COMMUNICATING AND COMPUTING WITH SPIKES IN NEUROMORPHIC SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Sam Fok
June 2018

© 2018 by Sam Fok. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This dissertation is online at: http://purl.stanford.edu/qk018rf9117

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Kwabena Boahen, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Oussama Khatib

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Krishna Shenoy

Approved for the Stanford University Committee on Graduate Studies.
Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives.

Abstract

We provide an overview of neuromorphic engineering and describe two contributions to Braindrop, a state-of-the-art neuromorphic system. First, we describe a method for performing summing and weighting of spike trains by accumulative thinning, a deterministic procedure for merging and dropping spikes. Previous methods relied on probabilistic thinning, which results in Poissonian statistics. As a result, when the thinned spike-train is filtered with a first-order low-pass synapse, the signal-to-noise ratio (SNR) scales as the square-root of its rate. For our accumulative thinning method, the SNR depends on the weight w; it scales linearly in the best-case scenario $(w \rightarrow 0)$ and as the square-root in the worst-case $(w \rightarrow 1)$. We find that a three-quarter power scaling minimizes energy consumption.

Second, we present a serial H-tree router for two-dimensional (2D) arrays. Existing routing mechanisms for 2D arrays either use low-overhead grids with one or two shared wires per row or column (e.g., RAM) or high-overhead meshes with many wires connecting neighboring clients (e.g., supercomputers). Neither is suitable for intermediate-complexity clients (e.g., small clusters of silicon neurons). We present a router tailored to 2D arrays of such clients. It uses a tree laid out in a fractal pattern (H-tree), which requires less wiring per signal than a grid, and adopts serial-signaling, which keeps link-width constant, regardless of payload size. To route from the tree's leaves to its root (or vise versa), each node prepends (consumes) a delay-insensitive 1-of-4 code that signals the route's previous (next) branch; additional codes carry payload. We employ this serial H-tree router to service a 16×16 array of silicon-neuron clusters, each with 16 spike-generating analog somas, 4 spike-consuming analog synapses, and one 128 -bit SRAM. Fabricated in a 28 -nm CMOS process, the router communicates 26.8 M soma-generated and 18.3 M synapse-targeted spikes per second while occupying 43% of the client's $35.1 \times 36.1 \mu \mathrm{~m}^{2}$.

Acknowledgments

I thank Chris Eliasmith and Terry Stewart of the Center for Theoretical Neuroscience at the University of Waterloo for the development and assistance with the Neural Engineering Framework that motivated the Braindrop project. I thank Rajit Manohar of the Computer Systems Lab at Yale University for instruction on asynchronous circuit design and for the CAD tools that allow their synthesis and verification in a synchronous world. I thank my colleagues at the Brains in Silicon Lab of Stanford University for countless coffee walks and their stimulating discussions. In particular, I could not have asked for better teammates than Ben Benjamin, Alex Neckar, and Nick Oza on the Braindrop project. And finally I have been immensely fortunate to have Kwabena Boahen as advisor and thank him for his tireless drive for understanding. The works herein were made possible by grants from the Office of Naval Research and the National Science Foundation.

Contents

Abstract iv
Acknowledgments v
1 Artificial Intelligence and Neuromorphic Engineering 1
2 Summing and Weighting Spike Trains 5
2.1 Summing and Weighting 6
2.2 Discrete to Continuous 8
2.2.1 Poisson Process 15
2.2.2 Periodic Process 16
2.2 .3 p-Thinned Periodic Process 17
2.2.4 d-Thinned Poisson Process 19
2.2.5 Approximation Quality 21
2.3 Optimizing for Power 21
2.4 Discussion 22
3 A Serial H-Tree Router for Two-Dimensional Arrays 24
3.1 Router Functionality and Overhead 24
3.2 Tree Paths versus Grid Addresses 26
3.3 Serial Communication Protocoll 28
3.4 Router Logical Design 29
3.4.1 Transmitter 29
3.4.2 Receiver 31
3.5 Router Application 33
3.5.1 Transmitter Leaf 33
3.5.2 Receiver Leaf 33
3.5.3 Serial-Parallel Conversion 34
3.6 Synthesis and Validation 35
3.7 Discussion 36
4 Conclusions 43
A Spike Summing and Weighting 44
A. 1 periodic SNR approximation 44
A. 2 p-thinning SNR approximation 45
A. 3 d-thinning SNR expansion 45
B AER Transmitter Design Space 47
B. 1 AEXT Control Data decomposed (CD) 47
B.1.1 AEXT CD noTW CYC 47
B.1.2 AEXT CD noTW 56
B.1.3 AEXT CD TW 61
B. 2 AEXT Control Data Combined 67
B. 3 AEXT ASPR NODE 67
B. 4 AEXT ASPR PFWD/MERGE (PM) 67
B. 5 AEXT ASPR PM PFWD unpipelined 68
B. 6 AEXT ASPR PM PFWD pipelined hq 69
B. 7 AEXT ASPR PM PFWD hu 71
B. 8 AEXT ASPR PM MERGE unpipelined 73
B. 9 AEXT ASPR PM MERGE pipelined a-a 74
B. 10 AEXT ASPR PM MERGE pipelined ah 76
B. 11 AEXT ASPR PFWD PREPEND/FWD/SIMPLE_MERGE 78
B. 12 AEXT ASPR PFWD PREPEND 78
B. 13 AEXT PFWD FWD 78
B. 14 AEXT ASPR PFWD SIMPLE MERGE 78
B. 15 AEXT ASPR MERGE 79
C AER Receiver Design Space 80
C. 1 Receiver tree structure 80
C. 2 AERV CD noTW cyclic control (CYC) 82
C. 3 AERV CD noTW CYC NODE 83
C. 4 AERV CD noTW CYC LEAF 88
C. 5 AERV CD noTW CYC LEAF (no data) 92
C. 6 AERV Control Data decomposed (CD) no tailword (noTW) 94
C. 7 AERV CD noTW SPLIT 95
C. 8 AERV CD noTW CTRL 97
C. 9 AERV CD noTW LEAF 98
C. 10 AERV ASPR BCAST pipelined 99
C. 11 AERV ASPR BCAST unpipelined 101
C. 12 AERV PSAR 102
C. 13 AERV PSAR decomposed into ROUTE, READ_HEAD, FWD_BODY (RHB) 102
C. 14 AERV PSAR RHB ROUTE unpipelined 103
C. 15 AERV PSAR RHB READ_HEAD 104
C. 16 AERV PSAR RHB FWD_BODY unpipelined 105
C. 17 AERV PSAR RHB FWD_BODY pipelined 106
C. 18 AERV PSAR decomposed into ROUTE PULL_CTRL PULL (RCP) 107
C. 19 AERV PSAR RCP ROUTE 108
C. 20 AERV PSAR PULL_CTRL 109
C. 21 AERV PSAR RCP PULL unpipelined 110
D AER Interface Design Space 112
D. 1 OUT elofN 112
D. 2 OUT a1ofN. 113
D. 3 Deserializer 114
D. 4 Ring Deserializer 114
D. 5 SPLIT 116
D. 6 NODE 117
D. 7 C 119
D. 8 RING 119
D. 9 CHAIN Deserializer 124
D. 10 HEAD 125
D. 11 NODE 127
D. 12 TAIL 130
D. 13 Split Chain Deserializer 131
D. 14 SPLIT 133
D. 15 NODE 134
D. 16 Serializer 136
D. 17 Ring serializer 136
D. 18 Ring serializer NODE 137
D. 19 Ring serializer sequencer 139
D. 20 Ring serializer 2 140
D. 21 Ring serializer 2 NODE 141
D. 22 Ring serializer 2 MERGE 141
D. 23 Chain serializer 143
D. 24 Chain serializer NODE 144
D. 25 Chain serializer TAIL 146
D. 26 Chain serializer C 147
D. 27 Serial merge 147
D. 28 Memory 148
E Serial Router Supplement 150
E. 1 Half-Cycle Slack Buffer 150
E. 2 Greedy but Fair N-way Arbiter using Tree/Ring Sequencing 151
E. 3 NODE 152
E.3.1 PRODUCER 152
E.3.2 CONSUMER 155
Bibliography 157

List of Tables

2.1 Renewal Process ISI CV and Synapse SNR 9
3.1 Node Transistor Counts \& Binary:4-ary Ratios for Large N 28
3.2 Handshaking Expansion (HSE) Syntax 38
3.3 Communicating Hardware Processes (CHP) Syntax 38

List of Figures

1.1 Artificial Neural Network 2
1.2 Digital Logic 3
1.3 Ion Channels and Subthreshold Transistors 4
2.1 Spiking Neural Network 6
2.2 Summing by merging. 7
2.3 Probabilistic (P) vs Deterministic (D) Thinning. 9
2.4 Renewal Process-Driven Synapse 12
2.5 Rate-Estimate SNR. 13
2.6 Theory vs numerical simulations. 16
2.7 SNR Approximation. 21
2.8 d-Thinned Poisson Power. 23
3.1 Grid Addresses and Tree Paths 25
3.2 Serial Link Description at Two Levels of Abstraction 27
3.3 Router Process Decomposition 39
3.4 Four-Way Arbiter 40
3.5 Serial-Parallel Conversion 40
3.6 Tree Router Layout 41
3.7 Postlayout Transmitter and Receiver SPICE Simulations 42
3.8 Fabrication and validation 42

1

Artificial Intelligence and Neuromorphic Engineering

Humans have long analogized the human brain to their computational tools and sought to imbue their tools with human-like, artificial intelligence (AI). For the industrial age, the brain was like a steam-powered system of pipes and actuators driving the body; for the digital age, the brain is like a digital computer, storing and processing bits of data. However, instead of conceptualizing the brain in terms of the current means of computation, neuromorphic engineers move in the other direction and conceive of computational methods from the structure and function of the brain. The neuromorphic approach comes with good reason: on a power budget of 20 W (slightly more than one-half cup of sugar per day), the brain, with 86 billion neurons 18 and thousands of synaptic connections per neuron, still roundly beats existing methods at tasks we take for granted like walking around, having intelligible conversations, and making sense of the world.

