e.g., 1 ⊕ 01 = 101).

Prepending a child’s port index at that node in the tree to its data builds the overall path from leaf

to root.

Expanding !! and ?? operators, and separating out arbitration, TX(2) becomes

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 30

*[[C0 −→ P ;P !0; C0;[C0 −→ P ; C0]

|C1 −→ P ;P !1; C1;[C1 −→ P ; C1]]

‖*[[C0? −→ P !C0?[]C1? −→ P !C1?]]

Communications that demarcate when packet transmission begins and ends at the child and parent

ports are colored blue and red, respectively. Putting P !{0, 1} before C0,1 ensures that the child’s

index is prepended to the packet before the child’s data are forwarded with the P !C0,1? communi-

cations.

Further expansion yields the following HSE.

*[[c0φ −→ pφ↑; [pe];p0↑; [¬pe]; p0↓; [pe]; c0e↑;
[¬c0φ]; pφ↓; [¬pe]; c0e↓

|c1φ −→ pφ↑; [pe];p1↑; [¬pe]; p1↓; [pe]; c1e↑;
[¬c1φ]; pφ↓; [¬pe]; c1e↓]],

*[[c00 −→ p0↑; [¬pe]; c0e↓; [¬c00]; p0↓; [pe]; c0e↑
[]c01 −→ p1↑; [¬pe]; c1e↓; [¬c01]; p1↓; [pe]; c1e↑
[]c10 −→ p0↑; [¬pe]; c0e↓; [¬c10]; p0↓; [pe]; c0e↑
[]c11 −→ p1↑; [¬pe]; c1e↓; [¬c11]; p1↓; [pe]; c1e↑]]

Note that the initial parent communication completes ([pe]) and a code is transmitted to the parent

before the initial child communication is acknowledged (c0e↑ or c1e↑). After that, the selection

process relays the child’s data.

We proceed by factorizing the arbitration process into the arbiter itself and the remaining child-

parent communication:

*[[c0φ −→ s0↑; [¬c0φ]; s0↓|c1φ −→ s1↑; [¬c1φ]; s1↓]],
*[[s0 ∧ ¬u −→ pφ↑; [pe];w0↑; p0↑; [¬pe]; u↑; w0↓;

p0↓; [pe]; c0e↑; [¬s0]; pφ↓; [¬pe]; c0e↓;u↓
[]s1 ∧ ¬u −→ pφ↑; [pe];w1↑; p1↑; [¬pe]; u↑; w1↓;

p1↓; [pe]; c1e↑; [¬s1]; pφ↓; [¬pe]; c1e↓;u↓]]

s0,1 are introduced to store the selection result; w0,1 are introduced to distinguish the state immedi-

ately after [pe] (prepending the index) from that immediately after [pe] (acknowledging the child);

and u is introduced to preserve mutual exclusion in the selection process when its branches are

implemented as concurrent processes. It prevents the s1 branch (i.e. pφ↑; [pe]; . . .) from beginning

before the s0 branch completes (i.e. pφ↓; [¬pe]; . . .) when c1φ is high and the arbiter executes s1↑
immediately after s0↓.

Our 4-ary transmitter tree’s node uses a four-way arbiter (Fig. 3.4.1). Three mutual-exclusion

elements are interconnected in a binary decision-tree by handshaking circuitry (c0:3φ and s0:3 connect

to the two ARB2’s c0,1i inputs and c0,1o outputs, respectively) [32]. CHP and HSE are omitted

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 31

for brevity. For comparison, a binary tree’s node requires just one mutual-exclusion element—with

no additional overhead. Although the arbiter design used here contains no pipelining, a greedy, but

fair arbiter is described in Appendix E.2.

The transmitter node’s HSE (sans ARB(4)) is implemented by the following production rule set

(PRS).

¬u ∧ (s0 ∨ s1) → pφ↑
(c0e ∧ ¬s0) ∨ (c1e ∧ ¬s1) → pφ↓

s0 ∧ pe ∧ ¬u → w0↑
s1 ∧ pe ∧ ¬u → w1↑

u → w0↓
u → w1↓

c00 ∨ c10 ∨ w0 → p0↑
c01 ∨ c11 ∨ w1 → p1↑

¬(c00 ∨ c10 ∨ w0) → p0↓
¬(c01 ∨ c11 ∨ w1) → p1↓

(w0 ∨ w1) ∧ ¬pe → u↑ ¬(c0e ∨ c1e ∨ pφ) → u↓

s0 ∧ u ∧ pe ∧ ¬c1e → c0e↑
s1 ∧ u ∧ pe ∧ ¬c0e → c1e↑

¬pe → c0e↓
¬pe → c1e↓

3.4.2 Receiver

A receiver node splits a packet stream from its parent into packet streams for its children (another

node one level closer to the leaves, unless the node is a leaf itself):

RV(2)

≡ *[[P??(s, d) • [s = 0 −→ C0!!d[]s = 1 −→ C1!!d]]]

It uses the packet’s first word (written into s) to decide which child to send the remainder of the

packet (written into d); s has 1 bit for a binary tree or 2 bits for a 4-ary tree (RV(4)).

We expand RV(2)’s ?? and !! communications as follows.

P ;P?s • [s = 0 −→ C0[]s = 1 −→ C1];

*[[P? ∧ s = 0 −→ C0!P?

[]P? ∧ s = 1 −→ C1!P?

[]P −→ P•[s = 0 −→ C0[]s = 1 −→ C1];

P ;P?s • [s = 0 −→ C0[]s = 1 −→ C1]]]

This process can be expanded further as

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 32

*[[p0 ∧ s0 −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓; [c0e]; pe↑
[]p1 ∧ s0 −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓; [c0e]; pe↑
[]p0 ∧ s1 −→ c10↑; [¬c1e]; pe↓; [¬p0]; c10↓; [c1e]; pe↑
[]p1 ∧ s1 −→ c11↑; [¬c1e]; pe↓; [¬p1]; c11↓; [c1e]; pe↑
[]¬pφ −→ s0↓, s1↓;

c0φ↓, c1φ↓; [¬c0e ∧ ¬c1e]; pe↓ ;[pφ]; pe↑;
[p0 −→ s0↑; pe↓; [¬p0]; c0φ↑; [c0e];pe↑
[]p1 −→ s1↑; pe↓; [¬p1]; c1φ↑; [c1e];pe↑]]]

After reset, the process resumes at ; .

To realize these five branches as five concurrent processes, we must preclude the the first four

from starting immediately after the fifth process executes s0,1↑. We accomplish this by replacing

s0,1 in their guards with c0,1φ, which also indicate the selected child.

*[[p0 ∧ c0φ −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓; [c0e]; pe↑
[]p1 ∧ c0φ −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓; [c0e]; pe↑
[]p0 ∧ c1φ −→ c10↑; [¬c1e]; pe↓; [¬p0]; c10↓; [c1e]; pe↑
[]p1 ∧ c1φ −→ c11↑; [¬c1e]; pe↓; [¬p1]; c11↓; [c1e]; pe↑
[]¬pφ −→ s0↓, s1↓; ss↓; v↓;

c0φ↓, c1φ↓; [¬c0e ∧ ¬c1e]; pe↓ ;[pφ]; pe↑;
[p0 −→ s0↑; ss↑; pe↓; [¬p0]; v↑; c0φ↑; [c0e];pe↑
[]p1 −→ s1↑; ss↑; pe↓; [¬p1]; v↑; c1φ↑; [c1e];pe↑]]]]

v is introduced to allow c0,1φ to be combinational and ss is introduced to reduce the length of pe ’s

pull-up and pull-down chains (see PRS below).

The following PRS implements the receiver node’s HSE.

pφ ∧ ¬ss ∨ c0e ∨ c1e → pe↑
(¬pφ ∨ ss) ∧ ¬c0e ∧ ¬c1e → pe↓

s0 ∨ s1 → ss↑ ¬s0 ∧ ¬s1 → ss↓

p0 ∧ ¬v → s0↑
p1 ∧ ¬v → s1↑

¬pφ → s0↓
¬pφ → s1↓

ss ∧ ¬p0 ∧ ¬p1 → v↑ ¬ss → v↓

v ∧ s0 → c0φ↑
v ∧ s1 → c1φ↑

¬v ∨ ¬s0 → c0φ↓
¬v ∨ ¬s1 → c1φ↓

p0 ∧ c0φ → c00↑
p1 ∧ c0φ → c01↑
p0 ∧ c1φ → c10↑
p1 ∧ c1φ → c11↑

¬p0 ∨ ¬c0φ → c00↓
¬p1 ∨ ¬c0φ → c01↓
¬p0 ∨ ¬c1φ → c10↓
¬p1 ∨ ¬c1φ → c11↓

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 33

3.5 Router Application

We connected a 2D array of spiking-neuron clusters to a datapath using our asynchronous serial tree-

router, a natural choice for spike communication. A product of continuous, noisy analog dynamics at

biological timescales, spikes are relatively infrequent (sub-kHz) and asynchronous (there’s no clock).

Each cluster contains 16 spike-generating soma circuits, 4 spike-consuming synapse circuits, and a

configuration memory.

Clusters are tiled in a 16×16 array. To service the 4,096 somas, 1,024 synapses, and 256 memories,

the transmitter’s and receiver’s trees are six (46 = 4096) and five (45 = 1024) levels deep, respectively.

Half of the receiver’s 1,024 output ports suffice to service all 1,024 synapses because each port supplies

2 bits (a 1-of-4 code) whereas each synapse needs only 1 bit (indicates whether a spike is excitatory

or inhibitory). Thus, 512 ports are left over to service the 256 memories. We customized the

transmitter’s and receiver’s leaf nodes to suit this application as follows.

3.5.1 Transmitter Leaf

The transmitter leaf transmits a soma’s spike up the tree by creating a packet containing the soma’s

index. With no other data to convey, the transmitter node is simplified to

TXL(2) ≡ *[[C0 −→ C0•(P ;P !0); [C0 −→ C0 • P]

|C1 −→ C1•(P ;P !1); [C1 −→ C1 • P]]

Note that our design actually instantiates TXL(4). We omit its HSE and PRS for brevity.

Somas lock up the transmitter during spike emission. When emitting a spike, a soma initiates

packet transmission with a two-phase handshake (C0,1). Afterwards, the soma enters a refractory

period for up to a few milliseconds before executing another two-phase handshake (C0,1) to terminate

transmission. If communications within the transmitter are slackless, the soma will lock up the

transmitter during its refractory period. To prevent this, we insert a buffer (i.e., latch) between the

soma and the transmitter’s leaf.

3.5.2 Receiver Leaf

The receiver leaf services four synapses as well as a configuration memory (via a deserializer). We

repurpose two of the receiver node’s 2-bit ports to service the four synapses and use a third port to

communicate with the memory:

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 34

RVL(4) ≡ P ;P?s • [s = 2 −→ C2[]s 6= 2 −→ skip];

*[[P? ∧ s = 0 −→ C0!P?

[]P? ∧ s = 1 −→ C1!P?

[]P? ∧ s = 2 −→ C2!P?

[]P −→ P•[s = 2 −→ C2[]s 6= 2 −→ skip];

P ;P?s • [s = 2 −→ C2[]s 6= 2 −→ skip]]]

Only the third port (C2) continues with the serial protocol. HSE and PRS are omitted for brevity.

Synapses, like somas, require buffering. Depending on its analog biasing, a synapse may take up

to a few milliseconds to acknowledge an input spike. We add a full cycle of slack to the otherwise

slackless communication from root to synapse. One half-cycle is built into the leaf; a standard

weak-precharge half-buffer provides the other.

The configuration memory accepts 6 bits of address and 2 bits of data (its 128 bits are organized

into eight rows and eight 2-bit-wide columns). These 8 bits are encoded in four 1-of-4 codes that

the deserializer receives in series from the receiver leaf and presents in parallel to the memory.

3.5.3 Serial–Parallel Conversion

The deserializer converts M sequentially delivered 1-of-4 codes into a M×1-of-4 parallel code using

a chain of M des (Fig. 3.4.2, deserial). For 1-of-2 codes, de’s HSE is:

*[[si]; [x0 −→ y0↑; xa↑; [¬x0]; so↑; xa↓; [¬si]; y0↓; so↓
[]x1 −→ y1↑; xa↑; [¬x1]; so↑; xa↓; [¬si]; y1↓; so↓]]

For each conversion, si,o propagate an event along the chain twice. The first time, serial input codes

are latched to build the parallel output. The second time, the parallel output is cleared, which

happens once a c-element that closes the chain receives the environment’s acknowledge. PRS for a

1-of-2 version of de is as follows.

¬so ∧ si ∧ x0 → y0↑
¬so ∧ si ∧ x1 → y1↑
¬so ∧ vy → xa↑
y0 ∨ y1 → vy↑
vy ∧ ¬x0 ∧ ¬x1 → so↑

¬si → y0↓
so ∨ ¬vy → xa↓
¬si → y1↓
¬y0 ∧ ¬y1 → vy↓
¬vy → so↓

vy is introduced to shorten transistor chains.

The serializer does the converse of the deserializer: It uses a chain of M ses to slice a M×1-of-4

parallel code into M 1-of-4 codes and forwards them sequentially to the environment using seq

(Fig. 3.4.2, serial). For 1-of-2 codes, se’s HSE is:

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 35

*[[si];

[x0 −→ y0↑; [ya]; u↑; y0↓; [¬ya]; so↑; [¬si]; u↓; [¬x0]; so↓
[]x1 −→ y1↑; [ya]; u↑; y1↓; [¬ya]; so↑; [¬si]; u↓; [¬x1]; so↓
]]

u is added to distinguish states before and after the y0,1-ya handshake. As with the deserializer, si,o

propagate an event along the chain twice for each conversion. The first time, each se relays a code

to seq. The second time, each se checks that its parallel-input slice is cleared. se’s PRS is:

x0 ∧ ¬u ∧ si → y0↑
x1 ∧ ¬u ∧ si → y1↑
si ∧ ya → u↑
u ∧ ¬ya → so↑

u ∧ ¬so → y0↓
u ∧ ¬so → y1↓
¬si → u↓
¬u ∧ ¬x0 ∧ ¬x1 → so↓

seq’s HSE is:

*[[si]; so↑; [x0 ∨ x1]; yφ↑; [¬si ∧ ye]; yφ↓; [¬ye]; so↓],
*[[x0 ∧ ye −→ y0↑; [¬ye]; xa↑; [¬x0]; y0↓; [ye]; xa↓
[]x1 ∧ ye −→ y1↑; [¬ye]; xa↑; [¬x1]; y1↓; [ye]; xa↓]]

By closing the chain, it initiates (yφ↑; [ye]) and terminates (yφ↓; [¬ye]) packet transmission on the

event’s first and second pass, respectively. In between, it forwards codes that ses provide. seq’s

PRS is:

x0 ∨ x1 → yφ↑
(y0 ∨ y1) ∧ ¬ye → xa↑
ye ∧ x0 → y0↑
ye ∧ x1 → y1↑
¬si ∧ ¬ye ∧ ¬yφ → so↓

¬si ∧ ye → yφ↓
ye → xa↓
¬x0 → y0↓
¬x1 → y1↓
si → so↑

3.6 Synthesis and Validation

For logical synthesis, we described logical hierarchy and PRS in the Asynchronous Compiler Tools

(ACT) language.4 We verified logical correctness with PRSIM, a discrete-event simulator that

executes PRS with randomized delays [1], and then checked for logical-physical consistency in the

presence of transistor parasitic capacitances with CoSIM, a PRSIM–SPICE co-simulator [1].

For physical synthesis, we decomposed our ACT into standard cells and generated their layouts

with cellTK [22]. Encounter (Cadence) place-and-routed lower-level router circuitry—4 transmitter

leaves (to service 16 somas), their parent node, a receiver leaf (to service 4 synapses and an SRAM),

and a deserializer (to interface with the SRAM)—in the lower 43% (547µm2) of the neuron-cluster

4Available at https://github.com/samfok/AER_serial_tree_router

https://github.com/samfok/AER_serial_tree_router

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 36

tile (1, 261µm2). Of this router area, 14% (76µm2) was reserved (cutout) for higher-level circuitry

(Fig. 3.4.2, TILE).

We placed tiles in a 16×16-array and placed the router’s higher-level nodes in their cutouts, along

with repeaters to drive long wires (Fig. 3.4.2, TILE16×16, and H-TREES). We extracted para-

sitic resistances and capacitances from this layout and performed simulations to check for spurious

transitions and to predict the router’s maximum throughput.

Our postlayout simulations predicted that the transmitter and receiver could communicate up

to 42.5 and 50.8 Mspike/s, respectively (Fig. 3.6).5 Codes from (or to) nodes lower in the tree take

longer (e.g., 4.31 ns from the transmitter tree’s leaves versus 1.28 ns from its root) because the

number of communications involved increases (from 6 at the leaf to 1 at the root). On average, 4.5

four-phase communications are performed, including one for the 2 two-phase communications that

demarcate the packet. At 4 phases per communication and 4 transitions per phase, transversing

six nodes involves 432 transitions.6 Thus, the 42.5 Mspike/s cycle-rate corresponds to 56 ps per

transition, in line with expectations for a 28-nm process.

Post-fabrication in a 28-nm, fully depleted, silicon-on-insulator process, we brought the chip

up and validated the router’s functionality. (Fig. 3.6). From two chips, we measured maximum

throughputs of 27.4 and 26.1 Mspikes/s for the transmitter and 18.1 and 18.5 Mspikes/s for the

receiver.7 Differences between simulations the chip measurements are explained by additional delays

introduced by unpipelined datapath communications.

3.7 Discussion

Pioneering researchers developed transmitters and receivers to write and read spikes to and from

1D or 2D arrays of silicon neurons using the address-event representation (AER; [4, 24, 27, 41]). A

neuron’s address is transmitted every time it spikes, hence the name address-event. In 1D, the spike

is identified by a unique address assigned to each neuron. In 2D, the spike is identified by the

neuron’s row and column addresses and, in first-generation designs, these addresses are transmitted

in parallel.

Second-generation designs communicated row and column addresses in series. In addition to

saving wires by multiplexing, this so-called word-serial protocol supports packets with an arbitrary

number of words. Thus, additional column addresses could be appended to communicate multiple

spikes read from or written to the same row in parallel [5, 6, 25]. This so-called burst-mode offered

higher throughput, servicing arrays containing as many as 64k somas and 256k synapses [2] at rates

up to 43.4M spike/s (ignoring off-chip delays) [7]. Array or chip addresses could be prepended

5In operation, somas generate up to 500 spike/s each, and synapses consume up to 1000 spikes/s each, so we expect
the transmitter and receiver to communicate 2 and 1 Mspikes/s, respectively

6In our PRSIM simulations, we counted 422 transitions for the transmitter and serializer and 481 transitions for
the deserializer and receiver.

7Equivalently, the fabricated router can service arrays of up to 53.5k somas and 18.3k synapses, respectively

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 37

to further expand the address-space. Thus, an address-event-based router could service multiple

arrays distributed across multiple chips [11, 36, 38]. Further, data as well as addresses could be

communicated over the link (or bus) connecting the transmitter to the receiver [17]. In this fashion,

multiple spikes read in parallel from small groups of neurons have been transmitted using a single

dataword, boosting throughput, which had plateaued at 50M spike/s [10], to 300M spike/s [42].

To communicate configuration datawords to or from individual neurons—or clusters thereof—

we could widen the neuronal interface, but the additional bandwidth would be largely wasted.

Datawords use all of the wires but occur rarely, whereas spikes occur frequently but only use one

(e.g., a soma’s output) or two (e.g., a synapse’s excitatory or inhibitory input) wires. We thus

keep the neuronal interface narrow and transmit data serially, saving wires by taking more time. In

addition to supporting multiple data-types efficiently, a serial protocol places no limit on the number

of bits a dataword can have, unlike a parallel protocol.

We did away with timing-assumptions by switching from row-column addresses to tree paths.

Striking a balance between node-count and node-complexity, we chose a 4-ary over a binary tree,

which reduced transistor-count by 19.1% overall. Returns diminish for higher degrees because re-

alizing wider gates requires treeing narrower gates (with no more than four transistors in series).8

Although its thin-oxide transistors outnumber the neuron-cluster’s thick-oxide transistors 1.9:1, the

router takes up only 43% of the total area because thick-oxide transistors are much larger than thin

oxide transistors.

Throughput may be enhanced substantially by pipelining the otherwise slackless communication

from leaf to root (transmitter) or root to leaf (receiver) and between router and datapath. Pipelining

can be added to the current design at no additional area cost by replacing repeaters with latches

or placing latches in unused tile cutouts (see Appendix E.1. Subsequent codes would take no more

time than the first one, which takes 1.28 (transmitter) or 1.8 ns (receiver) (Fig. 3.6). Therefore,

with seven communications per spike, pipelining would increase throughput from 42.5M to 111.6M

spike/s (transmitter) or from 50.7M to 79.4M spike/s (receiver).

8Gates with longer chains operate much slower, increasing the duration that downstream gates pass short-circuit
currents.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 38

Assignment
x↑ / x↓ Set boolean variable x to true / false

Program Composition
s1; s2 Execute segment s1 and then s2

s1, s2 Execute s1 concurrently with s2

*[s] Execute s repeatedly
Boolean Operations

x / ¬x Return the value of x / negated value of x
e1 ∧ e2 Return the logical-and of e1 and e2

e1 ∨ e2 Return the logical-or of e1 and e2

Branching
[e] Wait until boolean expression e is true

[e1 → s1] When e1 becomes true, execute s1

[e1 → s1|e2 → s2] If boolean e1 (e2) is true, execute s1 (s2)
If both are true, execute either s1 or s2

If both are false, wait
[e1 → s1[]e2 → s2] If boolean e1 (e2) is true, execute s1 (s2)

Assume e1 and e2 cannot both be true
If both are false, wait

Table 3.2: Handshaking Expansion (HSE) Syntax

Assignment
x := d Set variable x to d ’s value

Communication
X Communicate on port X (dataless)

X !x Write value of x to X
X ?x Read value from X to x

Y !X ? Read value from X and write it to port Y
X True if a communication is pending and false if not

Program Composition
S1; S2 Execute segment S1 and then S2

S1 ‖ S2 Execute S1 in parallel with S2

S1 • S2 Overlap the execution of S1 and S2 (called bullet)
*[S] Execute S repeatedly

Boolean Operations
¬, ∧, ∨ Same as in Table 3.2

x = d Return true if x ’s value equals d ’s and false if not
Branching

→, |, [] Same as in Table 3.2

Table 3.3: Communicating Hardware Processes (CHP) Syntax

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 39

ROUTER

TX(4) RV(4)

TXL(4) RVL(4)

..
.

TRANSMITTER RECEIVER

_pϕpep[0:3]
c0ϕc0ec0[0:3]...

_pϕ_pep[0:3]
c0,1ec0,1[0:3] c2ϕ c2[0:3]c2e

_pϕ_pep[0:3]
c0ϕc0ec0[0:3]...c3ϕc3ec3[0:3]

TX(4) TX(4) TX(4) TX(4)

TX(4)

Environment

Transmitter Receiver

2D Array

RV(4) RV(4) RV(4) RV(4)

RV(4)

c3ϕc3ec3[0:3]

P
C0 C3

...
P

C0 C3
...

P
C0 C3

...
_pϕpep[0:3]

c0ϕc0e c3ϕc3ec1ϕc1ec2ϕc2e

P
C0,1C2

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Figure 3.3: Router Process Decomposition
ROUTER: Facilitates communication between clients tiled in a 2D array and an external environ-
ment using a transmitter and a receiver. TRANSMITTER and RECEIVER: A pair of 4-ary trees
provide an input and output port at their leaves for each client. TX(4) and RV(4): CHP ports
(left) and HSE signals (right) that interface processes running in Transmitter’s and Receiver’s
nodes with their environment. TXL(4) and RVL(4): Same as previous but for processes in the
leaves.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 40

TOP

ARB2 ARB2

ARB(4) MU

TOP

ARB2

MU

_c0i _c1ic0o c1o

pi_po

aC aC

_i0 _i1

_o0 _o1

MU

Figure 3.4: Four-Way Arbiter
ARB(4): Selects one of four clients with one top and two arb2s; k clients require k−2 arb2s
connected in a binary tree. TOP: Performs two-way selection with a mu. MU: Selects one of two
active-low (indicated by underscore prefix) inputs (i0 and i1) using cross-coupled nor gates. Four
additional transistors filter out metastable signals before toggling the outputs (o0 and o1). mu’s
custom standard-cell layout is shown. ARB2: Relays its childrens’ requests to its parent and relays
its parent’s grant to a requesting child, selected beforehand by mu. The two, lower nor gates ensure
that handshakes on c0i,o and c1i,o do not overlap; aC are asymmetric c-elements.

DESERIAL xexϕ

C

x[0:3]

y[0:M-1][0:3]ye

DE
_xa _x[0:3]

y[0:3]
_si _so

SERIALxe

SE
ya

x[0:3]

y[0:3]
_si _so

...

...

...

...

SEQ
xa x[0:3]

_so _si

x[0:M-1][0:3]

...

yϕ

yϕ

ye

ye y[0:3]

y[0:3]

DE
_xa _x[0:3]

y[0:3]
_si _so

SE
ya

x[0:3]

y[0:3]
_si _so

Figure 3.5: Serial–Parallel Conversion
DESERIAL: Serial input fans out to a chain of M des. An event moves from one to the next
with each serial input; it loops back around through the c-element when parallel output occurs.
SERIAL: Parallel input is divided among a chain of M ses. As an event moves from one to the
next, it outputs its data to seq. The event loops back around through seq when serial transmission
is complete.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 41

Local Router

Analog NeuronsConfig SRAM

Cutout

10μm 100μm

TILE TILE16x16 H-TREES

TX Level 6 5 4 3 REPRV Level 5 4 3 2 REP

Figure 3.6: Tree Router Layout
TILE: Neuron cluster and low-level, local router circuits. Analog Neurons: Circuitry for 16 somas
and 4 synapses. Config SRAM : Sixty-four 2-bit words—tiled in 8 rows and 8 columns—for analog
circuitry configuration. Local Router: Four transmitter-tree leaves, their parent, a receiver-tree leaf,
and a deserializer (SRAM interface). Cutout: Populated as needed with the transmitter or receiver
trees’ higher-level nodes or repeaters. TILE16×16: Full 2D array. Digital signals enter and exit
on its left side, where the datapath is attached. To minimize crosstalk with analog circuitry, H-tree
wires runs over the tiles’ Local Routers and Config SRAMs. A one-tile horizontal displacement
between the two H-trees makes wiring possible with just metal layers 5 (yellow) and 6 (purple).
H-TREES: Placement of two H-trees’ higher-level nodes and repeaters (green for transmitter and
blue for receiver) in tiles (white squares) with routing overlaid. tx: Transmitter; rv: Receiver; rep:
Repeater.