That the brain has useful lessons for computation was not as widely accepted in the recent past as it is today in 2018. However, since AlexNet won the ImageNet challenge in 2012 and beat the nearest competitor by an unheard of margin (10.8 percent) [23], brain-inspired artificial neural networks (ANNs) and the hardware to run them have returned the mainstream conscious as a viable approach for AI. ANNs like AlexNet are loosely based on the connectivity of cortex in the brain and contain from thousands of simple units, called "neurons", arranged and connected in layers (Fig. 1.1). Each neuron computes a simple nonlinear function of the sum of its inputs, and each connection weights the source neuron's output, or activation, and delivers it as input to a destination neuron.

Prior to AlexNet's success, algorithms geared towards AI were largely not brain-inspired and hardware design efforts were concentrated on powerful, general-purpose central processing units (CPUs), which operate synchronously and digitally: a central clock governs the flow of data and

Figure 1.1: Artificial Neural Network
Inputs are passed through layers of neurons and connections. Neurons compute simple nonlinear functions of their summed input while connections weight signals passing through them.
instructions through the computer and numbers are represented in binary. The 0s and 1 s of binary correspond to the power supply voltage and ground of digital logic (Fig. 1.2). Further, these CPUs instantiate part of the broader Von Neumann computer architecture, which separates state (the memory) from computation (the CPU) and excel at sequential programs, or programs that require executing steps one at a time. Although Von Neumann (of the Von Neumann architecture) himself noted the differences between a computer's architecture and the brain's as well as the potential of a more brain-like architecture [44], there was little economic incentive to develop alternative computing architectures. The computing industry adopted the silicon semiconductor metal-oxidesemiconductor field-effect transistor (MOSFET) as their physical substrate, which permitted exponentially increasing transistor counts in a chip over time - dubbed Moore's Law. When computer architects could expect to double a designs' performance every two to three years by switching to the latest silicon manufacturing process, alternative designs remained out of consideration. As a result, after decades of Moore's law, the digital computer approach has become synonymous with computation; the information age is synonymous with the digital age.

However, physical devices have physical limits, so developing brain-like architectures makes more economic sense as the semiconductor industry takes longer and spends more to shrink transistors. Specifically, at the smallest transistor sizes, the cost per transistor no longer decreases with transistor size, so it is no longer economically viable to rely on device shrinkage for performance gains. In the vacuum after nearly 50 years of Moore's law, AlexNet succeeded by matching a brain-inspired ANN structure, the convolutional neural network (CNN), with non-CPU hardware, the graphical processing unit (GPU), that was well-suited to the network's architecture. An ANN operates by passing inputs through thousands of neurons and millions of parameters simultaneously, and moving all of that data around is a poor fit for CPUs which are bottlenecked by the separation between state

Figure 1.2: Digital Logic
LEFT: Digital computing relies on transistor networks (black boxes) to switch an output node between a connection to the power supply (top, blue), representing the binary value 1 , and a connection to ground (bottom, red), representing the binary value 0 . RIGHT: In this simple digital circuit, an inverter, the output is the inverted input.
and computation. A GPU better serves ANNs by matching the structure of the ANN dataflowGPU inputs flow through many simple cores in parallel instead of one complicated core sequentially. AlexNet's success on a GPU convincingly demonstrating the utility of brain-inspired computational approaches and hardware.

Though people now recognize the value of highly-parallel, brain-like computing, there remain significant differences between the brain's architecture and today's hardware. To realize an ANN's thresholding, weighting, and summing operations efficiently, computer architects have developed application-specific integrated circuits (ASICs) 21], but these ASICs still rely on the predominant, synchronous-digital paradigm. However, from Carver Mead's work in the 1980s and 90s 34, neuromorphic engineers recognize that the physics underlying transistors and the physics underlying ion channels in a biological neurons membrane are qualitatively matched. Specifically, electrons or holes passing through a subthreshold MOSFET and ions passing through a neuron's membrane are both diffusion driven phenomena [33]. As a result, both are voltage controlled current sources with an exponential dependence of current on voltage (Fig. 1.3). That is, subthreshold MOSFETs are analogous to ion currents through a neuron's membrane.

With subthreshold MOSFETs as their building blocks, neuromorphic engineers push the brain analogy deeper than network-level structures and build silicon neurons that follow the inherent dynamics of biological neurons-spiking dynamics. In contrast to simple and static artificial neurons, biological neurons are continuous dynamical systems governed by electrochemical gradients and voltage-sensitive ion-channel proteins embedded in their membranes. Their most prominent behavior is the generation and emission of stereotyped, traveling depolarizations (spikes) along their projections (axons) to other neurons.

Neuromorphic engineers construct large scale spiking neural networks (SNNs) to leverage the minimal power consumption of subthreshold MOSFETs for useful computation and to understand the value of dynamics and spiking for brain-like computation with a forward engineering approach. While the predominant ANN approach running on synchronous-digital hardware has led to impressive achievements in image classification, speech classification, game playing, driving autonomy,

Figure 1.3: Ion Channels and Subthreshold Transistors
LEFT: Adapted from [34. Comparison between sodium channel conductance in a neuron for a given membrane potential and a transistor's source to drain current for a given gate voltage show similar exponential relationships between voltage and current. RIGHT: the gate voltage to drain current relationship in a more modern, 28 nm process transistor.
and many other fields, practitioners are still working to push such AI systems into highly powerconstrained environments (and hence limited connectivity) that require real-time operation. The femtowatt power for subthreshold MOSFETs provide an attractive means for computing on minimal power budgets (Fig. 1.3. RIGHT), and by systematically building SNNs from low-power spiking dynamical circuits, neuromorphic engineers also address the critique 20 leveled at Neuroscience that reverse engineering and modeling techniques have yet to yield a mechanistic understanding of the brain. Such a mechanistic understanding is inherent to the systematic construction of SNNs practiced by neuromorphic engineers.

Prior to my joining the field, neuromorphic engineers developed efficient and scalable neuromorphic systems as culminated in Neurogrid with a million neurons and a billion synapses 2 . However, a million neurons and billion synapses are difficult to use without systematic means of mapping higher level computations onto the spiking neurons. By combining Neurogrid with an existing means, the Neural Engineering Framework (NEF) [15], we demonstrated the NEF principles on Neurogrid 12] and demoed a robot arm controller with Neurogrid's spiking silicon neurons 35]. From the lessons of marrying Neurogrid and NEF, we began our next project to build Braindrop, a chip architected specifically for large scale SNNs as systematically arranged with NEF. In this thesis, I present two contributions to the Braindrop chip that push forward our understanding of spiking communication and computation in neuromorphic systems. Chapter 2 describes the statistical consequences of spiking communication and computation in first-order dynamical systems, and Chapter 3 describes a router network for communicating spikes and programming packets.

2

Summing and Weighting Spike Trains

Similar to ANNs like AlexNet, SNNs rely on numerous neurons (providing thresholding) and connections (providing weighting and summing) (Fig. 2.1. ARChitecture \& weight matrix). Whereas these synchronous-digital designs operate at high-precision (scales exponentially with the number of bits) thousands of times faster than real-time (processing image or speech data in large batches), the hybrid analog-digital brain operates at vastly lower-precision (1-3 bits per spike 9) in realtime. Similarly, ANN algorithms perform well at low precisions 13,19 and real-time operation is appropriate for applications at the edge (processing a single user's speech).

Neuromorphic engineers seek to realize efficient and robust hardware architectures and computational frameworks by emulating the brain's hybrid analog-digital approach, trading precision and speed for energy efficiency $[2,3,15$. Specifically, spiking-analog somas provide thresholding while consuming femtoamps of current, and all-or-nothing spikes-a unary representation-permit weighting with a random number generator and a comparator as well as summing by merging with a multiplexer (Fig. 2.1. operations). Although such probabilistic (p) thinning, is cheap to implement ${ }^{1}$ it may be just as costly in energy as a conventional, binary multiply-accumulate unit when controlling for precision 29 due to quadratic - as opposed to logarithmic - scaling.

In this chapter, we describe an alternative, deterministic (d) thinning method and demonstrate its advantages over probabilistic thinning by analyzing each method's statistical consequences. In Section 2.1. we describe the weighting and summing operations and analyze each operation's output statistics by treating spikes as points in a temporal point-process. In Section 2.2, we analyze the

[^0]

Figure 2.1: Spiking Neural Network
ARCHITECTURE: Spikes flow through axons and synapses (red) while currents flow through dendrites and somas (blue). WEIGHT matrix: Spike trains are weighted (\otimes) and summed (\boxplus) as they travel from one layer to the next. operations: Weighting is by thinning and summing is by merging. Conversion from spike trains to currents is by low-pass filtering in synapses, whose currents settle around the input spike-rate λ. Conversion from currents back to spikes is by integration and thresholding in somas, whose spiking threshold is ϕ.
statistical effects of thinning spike-trains on synaptic signals and show that the two methods produce different SNR scaling. In Section 2.3 , we analyze and optimize the power requirements for the two methods. In Section 2.4 we discuss our results and conclude the chapter.

2.1 Summing and Weighting

An accumulator implements summing and weighting in an ANN by combining merging with dthinning. Merging produces a more Poissonian spike-train, while d-thinning produces a more periodic spike-train. It is crucial that merging occur before thinning. That is, instead of merging the outputs of N accumulators together, we merge N spike trains and feed the resulting spike train into a single accumulator (unlike in Figure 2.1. weight matrix). This ordering preserves the accumulators' more periodic-like spike-train statistics.

Summing by merging (Fig. 2.1, MERGInG) produces more Poissonian spike-trains (Fig. 2.1. PERIOdic \& POISSON INPUT). That is, the interspike-intervals (ISIs) become independent and identically distributed (IID) exponential random variables (i.e. from a renewal process). Consider the case when all N spike-trains have the same rate $\frac{\lambda}{N}$. Pick one as a reference and superpose the remaining $N-1$ on it with random offsets T_{j}, drawn independently from a uniform distribution on $\left\{0, \frac{N}{\lambda}\right\}$ (i.e, within the reference spike-train's first ISI). The resulting, merged spike-train's first ISI is given by $\Delta T_{1}=\min \left(T_{1}, T_{2}, \ldots, T_{N-1}\right)$. Its cumulative distribution function (CDF) is

Figure 2.2: Summing by merging.
Merging: Spike-trains are merged, to producing an output spike-train whose rate is the sum of the input rates. Periodic vs poisson input: As N, the number of (equal-rate) spike trains increases, the cumulative distribution functions (CDFs) of empirical output ISIs ($T_{\text {out }}$), transition from degenerate (dashed line) to exponential (dotted line) versus remaining exponential. CDFs include 10,000 samples of $T_{\text {out }}$, normalized by their mean.

$$
\begin{aligned}
P\left(\Delta T_{1} \leq t\right) & =P\left(\min \left(T_{1}, T_{2}, \ldots, T_{N-1}\right) \leq t\right) \\
& =1-P\left(T_{1}>t \wedge T_{2}>t \wedge \ldots \vee T_{N-1}>t\right) \\
& =1-\int_{t}^{\frac{N}{\lambda}} \int_{t}^{\frac{N}{\lambda}} \ldots \int_{t}^{\frac{N}{\lambda}}\left(\frac{\lambda}{N}\right)^{N} d t_{1} d t_{2} \ldots d t_{N} \\
& =1-\left(\frac{\lambda}{N}\right)^{N}\left(\frac{N}{\lambda}-t\right)^{N} \\
& =1-\left(1-\frac{\lambda t}{N}\right)^{N} \underset{N \rightarrow \infty}{=} 1-e^{-\lambda t}
\end{aligned}
$$

recognizing that $\lim _{N \rightarrow \infty}\left(1+\frac{x}{N}\right)^{N}=e^{x}$. This exponential distribution describes other ISIs in the merged spike-train as well since its first ISI is not special (i.e., its ISIs are identically distributed). It also arises when the spike rates are not equal, provided that consecutive spikes are never from the same neuron, which is satisfied if no neuron fires more than N times faster than the mean.

To see that ISIs are also independent for sufficiently large N, consider the merged, equal-rate periodic spike-trains again. The number of unique ISIs is exactly N; once all N unique ISIs have been traversed, they will repeat. However, this will take a longer and longer time as N tends to infinity. Once this time-scale exceeds several synaptic time constants, the ISIs can be effectively considered to be independent 2^{2}
p and d-thinning (Fig. 2.1. Thinning), produce more Poissonian and more periodic spike-trains for decreasing weight w, respectively (Fig. 2.1. P-THIN \& D-THIN). That is, the resulting spike-train's

[^1]ISIs' (X) coefficient of variation $(\mathrm{CV}(X))$ approaches 1 and 0 , respectively ${ }^{3}$ An ISI in a p-thinned spike-train, is given by $\Delta T_{\text {out }}=\sum_{j}^{S} \Delta T_{\mathrm{in}_{j}}$, where $\Delta T_{\mathrm{in}_{j}}$ are the IID pre-thinned ISIs, and S is the number of ISIs skipped before a spike makes it through. Since S is geometrically distributed with parameter w,

$$
\begin{aligned}
\mathbf{E}\left[\Delta T_{\text {out }}\right] & =\mathbf{E}\left[\Delta T_{\text {in }}\right] / w \\
\operatorname{Var}\left(\Delta T_{\text {out }}\right) & =\left(w \operatorname{Var}\left(\Delta T_{\text {in }}\right)+\mathbf{E}\left[\Delta T_{\text {in }}\right]^{2}(1-w)\right) / w^{2} \\
\mathrm{CV}_{\text {pthin }}\left(\Delta T_{\text {out }}\right) & =\sqrt{w \frac{\operatorname{Var}\left(\Delta T_{\text {in }}\right)}{\mathbf{E}\left[\Delta T_{\text {in }}\right]^{2}}+(1-w)}=\sqrt{w \operatorname{CV}\left(\Delta T_{\text {in }}\right)^{2}+(1-w)}
\end{aligned}
$$

w interpolates between $\operatorname{CV}_{\text {poi }}\left(\Delta T_{\text {out }}\right)=1$ and $\operatorname{CV}\left(\Delta T_{\text {in }}\right)$. As $w \rightarrow 0, \operatorname{CV}_{\text {pthin }}\left(\Delta T_{\text {out }}\right) \rightarrow 1$, while as $w \rightarrow 1, \mathrm{CV}_{\text {pthin }}\left(\Delta T_{\text {out }}\right) \rightarrow \mathrm{CV}\left(\Delta T_{\text {in }}\right)$ (i.e, all input spikes are output). For example, when a periodic spike-train $\left(\mathrm{CV}_{\text {per }}\left(\Delta T_{\text {out }}\right)=1\right.$) is p-thinned, $\mathrm{CV}_{\text {pthin }}\left(\Delta T_{\text {out }}\right)=\sqrt{1-w}$ (Table 2.1. pthinned periodic), becoming more Poisson as $w \rightarrow 0$.

In the case of d-thinning, the spike train becomes more periodic with $\Delta T_{\text {out }}=\sum_{j}^{1 / w} \Delta T_{\mathrm{in}_{j}} \stackrel{4}{4}_{4}^{4}$ The sum now contains a deterministic number $(1 / w)$ of ΔT_{in},

$$
\begin{aligned}
\mathbf{E}\left[\Delta T_{\text {out }}\right] & =\mathbf{E}\left[\Delta T_{\text {in }}\right] / w \\
\operatorname{Var}\left(\Delta T_{\text {out }}\right) & =\operatorname{Var}\left(\Delta T_{\text {in }}\right) / w \\
\mathrm{CV}_{\mathrm{dthin}}\left(\Delta T_{\text {out }}\right) & =\sqrt{w \frac{\operatorname{Var}\left(\Delta T_{\text {in }}\right)}{\mathbf{E}\left[\Delta T_{\text {in }}\right]^{2}}}=\sqrt{w} C V\left(\Delta T_{\text {in }}\right)
\end{aligned}
$$

Now w interpolates between $\operatorname{CV}_{\text {per }}\left(\Delta T_{\text {out }}\right)=0$ and $\mathrm{CV}\left(\Delta T_{\text {in }}\right)$. As $w \rightarrow 0, \mathrm{CV}_{\text {dthin }}\left(\Delta T_{\text {out }}\right) \rightarrow 0$, while as $w \rightarrow 1, \mathrm{CV}_{\text {dthin }}\left(\Delta T_{\text {out }}\right) \rightarrow \mathrm{CV}\left(\Delta T_{\text {in }}\right)$ (as with $\mathrm{CV}_{\text {pthin }}$). For example, when a Poisson spike-train $\left(\mathrm{CV}_{\text {poi }}\left(\Delta T_{\mathrm{in}}\right)=1\right)$ is d-thinned, $\mathrm{CV}_{\mathrm{dthin}}\left(\Delta T_{\text {out }}\right)=\sqrt{w}$, becoming more periodic as $w \rightarrow 0$ (Table 2.1, d-thinned Poisson).

2.2 Discrete to Continuous

Spiking neural networks encode signals in their spike rates, which requires estimating the underlying spike rate from the train of spikes with methods that respect causality and track temporal changes in the rate. The first requirement precludes estimating the instantaneous spike-rate as it requires

[^2]

Figure 2.3: Probabilistic (P) vs Deterministic (D) Thinning.
P-thin: Each input spike draws a random number (RN) from a uniform distribution in $\{0: 1\}$. If RN is less than the weight (0.5), then the spike is forwarded out. D-THIN: Each input spike increments an accumulated value (AV) by the weight (0.5). If AV exceeds a threshold (1), then the spike is forwarded out and AV is decremented by the threshold. P-THIN PERIODIC vs D-THIN POISSON: As the weight decreases, cumulative distribution functions (CDFs) of empirical output ISIs $\left(T_{\text {out }}\right)$, sampled and plotted as in Fig. 2.1. transition from degenerate (dashed lines) to exponential (dotted lines) versus exponential to degenerate. P-Thin poisson and D-Thin PERIODIC: CDFs do not change with the weight.

Table 2.1: Renewal Process ISI CV and Synapse SNR

Renewal Process	ISI CV	Synapse SNR
Poisson	1	$\sqrt{2 \lambda \tau}$
periodic	0	$\sqrt{\frac{2 \lambda \tau}{\operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)-2 \lambda \tau}}$
p-thinned periodic	$\sqrt{1-w}$	$\sqrt{\frac{2 \lambda \tau}{1-p+p \operatorname{coth}\left(\frac{p}{2 \lambda \tau}\right)-2 \lambda \tau}}$
d-thinned Poisson	\sqrt{w}	$\sqrt{\frac{2 \lambda \tau}{\frac{(1+k \lambda \tau)^{k}+(k \lambda)^{k}}{(1+k \lambda \tau)^{k}-(k \lambda)^{k}-2 \lambda \tau}}}$

knowing the next future spike-time. The second requirement limits the number of ISI samples available to the time window times the spike-rate.

We consider methods that obtain an estimate, X, of the rate by computing a running average of spikes, weighting a spike that happened T_{j} seconds in the past by $h\left(T_{j}\right)$. That is,

$$
\begin{equation*}
X=\sum_{j=0}^{\infty} h\left(T_{j}\right) \tag{2.1}
\end{equation*}
$$

defined at a point in time after an infinite number of spikes from a fixed-rate spike-train have arrived, which allows us to ignore the initial transient and focus on the steady-state mean. We quantify the estimate's quality using its signal-to-noise ratio:

$$
\begin{equation*}
\operatorname{SNR}(X)=\mathbf{E}[X] / \sqrt{\operatorname{Var}(X)} \tag{2.2}
\end{equation*}
$$

We consider the simplest implementation of $h\left(T_{j}\right)$: a first-order, low-pass filter (LPF) driven by a train of impulses, $s(t)=\sum_{j} \delta\left(t-t_{j}\right)$, where t_{j} is the j th spike's time. That is,

$$
\begin{equation*}
\tau \frac{d x}{d t}=-x+s \tag{2.3}
\end{equation*}
$$

where $x(t)$ is the LPF's state (and output) and τ is its time-constant. Upon receiving the j th spike, $\delta\left(t-t_{j}\right), x(t)$ jumps by $1 / \tau$ and then decays at the rate $1 / \tau$-only $x(t)$'s mean value settles to the spike rate-so larger τ result in cleaner but slower estimates. In this case, $h(t)=\frac{1}{\tau} e^{-t / \tau} u(t)$, which yields weights that decay by a factor of every τ seconds; $u(t)$ is the unit-step function. In addition to depending on τ, the rate-estimate's variability also depends on the incoming ISIs' variability (Fig. 2.2).