3. A SERIAL H-TREE ROUTER FOR TWO-DIMENSIONAL ARRAYS 42

Level

6

5

4

3

2

1

5

4

3

2

1

0 10 ns
pe

_pϕ
p[0:3]

0

19.7ns

1.28ns

23.5ns

_pe

1.80ns4.31ns 3.41ns

pϕ

Figure 3.7: Postlayout Transmitter and Receiver SPICE Simulations
Left : Soma 0 and 9 (000000 and 000021 in 4-ary) spike simultaneously (Level 0). Their pφ signals
propagate up to Level 1 (only Soma 0’s parent is shown) and Level 2, where Soma 0’s subtree is
selected. Thus, its pφ signal propagates to the root (Level 6). Enabled by the environment’s pe
signal (top), which propagates down the tree (not shown), each node forwards its requesting child’s
1-of-4 coded index (p0:3) and then forwards indices forwarded by the child (they are all 0 for Soma
0). Each node clears its pφ once its child clears its pφ, signaling that there are no more indices to
be forwarded. A node is then free to select another requesting subtree, as happens at Level 2 for
Soma 9’s subtree. Right : The environment sends two inhibitory spikes to Synapse 0 by injecting
two packets containing its path appended with 0 (i.e., 000000) at the root. Each node selects the
child indexed by the first 1-of-4 code (p0:3) and forwards the remaining codes to that child after
lowering pφ. Note that the leaf (Level 1) does not propagate pφ to the synapse (Level 0).

2mm

Figure 3.8: Fabrication and validation
Left: Test chip containing analog neurons, the router presented herein, and a digital datapath.
Center: Test board piggybacked on an FPGA development board (Opal Kelly) that provides a USB
link to a host computer. Right: Visualization of a 32×32-soma patch of the chip’s spiking activity.
Each small square represents a soma; its brightness reflects the soma’s spike rate. The four, bright
soma clusters are receiving excitatory input from spikes delivered to nearby synapses.

4

Conclusions

In this thesis, I have described the theoretical underpinnings for Braindrop’s accumulative hard-

ware for spike-train weighting and summating and have detailed the physical router hardware for

communicating spikes as well as programming packets to and from Braindrop’s neuron array. With

its completion, Braindrop affords neuromorphic engineers both a sufficient number of neurons for

nontrivial tasks and, different from Neurogrid, a well-mapped, systematic means of configuring those

neurons. It is my hope that Braindrop enbables neuromorphic engineers to convincingly demonstrate

to the wider world that the brain still has something to teach us about computing.

43

Appendix A

Spike Summing and Weighting

A.1 periodic SNR approximation

For λτ →∞, SNRperiodic → 2
√

3λτ . Seeing this is not so straightforward since limλτ→∞ coth
(

1
2λτ

)
is not defined, so we move forward using Taylor series approximations. Recalling that coth

(
1

2λτ

)
=(

1 + e−1/λτ
) (

1− e−1/λτ
)−1

,

SNR(X) =

√
2λτ

1+e−1/λτ

1−e−1/λτ − 2λτ
=

√√√√√ 2λτ
1+1− 1

λτ + 1
2

1
(λτ)2

− 1
6

1
(λτ)3

+...

1−1+ 1
λτ−

1
2

1
(λτ)2

+ 1
6

1
(λτ)3

+...
− 2λτ

=

√√√√√ 1

1
2λτ

2− 1
λτ + 1

2
1

(λτ)2
− 1

6
1

(λτ)3
+...

1
λτ−

1
2

1
(λτ)2

+ 1
6

1
(λτ)3

+...
− 1

=

√√√√√ 1
2− 1

λτ + 1
2

1
(λτ)2

− 1
6

1
(λτ)3

+...

2− 1
λτ + 1

3
1

(λτ)2
− 1

12
1

(λτ)3
+...
− 1

The Taylor series approximations begin to differ with the 1
(λτ)2 coefficients; we drop higher order

terms that converge to 0 much faster.

44

APPENDIX A. SPIKE SUMMING AND WEIGHTING 45

SNR(X) =
λτ→∞

√√√√√ 1
2− 1

λτ + 1
2

1
(λτ)2

2− 1
λτ + 1

3
1

(λτ)2
− 1

=

√√√√√ 1
2− 1

λτ + 1
3

1
(λτ)2

+ 1
6

1
(λτ)2

2− 1
λτ + 1

3
1

(λτ)2
− 1

=

√√√√√ 1

1 +
1
6

1
(λτ)2

2− 1
λτ + 1

3
1

(λτ)2
− 1

=
λτ→∞

√√√√ 1
1
6

1
(λτ)2

2

= 2
√

3λτ

A.2 p-thinning SNR approximation

As p tends to 0, the p-thinned periodic SNR tends towards the Poisson SNR. As before, we Taylor

series expand coth and find where terms begin to differ to find limp→0 SNR(X).

lim
p→0

SNR(X) = lim
p→0

√√√√√ 2λτ

1 + p
1+

(
1− p

λτ + 1
2 (p

λτ)
2− 1

6 (p
λτ)

3
+...

)
1−

(
1− p

λτ + 1
2 (p

λτ)
2− 1

6 (p
λτ)

3
+...

) − 2λτ

= lim
p→0

√√√√√ 2λτ

1 + 2λτ
2− p

λτ + 1
2 (p

λτ)
2− 1

6 (p
λτ)

3
+...

2− p
λτ + 1

3 (p
λτ)

2− 1
12 (p

λτ)
3−...

− 2λτ

= lim
p→0

√√√√√ 2λτ

1 + 2λτ
2− p

λτ + 1
3 (p

λτ)
2
+ 1

6 (p
λτ)

2

2− p
λτ + 1

3 (p
λτ)

2 − 2λτ

= lim
p→0

√√√√√ 2λτ

1 + 2λτ

(
1 +

1
6 (p

λτ)
2

2− p
λτ + 1

3 (p
λτ)

2

)
− 2λτ

=
√

2λτ

A.3 d-thinning SNR expansion

We express SNRdthin(X) in terms of SNRpoi(X), by considering SNRdthin(X) = SNRpoi(X)/g and

expanding binomials:

g2 =
(1 + kλτ)k +(kλτ)k

(1 + kλτ)k−(kλτ)k
−2λτ =

∑k
j=0

(
k
j

)
(kλτ)j +(kλτ)k∑k

j=0

(
k
j

)
(kλτ)j−(kλτ)k

−2λτ

=
1+(k2−2)λτ + . . .+ 1

6k
k−2(k−1)(k+4)(λτ)k−2 + kk−1(λτ)k−1

1+k2λτ + . . .+ 1
2k

k−1(k−1)(λτ)k−2 + kk(λτ)k−1

APPENDIX A. SPIKE SUMMING AND WEIGHTING 46

By taking a fourth-order Taylor series approximation in the denominator of SNRdthin,

SNR(X) ≈
√

2λτ

1 + k4−10k2+9
15(2λτ)4 + −k4+20k2−19

45(2λτ)3 + k2−1
3(2λτ)2 + k2−1

3(2λτ)

≈
√

2λτ/(1 + k2/3(2λτ)) assuming k � 1 and λτ � 1

Appendix B

AER Transmitter Design Space

This appendix explores the router’s AER transmitter (AEXT) design space. From the implemented

transmitter design described in Section 3.4.1, the designs described here are earlier iterations and

listed in approximately reverse chronological order.

B.1 AEXT Control Data decomposed (CD)

In this design, the control and data are separated; there is a control tree and a data tree (cf. AEXT

ASPR and AEXT PSAR with combined control and data).

B.1.1 AEXT CD noTW CYC

The transmitter (AEXT) control-data decomposed (CD) without tailword (noTW) cyclic signaling

(CYC) design make more efficient use of the control signaling (relative to AEXT CD noTW) by

doing away with the data enable/acknowledge entirely.

Radix 2 accounting (2047 intermediate nodes, 2048 leaf nodes):

intermediate nodes

component transistors/component components/node transistors/node

NODE 90 1

total transistors/intermediate node 90

leaf nodes

component transistors/component components/node transistors/node

LEAF 74 1 74

total transistors/leaf node 74

47

APPENDIX B. AER TRANSMITTER DESIGN SPACE 48

(90 transistors/intermediate node * 2047 intermediate nodes + 74 transistors/leaf node * 2048

leaf nodes) / 4096 neurons = 82.0 transistors/neuron

Radix 4 accounting (341 intermediate nodes, 1024 leaf nodes):

intermediate nodes

component transistors/component components/node transistors/node

NODE 274 1 274

total transistors/intermediate node 274

leaf nodes

component transistors/component components/node transistors/node

LEAF 218 1 218

total transistors/leaf node 218

(274 transistors/intermediate node * 341 intermediate nodes + 218 transistors/leaf node * 1024

leaf nodes) / 4096 neurons = 77.3 transistors/neuron

AEXT CD noTW CYC NODE

Intermediate node of AEXT tree.

*[[c0 −→ po↑; [pi];

w0↑; [¬pi]; u↑; w0↓; [pi];

c0o↑; [¬c0]; po↓; [¬pi]; c0o↓; u↓
[]c1 −→ po↑; [pi];

w1↑; [¬pi]; u↑; w1↓; [pi];

c1o↑; [¬c1]; po↓; [¬pi]; c1o↓; u↓
]]

*[[c00 ∨ c10 ∨ w0 −→ p0↑; [¬pi]; c0o↓; [¬c00 ∧ ¬c10 ∧ ¬w0]; p0↓; [pi ∧ c0]; c0o↑
[]c01 ∨ c11 ∨ w1 −→ p1↑; [¬pi]; c1o↓; [¬c01 ∧ ¬c10 ∧ ¬w1]; p1↓; [pi ∧ c1]; c1o↑
]]

It’s helpful to consider the projection of the HSE on to the parent control and data lines.

*[po↑; [pi];

[¬pi]; [pi];

(P↑; [¬pi]; P↓; [pi])× (m − 1)

po↓; [¬pi]

]

APPENDIX B. AER TRANSMITTER DESIGN SPACE 49

The first line propagates the child request up the tree and waits for the parents to acknowledge.

The second line is the node outputting a new head word.

The third line repeats (m− 1) times where m is this node’s level in the tree.

The fourth line propagates the child reset up the tree.

¬u ∧ (c0 ∨ c1) → po↑
(c0o ∧ ¬c0) ∨ (c1o ∧ ¬c1) → po↓

c0 ∧ pi ∧ ¬u → w0↑
u → w0↓

c1 ∧ pi ∧ ¬u → w1↑
u → w1↓

(w0 ∨ w1) ∧ ¬pi → u↑
¬c0o ∧ ¬c1o ∧ ¬po → u↓

c0 ∧ u ∧ pi ∧ ¬c1o → c0o↑
¬pi → c0o↓

c1 ∧ u ∧ pi¬c0o → c1o↑
¬pi → c1o↓

c00 ∨ c10 ∨ w0 → p0↑
¬c00 ∧ ¬c10 ∧ ¬w0 → p0↓

c01 ∨ c11 ∨ w1 → p1↑
¬c01 ∧ ¬c11 ∧ ¬w1 → p1↓

Radix 2 transistor approximate accounting:

rule transistor count comments

c[0, 1] 12 2-way arbiter

po 11

w[0, 1] 16

u 10

c[0, 1]o 18

p[0, 1] 12

total 79

Radix 4 transistor approximate accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-way unpipelined arbiter

po 19

w[0, 1, 2, 3] 32

u 10

c[0, 1, 2, 3]o 44

p[0, 1, 2, 3] 40

total 237

APPENDIX B. AER TRANSMITTER DESIGN SPACE 50

CMOS-implementable PRS

u ∧ (c0 ∨ c1) → po↓
(¬ c0o ∧ ¬c0) ∨ (¬ c1o ∧ ¬c1) → po↑

¬ po → po↑
po → po↓

c0 ∧ pi ∧ u → w0↓
¬ u → w0↑

c1 ∧ pi ∧ u → w1↓
¬ u → w1↑

(¬ w0 ∨ ¬ w1) ∧ ¬pi → u↑
c0o ∧ c1o ∧ po → u↓

¬u → u↑
u → u↓

c0 ∧ u ∧ pi ∧ c1o → c0o↓
¬pi → c0o↑

c1 ∧ u ∧ pi c0o → c1o↓
¬pi → c1o↑

¬ c0o → c0o↑
c0o → c0o↓

¬ c1o → c1o↑
c1o → c1o↓

¬ c00 ∨ ¬ c10 ∨ ¬ w0 → p0↑
c00 ∧ c10 ∧ w0 → p0↓

¬ c01 ∨ ¬ c11 ∨ ¬ w1 → p1↑
c01 ∧ c11 ∧ w1 → p1↓

¬p0 → p0↑
p0 → p0↓

¬p1 → p1↑
p1 → p1↓

Note that the root NODE does not create p[0, 1]. We simply present a normal-sense pi, po, and

p[0, 1] interface to the environment.

We could make another another version of CMOS-implementable PRS to alternate with this

version and eliminate the inverters creating po, c[0, 1]o, and p[0, 1]. However, that version would

have a PMOS pull up chain for c[0, 1]o that doesn’t scale. With a radix 2 tree the chain is already 4

transistors long. With a radix 4 tree the chain is 6 transitors long. We want to keep PMOS chains

3 long or shorter.

Radix 2 transistor accounting:

APPENDIX B. AER TRANSMITTER DESIGN SPACE 51

rule transistor count comments

c[0, 1] 12 2-way arbiter

po 11

po 2

w[0, 1] 16

u 10

u 2

c[0, 1]o 18

c[0, 1]o 4

p[0, 1] 12

p[0, 1] 4

total 91

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-way unpipelined arbiter

po 19

po 2

w[0, 1, 2, 3] 32

u 10

u 2

c[0, 1, 2, 3]o 44

c[0, 1, 2, 3]o 8

p[0, 1, 2, 3] 40

p[0, 1, 2, 3] 8

total 257

AEXT CD noTW CYC NODE (reference implementation)

Intermediate node of AEXT tree

APPENDIX B. AER TRANSMITTER DESIGN SPACE 52

*[[c0 −→ q0↑; po↑; [pi];

w0↑; [¬pi]; u↑; w0↓; [pi];

c0o↑; [¬c0]; q0↓; po↓; u↓; [¬pi]; c0o↓
[]c1 −→ q1↑; po↑; [pi];

w1↑; [¬pi]; u↑; w1↓; [pi];

c1o↑; [¬c1]; q1↓; po↓; u↓; [¬pi]; c1o↓
]]

*[[c00 ∨ c10 ∨ w0 −→ p0↑; [¬pi]; c0o↓; [¬c00 ∧ ¬c10 ∧ ¬w0]; p0↓; [pi ∧ q0]; c0o↑
[]c01 ∨ c11 ∨ w1 −→ p1↑; [¬pi]; c1o↓; [¬c01 ∧ ¬c10 ∧ ¬w1]; p1↓; [pi ∧ q1]; c1o↑
]]

c0 ∧ ¬c1o → q0↑
¬c0 ∧ c0o → q0↓

c1 ∧ ¬c0o → q1↑
¬c1 ∧ c1o → q1↓

q0 ∨ q1 → po↑
¬q0 ∧ ¬q1 → po↓

q0 ∧ pi ∧ ¬u → w0↑
u → w0↓

q1 ∧ pi ∧ ¬u → w1↑
u → w1↓

(w0 ∨ w1) ∧ ¬pi → u↑
¬po → u↓

q0 ∧ u ∧ pi → c0o↑
(¬u ∨ p0 ∨ p1) ∧ ¬pi → c0o↓

¬q1 ∧ u ∧ pi → c1o↑
(¬u ∨ p0 ∨ p1) ∧ ¬pi → c1o↓

c00 ∨ c10 ∨ w0 → p0↑
¬c00 ∧ ¬c10 ∧ ¬w0 → p0↓

c01 ∨ c11 ∨ w1 → p1↑
¬c01 ∧ ¬c11 ∧ ¬w1 → p1↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1] 12 2-way arbiter

q[0, 1] 16

po 4

w[0, 1] 16

u 8

c[0, 1]o 22

p[0, 1] 12

total 90

APPENDIX B. AER TRANSMITTER DESIGN SPACE 53

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-way unpipelined arbiter

q[0, 1, 2, 3] 40

po 8

w[0, 1, 2, 3] 32

u 10

c[0, 1, 2, 3]o 52

p[0, 1, 2, 3] 40

total 274

Radix 2 transistor accounting:

AEXT CD noTW CYC LEAF

Leaf node of AEXT tree

*[[c0 −→ po↑; [pi];

p0↑; [¬pi]; u↑; p0↓; [pi];

c0o↑; [¬c0]; po↓; [¬pi]; c0o↓; u↓
[]c1 −→ po↑; [pi];

p1↑; [¬pi]; u↑; p1↓; [pi];

c1o↑; [¬c1]; po↓; [¬pi]; c1o↓; u↓
]]

PRS

¬u ∧ c0 ∨ c1 → po↑
(c0o ∧ ¬c0) ∨ (c1o ∧ ¬c1) → po↓

c0 ∧ pi ∧ ¬u → p0↑
u → p0↓

c1 ∧ pi ∧ ¬u → p1↑
u → p1↓

(p0 ∨ p1) ∧ ¬pi → u↑
¬c0o ∧ ¬c1o ∧ ¬po → u↓

c0 ∧ u ∧ pi ∧ ¬c1o → c0o↑
¬u ∧ ¬pi → c0o↓

c1 ∧ u ∧ pi ∧ ¬c0o → c1o↑
¬u ∧ ¬pi → c1o↓

Radix 2 transistor approximate accounting:

APPENDIX B. AER TRANSMITTER DESIGN SPACE 54

rule transistor count comments

c[0, 1] 12 2-way arbiter

po 11

p[0, 1] 16

u 10

c[0, 1]o 20

total 69

Radix 4 transistor approximate accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-way unpipelined arbiter

po 17

p[0, 1, 2, 3] 32

u 14

c[0, 1, 2, 3]o 48

total 203

CMOS-implementable PRS

u ∧ c0 ∨ c1 → po↓
(¬ c0o ∧ ¬c0) ∨ (¬ c1o ∧ ¬c1) → po↑

¬ po → po↑
po → po↓

c0 ∧ pi ∧ u → p0↓
¬ u → p0↑

c1 ∧ pi ∧ u → p1↓
¬ u → p1↓

(¬ p0 ∨ ¬ p1) ∧ ¬pi → u↑
c0o ∧ c1o ∧ po → u↓

¬u → u↑
u → u↓

c0 ∧ u ∧ pi ∧ c1o → c0o↓
¬u ∧ ¬pi → c0o↑

c1 ∧ u ∧ pi ∧ c0o → c1o↓
¬u ∧ ¬pi → c1o↑

¬ c0o → c0o↑
c0o → c0o↓

¬ c1o → c1o↑
c1o → c1o↓

Radix 2 transistor accounting:

APPENDIX B. AER TRANSMITTER DESIGN SPACE 55

rule transistor count comments

c[0, 1] 12 2-way arbiter

po 11

po 2

p[0, 1] 16

u 10

u 2

c[0, 1]o 20

c[0, 1]o 4

total 77

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-way unpipelined arbiter

po 17

po 2

p[0, 1, 2, 3] 32

u 14

u 2

c[0, 1, 2, 3]o 48

c[0, 1, 2, 3]o 8

total 215

AEXT CD noTW CYC LEAF (reference implementation)

Leaf node of AEXT tree

*[[c0 −→ q0↑; po↑; [pi];

p0↑; [¬pi]; u↑; p0↓; [pi];

c0o↑; [¬c0]; q0↓; po↓; u↓; [¬pi]; c0o↓
[]c1 −→ q1↑; po↑; [pi];

p1↑; [¬pi]; u↑; p1↓; [pi];

c1o↑; [¬c1]; q1↓; po↓; u↓; [¬pi]; c1o↓
]]

c0 ∧ ¬c1o → q0↑
¬c0 ∧ c0o → q0↓

c1 ∧ ¬c0o → q1↑
¬c1 ∧ c1o → q1↓

q0 ∨ q1 → po↑
¬q0 ∧ ¬q1 → po↓

APPENDIX B. AER TRANSMITTER DESIGN SPACE 56

q0 ∧ pi ∧ ¬u → p0↑
u → p0↓

q1 ∧ pi ∧ ¬u → p1↑
u → p1↓

(p0 ∨ p1) ∧ ¬pi → u↑
¬po → u↓

q0 ∧ u ∧ pi → c0o↑
¬u ∧ ¬pi → c0o↓

q1 ∧ u ∧ pi → c1o↑
¬u ∧ ¬pi → c1o↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1] 12 2-way arbiter

q[0, 1] 16

po 4

p[0, 1] 16

u 8

c[0, 1]o 18

total 74

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-way unpipelined arbiter

q[0, 1, 2, 3] 40

po 8

p[0, 1, 2, 3] 32

u 10

c[0, 1, 2, 3]o 36

total 218

B.1.2 AEXT CD noTW

This design has no tail word.

Radix 2 accounting (2047 intermediate nodes, 2048 leaf nodes):

APPENDIX B. AER TRANSMITTER DESIGN SPACE 57

intermediate nodes

component transistors/component components/node transistors/node

CTRL 86 1 86

MERGE 28 1 28

total transistors/intermediate node 114

leaf nodes

component transistors/component components/node transistors/node

LEAF 64 1 64

total transistors/leaf node 64

(114 transistors/intermediate node * 2047 intermediate nodes + 64 transistors/leaf node * 2048

leaf nodes) / 4096 neurons = 89.0 transistors/neuron

Radix 4 accounting (341 intermediate nodes, 1024 leaf nodes):

intermediate nodes

component transistors/component components/node transistors/node

CTRL 246 1 246

MERGE 60 1 60

total transistors/intermediate node 306

leaf nodes

component transistors/component components/node transistors/node

LEAF 204 1 204

total transistors/leaf node 204

(306 transistors/intermediate node * 341 intermediate nodes + 204 transistors/leaf node * 1024

leaf nodes) / 4096 neurons = 76.5 transistors/neuron

AEXT CD noTW CTRL

*[[C 0 • P ; M ; C 0 • P

|C 1 • P ; M ; C 1 • P

]]

*[[c0 −→ po↑; [pi]; c0o↑;
mw↑; [we]; w0↑; [¬we]; w0↓; mw↓;
m0↑; [¬c0]; po↓; [¬pi]; c0o↓; m0↓

[]c1 −→ po↑; [pi]; c1o↑;
mw↑; [we]; w1↑; [¬we]; w1↓; mw↓;
m1↑; [¬c1]; po↓; [¬pi]; c1o↓; m1↓

]]

APPENDIX B. AER TRANSMITTER DESIGN SPACE 58

*[[c0 −→ q0↑; po↑; [pi];

mw↑; c0o↑; [we]; w0↑; [¬we]; m0↑; mw↓; w0↓
[¬c0]; q0↓; po↓; [¬pi]; m0↓; c0o↓

[]c1 −→ q1↑; po↑; [pi];

mw↑; c1o↑; [we]; w1↑; [¬we]; m1↑; mw↓; w1↓
[¬c1]; q1↓; po↓; [¬pi]; m1↓; c1o↓

]]

sequence

mx↓; cxo↓

required to lower control before releasing child to lower word line.

c0 ∧ ¬m0 ∧ ¬c1o → q0↑
¬c0 ∧m0 ∧ ¬w0 → q0↓

c1 ∧ ¬m1 ∧ ¬c0o → q1↑
¬c1 ∧m1 ∧ ¬w1 → q1↓

q0 ∨ q1 → po↑
¬q0 ∧ ¬q1 → po↓

q0 ∧mw → c0o↑
¬m0 ∧ ¬pi → c0o↓

q1 ∧mw → c1o↑
¬m1 ∧ ¬pi → c1o↓

c0o ∧ we → w0↑
¬mw → w0↓

c1o ∧ we → w1↑
¬mw → w1↓

pi ∧ ¬m0 ∧ ¬m1 → mw↑
¬pi ∨m0 ∨m1 → mw↓

w0 ∧ ¬we → m0↑
¬pi → m0↓

w1 ∧ ¬we → m1↑
¬pi → m1↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1] 12 2-input arbiter

q[0, 1] 20

po 4

c[0, 1]o 16

w[0, 1] 14

mw 6

m[0, 1] 14

total 86

APPENDIX B. AER TRANSMITTER DESIGN SPACE 59

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-input arbiter

q[0, 1, 2, 3] 48

po 8

c[0, 1, 2, 3]o 32

w[0, 1, 2, 3] 28

mw 10

m[0, 1, 2, 3] 28

total 246

AEXT CD noTW MERGE

*[[pe];

[m0 −→ c0e↑;
[c00 −→ p0↑; [¬pe]; c0e↓; [¬c00]; p0↓
[]c01 −→ p1↑; [¬pe]; c0e↓; [¬c01]; p1↓]

[]m1 −→ c1e↑;
[c10 −→ p0↑; [¬pe]; c1e↓; [¬c10]; p0↓
[]c11 −→ p1↑; [¬pe]; c1e↓; [¬c11]; p1↓]

[]mw −→ cwe↑
[cw0 −→ p0↑; [¬pe]; cwe↓; [¬cw0]; p0↓
[]cw1 −→ p1↑; [¬pe]; cwe↓; [¬cw1]; p1↓]

]]

pe ∧m0 → c0e↑
¬pe ∨ ¬m0 → c0e↓

pe ∧m1 → c1e↑
¬pe ∨ ¬m1 → c1e↓

pe ∧mw → cwe↑
¬pe ∨ ¬mw → cwe↓

c00 ∨ c10 ∨ cw0 → p0↑
¬c00 ∧ ¬c10 ∧ ¬cw0 → p0↓

c01 ∨ c11 ∨ cw1 → p1↑
¬c01 ∧ ¬c11 ∧ ¬cw1 → p1↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1, w]e 12

p[0, 1] 12

total 24

APPENDIX B. AER TRANSMITTER DESIGN SPACE 60

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3, w]e 20

p[0, 1, 2, 3] 40

total 60

AEXT CD noTW LEAF

*[[C 0 • P ; W !0; C 0 • P

|C 1 • P ; W !1; C 1 • P

]]

*[[c0 −→ po↑; [pi]; c0o↑;
[we]; w0↑; [¬we]; w0↓
[¬c0]; po↓; [¬pi]; c0o↓

[]c1 −→ po↑; [pi]; c1o↑;
[we]; w1↑; [¬we]; w1↓
[¬c1]; po↓; [¬pi]; c1o↓

]]

*[[c0 −→ q0↑; po↑; [pi]; c0o↑;
[¬c0 ∧ we]; w0↑; [¬we]; q0↓; po↓; [¬pi]; w0↓;
c0o↓

[]c1 −→ q1↑; po↑; [pi]; c1o↑;
[¬c1 ∧ we]; w1↑; [¬we]; q1↓; po↓; [¬pi]; w1↓;
c1o↓

]]

The sequence of

[¬we]; po↓; [¬pi]; wx↓;

is very important. Parent nodes need to reset control of merge before lowering word line.

c0 ∧ ¬c1o → q0↑
w0 ∧ ¬we → q0↓

c0 ∧ ¬c1o → q1↑
w1 ∧ ¬we → q1↓

q0 ∨ q1 → po↑
¬q0 ∧ ¬q1 → po↓

q0 ∧ ¬c0 ∧ we → w0↑
¬pi → w0↓

q1 ∧ ¬c1 ∧ we → w1↑
¬pi → w1↓

APPENDIX B. AER TRANSMITTER DESIGN SPACE 61

q0 ∧ pi → c0o↑
¬w0 ∧ ¬pi → c0o↓

q1 ∧ pi → c1o↑
¬w1 ∧ ¬pi → c1o↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1] 12 2-input arbiter

q[0, 1] 16

po 4

w[0, 1] 16

c[0, 1]o 16

total 64

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-input arbiter

q[0, 1, 2, 3] 40

po 8

w[0, 1, 2, 3] 32

c[0, 1, 2, 3]o 32

total 204

B.1.3 AEXT CD TW

This design has a tail word.