We derive $\operatorname{SNR}(X)$ for low-pass filtered Poisson, periodic, p-thinned periodic, and d-thinned Poisson spike-trains (Table 2.1 \& Fig. 2.2). We do not consider p-thinned Poisson nor d-thinned periodic spike-trains because their statistics do not change with the weight (see Fig. 2.11). It suffices to find the first and second moments of X for each process since $\operatorname{Var}(X)=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$. To express T_{j} in terms of IID random variables, we define $\Delta T_{j}=T_{j}-T_{j-1}$ for $j>0$ so that $T_{j}=\sum_{n=0}^{j} \Delta T_{n}$. Note that $\Delta T_{0}=T_{0}$, the elapsed time from the most recent spike, is not an ISI and so is not generally drawn from the same distribution as the ISIs. Substituting into (2.1) yields

$$
\begin{align*}
X & =\sum_{j=0}^{\infty} h\left(\sum_{l=0}^{j} \Delta T_{l}\right) \\
& =\frac{1}{\tau} e^{\frac{-\Delta T_{0}}{\tau}}+\frac{1}{\tau} e^{-\frac{\Delta T_{0}+\Delta T_{1}}{\tau}}+\frac{1}{\tau} e^{-\frac{\Delta T_{0}+\Delta T_{1}+\Delta T_{2}}{\tau}}+\ldots \\
& =\frac{1}{\tau} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{-\frac{\Delta T_{l}}{\tau}} \tag{2.4}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
X^{2} & =\left(\frac{1}{\tau} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{-\frac{\Delta T_{l}}{\tau}}\right)^{2} \\
& =\frac{1}{\tau^{2}} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{\frac{-2 \Delta T_{l}}{\tau}}+\frac{2}{\tau^{2}} \sum_{j=0}^{\infty} \sum_{l=j+1}^{\infty} \prod_{m=0}^{j} e^{\frac{-2 \Delta T_{m}}{\tau}} \prod_{n=j+1}^{l} e^{\frac{-\Delta T_{n}}{\tau}} \quad \text { breaking into diagonal and cross terms }, \\
& =\frac{1}{\tau^{2}} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{\frac{-2 \Delta T_{l}}{\tau}}+\frac{2}{\tau^{2}} \sum_{j=0}^{\infty} \prod_{m=0}^{j} e^{\frac{-2 \Delta T_{m}}{\tau}} \sum_{l=j+1}^{\infty} \prod_{n=j+1}^{l} e^{\frac{-\Delta T_{n}}{\tau}}
\end{aligned}
$$

Assuming ΔT_{0} is identically distributed to the ISIs (i.e., that the ISIs are memoryless as in the Poisson process), from (2.4),

$$
\begin{align*}
\mathbf{E}[X] & =\mathbf{E}\left[\frac{1}{\tau} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{\frac{-\Delta T_{l}}{\tau}}\right] \\
& =\frac{1}{\tau} \sum_{j=0}^{\infty} \mathbf{E}\left[\prod_{l=0}^{j} e^{-\frac{\Delta T_{l}}{\tau}}\right] \\
& =\frac{1}{\tau} \sum_{j=0}^{\infty} \mathbf{E}\left[e^{\frac{-\Delta T}{\tau}}\right]^{j+1} \quad \Delta T_{j} \text { are IID } \\
& =\frac{1}{\tau} \sum_{j=1}^{\infty} \varphi_{\Delta T}\left(\frac{i}{\tau}\right)^{j} \tag{2.5}
\end{align*}
$$

noting that $\mathbf{E}\left[e^{-\Delta T / \tau}\right]=\left.\varphi_{\Delta T}(s)\right|_{s=i / \tau}$, the characteristic function of ΔT evaluated at $i / \tau\left[^{5}\right.$ From (2.5),

[^3]

Figure 2.4: Renewal Process-Driven Synapse
Top: Spikes generated by Poisson, p-thinned periodic ($p=0.7$), d-thinned Poisson $(k=20)$, and periodic point-processes. The underlying spike rates are matched at $\lambda=5$ spikes per τ. Bottom: Synaptic response to spikes is governed by first-order dynamics 2.3 . The mean output converges to λ, and, in this example, the variability decreases as we go from Poisson to periodic (ordered as above).

Figure 2.5: Rate-Estimate SNR.
Periodic \& poisson: SNR scales linearly and as the square-root, respectively, with $\lambda \tau$, the number of spikes per synaptic time-constant τ, for $\lambda \tau>1 / 6$. Below this number (inset), periodic switches from linear (dotted line) to square-root. P-THINNED PERIODIC: SNR transitions from periodic to Poisson behavior (shaded region) as p decreases. D-THINNED POISSON: SNR transitions from Poisson to periodic behavior as k increases.

$$
\begin{aligned}
\mathbf{E} & {\left[X^{2}\right] } \\
& =\mathbf{E}\left[\frac{1}{\tau^{2}} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{\frac{-2 \Delta T_{l}}{\tau}}+\frac{2}{\tau^{2}} \sum_{j=0}^{\infty} \prod_{m=0}^{j} e^{\frac{-2 \Delta T_{m}}{\tau}} \sum_{l=j+1}^{\infty} \prod_{n=j+1}^{l} e^{\frac{-\Delta T_{n}}{\tau}}\right] \\
& =\frac{1}{\tau^{2}} \sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-2 \Delta T}{\tau}}\right]^{j}+\frac{2}{\tau^{2}} \sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-2 \Delta T}{\tau}}\right]^{j} \sum_{l=j+1}^{\infty} \mathbf{E}\left[e^{\frac{-\Delta T}{\tau}}\right]^{l-j}
\end{aligned}
$$

substituting $m=l-j$

$$
\begin{align*}
& =\frac{1}{\tau^{2}} \sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-2 \Delta T}{\tau}}\right]^{j}+\frac{2}{\tau^{2}} \sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-2 \Delta T}{\tau}}\right]^{j} \sum_{m=1}^{\infty} \mathbf{E}\left[e^{\frac{-\Delta T}{\tau}}\right]^{m} \\
& =\frac{1}{\tau^{2}} \sum_{j=1}^{\infty} \varphi_{\Delta T}\left(\frac{2 i}{\tau}\right)^{j}\left(1+2 \sum_{m=1}^{\infty} \varphi_{\Delta T}\left(\frac{i}{\tau}\right)^{m}\right) \tag{2.6}
\end{align*}
$$

When ΔT_{0} is not identically distributed to the ISIs (i.e., the ISI distribution has memory), we split out ΔT_{0} from (2.4) and 2.5),

$$
\begin{aligned}
& X=\frac{1}{\tau} \sum_{j=0}^{\infty} \prod_{l=0}^{j} e^{\frac{-\Delta T_{l}}{\tau}}=\frac{1}{\tau} e^{\frac{-\Delta T_{0}}{\tau}}\left(1+\sum_{j=1}^{\infty} \prod_{l=1}^{j} e^{\frac{-\Delta T_{l}}{\tau}}\right) \\
& X^{2}=\frac{1}{\tau^{2}} e^{\frac{-2 \Delta T_{0}}{\tau}}\left(1+2 \sum_{j=1}^{\infty} \prod_{l=1}^{j} e^{\frac{-\Delta T_{l}}{\tau}}+\sum_{j=1}^{\infty} \prod_{l=1}^{j} e^{\frac{-\Delta \Delta T_{l}}{\tau}}+2 \sum_{j=1}^{\infty} \prod_{m=1}^{j} e^{\frac{-2 \Delta T_{m}}{\tau}} \sum_{l=j+1}^{\infty} \prod_{n=j+1}^{l} e^{\frac{-\Delta T_{n}}{\tau}}\right)
\end{aligned}
$$

which results in,

$$
\begin{align*}
\mathbf{E}[X]= & \frac{1}{\tau} \mathbf{E}\left[e^{\frac{-\Delta T_{0}}{\tau}}\right]\left(1+\sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-\Delta T}{\tau}}\right]^{j}\right) \\
= & \frac{1}{\tau} \varphi_{\Delta T_{0}}\left(\frac{i}{\tau}\right)\left(1+\sum_{j=1}^{\infty} \varphi_{\Delta T}\left(\frac{i}{\tau}\right)^{j}\right) \tag{2.7}\\
\mathbf{E}\left[X^{2}\right]= & \frac{1}{\tau^{2}} \mathbf{E}\left[e^{\frac{-2 \Delta T_{0}}{\tau}}\right]\left(1+2 \sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-\Delta T}{\tau}}\right]^{j}\right. \\
& \left.+\sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-2 \Delta T}{\tau}}\right]^{j}+2 \sum_{j=1}^{\infty} \mathbf{E}\left[e^{\frac{-2 \Delta T}{\tau}}\right]^{j} \sum_{l=1}^{\infty} \mathbf{E}\left[e^{\frac{-\Delta T}{\tau}}\right]^{l}\right) \\
= & \frac{1}{\tau^{2}} \varphi_{\Delta T_{0}}\left(\frac{2 i}{\tau}\right)\left(1+2 \sum_{j=1}^{\infty} \varphi_{\Delta T}\left(\frac{i}{\tau}\right)^{j}\right. \\
& \left.+\sum_{j=1}^{\infty} \varphi_{\Delta T}\left(\frac{2 i}{\tau}\right)^{j}+2 \sum_{j=1}^{\infty} \varphi_{\Delta T}\left(\frac{2 i}{\tau}\right)^{j} \sum_{l=1}^{\infty} \varphi_{\Delta T}\left(\frac{i}{\tau}\right)^{l}\right) \tag{2.8}
\end{align*}
$$