Radix 2 accounting (4095 nodes / 4096 neurons):

component transistors/component components/node transistors/node

CTRL 84 1 84

MERGE 28 1 28

FWDT 15 2 30

total transistors/node 142

142 transistors/node * 4095 nodes / 4096 neurons = 142.0 transistors/neuron

We also need

8 transistors / INT * 1 INT / neuron = 8 transistors/neuron

This gives us

142 + 8 = 150 transistors/neuron

Radix 4 transistor accounting (1365 nodes / 4096 neurons):

APPENDIX B. AER TRANSMITTER DESIGN SPACE 62

component transistors/component components/node transistors/node

CTRL 238 1 238

MERGE 68 1 68

FWDT 15 4 60

total transistors/node 366

366 transistors/node * 1365 nodes / 4096 neurons = 122.0 transistors/neuron

We also need

8 transistors / INT * 1 INT / neuron = 8 transistors/neuron

This gives us

122 + 8 = 130 transistors/neuron

AEXT CD TW CTRL

Control.

*[[C 0 −→ P ; mh •H !0; m0 • F0; C 0

|C 1 −→ P ; mh •H !1; m1 • F1; C 1

]]

*[[c0 −→ po↑; [pi];

mw↑; [we]; w0↑; [¬we]; mw↓; w0↓;
m0↑; f 0o↑; [f 0i]; m0↓; f 0o↓; [¬f 0i]

c0o↑; [¬c0]; po↓; [¬pi]; c0o↓
[]c1 −→ po↑; [pi];

mw↑; [we]; w1↑; [¬we]; mw↓; w1↓;
m1↑; f 1o↑; [f 1i]; m1↓; f 1o↓; [¬f 1i]

c1o↑; [¬c1]; po↓; [¬pi]; c1o↓
]]

*[[c0 −→ po↑; [pi];

(c0o↑; [¬c0]),

(mw↑; [we]; w0↑; [¬we]; m0↑; mw↓; w0↓;
f 0o↑; [f 0i]; po↓; [¬pi]);

m0↓; f 0o↓; c0o↓; [¬f 0i]

[]c1 −→ po↑; [pi];

(c1o↑; [¬c1]),

(mw↑; [we]; w1↑; [¬we]; m1↑; mw↓; w1↓;
f 1o↑; [f 1i]; po↓; [¬pi]);

m1↓; f 1o↓; c1o↓; [¬f 1i]

]]

APPENDIX B. AER TRANSMITTER DESIGN SPACE 63

(c0 ∨ c1) ∧ ¬f 1i ∧ ¬f 0i → po↑
f 1i ∨ f 0i → po↓

pi ∧ ¬m0 ∧ ¬m1 → mw↑
¬pi ∨m0 ∨m1 → mw↓

w0 ∧ ¬we → m0↑
¬pi ∧ ¬c0 → m0↓

w1 ∧ ¬we → m1↑
¬pi ∧ ¬c1 → m1↓

c0o ∧ we → w0↑
¬mw → w0↓

c1o ∧ we → w1↑
¬mw → w1↓

m0 ∧ ¬w0 → f 0o↑
¬m0 ∨ w0 → f 0o↓

m1 ∧ ¬w1 → f 1o↑
¬m1 ∨ w1 → f 0o↓

c0 ∧ pi ∧ ¬c1o → c0o↑
¬f 0o ∧ ¬pi → c0o↓

c1 ∧ pi ∧ ¬c0o → c1o↑
¬f 1o ∧ ¬pi → c1o↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1] 12 2-input arbiter

po 10

mw 6

m[0, 1] 16

w[0, 1] 14

f [0, 1]o 8

c[0, 1]o 18

total 84

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3] 92 4-input arbiter

po 16

mw 10

m[0, 1, 2, 3] 32

w[0, 1, 2, 3] 28

f [0, 1, 2, 3]o 16

c[0, 1, 2, 3]o 44

total 238

APPENDIX B. AER TRANSMITTER DESIGN SPACE 64

AEXT CD TW MERGE

Controlled merge.

*[[M 0 −→ *[P !(C 0?)]

[]M 1 −→ *[P !(C 1?)]

[]Mh −→ P !(H ?)

]]

*[[pe];

[m0 −→ c0e↑;
[c00 −→ p0↑; [¬pe]; c0e↓; [¬c00]; p0↓
[]c01 −→ p1↑; [¬pe]; c0e↓; [¬c01]; p1↓
[]c0t −→ pt↑; [¬pe]; c0e↓; [¬c0t]; pt↓]

[]m1 −→ c1e↑;
[c10 −→ p0↑; [¬pe]; c1e↓; [¬c10]; p0↓
[]c11 −→ p1↑; [¬pe]; c1e↓; [¬c11]; p1↓
[]c1t −→ pt↑; [¬pe]; c1e↓; [¬c1t]; pt↓]

[]mw −→ cwe↑
[cw0 −→ p0↑; [¬pe]; cwe↓; [¬cw0]; p0↓
[]cw1 −→ p1↑; [¬pe]; cwe↓; [¬cw1]; p1↓]

]]

pe ∧m0 → c0e↑
¬pe ∨ ¬m0 → c0e↓

pe ∧m1 → c1e↑
¬pe ∨ ¬m1 → c1e↓

pe ∧mw → cwe↑
¬pe ∨ ¬mw → cwe↓

c00 ∨ c10 ∨ cw0 → p0↑
¬c00 ∧ ¬c10 ∧ ¬cw0 → p0↓

c01 ∨ c11 ∨ cw1 → p1↑
¬c01 ∧ ¬c11 ∧ ¬cw1 → p1↓

c0t ∨ c1t → pt↑
¬c0t ∧ ¬c1t → pt↓

Radix 2 transistor accounting:

rule transistor count comments

c[0, 1, w]e 12

p[0, 1] 12

pt 4

total 28

APPENDIX B. AER TRANSMITTER DESIGN SPACE 65

Radix 4 transistor accounting:

rule transistor count comments

c[0, 1, 2, 3, w]e 20

p[0, 1, 2, 3] 40

pt 8

total 68

AEXT CD TW WORD

Output a word.

*[Y !(X ?)]

*[[ye]; xe↑;
[x0 −→ y0↑; [¬ye]; xe↓; [¬x0]; y0↓
[]x1 −→ y1↑; [¬ye]; xe↓; [¬x1]; y1↓
]]

ye → xe↑
¬ye → xe↓

x0 → y0↑
¬x0 → y0↓

x1 → y1↑
¬x1 → y1↓

Radix 2 transistor accounting:

rule transistor count comments

total 0 all wires

Radix 4 transistor accounting:

rule transistor count comments

total 0 all wires

AEXT CD TW FWDT

Forward and detect tail.

*[C↑;
[X = 0 −→ Y !X

[]X = 1 −→ Y !X

[]X = t −→ Y !X ; C↓
]]

APPENDIX B. AER TRANSMITTER DESIGN SPACE 66

*[[ci ∧ ye]; xe↑;
[x0 −→ y0↑; [¬ye]; xe↓; [¬x0]; y0↓
[]x1 −→ y1↑; [¬ye]; xe↓; [¬x1]; y1↓
[]xt −→ yt↑; [¬ye]; xe↓; co↑; [¬xt ∧ ¬ci]; yt↓; co↓
]]

how do I express this in CHP?

ci ∧ ye → xe↑
¬ci ∨ ¬ye → xe↓

yt ∧ ¬xe → co↑
¬yt ∨ xe → co↓

x0 → y0↑
¬x0 → y0↓

x1 → y1↑
¬x1 → y1↓

xt → yt↑
¬xt ∧ ¬ci → yt↓

Radix 2 transistor accounting:

rule transistor count comments

xe 4

co 4

y[0, 1] 0 wires

yt 7

total 15

Radix 4 transistor accounting:

rule transistor count comments

xe 4

co 4

y[0, 1, 2, 3] 0 wires

yt 7

total 15

AEXT CD TW INT

Neuron interface.

*[N ; C ; D]

*[[ni]; co↑; [ci ∧ de]; dt↑; no↑;
[¬ni]; co↓; [¬ci ∧ ¬de]; dt↓; no↓]

APPENDIX B. AER TRANSMITTER DESIGN SPACE 67

ni → co↑
¬ni → co↓

ci ∧ de → dt↑
¬ci ∧ ¬de → dt↓

dt → no↑
¬dt → no↓

Transistor accounting:

rule transistor count comments

co 0 wires

dt 8

no 0 wires

total 8

B.2 AEXT Control Data Combined

In these designs, the control and data are not decomposed.

B.3 AEXT ASPR NODE

The active-sender, passive-receiver (ASPR) design assumes that the children actively send data to

their passively receveiving parents. The following describes a monolithic node process encapsulating

that idea.

NODE ≡
*[[h −→

[C 0 −→ s := 0,P !(0);

|C 1 −→ s := 1,P !(1)];

h := false

[]¬h −→
[s = 0 −→ C 0?x ; P !x

[]s = 1 −→ C 1?x ; P !x

]; h := x .tail

]]

B.4 AEXT ASPR PFWD/MERGE (PM)

The monolithic NODE can be decomposed into PFWD, which prepends a word to the packet

indicating which branch the packet is coming from and MERGE processes, and MERGE, which

arbitrates between incoming packet streams and outputs them one at a time.

APPENDIX B. AER TRANSMITTER DESIGN SPACE 68

Radix 2 accounting (4095 nodes / 4096 neurons):

component transistors/component components/node transistors/node

PFWD 53 2 106

MERGE 90 1 90

total transistors/node 196

196 transistors/node * 4095 nodes / 4096 neurons = 196.0 transistors/neuron

The leaf node PFWDs only need to communicate the tail bit and their prepend bit and can leave

off the other bit. This saves 2 production rules, or 14 transistors per node. With 2048 leaf nodes,

this saves us 28672 transistors.

(196 transistors/node * 4095 nodes - 28672) / 4096 neurons = 189.0 transistors/neuron

Radix 4 transistor accounting (1365 nodes / 4096 neurons):

component transistors/component components/node transistors/node

PFWD 73 4 292

MERGE 288 1 288

total transistors/node 580

580 transistors/node * 1365 nodes / 4096 neurons = 193.3 transistors/neuron

The leaf node PFWDs only need to communicate the tail bit and their prepend bit and can leave

off the other bit. This saves 4 production rules, or 32 transistors per node. With 1024 leaf nodes,

this saves us 32768 transistors.

(698 transistors/node * 4095 nodes - 32768) / 4096 neurons = 185.3 transistors/neuron

B.5 AEXT ASPR PM PFWD unpipelined

HSE

*[h ∧ (x0 ∨ x1 ∨ xt) −→ q↑; yp↑; [yi]; h↓; yp↓; [¬yi]; q↓
[]¬h ∧ ¬q ∧ x0 −→ y0↑; [yi]; xo↑; [¬x0]; y0↓; [¬yi]; xo↓
[]¬h ∧ ¬q ∧ x1 −→ y1↑; [yi]; xo↑; [¬x1]; y1↓; [¬yi]; xo↓
[]¬h ∧ ¬q ∧ xt −→ yt↑; [yi]; xo↑; [¬xt]; h↑; yt↓; [¬yi]; xo↓]

PRS

¬xt ∧ yt → h↑
q ∧ yi → h↓

h ∧ (x0 ∨ x1 ∨ xt) → q↑
¬h ∧ ¬yi → q↓

¬q ∧ yi → xo↑
q ∨ ¬yi → xo↓

APPENDIX B. AER TRANSMITTER DESIGN SPACE 69

h ∧ q → yp↑
¬h ∧ q ∧ yi → yp↓

¬h ∧ ¬q ∧ x0 → y0↑
¬q ∧ ¬x0 → y0↓

¬h ∧ ¬q ∧ x1 → y1↑
¬q ∧ ¬x1 → y1↓

¬h ∧ ¬q ∧ xt → yt↑
h → yt↓

Radix 2 transistor accounting:

rule transistor count comments

h 8

q 10

xo 4

yp 5 OR’ed with a y rule below which also provides the staticizer

y[0, 1] 18

yt 8

total 53

Radix 4 transistor accounting:

rule transistor count comments

h 8

q 12

xo 4

yp 5 OR’ed with a y rule below which also provides the staticizer

y[0, 1, 2, 3] 36

yt 8

total 73

B.6 AEXT ASPR PM PFWD pipelined hq

This version has fewer state variables than AEXT PFWD hu, but the pull-up and pull-down chains

are too long.

CHP

APPENDIX B. AER TRANSMITTER DESIGN SPACE 70

PFWD ≡
h := true;

*[[h ∧X −→ Y !(header); h↓
[]¬h ∧X −→ Y !(X ?) • [X = t −→ h↑];

]

]

HSE

*[h ∧ (x0 ∨ x1 ∨ xt) −→ yp↑; [yi]; q↑; yp↓; [¬yi]; h↓; q↓
[]¬h ∧ x0 −→ y0↑; xo↑; [yi]; y0↓; [¬x0]; xo↓; [¬yi]

[]¬h ∧ x1 −→ y1↑; xo↑; [yi]; y1↓; [¬x1]; xo↓; [¬yi]

[]¬h ∧ xt −→ yt↑; xo↑; [yi]; h↑; yt↓; [¬xt]; xo↓; [¬yi]]

PRS

h ∧ yi ∧ yp → q↑
¬h → q↓

yt ∧ xo ∧ yi → h↑
q ∧ ¬yi → h↓

¬h ∧ (y0 ∨ y1 ∨ yt) → xo↑
¬x0 ∧ ¬x1 ∧ ¬xt ∧ ¬y0 ∧ ¬y1 ∧ ¬yt → xo↓

h ∧ ¬q ∧ ¬yi ∧ ¬xo ∧ (x0 ∨ xi ∨ xt) → yp↑
q → yp↓

¬h ∧ ¬q ∧ ¬yi ∧ x0 ∧ ¬xo → y0↑
yi ∧ xo → y0↓

¬h ∧ ¬q ∧ ¬yi ∧ x1 ∧ ¬xo → y1↑
yi ∧ xo → y1↓

¬h ∧ ¬q ∧ ¬yi ∧ xt ∧ ¬xo → yt↑
h ∧ xo → yt↓

Radix 2 transistor accounting:

rule transistor count comments

q 8

h 9

xo 14

yp 8 OR’ed with a y rule below which also provides the staticizer

y[0, 1] 22

yt 11

total 72

APPENDIX B. AER TRANSMITTER DESIGN SPACE 71

Radix 4 transistor accounting:

rule transistor count comments

q 8

h 9

xo 20

yp 10 OR’ed with a y rule below which also provides the staticizer

y[0, 1, 2, 3] 44

yt 11

total 102

B.7 AEXT ASPR PM PFWD hu

This version has more state variables than AEXT PFWD hq, but has reasonable pull-up and pull-

down chains.

CHP

PFWD ≡
*[[h ∧X −→ Y !(header); h↓
[]¬h ∧X −→ X ?u •Y !u, [u = t −→ h↑]
]

]

HSE

*[[h ∧ (x0 ∨ x1 ∨ xt) −→ yp↑; [yi]; h↓; yp↓; [¬yi]

[]¬h ∧ x0 −→ u0↑; (xo↑; [¬x0]), (y0↑; [yi]); u0↓; (y0↓; [¬yi]), xo↓
[]¬h ∧ x1 −→ u1↑; (xo↑; [¬x1]), (y1↑; [yi]); u1↓; (y1↓; [¬yi]), xo↓
[]¬h ∧ xt −→ ut↑; (xo↑; [¬xt]), (yt↑; h↑; [yi]); ut↓; (yt↓; [¬yi]), xo↓
]

]

APPENDIX B. AER TRANSMITTER DESIGN SPACE 72

*[[h ∧ (x0 ∨ x1 ∨ xt) −→ yp↑; [yi]; h↓; yp↓; [¬yi]

[]¬h ∧ x0 −→ u0↑; [¬x0 ∧ yi]; u0↓; [¬yi]

[]¬h ∧ x1 −→ u1↑; [¬x1 ∧ yi]; u1↓; [¬yi]

[]¬h ∧ xt −→ ut↑; [¬xt ∧ h ∧ yi]; ut↓; [¬yi]

]

]

*[u0 −→ xo↑, y0↑; [¬u0]; y0↓, xo↓
[]u1 −→ xo↑, y1↑; [¬u1]; y1↓, xo↓
[]ut −→ xo↑, (yt↑; h↑); [ut↓]; yt↓, xo↓
]

PRS

yt → h↑
yp ∧ yi → h↓

h ∧ (x0 ∨ x1 ∨ xt) ∧ ¬yi ∧ ¬yt → yp↑
¬h ∧ yi ∧ ¬un → yp↓

u0 ∨ u1 ∨ ut → xo↑
¬u0 ∧ ¬u1 ∧ ¬ut → xo↓

¬h ∧ x0 ∧ ¬yi → u0↑
¬x0 ∧ yi → u0↓

¬h ∧ x1 ∧ ¬yi → u1↑
¬x1 ∧ yi → u1↓

¬h ∧ xt ∧ ¬yi → ut↑
h ∧ ¬xt ∧ yi → ut↓

u0 → y0↑
¬h ∧ ¬u0 → y0↓

u1 → y1↑
¬h ∧ ¬u1 → y1↓

ut → yt↑
¬ut → yt↓

Radix 2 transistor accounting:

APPENDIX B. AER TRANSMITTER DESIGN SPACE 73

rule transistor count comments

h 7

yp 9 OR’ed with a y rule below which also provides the staticizer

xo 6

u[0, 1] 18

ut 10

y[0, 1] 14

yt 6

total 70

Radix 4 transistor accounting:

rule transistor count comments

h 7

yp 11 OR’ed with a y rule below which also provides the staticizer

xo 10

u[0, 1, 2, 3] 36

ut 10

y[0, 1, 2, 3] 28

yt 6

total 108

B.8 AEXT ASPR PM MERGE unpipelined

HSE

*[[¬a0 ∧ ¬a1 ∧ (c00 ∨ c01 ∨ c0t) −→ a0↑
|¬a0 ∧ ¬a1 ∧ (c10 ∨ c11 ∨ c1t) −→ a1↑]]

*[[a0 ∧ c00 −→ p0↑; [pi]; c0o↑; [¬c00]; p0↓; [¬pi]; c0o↓
[]a0 ∧ c01 −→ p1↑; [pi]; c0o↑; [¬c01]; p1↓; [¬pi]; c0o↓
[]a0 ∧ c0t −→ pt↑; [pi]; c0o↑; [¬c0t]; a0↓; pt↓; [¬pi]; c0o↓
[]a1 ∧ c10 −→ p0↑; [pi]; c1o↑; [¬c10]; p0↓; [¬pi]; c1o↓
[]a1 ∧ c11 −→ p1↑; [pi]; c1o↑; [¬c11]; p1↓; [¬pi]; c1o↓
[]a1 ∧ c1t −→ pt↑; [pi]; c1o↑; [¬c1t]; a1↓; pt↓; [¬pi]; c1o↓
]]

PRS

APPENDIX B. AER TRANSMITTER DESIGN SPACE 74

(c00 ∨ c01 ∨ c0t) ∧ ¬a0 → a0i↑
a0 → a0i↓

(c10 ∨ c11 ∨ c1t) ∧ ¬a1 → a1i↑
a1 → a1i↓

a0o ∧ ¬a1 ∧ ¬pi → a0↑
¬a0o ∧ pt ∧ ¬c0t → a0↓

a1o ∧ ¬a0 ∧ ¬pi → a1↑
¬a1o ∧ pt ∧ ¬c1t → a1↓

(a0 ∧ c00 ∨ a1 ∧ c10) → p0↑
(a0 ∧ ¬c00 ∨ a1 ∧ ¬c10) → p0↓

(a0 ∧ c00 ∨ a1 ∧ c10) → p0↑
(a0 ∧ ¬c00 ∨ a1 ∧ ¬c10) → p0↓

(a0 ∧ c0t ∨ a1 ∧ c1t) → pt↑
¬a0 ∧ ¬a1 → pt↓

a0 ∧ pi → c0o↑
¬a0 ∨ ¬pi → c0o↓

a1 ∧ pi → c1o↑
¬a1 ∨ ¬pi → c1o↓

Radix 2 transistor accounting:

rule transistor count comments

a[0, 1]i 16 can be combinational with radix 2

a[0, 1]o 12 2-way arbiter

a[0, 1] 20

p[0, 1] 24

pt 10

c[0, 1]o 8

total 90

Radix 4 transistor accounting:

rule transistor count comments

a[0, 1, 2, 3]i 44

a[0, 1, 2, 3]o 92 4-way unpipelined arbiter

a[0, 1, 2, 3] 40

p[0, 1, 2, 3] 80

pt 16

c[0, 1, 2, 3]o 16

total 288

B.9 AEXT ASPR PM MERGE pipelined a a

I don’t like this version because the pullup chains for the state variables are too long and won’t scale

to higher radix encoding.

APPENDIX B. AER TRANSMITTER DESIGN SPACE 75

CHP

MERGE ≡
*[[h −→ [C 0 −→ a := 0|C 1 −→ a := 1]; h↓
[]¬h ∧ a = 0 −→ P !(C 0?)

[]¬h ∧ a = 0 −→ P !(C 1?)