2.2.1 Poisson Process

With Poisson input, SNR scales with the square-root of the number of spikes per synaptic timeconstant. For an exponential distribution with rate parameter $\lambda, \varphi_{\Delta T}(s)=\frac{\lambda}{\lambda-i s}$. Using (2.2) and $s=i / \tau$,

$$
\mathbf{E}[X]=\frac{1}{\tau} \sum_{j=1}^{\infty}\left(\frac{\lambda \tau}{\lambda \tau+1}\right)^{j}=\frac{1}{\tau} \frac{\frac{\lambda \tau}{\lambda \tau+1}}{1-\frac{\lambda \tau}{\lambda \tau+1}}=\lambda
$$

That is, the expected rate-estimate matches the input rate. Using 2.6 and $s=2 i / \tau$,

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\frac{1}{\tau^{2}} \sum_{j=1}^{\infty}\left(\frac{\lambda \tau}{\lambda \tau+2}\right)^{j}\left(1+2 \sum_{m=1}^{\infty}\left(\frac{\lambda \tau}{\lambda \tau+1}\right)^{m}\right) \\
& =\frac{1}{\tau^{2}} \frac{\lambda \tau}{2}(1+2 \lambda \tau)=\frac{\lambda}{2 \tau}+\lambda^{2}
\end{aligned}
$$

Therefore, from 2.2 ,

$$
\begin{aligned}
\operatorname{Var}(X) & =\lambda / 2 \tau \\
\operatorname{SNR}_{\mathrm{poi}}(X) & =\sqrt{2 \lambda \tau}
\end{aligned}
$$

(Table 2.1, Poisson \& Fig. 2.2, Poisson), which we confirm with numerical simulations (Fig. 2.2.1,

Figure 2.6: Theory vs numerical simulations.
Empirical SNR measured and averaged over 10,000 spike-train realizations with $30 \lambda \tau$ spikes each. The results (circles) match the corresponding theoretical SNR (solid lines).

POISSON). Note that the relevant quantity is $\lambda \tau$, the number of spikes arriving within a time constant, not the spike rate λ or the synaptic time constant τ individually.

2.2.2 Periodic Process

With periodic input, SNR scales linearly with $\lambda \tau$. While the ISIs are equal, ΔT_{0} is uniformly distributed between 0 and $1 / \lambda$, so that $\varphi_{\Delta T_{0}}(s)=\frac{e^{i s / \lambda}-1}{i s / \lambda}$. From T_{0} into the past, every subsequent spike is $1 / \lambda$ further from the present, so from 2.7) and 2.8),

$$
\begin{aligned}
\mathbf{E}[X] & =\frac{1}{\tau} \frac{e^{\frac{-1}{\lambda \tau}}-1}{-1 / \lambda \tau}\left(1+\sum_{j=1}^{\infty} e^{\frac{-j}{\lambda \tau}}\right)=\lambda \\
\mathbf{E}\left[X^{2}\right] & =\frac{1}{\tau^{2}} \frac{e^{\frac{-2}{\lambda \tau}}-1}{-2 / \lambda \tau}\left(1+2 \sum_{j=1}^{\infty} e^{\frac{-j}{\lambda \tau}}+\sum_{j=1}^{\infty} e^{\frac{-2 j}{\lambda \tau}}+2 \sum_{j=1}^{\infty} e^{\frac{-2 j}{\lambda \tau}} \sum_{l=1}^{\infty} e^{\frac{-l}{\lambda \tau}}\right) \\
& =\frac{\lambda}{2 \tau} \frac{1+e^{\frac{-1}{\lambda \tau}}}{1-e^{\frac{-1}{\lambda \tau}}}=\frac{\lambda}{2 \tau} \operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)
\end{aligned}
$$

Therefore, from 2.2 ,

$$
\begin{aligned}
& \operatorname{Var}(X)=\frac{\lambda}{2 \tau} \operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)-\lambda^{2} \\
& \mathrm{SNR}_{\mathrm{per}}(X)=\sqrt{\frac{\lambda^{2}}{2 \lambda \tau}\left(\operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)-2 \lambda \tau\right)} \\
& \operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)-2 \lambda \tau
\end{aligned}
$$

(Table 2.1, periodic \& Fig. 2.2, PERIODIC), which we confirm with numerical simulations (Fig. 2.2.1, PERIODIC).

When $\lambda \tau$ is small and large, $\operatorname{SNR}_{\text {per }}(X)$ scales as the square-root and linearly, respectively. As $\lambda \tau$ approaches zero, $\operatorname{SNR}_{\text {per }}(X)$ scales similarly to Poisson SNR $(\sqrt{\lambda \tau})$:

$$
\lim _{\lambda \tau \rightarrow 0} \operatorname{SNR}_{\operatorname{per}}(X)=\lim _{\lambda \tau \rightarrow 0} \sqrt{\frac{2 \lambda \tau}{\operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)-2 \lambda \tau}}=\sqrt{2 \lambda \tau}
$$

(i.e., periodic and Poisson inputs are indistinguishable from an SNR perspective). For high $\lambda \tau$, the limit is not as straightforward- $\lim _{\lambda \tau \rightarrow \infty} \operatorname{coth}(1 / 2 \lambda \tau)$ is not defined-but we find that $\mathrm{SNR}_{\text {per }} \rightarrow$ $2 \sqrt{3} \lambda \tau$ (see Appendix A.1). That is, SNR scales linearly with $\lambda \tau$ at high $\lambda \tau$. These two approximations intersect at $\lambda \tau=1 / 6$ (Fig. 2.2 Periodic, inset). The low $\lambda \tau$ approximation is within 10% and 1% of the actual SNR for $\lambda \tau<0.0950$ and $\lambda \tau<0.00995$, respectively. The high $\lambda \tau$ approximation is within 10% and 1% of the actual SNR for $\lambda \tau>0.253$ and $\lambda \tau>0.902$, respectively. In summary,

$$
\operatorname{SNR}_{\mathrm{per}}(\lambda \tau) \approx \begin{cases}\sqrt{2 \lambda \tau} & \lambda \tau \leq 1 / 6 \\ 2 \sqrt{3} \lambda \tau & \lambda \tau>1 / 6\end{cases}
$$

2.2.3 p-Thinned Periodic Process

With p-thinned periodic input, SNR transitions from periodic to Poisson with decreasing $p(=w)$. Instead of using (2.7) and 2.8 directly, we modify X by introducing a random (indicator) variable

$$
I_{j}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

to indicate whether the j th pre-thinned spike is kept or not:

$$
X=\frac{1}{\tau} e^{-\frac{\Delta T_{0}}{\tau}}\left(I_{0}+\sum_{j=1}^{\infty} e^{-\frac{j}{\lambda_{p} \tau}} I_{j}\right)
$$

where ΔT_{0} is the time to the first, pre-thinned spike and λ_{p} is the rate of the pre-thinned spike-train. Only spikes whose corresponding indicator is 1 will affect the current state. Therefore,

$$
\begin{aligned}
\mathbf{E}[X] & =\mathbf{E}\left[\frac{1}{\tau} e^{\frac{-\Delta T_{0}}{\tau}}\left(I_{0}+\sum_{j=1}^{\infty} e^{\frac{-j}{\lambda_{p} \tau}} I_{j}\right)\right] \\
& =\frac{1}{\tau} \mathbf{E}\left[e^{\frac{-\Delta T_{0}}{\tau}}\right]\left(\mathbf{E}\left[I_{0}\right]+\sum_{j=1}^{\infty} e^{\frac{-j}{\lambda_{p} \tau}} \mathbf{E}\left[I_{j}\right]\right) \quad\left(T_{0}, I_{j} \text { are independent }\right) \\
& =\frac{1}{\tau} \frac{1-e^{\frac{-1}{\lambda_{p} \tau}}}{1 / \lambda_{p} \tau}\left(p+\sum_{j=0}^{\infty} e^{\frac{-j}{\lambda^{\frac{j}{p}}}} p\right)=p \lambda_{p}=\lambda
\end{aligned}
$$

For $\mathbf{E}\left[X^{2}\right]$,

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\mathbf{E}\left[\left(\frac{1}{\tau} e^{\frac{-\Delta T_{0}}{\tau}}\left(I_{0}+\sum_{j=1}^{\infty} e^{\frac{-j}{\lambda_{p} \tau}} I_{j}\right)\right)^{2}\right] \\
& =\frac{\lambda_{p}}{2 \tau}\left(1-e^{-2 / \lambda_{p} \tau}\right) \mathbf{E}\left[\left(\sum_{j=0}^{\infty} e^{\frac{-j}{\lambda^{\prime} \tau}} I_{j}\right)^{2}\right]
\end{aligned}
$$

The expectation can be broken into diagonal and cross terms.

$$
\begin{aligned}
\mathbf{E}\left[\left(\sum_{j=0}^{\infty} e^{\frac{-j}{\lambda_{p} \tau}} I_{j}\right)^{2}\right] & =\mathbf{E}\left[\sum_{j=0}^{\infty} e^{\frac{-2 j}{\lambda_{p} \tau}} I_{j}^{2}+\sum_{j=0, j \neq l}^{\infty} \sum_{l=0}^{\infty} e^{\frac{-(j+l)}{\lambda_{p} \tau}} I_{j} I_{l}\right] \\
& =\sum_{j=0}^{\infty} e^{\frac{-2 j}{\lambda_{p} \tau}} \mathbf{E}\left[I_{j}^{2}\right]+\sum_{j=0, j \neq l}^{\infty} \sum_{l=0}^{\infty} e^{\frac{-(j+l)}{\lambda_{p} \tau}} \mathbf{E}\left[I_{j} I_{l}\right] \\
& =\sum_{j=0}^{\infty} e^{\frac{-j k}{\lambda_{p} \tau}} p+\sum_{j=0, j \neq l}^{\infty} \sum_{l=0}^{\infty} e^{\frac{-(-5+l)}{\lambda_{p} \tau}} p^{2} \quad\left(I_{j}, I_{l} \text { independent for } j \neq l\right) \\
& =\frac{p}{1-e^{\frac{-2}{\lambda_{p} \tau}}}+\frac{p^{2}}{\left(1-e^{\frac{-1}{\lambda_{p} \tau}}\right)^{2}}-\frac{p^{2}}{1-e^{\frac{-2}{\lambda_{p} \tau}}}
\end{aligned}
$$