]]

HSE

*[[¬a0 ∧ ¬a1 ∧ (c00 ∨ c01 ∨ c0t) −→ a0↑
|¬a0 ∧ ¬a1 ∧ (c10 ∨ c11 ∨ c1t) −→ a1↑]]

*[[a0 ∧ c00 −→ p0↑; c0o↑; [pi ∧ ¬c00]; p0↓; c0o↓; [¬pi]

[]a0 ∧ c01 −→ p1↑; c0o↑; [pi ∧ ¬c01]; p1↓; c0o↓; [¬pi]

[]a0 ∧ c0t −→ pt↑; c0o↑; [pi ∧ ¬c0t]; a0↓; pt↓; c0o↓; [¬pi]

[]a1 ∧ c10 −→ p0↑; c1o↑; [pi ∧ ¬c10]; p0↓; c1o↓; [¬pi]

[]a1 ∧ c11 −→ p1↑; c1o↑; [pi ∧ ¬c11]; p1↓; c1o↓; [¬pi]

[]a1 ∧ c1t −→ pt↑; c1o↑; [pi ∧ ¬c1t]; a1↓; pt↓; c1o↓; [¬pi]

]]

PRS

¬a0 ∧ (c00 ∨ c01 ∨ c0t) ∧ ¬c0o → a0i↑
a0 → a0i↓

¬a1 ∧ (c10 ∨ c11 ∨ c1t) ∧ ¬c1o → a1i↑
a1 → a1i↓

a0o ∧ ¬a1 ∧ ¬c1o ∧ ¬pi → a0↑
¬a0o ∧ pi ∧ pt ∧ ¬c0t → a0↓

a1o ∧ ¬a0 ∧ ¬c0o ∧ ¬pi → a1↑
¬a1o ∧ pi ∧ pt ∧ ¬c1t → a1↓

¬pi ∧ (a0 ∧ c00 ∨ a1 ∧ c10) → p0↑
pi ∧ (¬ a0 ∧ ¬c00 ∨ ¬ a1 ∧ ¬c10) → p0↓

¬pi ∧ (a0 ∧ c01 ∨ a1 ∧ c11) → p1↑
pi ∧ (¬ a0 ∧ ¬c01 ∨ ¬ a1 ∧ ¬c11) → p1↓

¬pi ∧ (a0 ∧ c0t ∨ a1 ∧ c1t) → pt↑
a0 ∧ a1 → pt↓

a0 ∧ (p0 ∨ p1 ∨ pt) → c0o↑
¬p0 ∧ ¬p1 ∧ ¬pt → c0o↓

a1 ∧ (p0 ∨ p1 ∨ pt) → c1o↑
¬p0 ∧ ¬p1 ∧ ¬pt → c1o↓

Radix 2 transistor accounting:

APPENDIX B. AER TRANSMITTER DESIGN SPACE 76

rule transistor count comments

a[0, 1]i 20

a[0, 1]o 12 2-way arbiter

a[0, 1] 24

p[0, 1] 28

pt 11

c[0, 1]o 22

total 117

Radix 4 transistor accounting:

rule transistor count comments

a[0, 1, 2, 3]i 48

a[0, 1, 2, 3]o 92 4-way unpipelined arbiter

a[0, 1, 2, 3] 48

p[0, 1, 2, 3] 88

pt 17

c[0, 1, 2, 3]o 60

total 353

B.10 AEXT ASPR PM MERGE pipelined ah

This one has acceptable pullup/pulldown chains, but I’m worried about making it CMOS imple-

mentable

HSE

*[[¬a0 ∧ (c00 ∨ c01 ∨ c0t) −→ a0↑; h↓; [¬a0]; h↑
|¬a1 ∧ (c10 ∨ c11 ∨ c1t) −→ a1↑; h↓; [¬a1]; h↑]]

*[[a0 ∧ c00 −→ p0↑; c0o↑; [pi ∧ ¬c00]; p0↓; c0o↓; [¬pi]

[]a0 ∧ c01 −→ p1↑; c0o↑; [pi ∧ ¬c01]; p1↓; c0o↓; [¬pi]

[]a0 ∧ c0t −→ pt↑; c0o↑; [pi ∧ ¬c0t]; a0↓; pt↓; c0o↓; [¬pi]

[]a1 ∧ c10 −→ p0↑; c1o↑; [pi ∧ ¬c10]; p0↓; c1o↓; [¬pi]

[]a1 ∧ c11 −→ p1↑; c1o↑; [pi ∧ ¬c11]; p1↓; c1o↓; [¬pi]

[]a1 ∧ c1t −→ pt↑; c1o↑; [pi ∧ ¬c1t]; a1↓; pt↓; c1o↓; [¬pi]

]]

PRS

APPENDIX B. AER TRANSMITTER DESIGN SPACE 77

(c00 ∨ c01 ∨ c0t) ∧ ¬a0 → a0i↑
¬h ∧ a0 → a0i↓

(c10 ∨ c11 ∨ c1t) ∧ ¬a1 → a1i↑
¬h ∧ a1 → a1i↓

h ∧ a0o ∧ ¬pi → a0↑
pt ∧ pi ∧ c0o ∧ ¬c0t ∧ ¬a0o → a0↓

h ∧ a1o ∧ ¬pi → a1↑
pt ∧ pi ∧ c1o ∧ ¬c1t ∧ ¬a1o → a1↓

¬a0 ∧ ¬a1 → h↑
a0 ∨ a1 ∧ ¬c0o ∧ ¬c1o → h↓

¬pi ∧ (a0 ∧ c00 ∨ a1 ∧ c10) ∧ ¬h → p0↑
pi ∧ (a0 ∧ ¬c00 ∨ a1 ∧ ¬c10) → p0↓

¬pi ∧ (a0 ∧ c01 ∨ a1 ∧ c11) ∧ ¬h → p1↑
pi ∧ (a0 ∧ ¬c01 ∨ a1 ∧ ¬c11) → p1↓

¬pi ∧ (a0 ∧ c0t ∨ a1 ∧ c1t) ∧ ¬h → pt↑
¬a0 ∧ ¬a1 → pt↓

a0 ∧ (p0 ∨ p1 ∨ pt) → c0o↑
¬p0 ∧ ¬p1 ∧ ¬pt → c0o↓

a1 ∧ (p0 ∨ p1 ∨ pt) → c1o↑
¬p0 ∧ ¬p1 ∧ ¬pt → c1o↓

Radix 2 transistor accounting:

rule transistor count comments

a[0, 1]i 20

a[0, 1]o 12 2-way arbiter

a[0, 1] 24

h 10

p[0, 1] 30

pt 12

c[0, 1]o 22

total 130

Radix 4 transistor accounting:

rule transistor count comments

a[0, 1, 2, 3]i 48

a[0, 1, 2, 3]o 92 4-way unpipelined arbiter

a[0, 1, 2, 3] 48

h 14

p[0, 1, 2, 3] 52

pt 16

c[0, 1, 2, 3]o 100

total 370

APPENDIX B. AER TRANSMITTER DESIGN SPACE 78

B.11 AEXT ASPR PFWD PREPEND/FWD/SIMPLE MERGE

PREPEND and FWD are further decomposed into PREPEND, FWD, and SIMPLE MERGE.

B.12 AEXT ASPR PFWD PREPEND

HSE

*[[si]; yp↑; [yi]; yp↓; [¬yi]; so↑; [¬si]; so↓]

B.13 AEXT PFWD FWD

HSE

*[[x0 ∨ x1 ∨ xt]; so↑; [si]; so↓; [¬si];

[x0 −→ y0↑; [yi]; y0↓; [¬yi]

[]x1 −→ y1↑; [yi]; y1↓; [¬yi]

[]xt −→ yt↑; [yi]; yt↓; [¬yi]

]]

B.14 AEXT ASPR PFWD SIMPLE MERGE

Assumes that its inputs are mutually exclusive.

HSE

*[[c00 −→ p0↑; [pi]; c0o↑; [¬c00]; p0↓; [¬pi]; c0o↓
[]c01 −→ p1↑; [pi]; c0o↑; [¬c01]; p1↓; [¬pi]; c0o↓
[]c0t −→ pt↑; [pi]; c0o↑; [¬c0t]; pt↓; [¬pi]; c0o↓
[]c10 −→ p0↑; [pi]; c1o↑; [¬c00]; p0↓; [¬pi]; c1o↓
[]c11 −→ p1↑; [pi]; c1o↑; [¬c01]; p1↓; [¬pi]; c1o↓
[]c1t −→ pt↑; [pi]; c1o↑; [¬c0t]; pt↓; [¬pi]; c1o↓
]]

PRS

c00 ∨ c10 → p0↑
¬c00 ∧ ¬c10 → p0↓

c01 ∨ c11 → p1↑
¬c01 ∧ ¬c11 → p1↓

c0t ∨ c1t → pt↑
¬c0t ∧ ¬c1t → pt↓

APPENDIX B. AER TRANSMITTER DESIGN SPACE 79

pi ∧ (c00 ∨ c01 ∨ c0t) → c0o↑
¬pi → c0o↓

pi ∧ (c10 ∨ c11 ∨ c1t) → c1o↑
¬pi → c1o↓

B.15 AEXT ASPR MERGE

MERGE sequences between outputting two serialized packet streams.

MERGE ≡
*[[¬l ∧ ¬r −→

[L −→ l := true

|R −→ r := true

]

[]l ∨ r −→
[l −→ O !(L?)

[]r −→ O !(R?)

]]

]

Appendix C

AER Receiver Design Space

This appendix explores the AER receiver (AERV) design space in reverse chronological order.

C.1 Receiver tree structure

The receiver tree structure is dictated by its interface with the synapse and neuron/synapse config-

uration memory. We could place a memory for each group of 1 synapse and 4 neurons,

Tree structure:

1 NODE

4 NODE

16 NODE

64 NODE

256 LEAF

1024 SYN 1024 DESERIAL

1024 MEM4

Accounting:

component transistors/component components transistors comments

AERV NODE 152 85 12920

AERV LEAF 152 256 38912

DESERIAL 216 1024 221184 6 1-of-2 words

OR 4 1024 4096

total 277112

total/neuron 67.65

80

APPENDIX C. AER RECEIVER DESIGN SPACE 81

This design is expensive. We are required to use the 1-of-2 instead of 1-of-4 deserializer. The

deserializer costs are derived from the number of words, which are derived from the shape of the

memory as detailed in Section D.28.

To reduce overhead and use a 1-of-4 deserializer, we bundle 2 synapses (8 neurons) into each

port and consolidate the memories for the 16 neurons and their synapses into a single memory:

RVL(4)

xe
DESERIAL

x[0:3]

ye

xϕ

c00e c2e c2[0:3]c2ϕc00[0,1] c01e c01[0,1] c10e c10[0,1] c11e c11[0,1]

y[0:3][0:3]

MEM
xe x[0:3][0:3]

HBUF
x[0,1]xe

y[0,1]ya

SYN
a ie

HBUF
x[0,1]xe

y[0,1]ya

SYN
a ie

HBUF
x[0,1]xe

y[0,1]ya

SYN
a ie

HBUF
x[0,1]xe

y[0,1]ya

SYN
a ie

By consolidating the memories, we further save a port on each leaf node.

Tree structure:

1 NODE

4 NODE

16 NODE

64 NODE

256 LEAF(3)

512 SYN2 256 DESERIAL

256 MEM16

Accounting:

component transistors/component components transistors comments

AERV NODE 152 85 12920

AERV LEAF(3) 114 256 29184

DESERIAL 126 256 32256 4 1-of-4 words

OR 4 512 2048

total 86408

total/neuron 21.10

We could continue this line of thought by consolidating synapses and memories until all config-

uration data is stored in a single, monolithic memory.

Tree structure:

1 NODE(3)

2 NODE DESERIAL

8 NODE MEM4096

32 NODE

128 LEAF

128 SYN8

APPENDIX C. AER RECEIVER DESIGN SPACE 82

Accounting:

component transistors/component components transistors comments

AERV NODE(3) 114 1 114

AERV NODE 152 42 6384

AERV LEAF 152 128 19456

DESERIAL 352 1 352

OR 4 512 2048

total 28354

total/neuron 6.92

This design is the cheapest, but would would be difficult to layout and wire.

C.2 AERV CD noTW cyclic control (CYC)

Builds off AERV CD noTW (Section C.6) by reusing the control lines to request and acknowledge

the data as is done in AEXT CD noTW cyc (Section B.1.1).

Radix 2 accounting:

intermediate nodes

component transistors/component components/node transistors/node

NODE 60 1 60

total transistors/intermediate node 60

leaf nodes

component transistors/component components/node transistors/node

LEAF 60 1 60

total transistors/leaf node 60

(60 transistors/intermediate node * 511 intermediate nodes + 60 transistors/leaf node * 512 leaf

nodes) / 4096 neurons = 15.0 transistors/neuron

Radix 4 accounting:

intermediate nodes

component transistors/component components/node transistors/node

NODE 152 1 152

total transistors/intermediate node 152

leaf nodes

component transistors/component components/node transistors/node

LEAF 152 1 152

total transistors/leaf node 152

APPENDIX C. AER RECEIVER DESIGN SPACE 83

(152 transistors/intermediate node * 256 intermediate nodes + 152 transistors/leaf node * 85

leaf nodes) / 4096 neurons = 12.7 transistors/neuron

C.3 AERV CD noTW CYC NODE

HSE

*[[pφ −→ po↑;
[p0 −→ u0↑; uu↑; po↓; [¬p0]; v↑; c0φ↑; [c0i]; po↑
[]p1 −→ u1↑; uu↑; po↓; [¬p1]; v↑; c1φ↑; [c1i]; po↑
]

[]p0 ∧ c0φ −→ c00↑; [¬c0i]; po↓; [¬p0]; c00↓; [c0i]; ; po↑
[]p1 ∧ c0φ −→ c01↑; [¬c0i]; po↓; [¬p1]; c01↓; [c0i]; ; po↑
[]p0 ∧ c1φ −→ c10↑; [¬c1i]; po↓; [¬p0]; c10↓; [c1i]; ; po↑
[]p1 ∧ c1φ −→ c11↑; [¬c1i]; po↓; [¬p1]; c11↓; [c1i]; ; po↑
[]¬pφ −→ u0↓, u1↓; uu↓, (c0φ↓, c1φ↓; [¬c0i ∧ ¬c1i]; po↓), v↓
]]

PRS

u0 ∨ u1 → uu↑
¬u0 ∧ ¬u1 → uu↓

pφ ∧ ¬uu ∨ c0i ∨ c1i → po↑
(¬pφ ∨ uu) ∧ ¬c0i ∧ ¬c1i → po↓

p0 ∧ ¬v → u0↑
¬pφ → u0↓

p1 ∧ ¬v → u1↑
¬pφ → u1↓

uu ∧ ¬p0 ∧ ¬p1 → v↑
¬uu → v↓

v ∧ u0 → c0φ↑
¬v ∨ ¬u0 → c0φ↓

v ∧ u1 → c1φ↑
¬v ∨ ¬u1 → c1φ↓

APPENDIX C. AER RECEIVER DESIGN SPACE 84

p0 ∧ c0φ → c00↑
¬p0 ∨ ¬c0φ → c00↓

p1 ∧ c0φ → c01↑
¬p1 ∨ ¬c0φ → c01↓

p0 ∧ c1φ → c10↑
¬p0 ∨ ¬c1φ → c10↓

p1 ∧ c1φ → c11↑
¬p1 ∨ ¬c1φ → c11↓

Radix 4 transistor approximate accounting:

rule transistor count comments

uu 8

po 12

u[0, 1, 2, 3] 28

v 10

c[0, 1, 2, 3]φ 16

c[0, 1, 2, 3][0, 1, 2, 3] 64

total 138

Alternative 0: HSE

*[[pi]; po↑;
[p0 −→ u0↑; uu↑; po↓; [¬p0]; c0o↑; cco↑; u0↓; uu↓; [c0i]; cci↑;

po↑; [¬pi]; c0o↓; cco↓, ([¬c0i]; cci↓); po↓
[]p1 −→ u1↑; uu↑; po↓; [¬p1]; c1o↑; cco↑; u1↓; uu↓; [c1i]; cci↑;

po↑; [¬pi]; c1o↓; cco↓, ([¬c1i]; cci↓); po↓
];

]

*[[c0o ∧ p0 −→ c00↑; [¬c0i]; cci↓; po↓; [¬p0]; c00↓; [c0i]; cci↑; po↑
[]c0o ∧ p1 −→ c01↑; [¬c0i]; cci↓; po↓; [¬p1]; c01↓; [c0i]; cci↑; po↑
[]c1o ∧ p0 −→ c10↑; [¬c1i]; cci↓; po↓; [¬p0]; c10↓; [c1i]; cci↑; po↑
[]c1o ∧ p1 −→ c11↑; [¬c1i]; cci↓; po↓; [¬p1]; c11↓; [c1i]; cci↑; po↑
]]

PRS

APPENDIX C. AER RECEIVER DESIGN SPACE 85

(pi ∧ ¬cco ∨ cci) ∧ ¬uu → po↑
(¬pi ∨ cco) ∧ ¬cci ∨ uu → po↓

p0 ∧ ¬cco → u0↑
cco → u0↓

p1 ∧ ¬cco → u1↑
cco → u1↓

u0 ∨ u1 → uu↑
¬u0 ∧ ¬u1 → uu↓

u0 ∧ ¬p0 → c0o↑
¬pi → c0o↓

u1 ∧ ¬p1 → c1o↑
¬pi → c1o↓

c0o ∨ c1o → cco↑
¬c0o ∧ ¬c1o → cco↓

c0i ∨ c1i → cci↑
¬c0i ∧ ¬c1i → cci↓

c0o ∧ p0 → c00↑
¬c0o ∨ ¬p0 → c00↓

c0o ∧ p1 → c01↑
¬c0o ∨ ¬p1 → c01↓

c1o ∧ p0 → c10↑
¬c1o ∨ ¬p0 → c10↓

c1o ∧ p1 → c11↑
¬c1o ∨ ¬p1 → c11↓

Radix 2 transistor approximate accounting:

rule transistor count comments

po 8

u[0, 1] 14

uu 4 could flatten in po

c[0, 1]o 14

cco 4

cci 4 could flatten in po

c[0, 1][0, 1] 16

total 64 60 if cci and uu flattened in po

Radix 4 transistor approximate accounting:

APPENDIX C. AER RECEIVER DESIGN SPACE 86

rule transistor count comments

po 8

u[0, 1, 2, 3] 28

uu 8

c[0, 1, 2, 3]o 28

cco 8

cci 8

c[0, 1, 2, 3][0, 1, 2, 3] 64

total 152 flattening cci and uu would make po pullup chain too long

Radix 3, 1-of-4 out transistor approximate accounting: This is used in some of the receiver designs.

rule transistor count comments

po 8

u[0, 1, 2] 21

uu 6

c[0, 1, 2]o 21

cco 6

cci 6

c[0, 1, 2][0, 1, 2, 3] 48

total 116 114 if cci or uu flattened in po (can’t flatten both; pullup chain too long)

CMOS-implementable PRS

¬ cci → cci↑
cci → cci↓

¬cco → cco↑
cco → cco↓

(pi ∧ cco ∨ cci) ∧ uu → po↓
(¬pi ∨ ¬ cco) ∧ ¬ cci ∨ ¬ uu → po↑

¬p0 → p0↑
p0 → p0↓

¬p1 → p1↑
p1 → p1↓

¬ cco → cco↑
cco → cco↓

¬ p0 ∧ ¬ cco → u0↑
cco → u0↓

¬ p1 ∧ ¬ cco → u1↑
cco → u1↓

APPENDIX C. AER RECEIVER DESIGN SPACE 87

u0 ∨ u1 → uu↓
¬u0 ∧ ¬u1 → uu↑

u0 ∧ p0 → c0o↓
¬pi → c0o↑

u1 ∧ p1 → c1o↓
¬pi → c1o↑

¬ c0o ∨ ¬ c1o → cco↑
c0o ∧ c1o → cco↓

c0i ∨ c1i → cci↓
¬c0i ∧ ¬c1i → cci↑

¬ c0o ∧ ¬ p0 → c00↑
c0o ∨ p0 → c00↓

¬ c0o ∧ ¬ p1 → c01↑
c0o ∨ p1 → c01↓

¬ c1o ∧ ¬ p0 → c10↑
c1o ∨ p0 → c10↓

¬ c1o ∧ ¬ p1 → c11↑
c1o ∨ p1 → c11↓

¬ c0o → c0o↑
c0o → c0o↓

¬ c1o → c1o↑
c1o → c1o↓

¬ po → po↑
po → po↓

Radix 2 transistor accounting:

rule transistor count comments

cci 2

cco 2

po 8

p[0, 1] 4

cco 2

u[0, 1] 14

uu 4

c[0, 1]o 14

cco 4

cci 4

c[0, 1][0, 1] 16

c[0, 1]o 4

po 2

total 80

Radix 4 transistor accounting:

APPENDIX C. AER RECEIVER DESIGN SPACE 88

rule transistor count comments

cci 2

cco 2

po 8

p[0, 1, 2, 3] 8

cco 2

u[0, 1, 2, 3] 28

uu 8

c[0, 1, 2, 3]o 28

cco 8

cci 8

c[0, 1, 2, 3][0, 1, 2, 3] 64

c[0, 1, 2, 3]o 8

po 2

total 176

C.4 AERV CD noTW CYC LEAF

This leaf design does not transmit the co signals to the neuron. Rather data just shows up on the

cxx lines and the neurons acknowledge on the ci lines.

*[[pi]; po↑;
[p0 −→ u0↑; uu↑; po↓; [¬p0]; c0↑; cc↑; u0↓; uu↓;

po↑; [¬pi]; c0↓; cc↓; po↓
[]p1 −→ u1↑; uu↑; po↓; [¬p1]; c1↑; cc↑; u1↓; uu↓;

po↑; [¬pi]; c1↓; cc↓; po↓
];

]

*[[c0 ∧ p0 −→ c00↑; [c0i]; cci↑; po↓; [¬p0]; c00↓; [¬c0i]; cci↓; po↑
[]c0 ∧ p1 −→ c01↑; [c0i]; cci↑; po↓; [¬p1]; c01↓; [¬c0i]; cci↓; po↑
[]c1 ∧ p0 −→ c10↑; [c1i]; cci↑; po↓; [¬p0]; c10↓; [¬c1i]; cci↓; po↑
[]c1 ∧ p1 −→ c11↑; [c1i]; cci↑; po↓; [¬p1]; c11↓; [¬c1i]; cci↓; po↑
]]

PRS

(pi ∨ cco) ∧ ¬uu ∧ ¬cci → po↑
¬pi ∧ ¬cco ∨ uu ∨ cci → po↓

APPENDIX C. AER RECEIVER DESIGN SPACE 89

¬cc ∧ p0 → u0↑
cc → u0↓

¬cc ∧ p1 → u1↑
cc → u1↓

u0 ∨ u1 → uu↑
¬u0 ∧ ¬u1 → uu↓

u0 ∧ ¬p0 → c0↑
¬pi → c0↓

u1 ∧ ¬p1 → c1↑
¬pi → c1↓

c0 ∨ c1 → cc↑
¬c0 ∧ ¬c1 → cc↓

c0i ∨ c1i → cci↑
¬c0i ∧ ¬c1i → cci↓

c0 ∧ p0 → c00↑
¬c0 ∨ ¬p0 → c00↓

c0 ∧ p1 → c01↑
¬c0 ∨ ¬p1 → c01↓

c1 ∧ p0 → c10↑
¬c1 ∨ ¬p0 → c10↓

c1 ∧ p1 → c11↑
¬c1 ∨ ¬p1 → c11↓

Radix 2 transistor approximate accounting:

rule transistor count comments

po 8

u[0, 1] 14

uu 4 could flatten in po

c[0, 1]o 14

cco 4

cci 4 could flatten in po

c[0, 1][0, 1] 16

total 64 60 if cci and uu flattened in po

Radix 4 transistor approximate accounting:

rule transistor count comments

po 8

u[0, 1, 2, 3] 28

uu 8

c[0, 1, 2, 3]o 28

cco 8

cci 8

c[0, 1, 2, 3][0, 1, 2, 3] 64

total 152 flattening cci and uu would make po pullup chain too long

APPENDIX C. AER RECEIVER DESIGN SPACE 90

Radix 3, 1-of-4 out transistor approximate accounting: This is used in some of the receiver designs.

rule transistor count comments

po 8

u[0, 1, 2] 21

uu 6

c[0, 1, 2]o 21

cco 6

cci 6

c[0, 1, 2][0, 1, 2, 3] 48

total 116 114 if cci or uu flattened in po (can’t flatten both; pullup chain too long)

CMOS-implementable PRS

¬pi → pi↑
pi → pi↓

¬ cci → cci↑
cci → cci↓

(¬ pi ∨ ¬ cc) ∧ ¬uu ∧ ¬ cci → po↑
pi ∧ cc ∨ uu ∨ cci → po↓

cc ∧ p0 → u0↓
¬ cc → u0↑

cc ∧ p1 → u1↓
¬ cc → u1↑

¬ u0 ∨ ¬ u1 → uu↑
u0 ∧ u1 → uu↓

¬ u0 ∧ ¬p0 → c0↑
pi → c0↓

¬ u1 ∧ ¬p1 → c1↑
pi → c1↓

c0 ∨ c1 → cc↓
¬c0 ∧ ¬c1 → cc↑

c0i ∨ c1i → cci↓
¬c0i ∧ ¬c1i → cci↑

c0 ∧ p0 → c00↓
¬c0 ∨ ¬p0 → c00↑

c0 ∧ p1 → c01↓
¬c0 ∨ ¬p1 → c01↑

c1 ∧ p0 → c10↓
¬c1 ∨ ¬p0 → c10↑

c1 ∧ p1 → c11↓
¬c1 ∨ ¬p1 → c11↑

APPENDIX C. AER RECEIVER DESIGN SPACE 91

¬ c00 → c00↑
c00 → c00↓

¬ c01 → c01↑
c01 → c01↓

¬ c10 → c10↑
c10 → c10↓

¬ c11 → c11↑
c11 → c11↓

Alternative 1: HSE

*[[pφ −→ po↑;
[p0 −→ u0↑; uu↑; po↓; [¬p0]; v↑; c0s↑; , po↑
[]p1 −→ u1↑; uu↑; po↓; [¬p1]; v↑; c1s↑; , po↑
]

[]p0 ∧ c0s −→ c00↑; [c0i]; cci↑; po↓; [¬p0]; c00↓; [¬c0i]; cci↓; po↑
[]p1 ∧ c0s −→ c01↑; [c0i]; cci↑; po↓; [¬p1]; c01↓; [¬c0i]; cci↓; po↑
[]p0 ∧ c1s −→ c10↑; [c1i]; cci↑; po↓; [¬p0]; c10↓; [¬c1i]; cci↓; po↑
[]p1 ∧ c1s −→ c11↑; [c1i]; cci↑; po↓; [¬p1]; c11↓; [¬c1i]; cci↓; po↑
[]¬pφ −→ u0↓, u1↓; uu↓, c0s↓, c1s↓; v↓, po↓
]]

u0 ∨ u1 → uu↑
¬u0 ∧ ¬u1 → uu↓

c0i ∨ c1i → cci↑
¬c0i ∧ ¬c1i → cci↓

pφ ∧ ¬uu ∨ v ∧ ¬cci → po↑
(¬pφ ∨ uu) ∧ (¬v ∨ cci) → po↓

p0 ∧ ¬v → u0↑
¬pφ → u0↓

p1 ∧ ¬v → u1↑
¬pφ → u1↓

uu ∧ ¬p0 ∧ ¬p1 → v↑
¬uu ∧ ¬c0s ∧ ¬c1s → v↓

v ∧ u0 → c0s↑
¬v ∨ ¬u0 → c0s↓

v ∧ u1 → c1s↑
¬v ∨ ¬u1 → c1s↓

APPENDIX C. AER RECEIVER DESIGN SPACE 92

p0 ∧ c0s → c00↑
¬p0 ∨ ¬c0s → c00↓

p1 ∧ c0s → c01↑
¬p1 ∨ ¬c0s → c01↓

p0 ∧ c1s → c10↑
¬p0 ∨ ¬c1s → c10↓

p1 ∧ c1s → c11↑
¬p1 ∨ ¬c1s → c11↓

Radix 2 transistor approximate accounting:

rule transistor count comments

uu 4

cci 4 could flatten in po

po 8

u[0, 1] 14

v 10

c[0, 1]s 8

c[0, 1][0, 1] 16

total 69 67 if cci flattened in po

Radix 4 transistor approximate accounting:

rule transistor count comments

uu 8

cci 8 could flatten in po

po 8

u[0, 1, 2, 3] 28

v 14

c[0, 1, 2, 3]s 16

c[0, 1, 2, 3][0, 1, 2, 3] 64

total 146 144 if cci flattened in po

C.5 AERV CD noTW CYC LEAF (no data)

If we don’t need to send any data to the neurons we can make very cheap leaf nodes.

APPENDIX C. AER RECEIVER DESIGN SPACE 93

*[[pi]; po↑;
[p0 −→ c0o↑; [c0i]; po↓; [¬p0]; u↑; po↑; [¬pi]; c0o↓[¬c0i]; u↓; po↓
[]p1 −→ c1o↑; [c1i]; po↓; [¬p1]; u↑; po↑; [¬pi]; c1o↓[¬c1i]; u↓; po↓
];

]

PRS

(pi ∧ ¬c0i ∧ ¬c1i) ∨ u → po↑
(¬pi ∨ c0i ∨ c1i) ∧ ¬u → po↓

p0 → c0o↑
¬pi → c0o↓

p1 → c1o↑
¬pi → c1o↓

c0i ∧ ¬p0 ∨ c1i ∧ ¬p1 → u↑
(¬c0i ∨ p0) ∧ (¬c1i ∨ p1) → u↓

Radix 2 transistor approximate accounting:

rule transistor count comments

po 8

c[0, 1]o 12

u[0, 1] 8

total 28

Radix 4 transistor approximate accounting:

rule transistor count comments

po 12

c[0, 1, 2, 3]o 24

u[0, 1, 2, 3] 16

total 52

CMOS-implementable PRS

¬c0i → c0i↑
c0i → c0i↓

¬c1i → c1i↑
c1i → c1i↓

(pi ∧ c0i ∧ c1i) ∨ u → po↓
(¬pi ∨ ¬ c0i ∨ ¬ c1i) ∧ ¬u → po↑

p0 → c0o↓
¬pi → c0o↑

p1 → c1o↓
¬pi → c1o↑

APPENDIX C. AER RECEIVER DESIGN SPACE 94

¬ c0i ∧ ¬p0 ∨ ¬ c1i ∧ ¬p1 → u↑
(c0i ∨ p0) ∧ (c1i ∨ p1) → u↓

¬ c0o → c0o↑
c0o → c0o↓

¬ c1o → c1o↑
c1o → c1o↓

¬ po → po↑
po → po↓

C.6 AERV Control Data decomposed (CD) no tailword (noTW)

Separating control from data and removing the tail word reduced the number of transistors in the

transmitter. We’ll try to apply these same techniques to the receiver. Specifically, we’ll want some-

thing that can interface with the control/data decomposed, no tail word, cyclic control, transmitter

developed in Section B.1.1.

The accounting depends on whether we need the receiver to deliver payload or not. Without

payload, we can simplify the leaf node circuitry. With payload, we’ll need a more complicated

interface with the neuron to be developed.

First we’ll consider the case without payload:

Radix 2 accounting (2047 intermediate nodes, 2048 leaf nodes):

intermediate nodes

component transistors/component components/node transistors/node

SPLIT 30 1 30

CTRL 36 1 36

total transistors/intermediate node 66

leaf nodes

component transistors/component components/node transistors/node

LEAF 30 1 30

total transistors/leaf node 30

(66 transistors/intermediate node * 2047 intermediate nodes + 30 transistors/leaf node * 2048

leaf nodes) / 4096 neurons = 48.0 transistors/neuron

Radix 4 accounting (341 intermediate nodes, 1024 leaf nodes):

APPENDIX C. AER RECEIVER DESIGN SPACE 95

intermediate nodes

component transistors/component components/node transistors/node

SPLIT 90 1 90

CTRL 68 1 68

total transistors/intermediate node 158

leaf nodes

component transistors/component components/node transistors/node

LEAF 58 1 58

total transistors/leaf node 58

(158 transistors/intermediate node * 341 intermediate nodes + 58 transistors/leaf node * 1024

leaf nodes) / 4096 neurons = 27.7 transistors/neuron

Now we’ll consider the case where we have to deliver payload. In this case, we cannot use the

simplified leaf nodes because there is data to be sent to the neuron. In addition, we’ll need to develop

more circuitry per neuron to set bits. We haven’t specified what or how data will be set, so this will

be developed in the future.

Radix 2 accounting (4095 nodes):

(66 transistors/node * 4095 nodes) / 4096 neurons = 66.0 transistors/neuron

Radix 4 accounting (1365 nodes):

(158 transistors/node * 1365 nodes) / 4096 neurons = 52.6 transistors/neuron

C.7 AERV CD noTW SPLIT

*[[C 0 ∧ S = 0 −→ C 0!(P?)

[]C 1 ∧ S = 1 −→ C 1!(P?)

[]C 2 ∧ S = 2 −→ C 2!(P?)

]]

APPENDIX C. AER RECEIVER DESIGN SPACE 96

*[[c0e −→ pe↑;
[s0 ∧ p0 −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓
[]s0 ∧ p1 −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓
]

[]c1e −→ pe↑;
[s1 ∧ p0 −→ c10↑; [¬c1e]; pe↓; [¬p0]; c10↓
[]s1 ∧ p1 −→ c11↑; [¬c1e]; pe↓; [¬p1]; c11↓
]

[]c2e −→ pe↑;
[s2 ∧ p0 −→ c20↑; [¬c2e]; pe↓; [¬p0]; c20↓
[]s2 ∧ p1 −→ c21↑; [¬c2e]; pe↓; [¬p1]; c21↓
]

]]

c0e ∨ c1e ∨ c2e → pe↑
¬c0e ∧ ¬c1e ∧ ¬c2e → pe↓

s0 ∧ p0 → c00↑
¬s0 ∨ ¬p0 → c00↓

s0 ∧ p1 → c01↑
¬s0 ∨ ¬p1 → c01↓

s1 ∧ p0 → c10↑
¬s1 ∨ ¬p0 → c10↓

s1 ∧ p1 → c11↑
¬s1 ∨ ¬p1 → c11↓

s2 ∧ p0 → c20↑
¬s2 ∨ ¬p0 → c21↓

s2 ∧ p1 → c21↑
¬s2 ∨ ¬p1 → c21↓

Radix 2 transistor accounting:

rule transistor count comments

pe 6

c[0, 1, 2][0, 1] 24

total 30

Radix 4 transistor accounting:

rule transistor count comments

pe 10

c[0, 1, 2, 3, 4][0, 1, 2, 3] 80

total 90

APPENDIX C. AER RECEIVER DESIGN SPACE 97

C.8 AERV CD noTW CTRL

*[[P −→ X ?u • S := 2

[u = 0 −→ S := 0; C 0; P

[]u = 1 −→ S := 1; C 1; P

]

]]

*[[pi]; xe↑; s2↑;
[x0 −→ u0↑[]x1 −→ u1↑]; xe↓; [¬x0 ∧ ¬x1]; s2↓;
[u0 −→ s0↑; c0o↑; [c0i]; po↑; [¬pi]; u0↓; s0↓; c0o↓; [¬c0i]

[]u1 −→ s1↑; c1o↑; [c1i]; po↑; [¬pi]; u1↓; s1↓; c1o↓; [¬c1i]

]; po↓
]

pi ∧ ¬u0 ∧ ¬u1 → xe↑
¬pi ∨ u0 ∨ u1 → xe↓

xe ∨ x0 ∨ x1 → s2↑
¬xe ∧ ¬x0 ∧ ¬x1 → s2↓

x0 → u0↑
¬pi → u0↓

x1 → u1↑
¬pi → u1↓

u0 ∧ ¬s2 → s0↑
¬u0 ∨ s2 → s0↓

u1 ∧ ¬s2 → s1↑
¬u1 ∨ s2 → s1↓

s0 → c0o↑
¬s0 → c0o↓

s1 → c1o↑
¬s1 → c1o↓

c0i ∨ c1i → po↑
¬c0i ∧ ¬c1i → po↓

Radix 2 transistor accounting:

rule transistor count comments

xe 6

s2 6

u[0, 1] 12

s[0, 1] 8

c[0, 1]o 0 s[0, 1] = c[0, 1]o

po 4

total 36

APPENDIX C. AER RECEIVER DESIGN SPACE 98

Radix 4 transistor accounting:

rule transistor count comments

xe 10

s4 10

u[0, 1, 2, 3] 24

s[0, 1, 2, 3] 16

c[0, 1, 2, 3]o 0 s[0, 1, 2, 3] = c[0, 1, 2, 3]o

po 8

total 68

C.9 AERV CD noTW LEAF

In the case that we don’t need to deliver payload to the neuron, we can use this LEAF process to

interface with the neuron.

*[[P −→ X ?u

[u = 0 −→ C 0; P

[]u = 1 −→ C 1; P

]

]]

*[[pi]; xe↑;
[x0 −→ u0↑[]x1 −→ u1↑]; xe↓; [¬x0 ∧ ¬x1];

[u0 −→ c0o↑; [c0i]; po↑; [¬pi]; u0↓; c0o↓; [¬c0i]

[]u1 −→ c1o↑; [c1i]; po↑; [¬pi]; u1↓; c1o↓; [¬c1i]

]; po↓
]

pi ∧ ¬u0 ∧ ¬u1 → xe↑
¬pi ∨ u0 ∨ u1 → xe↓

x0 → u0↑
¬pi → u0↓

x1 → u1↑
¬pi → u1↓

u0 ∧ ¬x0 → c0o↑
¬u0 ∨ x0 → c0o↓

u1 ∧ ¬x1 → c1o↑
¬u1 ∨ x1 → c1o↓

c0i ∨ c1i → po↑
¬c0i ∧ ¬c1i → po↓

APPENDIX C. AER RECEIVER DESIGN SPACE 99

Radix 2 transistor accounting:

rule transistor count comments

xe 6

u[0, 1] 12

c[0, 1]o 8

po 4

total 30

Radix 4 transistor accounting:

rule transistor count comments

xe 10

u[0, 1, 2, 3] 24

c[0, 1, 2, 3]o 16

po 8

total 58

C.10 AERV ASPR BCAST pipelined

HSE

strict cpcp

BCAST ≡
*[[p0 −→ c00↑, c10↑; po↑; [c0i ∧ c1i ∧ ¬p0]; c00↓, c10↓; po↓; [¬c0i ∧ ¬c1i];

[]p1 −→ c01↑, c11↑; po↑; [c0i ∧ c1i ∧ ¬p1]; c01↓, c11↓; po↓; [¬c0i ∧ ¬c1i];

[]pt −→ c0t↑, c1t↑; po↑; [c0i ∧ c1i ∧ ¬pt]; c0t↓, c1t↓; po↓; [¬c0i ∧ ¬c1i];

]]

BCAST ≡
*[[p0 −→ q0↑; c00↑, c10↑; po↑; [c0i ∧ c1i ∧ ¬p0]; q0↓; c00↓, c10↓; po↓; [¬c0i ∧ ¬c1i]

[]p1 −→ q1↑; c01↑, c11↑; po↑; [c0i ∧ c1i ∧ ¬p1]; q1↓; c01↓, c11↓; po↓; [¬c0i ∧ ¬c1i]

[]pt −→ qt↑; c0t↑, c1t↑; po↑; [c0i ∧ c1i ∧ ¬pt]; qt↓; c0t↓, c1t↓; po↓; [¬c0i ∧ ¬c1i]

]]

PRS

APPENDIX C. AER RECEIVER DESIGN SPACE 100

q0 → c00↑
¬q0 → c00↓

q1 → c01↑
¬q1 → c01↓

qt → c0t↑
¬qt → c0t↓

q0 → c10↑
¬q0 → c10↓

q1 → c11↑
¬q1 → c11↓

qt → c1t↑
¬qt → c1t↓

¬c0i ∧ ¬c1i ∧ p0 → q0↑
c0i ∧ c1i ∧ ¬p0 → q0↓

¬c0i ∧ ¬c1i ∧ p1 → q1↑
c0i ∧ c1i ∧ ¬p1 → q1↓

¬c0i ∧ ¬c1i ∧ pt → qt↑
c0i ∧ c1i ∧ ¬pt → qt↓

HSE

output ordering cpcp parallelized

BCAST ≡
*[[p0 −→ ([¬c0i]; c00↑), ([¬c1i]; c10↑); po↑; [¬p0]; ([c0i]; c00↓), ([c1i]; c10↓); po↓;
[]p1 −→ ([¬c0i]; c01↑), ([¬c1i]; c11↑); po↑; [¬p1]; ([c0i]; c01↓), ([c1i]; c11↓); po↓;
[]pt −→ ([¬c0i]; c0t↑), ([¬c1i]; c1t↑); po↑; [¬pt]; ([c0i]; c0t↓), ([c1i]; c1t↓); po↓;
]]

PRS

¬c0i ∧ p0 → c00↑
c0i ∧ ¬p0 → c00↓

¬c0i ∧ p1 → c01↑
c0i ∧ ¬p1 → c01↓

¬c0i ∧ pt → c0t↑
c0i ∧ ¬pt → c0t↓

¬c1i ∧ p0 → c10↑
c1i ∧ ¬p0 → c10↓

¬c1i ∧ p1 → c11↑
c1i ∧ ¬p1 → c11↓

¬c1i ∧ pt → c1t↑
c1i ∧ ¬pt → c1t↓

VN (C) → po↑
¬VN (C) → po↓

po is the output of a VN detector

HSE

swap ordering of p and c in reset output ordering cppc parallelized

APPENDIX C. AER RECEIVER DESIGN SPACE 101

BCAST ≡
*[[p0 −→ ([¬c0i]; c00↑), ([¬c1i]; c10↑); (po↑; [¬p0]; po↓); ([c0i]; c00↓), ([c1i]; c10↓)
[]p1 −→ ([¬c0i]; c01↑), ([¬c1i]; c11↑); (po↑; [¬p1]; po↓); ([c0i]; c01↓), ([c1i]; c11↓)
[]pt −→ ([¬c0i]; c0t↑), ([¬c1i]; c1t↑); (po↑; [¬pt]; po↓); ([c0i]; c0t↓), ([c1i]; c1t↓)
]]

PRS

¬c0i ∧ p0 → c00↑
c0i ∧ ¬p0 ∧ ¬po → c00↓

¬c0i ∧ p1 → c01↑
c0i ∧ ¬p1 ∧ ¬po → c01↓

¬c0i ∧ pt → c0t↑
c0i ∧ ¬pt ∧ ¬po → c0t↓

¬c1i ∧ p0 → c10↑
c1i ∧ ¬p0 ∧ ¬po → c10↓

¬c1i ∧ p1 → c11↑
c1i ∧ ¬p1 ∧ ¬po → c11↓

¬c1i ∧ pt → c1t↑
c1i ∧ ¬pt ∧ ¬po → c1t↓

(c00 ∧ c10 ∨ c01 ∧ c11 ∨ c0t ∧ c1t) ∧ (p0 ∨ p1 ∨ pt) → po↑
¬p0 ∧ ¬p1 ∧ ¬pt → po↓

instability on down phases of c because p input can rise at anytime Could probably fix with state

variables.

C.11 AERV ASPR BCAST unpipelined

HSE

BCAST ≡
*[[p0 −→ c00↑, c10↑; [c0i ∧ c1i]; po↑; [¬p0]; c00↓, c10↓; [¬c0i ∧ ¬c1i]; po↓
[]p1 −→ c01↑, c11↑; [c0i ∧ c1i]; po↑; [¬p1]; c01↓, c11↓; [¬c0i ∧ ¬c1i]; po↓
[]pt −→ c0t↑, c1t↑; [c0i ∧ c1i]; po↑; [¬pt]; c0t↓, c1t↓; [¬c0i ∧ ¬c1i]; po↓
]]

PRS

APPENDIX C. AER RECEIVER DESIGN SPACE 102

p0 → c00↑
¬p0 → c00↓

p1 → c01↑
¬p1 → c01↓

pt → c0t↑
¬pt → c0t↓

p0 → c10↑
¬p0 → c10↓

p1 → c11↑
¬p1 → c11↓

pt → c1t↑
¬pt → c1t↓

c0i ∧ c1i → po↑
¬c0i ∧ ¬c1i → po↓

C.12 AERV PSAR

This makes the circuitry much simpler

C.13 AERV PSAR decomposed into ROUTE, READ HEAD,

FWD BODY (RHB)

ROUTE sends a parent’s signal to one of its children depending on which child requests. Assumes

requests are mutually exclusive.

READ HEAD reads the head word and signals FWD BODY which way to forward the body

packet

FWD BODY forwards words to the children based on command from DEC

Radix 2 accounting (4095 nodes / 4096 neurons):

component transistors/component components/node transistors/node

ROUTE 39 1 39

READ HEAD 29 1 29

FWD BODY 51 1 51

total transistors/node 119

119 transistors/node * 4095 nodes / 4096 neurons = 119.0 transistors/neuron

Radix 4 transistor accounting (1365 nodes / 4096 neurons):

APPENDIX C. AER RECEIVER DESIGN SPACE 103

component transistors/component components/node transistors/node

ROUTE 71 1 71

READ HEAD 53 1 53

FWD BODY 125 1 125

total transistors/node 249

249 transistors/node * 1365 nodes / 4096 neurons = 83.0 transistors/neuron

However, we can still send a payload to the neurons with 1-of-2 data instead of 1-of-4 data at the

leaf nodes. There are 1024 leaf nodes. This will simplify the leaf node ROUTE and FWD BODY

components because their children only need to see the 1-bit payload and tail. Each leaf node

ROUTE can lose 1 bit (i.e. 2 data lines or 2 asymmetric c-elements or 14 transistors). Each leaf

node FWD BODY can lose 1 bit (i.e. 2 data lines or 2 AND-gates or 8 transistors) for each of 4

children. Therefore we can subtract

1024*(14+8*4) = 47104 transistors.

Leaving out the high bit from the leaf nodes yields

(249 transistors/node * 1365 nodes - 47104 transistors) / 4096 neurons = 71.5 transistors/neu-

ron

C.14 AERV PSAR RHB ROUTE unpipelined

Note that when communicating with READ HEAD, ROUTE does not need to send the tail bit;

READ HEAD should never see a tail bit.

CHP

*[[C 0!; C 0!(P?)

[]H !; H !(P?)]

]

HSE

*[[c0e ∨ he]; pe↑
[p0 ∧ c0e −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓
[]p1 ∧ c0e −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓
[]pt ∧ c0e −→ c0t↑; [¬c0e]; pe↓; [¬pt]; c0t↓
[]p0 ∧ he −→ h0↑; [¬he]; pe↓; [¬p0]; h0↓
[]p1 ∧ he −→ h1↑; [¬he]; pe↓; [¬p1]; h1↓
]

]

PRS

APPENDIX C. AER RECEIVER DESIGN SPACE 104

c0e ∨ he → pe↑
¬c0e ∧ ¬he → pe↓

p0 ∧ c0e → c00↑
¬p0 → c00↓

p1 ∧ c0e → c01↑
¬p1 → c01↓

pt ∧ c0e → c0t↑
¬pt → c0t↓

p0 ∧ he → h0↑
¬p0 → h0↓

p1 ∧ he → h1↑
¬p1 → h1↓

Radix 2 accounting:

rule transistor count comments

pe 4

c0[0, 1, t] 21

h[0, 1] 14

total 39

Radix 4 transistor accounting:

rule transistor count comments

pe 8

c0[0, 1, 2, 3, t] 35

h[0, 1, 2, 3] 28

total 71

C.15 AERV PSAR RHB READ HEAD

HSE

*[[si]; xe↑;
[x0 −→ u0↑; xe↓; [¬x0]; s0↑; [¬si]; u0↓; s0↓
[]x1 −→ u1↑; xe↓; [¬x1]; s1↑; [¬si]; u1↓; s1↓
]

]

PRS

si ∧ ¬u0 ∧ ¬u1 → xe↑
u0 ∨ u1 → xe↓

APPENDIX C. AER RECEIVER DESIGN SPACE 105

x0 → u0↑
¬si → u0↓

x1 → u1↑
¬si → u1↓

u0 ∧ ¬x0 → s0↑
¬u0 ∨ x0 → s0↓

u1 ∧ ¬x1 → s1↑
¬u1 ∨ x1 → s1↓

Radix 2 accounting:

rule transistor count comments

xe 9

u[0, 1] 12

s[0, 1] 8

total 29

Radix 4 transistor accounting:

rule transistor count comments

xe 13

u[0, 1, 2, 3] 24

s[0, 1, 2, 3] 16

total 53

C.16 AERV PSAR RHB FWD BODY unpipelined

HSE

*[[¬s0 ∧ ¬s1 −→ so↑;
[]s0 −→ [c0e]; pe↑;

[p0 −→ c00↑; [¬c0e]; pe↓; [¬p0]; c00↓
[]p1 −→ c01↑; [¬c0e]; pe↓; [¬p1]; c01↓
[]pt −→ c0t↑; [¬c0e]; pe↓; [¬pt]; so↓; [¬s0]; c0t↓
]

[]s1 −→ [c1e]; pe↑;
[p0 −→ c10↑; [¬c1e]; pe↓; [¬p0]; c10↓
[]p1 −→ c11↑; [¬c1e]; pe↓; [¬p1]; c11↓
[]pt −→ c1t↑; [¬c1e]; pe↓; [¬pt]; so↓; [¬s1]; c1t↓
]

]

]

PRS

APPENDIX C. AER RECEIVER DESIGN SPACE 106

s0 ∧ c0e ∨ s1 ∧ c1e → pe↑
s0 ∧ ¬c0e ∨ s1 ∧ ¬c1e → pe↓

¬c0t ∧ ¬c1t → so↑
¬pt ∧ (c0t ∨ c1t) → so↓

p0 ∧ s0 → c00↑
¬p0 ∨ ¬s0 → c00↓

p1 ∧ s0 → c01↑
¬p1 ∨ ¬s0 → c01↓

pt ∧ s0 → c0t↑
¬s0 → c0t↓

p0 ∧ s1 → c10↑
¬p0 ∨ ¬s1 → c10↓

p1 ∧ s1 → c11↑
¬p1 ∨ ¬s1 → c11↓

pt ∧ s1 → c1t↑
¬s1 → c1t↓

Radix 2 accounting:

rule transistor count comments

pe 12

so 9

c[0, 1][0, 1] 16

c[0, 1]t 14

total 51

Radix 4 transistor accounting:

rule transistor count comments

pe 20

so 13

c[0, 1, 2, 3][0, 1, 2, 3] 64

c[0, 1, 2, 3]t 28

total 125

C.17 AERV PSAR RHB FWD BODY pipelined

HSE

APPENDIX C. AER RECEIVER DESIGN SPACE 107

*[so↑; [s0 ∨ s1]; pe↑;
[p0 ∧ s0 ∧ c0e −→ c00↑; pe↓; [¬p0 ∧ ¬c0e]; c00↓
[]p1 ∧ s0 ∧ c0e −→ c01↑; pe↓; [¬p1 ∧ ¬c0e]; c01↓
[]pt ∧ s0 ∧ c0e −→ c0t↑; pe↓; [¬pt ∧ ¬c0e]; so↓; [¬s0]; c0t↓
[]p0 ∧ s1 ∧ c1e −→ c10↑; pe↓; [¬p0 ∧ ¬c1e]; c10↓
[]p1 ∧ s1 ∧ c1e −→ c11↑; pe↓; [¬p1 ∧ ¬c1e]; c11↓
[]pt ∧ s1 ∧ c1e −→ c1t↑; pe↓; [¬pt ∧ ¬c1e]; so↓; [¬s1]; c1t↓
]

]

PRS

s0 ∨ s1 ∧ ¬q → pe↑
q → pe↓

¬q → so↑
¬pt ∧ (¬c0e ∧ c0t ∨ ¬c1e ∧ c1t) → so↓

c00 ∨ c01 ∨ c0t ∨ c10 ∨ c11 ∨ c1t → q↑
¬c00 ∧ ¬c01 ∧ ¬c0t ∧ ¬c10 ∧ ¬c11 ∧ ¬c1t → q↓

p0 ∧ s0 ∧ c0e → c00↑
¬p0 ∧ ¬c0e → c00↓

p1 ∧ s0 ∧ c0e → c01↑
¬p1 ∧ ¬c0e → c01↓

pt ∧ s0 ∧ c0e → c0t↑
¬s0 → c0t↓

p0 ∧ s1 ∧ c1e → c10↑
¬p0 ∧ ¬c0e → c10↓

p1 ∧ s1 ∧ c1e → c11↑
¬p1 ∧ ¬c0e → c11↓

pt ∧ s1 ∧ c1e → c1t↑
¬s1 → c1t↓

Radix 2 accounting:

rule transistor count comments

total 90

Radix 4 transistor accounting:

rule transistor count comments

total 262

C.18 AERV PSAR decomposed into ROUTE PULL CTRL

PULL (RCP)

ROUTE sends a parent’s signal to one of its children depending on which child requests. Assumes

requests are mutually exclusive. This is same ROUTE as above.

APPENDIX C. AER RECEIVER DESIGN SPACE 108

PULL CTRL reads the head word and indicates which PULL should request data from ROUTE.

PULL requests data from ROUTE and passes the data to the child.