After substitution back into $\mathbf{E}\left[X^{2}\right]$,

$$
\mathbf{E}\left[X^{2}\right]=\frac{\lambda_{p} p}{2 \tau}\left(1-p+p \frac{1+e^{-1 / \lambda_{p} \tau}}{1-e^{-1 / \lambda_{p} \tau}}\right)=\frac{\lambda}{2 \tau}\left(1-p+p \operatorname{coth}\left(\frac{p}{2 \lambda \tau}\right)\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{\lambda}{2 \tau}\left(1-p+p \operatorname{coth}\left(\frac{p}{2 \lambda \tau}\right)-2 \lambda \tau\right) \\
\operatorname{SNR}_{\text {pthin }}(X) & =\sqrt{\frac{2 \lambda \tau}{1-p+p \operatorname{coth}\left(\frac{p}{2 \lambda \tau}\right)-2 \lambda \tau}}
\end{aligned}
$$

(Table 2.1, p-thinned periodic \& Fig. 2.2, p-THIN.), which we confirm with numerical simulations (Fig. 2.2.1, P-THIN.). As $p \rightarrow 1, \mathrm{SNR}_{\text {pthin }} \rightarrow \mathrm{SNR}_{\text {per }}$ (i.e., no spikes are dropped), and as $p \rightarrow 0$, $\mathrm{SNR}_{\text {pthin }} \rightarrow \mathrm{SNR}_{\text {poi }}$ (see Appendix A.2). Therefore,

$$
\operatorname{SNR}_{\text {pthin }}(X) \approx \begin{cases}\operatorname{SNR}_{\mathrm{poi}}(X) & \text { at low } p \\ \operatorname{SNR}_{\mathrm{per}}(X) & \text { at high } p\end{cases}
$$

2.2.4 d-Thinned Poisson Process

With d-thinned Poisson input, SNR transitions from Poisson to periodic behavior with increasing $k(=1 / w)$. The d-thinned Poisson process is not memoryless, necessitating the use of 2.7) and 2.8 and considering ΔT_{0} and ΔT separately. Expressing $\Delta T_{0}=U \Delta T^{*}$, where U selects uniformly within random interval ΔT^{*} (i.e., $U \sim \operatorname{Uniform}(0,1)$), which is not identically distributed to ΔT, an example of the inspection paradox 40. Although we select a point in time without bias, our point in time is biased towards falling within larger ISIs simply because they are larger. Accounting for this bias, ΔT^{*} 's probability density function (PDF) is $f_{\Delta T^{*}}(t)=\frac{t f_{\Delta T}(t)}{\mathrm{E}[\Delta T]}$. Scaling density function $f_{\Delta T}(t)$ by t captures this bias and dividing by $\mathbf{E}[\Delta T]$ renormalizes the scaled density to a valid probability density (i.e. $\int f_{\Delta T^{*}}=\int t f_{\Delta T}(t) d t=\mathbf{E}[\Delta T]$). As a result,

$$
\begin{aligned}
\mathbf{E}\left[e^{\frac{-\Delta T_{0}}{\tau}}\right] & =\lambda \tau\left(1-\left(\frac{k \lambda \tau}{1+k \lambda \tau}\right)^{k}\right) \\
\mathbf{E}\left[e^{\frac{-2 \Delta T_{0}}{\tau}}\right] & =\frac{\lambda \tau}{2}\left(1-\left(\frac{k \lambda \tau}{2+k \lambda \tau}\right)^{k}\right)
\end{aligned}
$$

and since $\varphi_{\Delta T}(s)=\left(\frac{k \lambda}{k \lambda-i s}\right)^{k \lambda}, 2.7$ and 2.8 produce

$$
\begin{aligned}
\mathbf{E}[X] & =\frac{1}{\tau} \lambda \tau\left(1-\left(\frac{k \lambda \tau}{1+k \lambda \tau}\right)^{k}\right) \sum_{j=0}^{\infty}\left(\frac{k \lambda \tau}{k \lambda \tau+1}\right)^{k \lambda j}=\lambda \\
\mathbf{E}\left[X^{2}\right] & =\frac{1}{\tau^{2}} \frac{\lambda \tau}{2}\left(1-\left(\frac{k \lambda \tau}{2+k \lambda \tau}\right)^{k}\right) \sum_{j=0}^{\infty}\left(\frac{k \lambda \tau}{2+k \lambda \tau}\right)^{k j}\left(1+2 \sum_{l=1}^{\infty}\left(\frac{k \lambda \tau}{1+k \lambda \tau}\right)^{k l}\right) \\
& =\frac{\lambda}{2 \tau} \frac{1+\left(\frac{k \lambda \tau}{1+k \lambda \tau}\right)^{k}}{1-\left(\frac{k \lambda \tau}{1+k \lambda \tau}\right)^{k}}=\frac{\lambda}{2 \tau} \frac{(1+k \lambda \tau)^{k}+(k \lambda \tau)^{k}}{(1+k \lambda \tau)^{k}-(k \lambda \tau)^{k}}
\end{aligned}
$$

therefore,

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{\lambda}{2 \tau}\left(\frac{(1+k \lambda \tau)^{k}+(k \lambda \tau)^{k}}{(1+k \lambda \tau)^{k}-(k \lambda \tau)^{k}}-\frac{2 k \lambda \tau}{k}\right) \\
\operatorname{SNR}_{\mathrm{dthin}}(X) & =\sqrt{\frac{2 \lambda \tau}{\frac{(1+k \lambda \tau)^{k}+(k \lambda \tau)^{k}}{(1+k \lambda \tau)^{k}-(k \lambda \tau)^{k}}-2 \lambda \tau}}
\end{aligned}
$$

(Table 2.1, d-thinned Poisson \& Fig. 2.2 D-THIN.), which we confirm with numerical simulations (Fig. 2.2.1, D-THIN.). Alternatively (see Appendix A.3), $\operatorname{SNR}_{\text {dthin }}=h \operatorname{SNR}_{\text {poi }}(X)$, where

$$
h=\sqrt{\frac{1+k^{2} \lambda \tau+\ldots+\frac{1}{2} k^{k-1}(k-1)(\lambda \tau)^{k-2}+k^{k}(\lambda \tau)^{k-1}}{1+\left(k^{2}-2\right) \lambda \tau+\ldots+\frac{1}{6} k^{k-2}(k-1)(k+4)(\lambda \tau)^{k-2}+k^{k-1}(\lambda \tau)^{k-1}}}
$$

At high $\lambda \tau$, d-thinning preserves the input's information, while at low $\lambda \tau$, a d-thinned Poisson spike-train is indistinguishable from a Poisson spike-train with the same rate:

$$
h \underset{\lambda \tau \rightarrow \infty}{=} \sqrt{\frac{k^{k}(\lambda \tau)^{k-1}}{k^{k-1}(\lambda \tau)^{k-1}}}=\sqrt{k} \quad \text { and } \quad h \underset{\lambda \tau \rightarrow 0}{=} 1
$$

Therefore, $\operatorname{SNR}_{\mathrm{dthin}}(X) \underset{\lambda \tau \rightarrow \infty}{=} \sqrt{k} \mathrm{SNR}_{\text {poi }}(X)=\sqrt{2 k \lambda \tau}$, which is the input spike-train's SNR, and $\operatorname{SNR}_{\text {dthin }}(X) \underset{\lambda \tau \rightarrow 0}{=} \operatorname{SNR}_{\text {poi }}(X)$.

At $k=1, \operatorname{SNR}_{\mathrm{dthin}}(X)=\operatorname{SNR}_{\text {poi }}(X)$ (i.e., all Poissonian input spikes are output). As $k \rightarrow \infty$, $\operatorname{SNR}_{\text {dthin }}(X) \rightarrow \operatorname{SNR}_{\text {per }}(X)$. However, $k \rightarrow \infty$ means processing many input, pre-thinned spikes for each output spike. When accounting for the energy costs associated with processing spikes, $\operatorname{SNR}_{\text {dthin }}$ scales as $\sqrt[3]{(3 c / 2 b)(\lambda \tau)^{2}}$ where c is the fanout of the thinned spike-train and b is the cost of processing each pre-thinned spike. After optimizing for costs, we find that $\mathrm{SNR}_{\text {dthin }}$ scales as $(\lambda \tau)^{3 / 4}$.

Figure 2.7: SNR Approximation.
Relative position of $\mathrm{SNR}_{\text {pthin }}$ and $\mathrm{SNR}_{\text {dthin }}$ between $\mathrm{SNR}_{\text {poi }}$ and $\mathrm{SNR}_{\text {per }}$ computed via (2.9). PTHINNED PERIODIC: For low $\lambda \tau, \mathrm{SNR}_{\text {pthin }}$ is more closely approximated by $\mathrm{SNR}_{\text {per }}$ than $\mathrm{SNR}_{\text {poi }}$ (curves are near $r_{\text {proc }}=1$), but as $\lambda \tau$ increases or p decreases, $\mathrm{SNR}_{\text {pthin }}$ becomes more closely approximated by $\mathrm{SNR}_{\text {poi }}$ (curves approach $r_{\text {proc }}=0$). D-THINNED POISSON: For low $\lambda \tau, \mathrm{SNR}_{\text {dthin }}$ is more closely approximated by $\mathrm{SNR}_{\mathrm{per}}$, but as $\lambda \tau$ increases, $\mathrm{SNR}_{\mathrm{dthin}}$ becomes more closely approximated by $\mathrm{SNR}_{\text {poi }}$. However, as k increases (i.e, w decreases), $\mathrm{SNR}_{\text {dthin }}$ moves closer to $\mathrm{SNR}_{\text {per }}$, in contrast to $\mathrm{SNR}_{\text {pthin }}$.