Radix 2 accounting (4095 nodes / 4096 neurons):

component transistors/component components/node transistors/node

ROUTE 62 1 62

PULL CTRL 28 1 28

PULL 14 2 28

total transistors/node 118

118 transistors/node * 4095 nodes / 4096 neurons = 118.0 transistors/neuron

Radix 4 transistor accounting (1365 nodes / 4096 neurons):

component transistors/component components/node transistors/node

ROUTE 178 1 178

PULL CTRL 58 1 58

PULL 14 4 56

total transistors/node 292

292 transistors/node * 1365 nodes / 4096 neurons = 97.3 transistors/neuron

However, we can still send a payload to the neurons with 1-of-2 data instead of 1-of-4 data at the

leaf nodes. There are 1024 leaf nodes. This will simplify the leaf node ROUTE component because

its children only need to see the 1-bit payload and tail. Each leaf node ROUTE can lose 1 bit (i.e.

2 data lines or 2 asymmetric c-elements or 14 transistors) for each of 4 children. Therefore we can

subtract 1024*14*4 = 57344 transistors

Leaving out the high bit from the leaf nodes yields

(292 transistors/node * 1365 nodes - 57344 transistors)/ 4096 neurons = 83.3 transistors/neu-

ron

C.19 AERV PSAR RCP ROUTE

This decomposition largely reuses the unpipelined ROUTE in Section C.14 above. For this decom-

position, ROUTE connects to [radix] instances of PULL and 1 instance of PULL CTRL.

Radix 2 accounting:

APPENDIX C. AER RECEIVER DESIGN SPACE 109

rule transistor count comments

pe 6

c[0, 1][0, 1, t] 42

h[0, 1] 14

total 62

Radix 4 transistor accounting:

rule transistor count comments

pe 10

c[0, 1, 2, 3][0, 1, 2, 3, t] 140

h[0, 1, 2, 3] 28

total 178

C.20 AERV PSAR PULL CTRL

CHP

HSE

*[[s0i ∧ s1i]; xe↑;
[x0 −→ u0↑; xe↓; [¬x0]; s0o↑; [¬s0i]; u0↓; s0o↓
[]x1 −→ u1↑; xe↓; [¬x1]; s1o↑; [¬s0i]; u1↓; s0o↓
]]

PRS

s0i ∧ s1i ∧ q → xe↑
¬s0i ∨ ¬s1i ∨ ¬q → xe↓

¬u0 ∧ ¬u1 → q↑
u0 ∨ u1 → q↓

x0 → u0↑
¬s0i → u0↓

x1 → u1↑
¬s1i → u1↓

u0 ∧ ¬x0 → s0o↑
¬u0 ∨ x0 → s0o↓

u1 ∧ ¬x1 → s1o↑
¬u1 ∨ x1 → s1o↓

Radix 2 accounting:

rule transistor count comments

xe 8 no q

u[0, 1] 12

s[0, 1]o 8

total 28

APPENDIX C. AER RECEIVER DESIGN SPACE 110

Radix 4 transistor accounting:

rule transistor count comments

xe 10

q 8

u[0, 1, 2, 3] 24

s[0, 1, 2, 3]o 16

total 58

C.21 AERV PSAR RCP PULL unpipelined

HSE

*[¬si −→ so↑;
[]si −→ [ye]; xe↑
[x0 −→ y0↑; [¬ye]; xe↓; [¬x0]; y0↓
[]x1 −→ y1↑; [¬ye]; xe↓; [¬x1]; y1↓
[]xt −→ yt↑; [¬ye]; xe↓; [¬xt]; so↓; [¬si]; yt↓
]

]

PRS

¬yt ∧ ¬si → so↑
yt ∧ ¬xt → so↓

si ∧ ye → xe↑
¬si ∨ ¬ye → xe↓

x0 → y0↑
¬x0 → y0↓

x1 → y1↑
¬x1 → y1↓

xt → yt↑
¬si → yt↓

Radix 2 transistor accounting:

rule transistor count comments

so 4

xe 4

y[0, 1] 0 wires

yt 6

total 14

Radix 4 transistor accounting:

APPENDIX C. AER RECEIVER DESIGN SPACE 111

rule transistor count comments

so 4

xe 4

y[0, 1, 2, 3] 0 wires

yt 6

total 14

Appendix D

AER Interface Design Space

The router interfaces include conversions between the serial protocol as well as deserializers and

serializers.

D.1 OUT e1ofN

Interfaces AEXT/AERV serial format to e1ofN channel.

*[[xi ∧ ye]; xo↑; [¬xi ∧ ¬ye]; xo↓]

*[[x0 −→ y0↑; [¬x0]; y0↓
[]x1 −→ y1↑; [¬x1]; y1↓
]]

PRS

xi ∧ ye → xo↑
¬xi ∨ ¬ye → xo↓

x0 → y0↑
¬x0 → y0↓

x1 → y1↑
¬x1 → y1↓

CMOS-implementable PRS version 0

xi ∧ ye → xo↓
¬xi ∨ ¬ye → xo↑

¬ xo → xo↓
xo → xo↑

x0 → y0↑
¬x0 → y0↓

x1 → y1↑
¬x1 → y1↓

112

APPENDIX D. AER INTERFACE DESIGN SPACE 113

CMOS-implementable PRS version 1

xi ∧ ye → xo↓
¬xi ∨ ¬ye → xo↑

¬ xo → xo↓
xo → xo↑

¬ x0 → y0↑
x0 → y0↓

¬ x1 → y1↑
x1 → y1↓

Radix 2 transistor accounting:

rule transistor count comments

xo 4

y[0, 1] 0 wires

total 4

Radix 4 transistor accounting:

rule transistor count comments

xo 4

y[0, 1] 0 wires

total 4

D.2 OUT a1ofN

Interfaces AEXT/AERV serial format to a1ofN channel.

*[[xi]; xo↑; [¬xi]; xo↓]

*[[x0 −→ y0↑; [ya]; xo↓; [¬x0]; y0↓; [¬ya]; xo↑
[]x1 −→ y1↑; [ya]; xo↓; [¬x1]; y1↓; [¬ya]; xo↑
]]

PRS

xi ∧ ¬ya → xo↑
¬xi ∨ ya → xo↓

x0 → y0↑
¬x0 → y0↓

x1 → y1↑
¬x1 → y1↓

CMOS-implementable PRS version 0

xi ∧ ya → xo↓
¬xi ∨ ¬ ya → xo↑

¬ xo → xo↑
xo → xo↓

APPENDIX D. AER INTERFACE DESIGN SPACE 114

x0 → y0↓
¬ x0 → y0↑

x1 → y1↓
¬ x1 → y1↑

Radix 2 transistor accounting:

rule transistor count comments

xo 4

xo 2

y[0, 1] 0 wires

total 6

Radix 4 transistor accounting:

rule transistor count comments

xo 4

xo 2

y[0, 1] 0 wires

total 6

D.3 Deserializer

The deserializer converts 1-of-N serial data into M-1-of-N parallel data.

*[X ?ym ;

[m < M − 1 −→ m := m + 1

[]m = M − 1 −→ Y !y ; m := 0

]

]

We place a deserializer at output of the transmitter to interface with the datapath circuitry. It

is the first in a series of processes that communicate with the outside environment:

transmitter → deserializer → 1-of-4-to-1-of-2 converter (if needed) → [Datapath] → serializer →
receiver

We also place a deserializer at the output of the receiver to interface with the neuron configuration

memory.

D.4 Ring Deserializer

This design uses a ring of nodes receiving data from a central splitter to sequence words into their

respective place in the parallel output. We decompose this process into SPLIT and NODE. This

APPENDIX D. AER INTERFACE DESIGN SPACE 115

design has a slightly cheaper 1-of-4 implementation than the chain deserializer of Section D.9. How-

ever, the data signals in SPLIT and the environment enable signal have fanouts that grow with the

number of words. The below figure shows the decomposition for packets containing M 1-of-2 words.

SPLIT

xi xo x[0,1]

y0a y0[0,1] yma ym[0,1] y(M-1)a y(M-1)[0,1]

AEXT/AERV
po/

c{0,1}o
pi/

c{0,1}i
p[0,1]/

c{0,1}[0,1]

ya y[0,1]

OUT_a1ofN

xa x[0,1]

Environment

x0[0,1]xm[0,1]x(M-1)[0,1]

xe

......

... ...

... ...NODE

xa

so

x[0,1]

y[0,1]

si NODE

xa

so

x[0,1]

y[0,1]

si NODE

xa

so

x[0,1]

y[0,1]

si

C

An OUT a1ofN process (if necessary and described above) first converts the AEXT/AERV serial

communication protocol to the standard a1ofN protocol.

1-of-2 approximate scaling:

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

SPLIT 3M − 2 1 3M − 2

NODE 32 M 32M

C 8 1 8

approx. transistors/deserializer 35M + 10

1-of-4 approximate scaling:

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

SPLIT 3M − 2 1 3M − 2

NODE 54 M 54M

C 8 1 8

approx. transistors/deserializer 57M + 10

For the transmitter to handle 4096 neurons encoded as 1-of-2 or 1-of-4 words, we would need 12 and

6 NODEs, respectively.

1-of-2 accounting:

APPENDIX D. AER INTERFACE DESIGN SPACE 116

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

SPLIT 30 1 30

NODE 32 12 384

C 8 1 8

total transistors/deserializer 426

1-of-4 accounting:

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

SPLIT 16 1 16

NODE 54 6 324

C 8 1 8

total transistors/deserializer 352

D.5 SPLIT

SPLIT takes incoming words and routes them to their respective locations in the parallel output.

For M words per packet,

*[[x0 −→ y00↑, .., y(M − 1)0↑; [y0a ∨ .. ∨ y(M − 1)a]; xa↑;
[¬x0]; y00↓, .., y(M − 1)1↓; [¬y0a ∧ .. ∧ ¬y(M − 1)a]; xa↓

[]x1 −→ y01↑, .., y(M − 1)1↑; [y0a ∨ .. ∨ y(M − 1)a]; xa↑;
[¬x0]; y01↓, .., y(M − 1)1↓; [¬y0a ∧ .. ∧ ¬y(M − 1)a]; xa↓

]]

For a 2-word packet,

*[[x0 −→ y00↑, y10↑; [y0a ∨ y1a]; xa↑;
[¬x0]; y00↓, y01↓; [¬y0a ∧ ¬y1a]; xa↓

[]x1 −→ y01↑, y11↑; [y0a ∨ y1a]; xa↑;
[¬x0]; y01↓, y11↓; [¬y0a ∧ ¬y1a]; xa↓

]]

PRS

x0 → y00↑
¬x0 → y00↓

x0 → y10↑
¬x0 → y10↓

x1 → y01↑
¬x1 → y01↓

x1 → y11↑
¬x1 → y11↓

APPENDIX D. AER INTERFACE DESIGN SPACE 117

y0a ∨ y1a → xa↑
¬y0a ∧ ¬y1a → xa↓

1-of-2 transistor approximate accounting:

rule transistor count comments

y[0..M − 1][0, 1] 0 wires

xa 8(M − 1)/3 4-ary OR-tree approx.

approx. total 3M − 2

1-of-4 transistor approximate accounting:

rule transistor count comments

y[0..M − 1][0, 1, 2, 3] 0 wires

xa 8(M − 1)/3 4-ary OR-tree approx.

approx. total 3M − 2

CMOS-implementable PRS

x0 → y00↑
¬ x0 → y00↓

x0 → y10↑
¬ x0 → y10↓

x1 → y01↑
¬ x1 → y01↓

x1 → y11↑
¬ x1 → y11↓

y0a ∨ y1a → xa↓
¬y0a ∧ ¬y1a → xa↑

¬ y00 → y00↑
y00 → y00↓

¬ y10 → y10↑
y10 → y10↓

¬ y01 → y01↑
y01 → y01↓

¬ y11 → y11↑
y11 → y11↓

D.6 NODE

NODE latches data from SPLIT.

*[[si];

[x0 −→ y0↑; xa↑; [¬x0]; s↑; so↑; xa↓; [¬si]; y0↓; s↓; so↓
[]x1 −→ y1↑; xa↑; [¬x1]; s↑; so↑; xa↓; [¬si]; y1↓; s↓; so↓
]

]

APPENDIX D. AER INTERFACE DESIGN SPACE 118

The s state variable is necessary for bubble reshuffling. It breaks a cycle of isochronic branches

with an odd number of bubbles (See Section D.8), which would be impossible to make CMOS-

implementable.

PRS

¬s ∧ si ∧ x0 → y0↑
¬si → y0↓

¬s ∧ si ∧ x1 → y1↑
¬si → y1↓

¬so ∧ vy → xa↑
so ∨ ¬vy → xa↓

vy ∧ ¬x0 ∧ ¬x1 → s↑
¬vy → s↓

s → so↑
¬s → so↓

y0 ∨ y1 → vy↑
¬y0 ∧ ¬y1 → vy↓

1-of-2 transistor approximate accounting:

rule transistor count comments

y[0, 1][0, 1] 16

xa 4

so 8

vy 4

total 32

1-of-4 transistor approximate accounting:

rule transistor count comments

y[0, 1, 2, 3][0, 1, 2, 3] 32

xa 4

so 10

vy 8

total 54

CMOS-implementable PRS

¬ s → s↑
s → s↓

APPENDIX D. AER INTERFACE DESIGN SPACE 119

¬ s ∧ ¬ si ∧ ¬ x0 → y0↑
si → y0↓

¬ s ∧ ¬ si ∧ ¬ x1 → y1↑
si → y1↓

so ∧ vy → xa↓
¬ so ∨ ¬vy → xa↑

vy ∧ x0 ∧ x1 → s↓
¬vy → s↑

s → so↓
¬ s → so↑

¬y0 → y0↑
y0 → y0↓

¬y1 → y1↑
y1 → y1↓

¬ y0 ∨ ¬ y1 → vy↑
y0 ∧ y1 → vy↓

D.7 C

C in the ring deserializer of Section D.4 is a C-element taking in the environment enable signal and

the last node’s so signal to produce first node’s si signal. si indicates whether we are in the up or

down phase of the serial-to-parallel conversion.

PRS

¬so ∧ xe → si↑
so ∧ ¬xe → si↓

A C-element costs 8 transistors.

CMOS-implementable PRS

so ∧ xe → si↓
¬ so ∧ ¬xe → si↑

D.8 RING

In the interest of bubble reshuffling, the deserial ring NODEs and C-element should be described in

a single process.

APPENDIX D. AER INTERFACE DESIGN SPACE 120

*[[ye]; s0↑;
[x0 −→ y00↑; x0a↑; [¬x0]

[]x1 −→ y01↑; x0a↑; [¬x1]

]; s01↑; s1↑; x0a↓;
...

[x0 −→ ym0↑; xma↑; [¬x0]

[]x1 −→ ym1↑; xma↑; [¬x1]

]; sm(m + 1)↑; s(m + 1)↑; xma↓;
...

[x0 −→ y(M − 1)0↑; x (M − 1)a↑; [¬x0]

[]x1 −→ y(M − 1)1↑; x (M − 1)a↑; [¬x1]

]; s(M − 1)M ↑; sM ↑; x (M − 1)a↓;
[¬ye]; s0↓;
y00↓, y01↓; s01↓; s1↓;
...

ym0↓, ym1↓; sm(m + 1)↓; s(m + 1)↓
...

y(M − 1)0↓, y(M − 1)1↓; s(M − 1)M ↓; sM ↓
]

Recall in Section D.6 that we had an apparently extraneous state variable s. If we removed

the state variable, the NODE processes would share share isochronic branches, which would create

a cycle of isochronic branches among NODES. Further, this cycle would have an odd number of

bubbles and be impossible to make CMOS-implementable.

PRS

Y data:

¬s01 ∧ s0 ∧ x0 → y00↑
¬s0 → y00↓

¬s01 ∧ s0 ∧ x1 → y01↑
¬s0 → y01↓

...

¬sm(m + 1) ∧ sm ∧ x0 → ym0↑
¬sm → ym0↓

¬sm(m + 1) ∧ sm ∧ x1 → ym1↑
¬sm → ym1↓

...

¬s(M − 1)M ∧ s(M − 1) ∧ x0 → y(M − 1)0↑
¬s(M − 1) → y(M − 1)0↓

¬s(M − 1)M ∧ s(M − 1) ∧ x1 → y(M − 1)1↑
¬s(M − 1) → y(M − 1)1↓

X acknowledge:

APPENDIX D. AER INTERFACE DESIGN SPACE 121

¬s01 ∧ v0y → x0a↑
s01 ∨ ¬v0y → x0a↓

...

¬sm(m + 1) ∧ vmy → xma↑
sm(m + 1) ∨ ¬vmy → xma↓

...

¬s(M − 1)M ∧ v(M − 1)y → x (M − 1)a↑
s(M − 1)M ∨ ¬v(M − 1)y → x (M − 1)a↓

S buffer states:

v0y ∧ ¬x0 ∧ ¬x1 → s01↑
¬v0y → s01↓

...

vmy ∧ ¬x0 ∧ ¬x1 → sm(m + 1)↑
¬vmy → sm(m + 1)↓

...

v(M − 1)y ∧ ¬x0 ∧ ¬x1 → s(M − 1)M ↑
¬v(M − 1)y → s(M − 1)M ↓

S input states:

¬sM ∧ ye → s0↑
sM ∧ ¬ye → s0↓

s01 → s1↑
¬s01 → s1↓

...

sm(m + 1) → s(m + 1)↑
¬sm(m + 1) → s(m + 1)↓

...

s(M − 1)M → sM ↑
¬s(M − 1)M → sM ↓

Y valid detectors:

y00 ∨ y01 → v0y↑
¬y00 ∧ ¬y01 → v0y↓

APPENDIX D. AER INTERFACE DESIGN SPACE 122

...

ym0 ∨ ym1 → vmy↑
¬ym0 ∧ ¬ym1 → vmy↓

...

y(M − 1)0 ∨ y(M − 1)1 → v(M − 1)y↑
¬y(M − 1)0 ∧ ¬y(M − 1)1 → v(M − 1)y↓

CMOS-implementable PRS

Y data:

¬ s01 → s01↑
s01 → s01↓

¬ s01 ∧ ¬ s0 ∧ ¬ x0 → y00↑
s0 → y00↓

¬ s01 ∧ ¬ s0 ∧ ¬ x1 → y01↑
s0 → y01↓

...

¬ sm(m + 1) → sm(m + 1)↑
sm(m + 1) → sm(m + 1)↓

¬ sm(m + 1) ∧ ¬ sm ∧ ¬ x0 → ym0↑
sm → ym0↓

¬ sm(m + 1) ∧ ¬ sm ∧ ¬ x1 → ym1↑
sm → ym1↓

...

¬ s(M − 1)M → s(M − 1)M ↓
s(M − 1)M → s(M − 1)M ↓

¬ s(M − 1)M ∧ ¬ s(M − 1) ∧ ¬ x0 → y(M − 1)0↑
s(M − 1) → y(M − 1)0↓

¬ s(M − 1)M ∧ ¬ s(M − 1) ∧ ¬ x1 → y(M − 1)1↑
s(M − 1) → y(M − 1)1↓

X acknowledge:

¬ s01 ∧ ¬ v0y → x0a↑
s01 ∨ v0y → x0a↓

...

¬ sm(m + 1) ∧ ¬ vmy → xma↑
sm(m + 1) ∨ vmy → xma↓

...

APPENDIX D. AER INTERFACE DESIGN SPACE 123

¬ s(M − 1)M ∧ ¬ v(M − 1)y → x (M − 1)a↑
s(M − 1)M ∨ v(M − 1)y → x (M − 1)a↓

S buffer states:

¬ v0y → v0y

v0y → v0y

v0y ∧ x0 ∧ x1 → s01↓
v0y → s01↑

...

¬ vmy → vmy

vmy → vmy

vmy ∧ x0 ∧ x1 → sm(m + 1)↓
vmy → sm(m + 1)↑

...

¬ v(M − 1)y → v(M − 1)y

v(M − 1)y → v(M − 1)y

v(M − 1)y ∧ x0 ∧ x1 → s(M − 1)M ↓
¬ v(M − 1)y → s(M − 1)M ↑

S input/output states:

sM ∧ ye → s0↓
¬ sM ∧ ¬ye → s0↑

¬ s01 → s1↑
s01 → s1↓

...

¬ sm(m + 1) → s(m + 1)↑
sm(m + 1) → s(m + 1)↓

...

¬ s(M − 1)M → sM ↑
s(M − 1)M → sM ↓

Y valid detectors:

y00 ∨ y01 → v0y↓
¬y00 ∧ ¬y01 → v0y↑

...

ym0 ∨ ym1 → vmy↓
¬ym0 ∧ ¬ym1 → vmy↑

...

y(M − 1)0 ∨ y(M − 1)1 → v(M − 1)y↓
¬y(M − 1)0 ∧ ¬y(M − 1)1 → v(M − 1)y↑

APPENDIX D. AER INTERFACE DESIGN SPACE 124

D.9 CHAIN Deserializer

This design uses a chain of nodes to sequence words into their respective place in the parallel output.

That is, it takes as input a1ofN data and outputs eMx1ofN data. We decompose this process into

HEAD, NODE, and TAIL processes. Although it has a bit more expensive 1-of-4 implementation

than the split ring of Section D.4, its signal fanouts remain constant as the number of words in the

packet grows. The below figure shows the decomposition for packets consisting of M 1-of-2 groups.

AEXT/AERV
po/co

pi/ci

p[0,1]/c{0,1}[0,1]

xi

xo

x[0,1]

ya

y[0,1]

OUT HEADxa

si

x[0,1]

d[0,1]
so

NODE[m]xa

x[0,1]

d[0,1]
si

y[0,1]

ya

so

TAILxa

x[0,1]

d[0,1]
si

y[0,1]

ya

Environment

x(M-1)[0,1]xm[0,1]x0[0,1]

xe

... ...

An OUT a1ofN process (described above) first converts the AEXT/AERV serial communication

protocol to the standard a1ofN protocol. Each link in the chain outputs one of the words in the

parallel output.

1-of-2 approximate scaling:

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

HEAD 28 1 28

NODE 38 M − 2 38(M − 2)

TAIL 34 1 34

transistors/deserializer 38M − 10

1-of-4 approximate scaling:

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

HEAD 50 1 50

NODE 68 M − 2 68(M − 2)

TAIL 66 1 66

transistors/deserializer 68M − 16

For the transmitter encoding 4096 neurons as 1-of-2 or 1-of-4 words, we would need 12 and 6 links

in the chain, respectively.