2.2.5 Approximation Quality

While p-thinned periodic approaches Poisson and d-thinned Poisson approaches periodic as $w \rightarrow 0$, the convergence depends on $\lambda \tau$. To quantify this, consider

$$
\begin{equation*}
r_{\text {proc }}(\lambda \tau, w)=\frac{\operatorname{SNR}_{\text {proc }}(X(\lambda \tau, w))-\operatorname{SNR}_{\text {poi }}(X(\lambda \tau))}{\operatorname{SNR}_{\text {per }}(X(\lambda \tau))-\operatorname{SNR}_{\text {poi }}(X(\lambda \tau))} \tag{2.9}
\end{equation*}
$$

which measures where the SNR of proc (either pthin or dthin) lies between the Poisson and periodic limits at a given $\lambda \tau$ (Fig. 2.2.5. At $r_{\text {proc }}=0, \mathrm{SNR}_{\text {proc }}=\mathrm{SNR}_{\text {poi }}$, at $r_{\text {proc }}=1, \mathrm{SNR}_{\text {proc }}=\mathrm{SNR}_{\text {per }}$, and at $r_{\text {proc }}=0.5, \mathrm{SNR}_{\text {proc }}$ is halfway between $\mathrm{SNR}_{\text {per }}$ and $\mathrm{SNR}_{\text {poi }}$.

2.3 Optimizing for Power

The advantages of weighted-summation by d over p-thinning ultimately translate into lower power consumption. Power is given by $P=c_{\text {in }} \lambda_{\text {in }}+c_{\text {out }} \lambda_{\text {out }}$ where $c_{\mathrm{in}(\text { out })}$ and $\lambda_{\mathrm{in}(\mathrm{out})}$ are the energy cost per input (output) spike and input (output) spike rate, respectively. $c_{\text {in }}$ for p-thinning is set as each
input spike incurs a soma communication, weight lookup, random sample, and comparison (between the weight and the sample). c_{in} for d-thinning is set as each input spike incurs a soma communication, weight lookup, accumulation lookup, addition (between the weight and accumulation state), and thresholding. $c_{\text {out }}$ is the same for both p and d-thinning: each output spike incurs a target lookup and set of synapse communications (i.e. the spike fans out).

Power for summing-and-weighting as implemented by merging and p-thinning is minimized when $p=1$, (i.e., not weighting at all). Due to the Poisson statistics $\left(\operatorname{SNR}_{\mathrm{poi}}(X)=\sqrt{2 \lambda \tau}\right)$,

$$
P_{\mathrm{pthin}}=c_{\mathrm{in}} \frac{\mathrm{SNR}_{\mathrm{tgt}}^{2}}{2 \tau p}+c_{\mathrm{out}} \frac{\mathrm{SNR}_{\mathrm{tgt}}^{2}}{2 \tau}=\frac{1}{2 \tau}\left(\frac{c_{\mathrm{in}}}{p}+c_{\mathrm{out}}\right) \mathrm{SNR}_{\mathrm{tgt}}^{2}
$$

for a target $\mathrm{SNR}\left(\mathrm{SNR}_{\mathrm{tgt}}\right)$ since $\lambda_{\text {out }}=\mathrm{SNR}_{\mathrm{tgt}}^{2} / 2 \tau$ and $\lambda_{\mathrm{in}}=\lambda_{\mathrm{out}} / p=\mathrm{SNR}_{\mathrm{tgt}}^{2} / 2 \tau p$. However, regardless of $c_{\text {in }}$ or $c_{\text {out }}$, power consumption is minimized when $p=1$ since p is restricted to $\{0,1\}$.

In contrast, d-thinning incentives weighting for sufficient $\lambda \tau$. Since $\operatorname{SNR}_{\mathrm{dthin}}(X) \underset{\lambda \tau \rightarrow 0}{=} \sqrt{2 \lambda \tau}$, and $\operatorname{SNR}_{\text {dthin }}(X) \underset{\lambda \tau \rightarrow \infty}{=} \sqrt{2 k \lambda \tau}$,

$$
\begin{aligned}
& P_{\mathrm{dthin}} \underset{\lambda \tau \rightarrow 0}{=} c_{\mathrm{in}} \frac{\mathrm{SNR}_{\mathrm{tgt}}^{2}}{2 \tau} k+c_{\mathrm{out}} \frac{\mathrm{SNR}_{\mathrm{tgt}}^{2}}{2 \tau}=\frac{1}{2 \tau}\left(c_{\mathrm{in}} k+c_{\mathrm{out}}\right) \mathrm{SNR}_{\mathrm{tgt}}^{2} \\
& P_{\mathrm{dthin}} \underset{\lambda \tau \rightarrow \infty}{=} c_{\mathrm{in}} \frac{\mathrm{SNR}_{\mathrm{tgt}}^{2}}{2 \tau}+c_{\mathrm{out}} \frac{\mathrm{SNR}_{\mathrm{tgt}}^{2}}{2 k \tau}=\frac{1}{2 \tau}\left(c_{\mathrm{in}}+\frac{c_{\mathrm{out}}}{k}\right) \mathrm{SNR}_{\mathrm{tgt}}^{2}
\end{aligned}
$$

At low $\lambda \tau$, d-thinning power is minimized by $k=1$ (i.e., not weighting at all) as with p-thinning. However, at high $\lambda \tau$, power decreases with increasing k (i.e., weighting improves power consumption). Between the extremes, the minimum-power k switches from $k=1$ to $k>1$ depending on $c_{\text {in }}$ and $c_{\text {out }}$ (Fig. 2.3).

2.4 Discussion

Although neuromorphic engineers look to biology for inspiration and biological neurons show trial-totrial variability often modeled by Poisson statistics, Poisson spike-trains are poor at communicating information about their underlying rate. Therefore, injecting noise (via p-thinning) simply to mimic Poisson statistics observed in biological data (e.g., trial-to-trial variability of synaptic transmission) is an ill-founded pursuit (outside the corresponding biological context [8,16,43]).

We might seem to be claiming to violate the data-processing inequality as the accumulator "cleans up" a Poisson spike-train, but that's only an artifact of comparing the SNRs between spike trains resulting from p -thinning and d-thinning. If we instead compared the p -thinning and d-thinning SNR to their, respective, pre-thinned SNRs, we would see that both procedures decrease SNR (i.e,

Figure 2.8: d-Thinned Poisson Power.
Set $c_{\text {in }}=\alpha$ and $c_{\text {out }}=1-\alpha$ so that $0 \leq \alpha \leq 1$ sweeps linearly between relative output and input energy costs. LEFT: $\alpha=0.5$ (i.e., input and output spikes cost the same) iso-power contours. The minimum power curve passes through each contour's peak At low $\lambda \tau$, the minimum power curve follows $\operatorname{SNR}_{\text {poi }}(X)$, but as $\lambda \tau$ increases, it lifts above $\operatorname{SNR}_{\text {poi }}(X)$ as weighting lowers the power requirements for a given SNR. CENTER and RIGHT: Minimum power curves vary with α. The relative input-to-output cost determines when it becomes more efficient to start weighting to reduce the output spike-rate.
we respect the data-processing inequality). Our claim is on the relative drop in SNR-d-thinning produces a smaller relative decrease in SNR than p-thinning. Therefore, given a choice of p-thinning or d-thinning for weighting and a choice of summing before weighting or weighting before summing, summing and then d-thinning is the clear favorite. It results in $\mathrm{SNR}_{\text {dthin }}$ scaling with the $3 / 4$ power of $\lambda \tau$ instead of as the square root - the case of p-thinning or (d-thinning) before summing. When Poisson statistics arise, they must arise from with contextual mechanisms embedded within larger frameworks.

3

A Serial H-Tree Router for Two-Dimensional Arrays

3.1 Router Functionality and Overhead

Advances in CMOS fabrication processes enable increases in the number and complexity of computational units in highly distributed and parallel architectures (e.g., neuromorphic processors; [2 37 39]), which calls for a corresponding increase in scalability and sophistication of routing mechanisms. Router area should be a reasonable fraction of the total system-router architecture is therefore dictated by client complexity. In this regard, high-overhead routers (e.g., meshes with parallel interfaces) capable of communicating arbitrary data-types at high bandwidths, are unsuited for intermediate-complexity clients with lower data-rate requirements. To provide multiple-data-type functionality for such clients, we adapt existing low-overhead routers.

Low-overhead routers contain a transmitter and a receiver 4]. The transmitter merges data from all of the clients into a single stream and adds source-identifying addresses to each datum to form a packet. The receiver takes a stream of packets, parses each destination-identifying address, and delivers the datum to the specified client.

For N clients, a low-overhead router's circuitry scales as $\mathcal{O}(\sqrt{ } N)$ by sharing resources. Clients are tiled in a two-dimensional (2D) array and share row and column wires within the array and transceiver circuitry at the edge of the array 4, 27. (Fig. 3.1, GRID ADDR). Sharing works correctly if certain timing assumptions are met [5, 6], but these assumptions are difficult to satisfy for long wires, which are susceptible to phenomena such as charge relaxation, whereby a significant voltage difference arises between the wire's two ends 25. For this reason, grids do not readily scale to large arrays.