1-of-2 approximate accounting:

APPENDIX D. AER INTERFACE DESIGN SPACE 125

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

HEAD 28 1 28

NODE 38 10 380

TAIL 34 1 34

total transistors/deserializer 446

1-of-4 approximate accounting:

component transistors/component components/deserializer transistors/deserializer

OUT a1ofN 4 1 4

HEAD 50 1 50

NODE 68 4 272

TAIL 66 1 66

total transistors/deserializer 392

D.10 HEAD

*[[si ∧X]; D↑; xa↑; [¬X]; so↑; xa↓; [¬si]; D↓; so↓]

PRS

si ∧ x0 → d0↑
¬si → d0↓

si ∧ x1 → d1↑
¬si → d1↓

¬x0 ∧ ¬x1 ∧ vd → so↑
x0 ∨ x1 ∨ ¬vd → so↓

¬so ∧ vd → xa↑
so ∨ ¬vd → xa↓

d0 ∨ d1 → vd↑
¬d0 ∧ ¬d1 → vd↓

1-of-2 transistor approximate accounting:

rule transistor count comments

d[0, 1] 14

so 6

xa 4

vd 4

total 28

APPENDIX D. AER INTERFACE DESIGN SPACE 126

1-of-4 transistor approximate accounting:

rule transistor count comments

d[0, 1, 2, 3] 28

so 10

xa 4

vd 8

total 50

CMOS-implementable PRS

si ∧ x0 → d0↓
¬si → d0↑

si ∧ x1 → d1↓
¬si → d1↑

¬ d0 → d0↑
d0 → d0↓

¬ d1 → d1↑
d1 → d1↓

¬x0 ∧ ¬x1 ∧ ¬ vd → so↑
x0 ∨ x1 ∨ vd → so↓

¬so → so↑
so → so↓

so ∧ vd → xa↓
¬ so ∨ ¬vd → xa↑

¬ d0 ∨ ¬ d1 → vd↑
d0 ∧ d1 → vd↓

¬vd → vd↑
vd → vd↓

¬ xa → xa↑
xa → xa↓

1-of-2 transistor accounting:

APPENDIX D. AER INTERFACE DESIGN SPACE 127

rule transistor count comments

d[0, 1] 14

d[0, 1] 4

so 6

so 2

xa 4

vd 4

vd 2

xa 2

total 38

1-of-4 transistor accounting:

rule transistor count comments

d[0, 1, 2, 3] 28

d[0, 1, 2, 3] 8

so 10

so 2

xa 4

vd 8

vd 2

xa 2

total 64

D.11 NODE

*[[¬si ∧X −→ Y ↑; [ya]; xa↑; [¬X]; Y ↓; [si −→ [¬ya]; xa↓[]¬ya −→ xa↓]
[]si ∧X −→ D↑; xa↑; [¬X]; so↑; xa↓; [¬si]; D↓; so↓
]]

PRS

¬si ∧ x0 → y0↑
si ∨ ¬x0 → y0↓

¬si ∧ x1 → y1↑
si ∨ ¬x1 → y1↓

si ∧ x0 → d0↑
¬si → d0↓

si ∧ x1 → d1↑
¬si → d1↓

¬x0 ∧ ¬x1 ∧ vd → so↑
x0 ∨ x1 ∨ ¬vd → so↓

APPENDIX D. AER INTERFACE DESIGN SPACE 128

ya ∨ ¬so ∧ vd → xa↑
¬ya ∧ (so ∨ ¬vd) → xa↓

d0 ∨ d1 → vd↑
¬d0 ∧ ¬d1 → vd↓

1-of-2 transistor approximate accounting:

rule transistor count comments

y[0, 1] 8

d[0, 1] 14

so 6

xa 6

vd 4

total 38

1-of-4 transistor approximate accounting:

rule transistor count comments

y[0, 1, 2, 3] 16

d[0, 1, 2, 3] 28

so 10

xa 6

vd 8

total 68

CMOS-implementable PRS

¬x0 → x0↓
x0 → x0↑

¬x1 → x1↓
x1 → x1↑

¬si ∧ ¬ x0 → y0↑
si ∨ x0 → y0↓

¬si ∧ ¬ x1 → y1↑
si ∨ x1 → y1↓

¬si → si↑
si → si↓

¬ si ∧ ¬ x0 → d0↑
si → d0↓

¬ si ∧ ¬ x1 → d1↓
si → d1↑

¬ vd → vd↑
vd → vd↓

APPENDIX D. AER INTERFACE DESIGN SPACE 129

x0 ∧ x1 ∧ vd → so↓
¬ x0 ∨ ¬ x1 ∨ ¬vd → so↑

¬ so → so↑
so → so↓

¬so → so↑
so → so↓

ya ∨ so ∧ vd → xa↓
¬ya ∧ (¬ so ∨ ¬vd) → xa↑

d0 ∨ d1 → vd↓
¬d0 ∧ ¬d1 → ¬vd↑

¬ xa → xa↑
xa → xa↓

1-of-2 transistor accounting:

rule transistor count comments

x[0, 1] 4

y[0, 1] 8

si 2

d[0, 1] 14

vd 2

so 6

so 2

so 2

xa 6

vd 4

xa 2

total 38

1-of-4 transistor accounting:

APPENDIX D. AER INTERFACE DESIGN SPACE 130

rule transistor count comments

x[0, 1, 2, 3] 8

y[0, 1, 2, 3] 16

si 2

d[0, 1, 2, 3] 28

vd 2

so 10

so 2

xa 6

vd 8

xa 2

total 84

D.12 TAIL

*[[¬si ∧X −→ Y ↑; [ya]; xa↑; [¬X]; Y ↓; [si −→ [¬ya]; xa↓[]¬ya −→ xa↓]
[]si ∧X −→ D↑; xa↑; [¬si ∧ ¬X]; D↓; xa↓
]]

PRS

¬si ∧ x0 ∧ ¬d0 → y0↑
si ∨ ¬x0 ∨ d0 → y0↓

¬si ∧ x1 ∧ ¬d1 → y1↑
si ∨ ¬x1 ∨ d1 → y1↓

si ∧ x0 → d0↑
¬si ∧ ¬x0 → d0↓

si ∧ x1 → d1↑
¬si ∧ ¬x1 → d1↓

ya ∨ d0 ∨ d1 → xa↑
¬ya ∧ ¬d0 ∧ ¬d1 → xa↓

1-of-2 transistor approximate accounting:

rule transistor count comments

y[0, 1] 12

d[0, 1] 16

xa 6

total 34

1-of-4 transistor approximate accounting:

APPENDIX D. AER INTERFACE DESIGN SPACE 131

rule transistor count comments

y[0, 1, 2, 3] 24

d[0, 1, 2, 3] 32

xa 10

total 66

CMOS-implementable PRS

¬si ∧ ¬ x0 ∧ ¬d0 → y0↑
si ∨ x0 ∨ d0 → y0↓

¬si ∧ ¬ x1 ∧ ¬d1 → y1↑
si ∨ x1 ∨ d1 → y1↓

¬si → si↑
si → si↓

¬ si ∧ ¬ x0 → d0↑
si ∧ x0 → d0↓

¬ si ∧ ¬ x1 → d1↑
si ∧ ¬ 1 → d1↓

ya ∨ d0 ∨ d1 → xa↓
¬ya ∧ ¬d0 ∧ ¬d1 → xa↑

1-of-2 transistor accounting:

rule transistor count comments

y[0, 1] 12

si 2

d[0, 1] 16

xa 6

total 36

1-of-4 transistor accounting:

rule transistor count comments

y[0, 1, 2, 3] 24

si 2

d[0, 1, 2, 3] 32

xa 10

total 68

D.13 Split Chain Deserializer

This design uses a chain of nodes pulling data from a central splitter to sequence words into their

respective place in the parallel output. We decompose this process into SPLIT and NODE. The

below figure shows the decomposition for packets containing M 1-of-2 words.

APPENDIX D. AER INTERFACE DESIGN SPACE 132

NODE

xe

ye se

x[0,1]

y[0,1]

SPLIT

xi xo x[0,1]

y0e y0[0,1] yme ym[0,1] y(M-1)e y(M-1)[0,1]

NODE

xe

ye se

x[0,1]

y[0,1]

NODE

xe

ye

x[0,1]

y[0,1]

AEXT/AERV
po/

c{0,1}o
pi/

c{0,1}i
p[0,1]/

c{0,1}[0,1]

Environment

x0[0,1]xm[0,1]x(M-1)[0,1]

xe

ye y[0,1]

OUT

xe x[0,1]

......

... ...

... ...

An OUT e1ofN process (described above) first converts the AEXT/AERV serial communication

protocol to the standard e1ofN protocol.

1-of-2 approximate scaling:

component transistors/component components/deserializer transistors/deserializer

OUT e1ofN 4 1 4

SPLIT 17M − 2 1 17M − 2

NODE (int) 28 M − 1 28(M − 1)

NODE (end) 20 1 20

approx. transistors/deserializer 45M − 6

1-of-4 approximate scaling:

component transistors/component components/deserializer transistors/deserializer

OUT e1ofN 4 1 4

SPLIT 31M − 2 1 31M − 2

NODE (int) 50 M − 1 50(M − 1)

NODE (end) 38 1 38

approx. transistors/deserializer 81M − 10

For the transmitter to handle 4096 neurons encoded as 1-of-2 or 1-of-4 words, we would need 12 and

6 NODEs, respectively.

1-of-2 accounting:

APPENDIX D. AER INTERFACE DESIGN SPACE 133

component transistors/component components/deserializer transistors/deserializer

OUT e1ofN 4 1 4

SPLIT 198 1 198

NODE (int) 28 11 308

NODE (end) 20 1 20

total transistors/deserializer 530

1-of-4 accounting:

component transistors/component components/deserializer transistors/deserializer

OUT e1ofN 4 1 4

SPLIT 184 1 184

NODE (int) 50 5 250

NODE (end) 38 1 38

total transistors/deserializer 476

D.14 SPLIT

SPLIT takes incoming words and routes them to their respective locations in the parallel output.

For M words per packet,

*[[y0e −→ xe↑;
[x0 −→ y00↑; [¬y0e]; xe↓; [¬x0]; y00↓
[]x1 −→ y01↑; [¬y0e]; xe↓; [¬x1]; y01↓
]

[] ...

[]y(M − 1)e −→ xe↑;
[x1 −→ y(M − 1)0↑; [¬y(M − 1)e]; xe↓; [¬x0]; y(M − 1)0↓
[]x1 −→ y(M − 1)1↑; [¬y(M − 1)e]; xe↓; [¬x1]; y(M − 1)1↓
]

]

]

For a 2-word packet,

APPENDIX D. AER INTERFACE DESIGN SPACE 134

*[[y0e −→ xe↑;
[x0 −→ y00↑; [¬y0e]; xe↓; [¬x0]; y00↓
[]x1 −→ y01↑; [¬y0e]; xe↓; [¬x1]; y01↓
]

[]y1e −→ xe↑;
[x1 −→ y10↑; [¬y1e]; xe↓; [¬x0]; y10↓
[]x1 −→ y11↑; [¬y1e]; xe↓; [¬x1]; y11↓
]

]]

y0e ∨ y1e → xe↑
¬y0e ∧ ¬y1e → xe↓

y0e ∧ x0 → y00↑
¬x0 → y00↓

y0e ∧ x1 → y01↑
¬x1 → y01↓

y1e ∧ x0 → y10↑
¬x0 → y10↓

y1e ∧ x1 → y11↑
¬x1 → y11↓

1-of-2 transistor accounting:

rule transistor count comments

xe 8(M − 1)/3 4-ary OR-tree approx.

y[0..M − 1][0, 1] 14M

approx. total 17M − 2

1-of-4 transistor accounting:

rule transistor count comments

xe 8(M − 1)/3 4-ary OR-tree approx.

y[0..M − 1][0, 1, 2, 3] 28M

approx. total 31M − 2

D.15 NODE

NODE latches data from SPLIT. For beginning and intermediate NODEs,

*[[ye]; xe↑; [X]; Y ↑; xe↓; [¬X]; se↑; [¬ye]; Y ↓; se↓]

ye ∧ ¬vy → xe↑
¬ye ∨ vy → xe↓

APPENDIX D. AER INTERFACE DESIGN SPACE 135

x0 → y0↑
¬ye → y0↓

x1 → y1↑
¬ye → y1↓

¬x0 ∧ ¬x1 ∧ vy → se↑
¬vy → se↓

y0 ∨ y1 → vy↑
¬y0 ∧ ¬y1 → vy↓

1-of-2 transistor accounting:

rule transistor count comments

xe 4

y[0, 1] 12

se 8

vy 4

total 28

1-of-4 transistor accounting:

rule transistor count comments

xe 4

y[0, 1, 2, 3] 28

se 10

vy 8

total 50

The end NODE of a chain does not need to forward an se signal,

*[[ye]; xe↑; [X]; Y ↑; xe↓; [¬X ∧ ¬ye]; Y ↓]

ye ∧ ¬y0 ∧ ¬y1 → xe↑
¬ye ∨ y0 ∨ y1 → xe↓

x0 → y0↑
¬x0 ∧ ¬ye → y0↓

x1 → y1↑
¬x1 ∧ ¬ye → y1↓

1-of-2 transistor accounting:

rule transistor count comments

xe 6

y[0, 1] 14

total 20

APPENDIX D. AER INTERFACE DESIGN SPACE 136

1-of-4 transistor accounting:

rule transistor count comments

xe 10

y[0, 1, 2, 3] 28

total 38

D.16 Serializer

The serializer converts M-1-of-N parallel data into in 1-of-N serial data. We cannot create standard

a1ofN or e1ofN input interfaces to the serial protocol (like we could with output interfaces in Sec-

tions D.1 and D.2) because the serial protocol requires a signal indicating the transitions between

packets, which the standard a1ofN and e1ofN channels cannot provide.

D.17 Ring serializer

The ring serializer uses a ring of NODES to sequence the words of an eMx1ofN channel. A C-element

indicates the transition between the up and down phases of the sequencing.

NODEsi so

x[0,1]

ya y[0,1]

NODEsi so

x[0,1]

ya y[0,1]

Environment ye

y0[0,1]ym[0,1]

AERV

pipo p[0,1]

NODEsi so

x[0,1]

ya y[0,1]

......

y(M-1)[0,1]

SEQ

xa x[0,1]

y[0,1]yi yo

siso

Note the shared ye and y[0, 1] between the NODE processes.

1-of-2 approximate scaling:

APPENDIX D. AER INTERFACE DESIGN SPACE 137

component transistors/component components/serializer transistors/serializer

NODE 34 M 34M

SEQ 38 1 38

approx. transistors/serializer 34M + 38

1-of-4 approximate scaling:

component transistors/component components/serializer transistors/serializer

NODE 54 M 54M

SEQ 56 1 56

approx. transistors/serializer 54M + 56

For the receiver to handle 4096 neurons (and no data) encoded as 1-of-2 or 1-of-4 words, we would

need 12 and 6 NODEs, respectively.

1-of-2 accounting:

component transistors/component components/serializer transistors/serializer

NODE 34 12 408

SEQ 38 1 38

total transistors/serializer 446

1-of-4 accounting:

component transistors/component components/serializer transistors/serializer

NODE 54 6 324

SEQ 56 1 56

total transistors/serializer 380

D.18 Ring serializer NODE

*[[si];

[x0 −→ y0↑; [ya]; u↑; y0↓; [¬ya]; so↑; [¬si]; u↓; [¬x0]; so↓
[]x1 −→ y1↑; [ya]; u↑; y1↓; [¬ya]; so↑; [¬si]; u↓; [¬x1]; so↓
]]

PRS

x0 ∧ ¬u ∧ si → y0↑
u ∧ ¬so → y0↓

x1 ∧ ¬u ∧ si → y1↑
u ∧ ¬so → y1↓

si ∧ ya → u↑
¬si → u↓

APPENDIX D. AER INTERFACE DESIGN SPACE 138

u ∧ ¬ya → so↑
¬u ∧ ¬x0 ∧ ¬x1 → so↓

1-of-2 transistor accounting:

rule transistor count comments

y[0, 1] 18

u 7

so 9

total 34

1-of-4 transistor accounting:

rule transistor count comments

y[0, 1, 2, 3] 36

u 7

so 11

total 54

CMOS-implementable PRS

¬ u → u↑
u → u↓

¬so → so↑
so → so↓

¬ x0 ∧ ¬ u ∧ ¬ si → y0↑
u ∧ so → y0↓

¬ x1 ∧ ¬ u ∧ ¬ si → y1↑
u ∧ so → y1↓

¬ si → si↑
si → si↓

si ∧ ya → u↓
¬ si → u↑

¬ u → u↑
u → u↓

¬ u ∧ ¬ya → so↑
u ∧ x0 ∧ x1 → so↓

¬y0 → y0↑
y0 → y0↓

¬y1 → y1↑
y1 → y1↓

APPENDIX D. AER INTERFACE DESIGN SPACE 139

D.19 Ring serializer sequencer

*[[si]; so↑; [x0 ∨ x1]; yo↑;
[¬si ∧ yi]; yo↓; [¬yi]; so↓]

*[[x0 −→ y0↑; [¬yi]; xa↑; [¬x0]; y0↓; [yi]; xa↓
[]x1 −→ y1↑; [¬yi]; xa↑; [¬x1]; y1↓; [yi]; xa↓
]]

PRS

x0 ∨ x1 → yo↑
¬si ∧ yi → yo↓

si → so↑
¬si ∧ ¬yi ∧ ¬yo → so↓

yi ∧ x0 → y0↑
¬x0 → y0↓

yi ∧ x1 → y1↑
¬x1 → y1↓

(y0 ∨ y1) ∧ ¬yi → xa↑
yi → xa↓

1-of-2 transistor accounting:

rule transistor count comments

yo 8

so 8

y[0, 1] 14

xa 8

total 38

1-of-4 transistor accounting:

rule transistor count comments

yo 10

so 8

y[0, 1, 2, 3] 28

xa 10

total 56

CMOS-implementable PRS

APPENDIX D. AER INTERFACE DESIGN SPACE 140

¬ x0 ∨ ¬ x1 → yo↑
si ∧ yi → yo↓

¬ si → si↑
si → si↓

si → so↓
¬ si ∧ ¬yi ∧ ¬yo → so↑

¬ x0 → x0↑
x0 → x0↓

¬ x1 → x1↑
x1 → x1↓

yi ∧ x0 → y0↓
¬ x0 → y0↑

yi ∧ x1 → y1↓
¬ x1 → y1↑

(¬ y0 ∨ ¬ y1) ∧ ¬yi → xa↑
yi → xa↓

¬ y0 → y0↑
y0 → y0↓

¬ y1 → y1↑
y1 → y1↓

D.20 Ring serializer 2

This design uses more conventional channels and more sequencing than the previous serial ring.

Since there’s only one serializer per neuron array, the cost per neuron is still trivial.

NODEsi so

x[0,1]

ya y[v,0,1]

NODEsi so

x[0,1]

ya y[v,0,1]

Environmentye
y0[0,1] ym[0,1]

AERV
pi

po p[0,1]

si

NODEsi so

x[0,1]

ya y[v,0,1]

......

y(M-1)[0,1]... ...

MERGE

xma x(M-1)[v,0,1]x0[v,0,1] xm[v,0,1]

y[0,1]yi

x0a x(M-1)a

so

APPENDIX D. AER INTERFACE DESIGN SPACE 141

D.21 Ring serializer 2 NODE

*[[si ∧ x0 −→ y0↑, yv↑; [ya]; u↓; y0↓, yv↓; [¬ya]; so↑; [¬si ∧ ¬x0]; u↑; so↓
[]si ∧ x1 −→ y1↑, yv↑; [ya]; u↓; y1↓, yv↓; [¬ya]; so↑; [¬si ∧ ¬x1]; u↑; so↓
]]

PRS

si ∧ x0 ∧ u → y0↑
¬si ∨ ¬x0 ∨ ¬u → y0↓

si ∧ x1 ∧ u → y1↑
¬si ∨ ¬x1 ∨ ¬u → y1↓

si ∧ (x0 ∨ x1) ∧ u → yv↑
¬si ∨ ¬x0 ∧ ¬x1 ∨ ¬u → yv↓

¬si ∧ ¬x0 ∧ ¬x1 → u↑
ya → u↓

¬u ∧ ¬ya → so↑
u ∨ ya → so↓

CMOS-implementable PRS

si ∧ x0 ∧ u → y0↓
¬si ∨ ¬x0 ∨ ¬u → y0↑

si ∧ x1 ∧ u → y1↓
¬si ∨ ¬x1 ∨ ¬u → y1↑

si ∧ (x0 ∨ x1) ∧ u → yv↓
¬si ∨ ¬x0 ∧ ¬x1 ∨ ¬u → yv↑

¬si ∧ ¬x0 ∧ ¬x1 → u↑
ya → u↓

¬u ∧ ¬ya → so↑
u ∨ ya → so↓

¬ y0 → y0↑
y0 → y0↓

¬ y1 → y1↑
y1 → y1↓

D.22 Ring serializer 2 MERGE

for M words,

APPENDIX D. AER INTERFACE DESIGN SPACE 142

*[[¬si ∧ ¬yi]; so↑; [si ∧ yi]; so↓]

*[[x00 −→ u0↑, [yi]; y0↑; vy↑; [x0v ∧ ¬yi]; x0a↑; ([¬x00]; u0↓; y0↓; vy↓), [¬x0v]; x0a↓
[]x01 −→ u1↑, [yi]; y1↑; vy↑; [x0v ∧ ¬yi]; x0a↑; ([¬x01]; u1↓; y1↓; vy↓), [¬x0v]; x0a↓
...

[]xm0 −→ u0↑, [yi]; y0↑; vy↑; [xmv ∧ ¬yi]; xma↑; ([¬xm0]; u0↓; y0↓; vy↓), [¬xmv]; xma↓
[]xm1 −→ u1↑, [yi]; y1↑; vy↑; [xmv ∧ ¬yi]; xma↑; ([¬xm1]; u1↓; y1↓; vy↓), [¬xmv]; xma↓
...

[]x (M ↓1)0 −→ u0↑, [yi]; y0↑; vy↑; [x (M ↓1)v ∧ ¬yi]; x (M ↓1)a↑; ([¬x (M ↓1)0]; u0↓; y0↓; vy↓), [¬x (M ↓1)v]; x (M ↓1)a↓
[]x (M ↓1)1 −→ u1↑, [yi]; y1↑; vy↑; [x (M ↓1)v ∧ ¬yi]; x (M ↓1)a↑; ([¬x (M ↓1)1]; u1↓; y1↓; vy↓), [¬x (M ↓1)v]; x (M ↓1)a↓
]]

for M = 2,

*[[¬si ∧ ¬yi]; so↑; [si ∧ yi]; so↓]

*[[x00 −→ u0↑, [yi]; y0↑; vy↑; [x0v ∧ ¬yi]; x0a↑; ([¬x00]; u0↓; y0↓; vy↓), [¬x0v]; x0a↓
[]x01 −→ u1↑, [yi]; y1↑; vy↑; [x0v ∧ ¬yi]; x0a↑; ([¬x01]; u1↓; y1↓; vy↓), [¬x0v]; x0a↓
[]x10 −→ u0↑, [yi]; y0↑; vy↑; [x1v ∧ ¬yi]; x1a↑; ([¬x10]; u0↓; y0↓; vy↓), [¬x1v]; x1a↓
[]x11 −→ u1↑, [yi]; y1↑; vy↑; [x1v ∧ ¬yi]; x1a↑; ([¬x11]; u1↓; y1↓; vy↓), [¬x1v]; x1a↓
]]

¬si ∧ ¬yi → so↑
si ∧ yi → so↓

x00 ∨ x10 → u0↑
¬x00 ∧ ¬x10 → u0↓

x01 ∨ x11 → u1↑
¬x01 ∧ ¬x11 → u1↓

u0 ∧ yi → y0↑
¬u0 → y0↓

u1 ∧ yi → y1↑
¬u1 → y1↓

y0 ∨ y1 → vy↑
¬y0 ∧ ¬y1 → vy↑

x0v ∧ ¬yi ∧ vy → x0a↑
¬x0v ∧ ¬vy → x0a↓

x1v ∧ ¬yi ∧ vy → x1a↑
¬x1v ∧ ¬vy → x1a↓

CMOS-implementable PRS

¬si ∧ ¬yi → so↑
si ∧ yi → so↓

APPENDIX D. AER INTERFACE DESIGN SPACE 143

x00 ∨ x10 → u0↑
¬x00 ∧ ¬x10 → u0↓

x01 ∨ x11 → u1↑
¬x01 ∧ ¬x11 → u1↓

u0 ∧ yi → y0↓
¬u0 → y0↑

u1 ∧ yi → y1↓
¬u1 → y1↑

¬ y0 → y0↑
y0 → y0↓

¬ y1 → y1↑
y1 → y1↓

y0 ∨ y1 → vy↓
¬y0 ∧ ¬y1 → vy↑

¬ x0v ∧ ¬yi ∧ ¬ vy → x0a↑
x0v ∧ vy → x0a↓

¬ x1v ∧ ¬yi ∧ ¬ vy → x1a↑
x1v ∧ vy → x1a↓

D.23 Chain serializer

The chain serializer uses a chain of NODES to sequence the words of an eMx1ofN channel. A

C-element indicates the transition between the up and down phases of the sequencing.

AERV po

pi

p[0,1]

TAILye xe

y[0,1]

d[0,1]

NODE[m]ye

y[0,1]

d[0,1]

x[0,1]

xe... ...

Environment

y0[0,1] ym[0,1] y(M-1)[0,1]

ye

... ...

NODEye

y[0,1]

d[0,1]

x[0,1]

xe

Cs

1-of-2 approximate scaling:

component transistors/component components/serializer transistors/serializer

NODE 39 M − 1 39(M − 1)

TAIL 33 1 33

C 8 1 8

approx. transistors/serializer 39M + 2

1-of-4 approximate scaling:

component transistors/component components/serializer transistors/serializer

NODE 65 M − 1 65(M − 1)

TAIL 53 1 53

C 8 1 8

approx. transistors/serializer 65M − 4

APPENDIX D. AER INTERFACE DESIGN SPACE 144

For the receiver to handle 4096 neurons (and no data) encoded as 1-of-2 or 1-of-4 words, we would

need 11 and 5 NODEs, respectively.

1-of-2 accounting:

component transistors/component components/serializer transistors/serializer

NODE 39 11 429

TAIL 33 1 33

C 8 1 8

total transistors/serializer 470

1-of-4 accounting:

component transistors/component components/serializer transistors/serializer

NODE 65 5 325

TAIL 53 5 53

C 8 1 8

total transistors/serializer 386

D.24 Chain serializer NODE

*[[ye];

[¬u −→
[d0 −→ y0↑; [¬ye]; u↑; y0↓
[]d1 −→ y1↑; [¬ye]; u↑; y1↓
]

[]u −→ xe↑;
[x0 −→ y0↑; [¬ye]; xe↓; [¬x0]; y0↓
[]x1 −→ y1↑; [¬ye]; xe↓; [¬x1]; y1↓
[]¬d0 ∧ ¬d1 −→ u↓; [¬ye]; xe↓
]

]]

PRS

ye ∧ ¬u ∧ d0 ∨ x0 → y0↑
¬ye ∧ u ∧ ¬x0 → y0↓

ye ∧ ¬u ∧ d1 ∨ x1 → y1↑
¬ye ∧ u ∧ ¬x1 → y1↓

y0 ∨ y1 → vy↑
¬y0 ∧ ¬y1 → vy↓

d0 ∨ d1 → vd↑
¬d0 ∧ ¬d1 → vd↓

vy ∧ vd → u↑
¬vy ∧ ¬vd → u↓

APPENDIX D. AER INTERFACE DESIGN SPACE 145

ye ∧ u ∧ ¬vy → xe↑
¬ye ∧ (¬u ∨ vy) → xe↓

1-of-2 transistor approximate accounting:

rule transistor count comments

y[0, 1] 20

u 9

xe 10

total 39

1-of-4 transistor approximate accounting:

rule transistor count comments

y[0, 1] 40

u 13

xe 12

total 65

CMOS-implementable PRS

¬u → u↑
u → u↓

ye ∧ u ∧ d0 ∨ x0 → y0↓
¬ye ∧ ¬ u ∧ ¬x0 → y0↑

ye ∧ u ∧ d1 ∨ x1 → y1↓
¬ye ∧ ¬ u ∧ ¬x1 → y1↑

¬ y0 → y0↑
y0 → y0↓

¬ y1 → y1↑
y1 → y1↓

y0 ∨ y1 → vy↓
¬ y0 ∧ ¬ y1 → vy↑

d0 ∨ d1 → vd↓
¬d0 ∧ ¬d1 → vd↑

¬ vy ∧ ¬ vd → u↑
vy ∧ vd → u↓

¬ u → u↑
u → u↓

ye ∧ u ∧ vy → xe↓
¬ye ∧ (¬ u ∨ ¬ vy) → xe↑

APPENDIX D. AER INTERFACE DESIGN SPACE 146

D.25 Chain serializer TAIL

*[[ye];

[¬u −→
[d0 −→ y0↑; u↑; [¬ye]; y0↓
[]d1 −→ y1↑; u↑; [¬ye]; y1↓
]

[]u −→ xe↑; [¬d0 ∧ ¬d1]; u↓; [¬ye]; xe↓
]]

PRS

ye ∧ ¬u ∧ d0 → y0↑
¬ye ∧ u → y0↓

ye ∧ ¬u ∧ d1 → y1↑
¬ye ∧ u → y1↓

y0 ∨ y1 → vy↑
¬y0 ∧ ¬y1 → vy↓

d0 ∨ d1 → vd↑
¬d0 ∧ ¬d1 → vd↓

vy ∧ vd → u↑
¬vy ∧ ¬vd → u↓

ye ∧ u ∧ ¬vy → xe↑
¬ye ∧ (¬u ∨ vy) → xe↓

1-of-2 transistor approximate accounting:

rule transistor count comments

y[0, 1] 16

u 9

xe 8

total 33

1-of-4 transistor approximate accounting:

rule transistor count comments

y[0, 1] 32

u 13

xe 8

total 53

CMOS-implementable PRS

¬u → u↑
u → u↓

APPENDIX D. AER INTERFACE DESIGN SPACE 147

ye ∧ u ∧ d0 → y0↓
¬ye ∧ ¬ u → y0↑

ye ∧ u ∧ d1 → y1↓
¬ye ∧ ¬ u → y1↑

¬ y0 ∨ ¬ y1 → vy↑
y0 ∧ y1 → vy↓

d0 ∨ d1 → vd↓
¬d0 ∧ ¬d1 → vd↑

¬ vd → vd↑
vd → vd↓

¬ vy ∧ ¬ vd → u↑
vy ∧ vd → u↓

¬ u → u↑
u → u↓

ye ∧ u ∧ vy → xe↑
¬ye ∧ (¬ u ∨ ¬ vy) → xe↓

D.26 Chain serializer C

The C process in the chain serializer is a C-element and costs 8 transistors.

xe ∧ po → s↓
¬xe ∧ ¬po → s↑

D.27 Serial merge

The receiver is responsible for sending spikes to neurons and data to the neuron and synapse config-

uration memory. This designs uses an arbiter to handle concurrent input so that we can send spikes

and write to the configuration memeory on the fly.

For M inputs and 1-of-D encoding,

*[[

〈|m : M : xmi −→ yo↑; [yi]; xmo↑; [¬xmi]; yo↓; [¬yi]; xmo↓〉
]]

*[[

〈[]m : M : 〈[]d : D : xmd −→ yd↑; xmo↓; [¬xmd]; yd↓; xmo↓〉〉
]]

For M=2 and D=2,

APPENDIX D. AER INTERFACE DESIGN SPACE 148

*[[x0i −→ yo↑; [yi]; x0o↑; [¬x0i]; yo↓; [¬yi]; x0o↓
|x1i −→ yo↑; [yi]; x1o↑; [¬x1i]; yo↓; [¬yi]; x1o↓
]]

*[[x00 −→ y0↑; [¬yi]; x0o↓; [¬x00]; y0↓; [yi]; x0o↓
[]x01 −→ y1↑; [¬yi]; x0o↓; [¬x01]; y1↓; [yi]; x0o↓
[]x10 −→ y0↑; [¬yi]; x1o↓; [¬x10]; y0↓; [yi]; x1o↓
[]x11 −→ y1↑; [¬yi]; x1o↓; [¬x11]; y1↓; [yi]; x1o↓
]]

PRS

The parent requests and grants are handled by the standard n-way arbiter with its parent ports

exposed. Otherwise,

x00 ∨ x10 → y0↑
¬x00 ∧ ¬x10 → y0↓

x01 ∨ x11 → y1↑
¬x01 ∧ ¬x11 → y1↓

CMOS-implementable PRS:

x00 ∨ x10 → y0↑
¬x00 ∧ ¬x10 → y0↓

x01 ∨ x11 → y1↑
¬x01 ∧ ¬x11 → y1↓

¬ y0 → y0↓
y0 → y0↑

¬ y1 → y1↓
y1 → y1↑

D.28 Memory

Each group of 4 neurons and 1 synapse needs at least 28 bits of memory. However, given the shape

and size constraints of the memory, we may end up using larger memories. This memory will only

be written, not read.

A memory consists of a two dimensional array of bitcells. Rows are addressed by a read/write

lines, and columns are addressed by the data itself. That is, we write an entire row at a time.

The shape of the memory dictates the size of the input we deliver to it. For each write operation,

we indicate the address (which write line) and data to write. The address is encoded in 1-of-2 or

1-of-4 words. The data is communicated as it will be written. It is cheaper to have write lines than

data lines because the size of the encoded address scales with the logarithm of the number of write

lines. So we usually maximize the number of write lines within the aspect ratio constraint of the

neuron layout. Further, using 1-of-4 encoding requires that we use at least 2 data bits.

Here are some memory sizes and their required deserializer bits:

APPENDIX D. AER INTERFACE DESIGN SPACE 149

neurons/synapses memory bits write lines write bits data bits total bits word size words

4/1 32 32 5 1 6 2 6

16/4 128 64 6 2 8 4 4

16/4 128 32 5 4 9 4 4.5

4096/1024 32768 16384 14 2 16 4 8

We can reduce the number of words if the memory supports banking, a level of address heirarchy

on top of the address itself.

Appendix E

Serial Router Supplement

This appendix describes some components that were not used in the serial H-Tree router described

in Section 3.4

E.1 Half-Cycle Slack Buffer

The serial router as laid out did not contain any pipelining. As a result, its throughput was throttled

by additional unpipelined communications that extended well into the datapath. For reference, here

is a buffer process that provides a half-cycle of slack. Buffers could be placed in the cutouts of the

router and between the router and datapath to improve the router’s throughput.

HSE

*[[xφ −→ yφ↑; xe↑, [ye]

[]x0 −→ y0↑; xe↓; [¬ye ∧ ¬x0]; y0↓; xe↑; [ye]

[]x1 −→ y1↑; xe↓; [¬ye ∧ ¬x1]; y1↓; xe↑; [ye]

[]¬xφ −→ yφ↓; xe↓; [¬ye]

]]

PRS

xφ ∧ ¬ye → yφ↑
¬xφ ∧ ye → yφ↓

yφ ∧ ¬y0 ∧ ¬y1 → xe↑
¬yφ ∨ y0 ∨ y1 → xe↓

x0 ∧ ye → y0↑
¬x0 ∧ ¬ye → y0↓

x1 ∧ ye → y1↑
¬x1 ∧ ¬ye → y1↓

150

APPENDIX E. SERIAL ROUTER SUPPLEMENT 151

CMOS-Implementable PRS

¬xφ → xφ↑
xφ → xφ↓

¬ xφ ∧ ¬ye → yφ↑
xφ ∧ ye → yφ↓

yφ ∧ y0 ∧ y1 → xe↓
¬yφ ∨ ¬ y0 ∨ ¬ y1 → xe↑

¬ xe → xe↑
xe → xe↓

x0 ∧ ye → y0↓
¬x0 ∧ ¬ye → y0↑

x1 ∧ ye → y1↓
¬x1 ∧ ¬ye → y1↑

¬ y0 → y0↑
y0 → y0↓

¬ y1 → y1↑
y1 → y1↓

4-ary Accounting

rule transistor count comments

xφ 2

yφ 8

xe 10

xe 2

y[0, 1, 2, 3] 16 staticized by y[0, 1, 2, 3]

y[0, 1, 2, 3] 16 staticizes y[0, 1, 2, 3]

total 54

E.2 Greedy but Fair N-way Arbiter using Tree/Ring Se-

quencing

Although the serial router used unpipelined 4-way arbiters for minimal transistor counts, a designer

may want an N-way arbiter with pipelining. This appendix presents a pipelined, N-way arbiter

which unifies the ring and tree approaches by parameterizing a tree via K, its radix. When K = 1,

the arbiter is a flat ring, and when K = 2, the arbiter is a binary tree. The tree is built from

NODEs. The leaves of the tree service requests from N clients.

Accounting

NODES cost 30K+18 transistors, where K is the radix of the tree.

Configuration transistors

K-ary tree (30K + 18)N−1
K−1

Flat ring 30N + 18

Binary tree 78(N − 1)

4-ary tree 46(N − 1)

APPENDIX E. SERIAL ROUTER SUPPLEMENT 152

E.3 NODE

For a binary tree,

*[[C0 ∨ C1]; P • (

[C0 −→ C0; C0|¬C0 −→ skip];

[C1 −→ C1; C1|¬C1 −→ skip])

]

For a K-ary tree,

*[[〈∨k : K : Ck 〉];

P • 〈; k : K : [C0 −→ C0; C0|¬C0 −→ skip]〉
]]

We decompose NODE into PRODUCER and CONSUMER processes.

Accounting

component transistors/component components/NODE transistors/NODE

PRODUCER 18+K 1 18+K

CONSUMER 29 K 29K

total transistors/NODE 30K+18

E.3.1 PRODUCER

PRODUCER produces parent requests upon sensing child requests and sequences between CON-

SUMERs. For a binary tree,

*[[C0 ∨ C1]; P • 〈•K : k : Sk 〉]]

For a K-ary tree,

*[[〈∨K : k : Ck 〉]; P • 〈•K : k : Sk 〉]]

We decompose PRODUCER into CTRL and SEQ.

Accounting

component transistors/component components/PRODUCER transistors/PRODUCER

CTRL 18+K 1 18+K

SEQ 0 1 0

total transistors/PRODUCER 18+K

APPENDIX E. SERIAL ROUTER SUPPLEMENT 153

CTRL

CTRL relays the child requests to the parent and initiates the sequencing between CONSUMERS.

CHP

For a binary tree,

*[[C0 ∨ C1]; P • S]

For a K-ary tree,

*[[〈∨K : k : Ck 〉]; P • S]

HSE

For a binary tree,

*[[pe]; [c0r ∨ c1r]; x↓;
pr↑; [¬pe];

sr↑; [sa]; x↑; sr↓; [¬sa];

pr↓]

PRS

pe ∧ (c0r ∨ c1r) → x↓
sa → x↑

¬x ∨ sa → pr↑
x ∧ ¬sa → pr↓

¬x ∧ ¬pe → sr↑
x ∨ pe → sr↓

CMOS-implementable PRS

pe ∧ (c0r ∨ c1r) → x↓
¬ sa → x↑

¬x ∨ ¬ sa → pr↑
x ∧ sa → pr↓

¬x ∧ ¬ pe → sr↑
x ∨ pe → sr↓

pe → pe↓
¬pe → pe↑

sa → sa↓
¬sa → sa↑

APPENDIX E. SERIAL ROUTER SUPPLEMENT 154

Accounting

rule transistor count comments

x 2+K+4

pr 4

sr 4

pe 2

sa 2

total 18+K

SEQ

SEQ sequences through the consumers.

CHP

In general,

SEQ(K) ≡
*[SP • 〈•k : K : SCk 〉]

For a binary tree,

*[SP • SC0 • SC1]

We build a K-way sequencer as K ′-way sequencer tree defined recursively as

SEQ(K) ≡SEQ(K ′) ‖ 〈‖k ′ : K ′ − 1 : SEQ(K/K ′)〉 ‖SEQ(K − (K ′ − 1)K/K ′)

where the recursion ends when K ≤ K ′. For example, a binary tree would be defined recursively as

SEQ(K) = SEQ(2) ‖SEQ(K/2) ‖SEQ(K −K/2)

The SC channels of the parent sequencer are the SP channels of the the child sequencers. The SC

channels of the leaf sequencers connect to the consumers.

HSE

For a binary tree,

*[[spr];

sc0r↑; [sc0a]; sc1r↑; [sc1a];

spa↑; [¬spr];

sc0r↓; [¬sc0a]; sc1r↓; [¬sc1a];

spa↓
]

APPENDIX E. SERIAL ROUTER SUPPLEMENT 155

In general,

*[[spr];

〈; k ′ : K ′ : sc′kr↑; [sc′ka]〉
spa↑; [¬spr];

〈; k ′ : K ′ : sc′kr↓; [¬sc′ka]〉
spa↓

]

PRS

spr → sc0r↑
¬spr → sc0r↓

sc(k ′ − 1)r → spa↑
¬sc(k ′ − 1)r → spa↓

sck ′a → sc(k ′ + 1)r↑
¬sck ′a → sc(k ′ + 1)r↓

These are just wires, so all K ′-way tree sequencers that implement a K-way sequencer are equivalent.

E.3.2 CONSUMER

CONSUMER checks and services requests from children.

CHP

*[[C −→ S ; C

|S −→ S]]

which is a variation on the precise exceptions circuit of [28].

HSE

*[[cr −→ [sr]; sa↑; [¬sr]; ce↓; [¬cr]; sa↓; ce↑
|sr −→ sa↑; [¬sr]; sa↓

]]

We break out nondeterministic selection.

*[[cr −→ c↑; [¬cr]; c↓
|sa −→ s↑; [¬sa]; s↓

]]

*[[c −→ [sr]; sta↑; [¬sr]; ce↓; [¬c]; sta↓; ce↑
[]s −→ sfa↑; [¬s]; sfa↓
]]

*[[sta ∨ sfa]; sa↑; [¬sta ∧ ¬sfa]; sa↓]

APPENDIX E. SERIAL ROUTER SUPPLEMENT 156

PRS

c ∧ sr → sta↑
¬c → sta↓

s → sfa↑
¬s → sfa↓

¬sta ∨ sr → ce↑
sta ∧ ¬sr → ce↓

sta ∨ sfa → sa↑
¬sta ∧ ¬sfa → sa↓

CMOS-implementable PRS

c ∧ sr → sta↓
¬c → sta↑

s → sfa↓
¬s → sfa↑

sta ∨ sr → ce↓
¬ sta ∧ ¬sr → ce↑

¬ sta ∨ ¬ sfa → sa↑
sta ∧ sfa → sa↓

Accounting

rule transistor count comments

[c, s] 12 2-way active-low arbiter

sta 7

sfa 2

ce 4

sa 4

total 29

Bibliography

[1] Filipp Akopyan, Carlos Tadeo, Ortega Otero, and Rajit Manohar. Hybrid synchronous-

asynchronous tool flow for emerging VLSI design. In IEEE International Workshop on Logic

Synthesis, 2016.

[2] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R. Chan-

drasekaran, Jean Marie Bussat, Rodrigo Alvarez-Icaza, John V. Arthur, Paul A. Merolla, and

Kwabena Boahen. Neurogrid: A mixed-analog-digital multichip system for large-scale neural

simulations. Proceedings of the IEEE, 102(5):699–716, 2014.

[3] Kwabena Boahen. A neuromorph’s prospectus. Computing in Science and Engineering,

19(2):14–28, 2017.

[4] Kwabena A Boahen. Point-to-point connectivity between neuromorphic chips using address-

events. IEEE Transactions on Circuits & Systems II: Analog and Digital Signal Processing,

47(5):416–434, 1999.

[5] Kwabena A. Boahen. A burst-mode word-serial address-event link-I: transmitter design. IEEE

Transactions on Circuits and Systems I: Regular Papers, 51(7):1269–1280, 2004.

[6] Kwabena A Boahen. A burst-mode word-serial address-event link-II: receiver design. IEEE

Transactions on Circuits and Systems I: Regular Papers, 51(7), 2004.

[7] Kwabena A. Boahen. A burst-mode word-serial address-event link-III: testing and results. IEEE

Transactions on Circuits and Systems I: Regular Papers, 51(7):1292–1300, 2004.

[8] Martin Boerlin, Christian K. Machens, and Sophie Denève. Predictive coding of dynamical

variables in balanced spiking networks. PLoS Computational Biology, 9:1–16, 2013.

[9] Alexander Borst and Frdric Theunissen. Information theory and neural coding. Nature Neuro-

science, 2(11):947–957, 1999.

[10] Christian Brandli, Raphael Berner, Minhao Yang, Shih Chii Liu, and Tobi Delbruck. A 240 180

130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State

Circuits, 49(10):2333–2341, 2014.

157

BIBLIOGRAPHY 158

[11] T. Y W Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E. Shi.

Neuromorphic implementation of orientation hypercolumns. IEEE Transactions on Circuits

and Systems I: Regular Papers, 52-I:1049–1060, 2005.

[12] Swadesh Choudhary, Steven Sloan, Sam Fok, Alexander Neckar, Eric Trautmann, Peiran Gao,

Terry Stewart, Chris Eliasmith, and Kwabena Boahen. Silicon neurons that compute. In

International Conference on Artificial Neural Networks, pages 121–128, 2012.

[13] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks

with low precision multiplications. ArXiv e-prints, 2014.

[14] Hideyuki Cteau and Alex D. Reyes. Relation between single neuron and population spiking

statistics and effects on network activity. Physical Review Letters, 2006.

[15] Chris Eliasmith and Charles H Anderson. Neural engineering: computation, representation,

and dynamics in neurobiological systems. MIT press, 2004.

[16] William Ft Softky and Christof Koch. The highly irregular firing of cortical cells is inconsistent

with temporal integration of random EPSPs. The Journal of Neuroscience, 13(l):334–350, 1993.

[17] Julius Georgiou, Andreas G Andreou, and Philippe 0 Pouliquen. A mixed analog/digital asyn-

chronous processor for cortical computations in 3D SQl-CMOS. In 2006 IEEE International

Symposium on Circuits and Systems, pages 4 pp.–, 2006.

[18] Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate brain.

Frontiers in Human Neuroscience, 2009.

[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-

tized neural networks: training neural networks with low precision weights and activations.

CoRR, 2016.

[20] Eric Jonas and Konrad Paul Kording. Could a neuroscientist understand a microprocessor?

PLoS Computational Biology, 13(1), 2017.

[21] Norman P. Jouppi, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,

Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Cliff Young, Tara Vazir Ghaem-

maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hog-

berg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Nishant Patil, Aaron Jaffey, Alek

Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar,

Steve Lacy, James Laudon, James Law, David Patterson, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Gaurav Agrawal, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas

Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir

BIBLIOGRAPHY 159

Salek, Raminder Bajwa, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Sarah

Bates, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,

Doe Hyun Yoon, Suresh Bhatia, and Nan Boden. In-datacenter performance analysis of a

Tensor Processing Unit. ACM SIGARCH Computer Architecture News, 45(2):1–12, 2017.

[22] Robert Karmazin, Carlos Tadeo Ortega Otero, and Rajit Manohar. cellTK: automated layout

for asynchronous circuits with nonstandard cells. In Proceedings - International Symposium on

Asynchronous Circuits and Systems, 2013.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[24] John Lazzaro, John Wawrzynek, M. Mahowald, Massimo Sivilotti, and Dave Gillespie. Silicon

auditory processors as computer peripherals. IEEE Transactions on Neural Networks, 4(3):523–

528, 1993.

[25] Joseph Lin and Kwabena Boahen. A delay-insensitive address-event link. In IEEE Symposium

on Asynchronous Circuits and Systems, 2009.

[26] Benjamin Lindner. Superposition of many independent spike trains is generally not a Poisson

process. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2006.

[27] M Mahowald. An analog VLSI stereoscopic vision system, volume 1. Springer, Boston, 1994.

[28] R. Manohar, M. Nyström, and A. J. Martin. Precise exceptions in asynchronous processors. In

Proceedings - 2001 Conference on Advanced Research in VLSI, ARVLSI 2001, 2001.

[29] Rajit Manohar. Comparing stochastic and deterministic computing. IEEE Computer Architec-

ture Letters, 14(2):119–122, 2015.

[30] Rajit Manohar and Yoram Moses. The eventual C-element theorem for delay-insensitive asyn-

chronous circuits. In 2017 23rd IEEE International Symposium on Asynchronous Circuits and

Systems (ASYNC), pages 102–109, 2017.

[31] Alain Martin. The limitations to delay-insensitivity in asynchronous circuits. In Proceedings of

the 6th MIT Conference on Advanced Research in VLSI. MIT Press, 1990.

[32] Alain J. Martin and Mika Nyström. Asynchronous techniques for system-on-chip design. Pro-

ceedings of the IEEE, 94(6):1089–1120, 2006.

[33] Carver Mead. Analog VLSI and neural systems. Addison-Wesley, 1989.

BIBLIOGRAPHY 160

[34] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636,

1990.

[35] Samir Menon, Sam Fok, Alex Neckar, Oussama Khatib, and Kwabena Boahen. Controlling

articulated robots in task-space with spiking silicon neurons. In 5th IEEE RAS/EMBS Inter-

national Conference on Biomedical Robotics and Biomechatronics, pages 181–186, 2014.

[36] Paul Merolla, John Arthur, Rodrigo Alvarez, Jean Marie Bussat, and Kwabena Boahen. A

multicast tree router for multichip neuromorphic systems. IEEE Transactions on Circuits and

Systems I: Regular Papers, 61(3):820–833, 2014.

[37] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp

Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan

Vo, Steven K Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D Flickner,

William P Risk, Rajit Manohar, and Dharmendra S Modha. A million spiking-neuron integrated

circuit with a scalable communication network and interface. Science, 345(6197):668–673, 2014.

[38] Paul A. Merolla, John V. Arthur, Bertram E. Shi, and Kwabena A. Boahen. Expandable

networks for neuromorphic chips. IEEE Transactions on Circuits and Systems I: Regular Papers,

54(2):301–311, 2007.

[39] Jongkil Park, Theodore Yu, Siddharth Joshi, Christoph Maier, and Gert Cauwenberghs. Hi-

erarchical address event routing for reconfigurable large-scale neuromorphic systems. IEEE

Transactions on Neural Networks and Learning Systems, 28(10):2408–2422, 2017.

[40] Sheldon Ross. Stochastic Processes. John Wiley & Sons, 2nd edition, 1996.

[41] Massimo Antonio Sivilotti. Wiring considerations in analog VLSI systems, with application to

field-programmable networks. PhD thesis, California Institute of Technology, Pasadena, CA,

USA, 1991.

[42] Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun Seok Kim, Changwoo Shin, Keunju

Park, Kyoobin Lee, Jinman Park, Jooyeon Woo, Yohan Roh, Hyunku Lee, Yibing Wang, Ilia

Ovsiannikov, and Hyunsurk Ryu. A 640480 dynamic vision sensor with a 9m pixel and 300Meps

address-event representation. In Digest of Technical Papers - IEEE International Solid-State

Circuits Conference, pages 66–67, 2017.

[43] Dominik Thalmeier, Marvin Uhlmann, Hilbert J. Kappen, and Raoul Martin Memmesheimer.

Learning universal computations with spikes. PLoS Computational Biology, 12:1–29, 2016.

[44] John Von Neumann. The Computer and the Brain. Yale University Press, New Haven, 3rd

edition, 2012.

	Abstract
	Acknowledgments
	Artificial Intelligence and Neuromorphic Engineering
	Summing and Weighting Spike Trains
	Summing and Weighting
	Discrete to Continuous
	Poisson Process
	Periodic Process
	p-Thinned Periodic Process
	d-Thinned Poisson Process
	Approximation Quality

	Optimizing for Power
	Discussion

	A Serial H-Tree Router for Two-Dimensional Arrays
	Router Functionality and Overhead
	Tree Paths versus Grid Addresses
	Serial Communication Protocol
	Router Logical Design
	Transmitter
	Receiver

	Router Application
	Transmitter Leaf
	Receiver Leaf
	Serial–Parallel Conversion

	Synthesis and Validation
	Discussion

	Conclusions
	Spike Summing and Weighting
	periodic SNR approximation
	p-thinning SNR approximation
	d-thinning SNR expansion

	AER Transmitter Design Space
	AEXT Control Data decomposed (CD)
	AEXT CD noTW CYC
	AEXT CD noTW
	AEXT CD TW

	AEXT Control Data Combined
	AEXT ASPR NODE
	AEXT ASPR PFWD/MERGE (PM)
	AEXT ASPR PM PFWD unpipelined
	AEXT ASPR PM PFWD pipelined hq
	AEXT ASPR PM PFWD hu
	AEXT ASPR PM MERGE unpipelined
	AEXT ASPR PM MERGE pipelined a_a
	AEXT ASPR PM MERGE pipelined ah
	AEXT ASPR PFWD PREPEND/FWD/SIMPLE_MERGE
	AEXT ASPR PFWD PREPEND
	AEXT PFWD FWD
	AEXT ASPR PFWD SIMPLE_MERGE
	AEXT ASPR MERGE

	AER Receiver Design Space
	Receiver tree structure
	AERV CD noTW cyclic control (CYC)
	AERV CD noTW CYC NODE
	AERV CD noTW CYC LEAF
	AERV CD noTW CYC LEAF (no data)
	AERV Control Data decomposed (CD) no tailword (noTW)
	AERV CD noTW SPLIT
	AERV CD noTW CTRL
	AERV CD noTW LEAF
	AERV ASPR BCAST pipelined
	AERV ASPR BCAST unpipelined
	AERV PSAR
	AERV PSAR decomposed into ROUTE, READ_HEAD, FWD_BODY (RHB)
	AERV PSAR RHB ROUTE unpipelined
	AERV PSAR RHB READ_HEAD
	AERV PSAR RHB FWD_BODY unpipelined
	AERV PSAR RHB FWD_BODY pipelined
	AERV PSAR decomposed into ROUTE PULL_CTRL PULL (RCP)
	AERV PSAR RCP ROUTE
	AERV PSAR PULL_CTRL
	AERV PSAR RCP PULL unpipelined

	AER Interface Design Space
	OUT e1ofN
	OUT a1ofN
	Deserializer
	Ring Deserializer
	SPLIT
	NODE
	C
	RING
	CHAIN Deserializer
	HEAD
	NODE
	TAIL
	Split Chain Deserializer
	SPLIT
	NODE
	Serializer
	Ring serializer
	Ring serializer NODE
	Ring serializer sequencer
	Ring serializer 2
	Ring serializer 2 NODE
	Ring serializer 2 MERGE
	Chain serializer
	Chain serializer NODE
	Chain serializer TAIL
	Chain serializer C
	Serial merge
	Memory

	Serial Router Supplement
	Half-Cycle Slack Buffer
	Greedy but Fair N-way Arbiter using Tree/Ring Sequencing
	NODE
	PRODUCER
	CONSUMER

	Bibliography