Our router presented herein switches from grid addresses to tree paths (Fig. 3.1. TREE PATH),

Figure 3.1: Grid Addresses and Tree Paths
Clients (white and gray squares) are tiled in a 2D array and routed to (or from) using a grid or a tree. GRID ADDR: A client's address is encoded by concatenating its x and y positions (in binary). Addressing circuitry is placed at the array's edge (black rectangles) and scales as $\mathcal{O}(\sqrt{ } N)$ for N clients ($N=16$ shown). TREE PATH: A client's path is encoded by traversing the tree from the root to leaf (indexed by $n=3$ and $n=0$, respectively, in Algorithms $1 \& 2$. Each up and left (down and right) branch appends a 0 (1). Shaded squares indicate differences between tree and grid binary-number assignments (e.g., the bottom left client's grid-address is 0011, but its tree-path is 1010). Routing circuitry is embedded within the array (black triangles) and scales as $\mathcal{O}(N)$. TREE WIRE: Wire segments are annotated with their lengths.
trading an increase in logic circuitry for enhanced scalabilty and functionality. The increase in logic circuitry-from $\mathcal{O}(\sqrt{ } N)$ to $\mathcal{O}(N)$ for N clients-is worthwhile for emerging intermediate-complexity clients that use thick-oxide transistors for ultra-low power analog computation and much smaller thin-oxide transistors for ultra-fast digital communication [3]. The enhanced scalability arises because its asynchronous implementation's timing assumptions are easily met. And the enhanced functionality arises because its serial protocol supports multiple datatypes, whereas the grid's parallel protocol limits payload size. For backward compatibility, converting grid addresses into tree paths and vice versa is straightforward (Algorithms 1 \& 2).

In Section 3.2 , we describe how grid addresses and tree paths are encoded, show that both require $\mathcal{O}(N)$ wiring, and justify our choice of a 4 -ary tree over a binary tree. In Section 3.3, we describe the serial link our router uses. In Section 3.4 , we describe the logical design of the router's nodes. In Section 3.5, we describe how the router's leaves were customized for a neuromorphic application. In Section 3.6, we describe the router's logical and physical synthesis and its verification and validation. In Section 3.7. we conclude the chapter with a discussion of our results.

```
Algorithm 1 Converts Path \((p)\) to Address Algorithm 2 Converts Address ( \(x, y\) ) to
\((x, y) \quad\) Path \((p)\)
Require: \(l=\operatorname{length}(p) \quad\) Require: \(l=\operatorname{length}(p)\)
    for \(n=0\) to \(l / 2-1\) do for \(n=0\) to \(l / 2-1\) do
        \(x[n] \leftarrow p[2 n]\)
        \(p[2 n] \leftarrow x[n]\)
        \(y[n] \leftarrow p[2 n+1]\)
        \(p[2 n+1] \leftarrow y[n]\)
    end for
    end for
```


3.2 Tree Paths versus Grid Addresses

A 2D array can be routed to (or from) using a grid or a tree. We consider N clients, of unit width and height, arranged on a square grid (Fig. 3.1, WIRING).

Given equal link-widths, the tree requires less wiring than the grid. To calculate the length of the tree's wiring, W_{t}, we start from the N unit centers: $N \frac{1}{2}$-unit segments project horizontally from each center. At the second level, $\frac{N}{2} \frac{1}{2}$-unit segments project vertically. At the third level, $\frac{N}{4} 1$-unit segments project horizontally. This geometric pattern continues up to the root; each level alternates between horizontal and vertical orientation and halves the number of segments from the previous, lower level, while doubling the segment-length every other level. Overall, we have

$$
W_{\mathrm{t}}=\frac{1}{2}\left(N+\frac{N}{2}\right)+1\left(\frac{N}{4}+\frac{N}{8}\right)+2\left(\frac{N}{16}+\frac{N}{32}\right)+\ldots=\frac{3}{2} N
$$

as N scales up (coloring matches Fig. 3.1. WIRING). For comparison, in the grid, each client adds 2 units of wire so that $W_{\mathrm{g}}=2 N$. Therefore, $W_{\mathrm{t}}=\frac{3}{4} W_{\mathrm{g}}$: the tree uses up to 25% less wiring than the grid ${ }^{1}$ While the tree's segments become longer as we move from leaves to root, they are shared among more and more leaves.

However, the primary trade-off is the tree's larger transistor-count $(\mathcal{O}(N)$ versus $\mathcal{O}(\sqrt{ } N)$ for the grid), determined by the node-count times the transistors-per-node. To reduce the node-count, we opted for a 4-ary tree over a binary tree. A binary tree has $N-1$ nodes whereas a 4 -ary tree has $\frac{N-1}{3}$ nodes. In general, a k-ary tree has $\frac{N-1}{k-1}$ nodes and $\log _{k}(N)$ levels. Consequently, switching divides the node-count by three, halves the number of levels, halves the latency, and doubles the unpipelined throughput.

If switching from binary to 4 -ary doubles the transistors-per-node. ${ }^{2}$ and divides the node count by three, we would expect to decrease the overall transistor count by 33%. However, nodes are not homogeneous; leaf nodes are tailored to clients' needs. The total transistor count in an N-client

[^4]

Figure 3.2: Serial Link Description at Two Levels of Abstraction
handshaking: Source drives control line x_{ϕ} and data lines x_{0} and x_{1}. Sink drives control line y_{e}. Arrows point from driver to listener. Two-phase handshakes (time slots 0 and 4) initiate and terminate packet communication; four-phase handshakes (1,2 , and 3) send the packet's bits as 1-of- 2 codes. All transitions are acknowledged (curved gray arrows), so the protocol is delay-insensitive. y_{e} 's last transition is acknowledged by x_{ϕ} 's initial transition in the next packet. A three-bit packet (010) is communicated in this example, but the protocol supports arbitrary-sized packets and 1-ofD codes using D data lines. communications: A channel connects Source's output port (X) to Sink's input port (Y). Source's dataless communications (X and X) initiate and terminate packet transmission; such communications are colored blue and red, respectively, throughout the text. Its datafull communications ($X!0$ and $X!1$) send the packet's bits. The entire communication sequence may be consolidated into the single operation ($X!!2$).
k-ary tree whose leaf and intermediate nodes have $T_{\mathrm{L} k}$ and $T_{\mathrm{I} k}$ transistors each, respectively, is

$$
\begin{equation*}
T_{\mathrm{tot} k}=\frac{N-1}{k-1} \frac{(1-k / N) T_{\mathrm{I} k}+(k-1) T_{\mathrm{L} k}}{k-k / N} \tag{3.1}
\end{equation*}
$$

For $T_{\mathrm{L} k}=T_{\mathrm{I} k}=T_{k}$, this expression reduces to $\frac{N-1}{k-1} T_{k}$: the total number of nodes times the transistors-per-node. Note that the ratio of leaf to intermedaite nodes is $k-1: 1-k / N$, which approaches $1: 1$ and $3: 1$ for binary and 4 -ary trees, respectively, as N increases. Thus, based on $T_{\mathrm{L} k}$'s and $T_{\mathrm{I} k}$'s values for our designs (Tab. 3.1. ${ }^{3}$ which have different mixes of combinational and sequential logic and treed gates, switching from binary to 4 -ary increases the average transistor count of the transmitter's and receiver's nodes by $2.6 \times$ and $1.6 \times$, respectively. As a result, their overall transistor count reduces by 13.3% and 45%, respectively (see Tab. 3.1).

[^5]| | Transmitter | | Receiver | |
| ---: | :--- | :--- | :--- | :--- |
| k | 2 | 4 | 2 | 4 |
| $T_{\mathrm{L} k}$ | 78 | 208 | 30 | 54 |
| $T_{\mathrm{I} k}$ | 91 | 255 | 64 | 148 |
| $T_{\text {tot } 4} / T_{\text {tot } 2}$ | 0.867 | 0.550 | | |

 assumption made is the isochronic fork. Signal-propagation delay along branches of such forks are assumed to be equally insignificant (hence the iso combining form; precise definitions may be found in (30 31). This assumption is the minimal one necessary for useful computation with asynchronous circuits (i.e., Turing complete). No assumptions are made about signal-propagation delays through gates or nonisochronic wires, except that they are positive and finite.

3.3 Serial Communication Protocol

To keep link-width constant, we use serial communication. The path-length grows as we move from leaf to root in a tree. Hence, codes communicated over links closer to the root have more bits than those communicated over links closer to the leaves. A parallel protocol thus requires wider links (i.e. more wires) towards the root, whereas a serial protocol makes do with a constant width. Further, the latter allows us to communicate more than just the encoded paths; we can communicate data (e.g., configuration settings) as well.

Our serial-link follows a fully delay-insensitive version of the bundled-data protocol in [6] (Fig. 3.2. handshaking). For example, the following source generates a random bitstream and segments it into packets of arbitrary length (see Table 3.2 for syntax):

$$
\begin{aligned}
& x_{\phi} \uparrow ;\left[x_{e}\right] ; *[\text { true } \longrightarrow x_{0} \uparrow ;\left[\neg x_{e}\right] ; x_{0} \downarrow ;\left[x_{e}\right] \\
& \text { Itrue } \longrightarrow x_{1} \uparrow ;\left[\neg x_{e}\right] ; x_{1} \downarrow ;\left[x_{e}\right] \\
&\text { Itrue } \left.\left.\longrightarrow x_{\phi} \downarrow ;\left[\neg x_{e}\right] ; x_{\phi} \uparrow ;\left[x_{e}\right]\right]\right]
\end{aligned}
$$

Handshakes that demarcate the beginning and end of packet transmission are colored blue and red, respectively. If the x_{ϕ} branch is executed immediately, or consecutively, the packet contains no data. A sink that consumes the source's data operates as follows.

$$
\begin{aligned}
{\left[y_{\phi}\right] ; y_{e} \uparrow ; *\left[\left[y_{0} \vee y_{1}\right.\right.} & \longrightarrow y_{e} \downarrow ;\left[\neg y_{0} \wedge \neg y_{1}\right] ; y_{e} \uparrow \\
\square \quad \neg y_{\phi} & \left.\left.\longrightarrow y_{e} \downarrow ;\left[y_{\phi}\right] ; y_{e} \uparrow\right]\right]
\end{aligned}
$$

Selection (deterministic) is used instead of arbitration (nondeterministic) because the source guarantees mutual exclusion between the branches.

At a higher level of abstraction, we describe the source's and sink's operation simply in terms of communications on ports connected by a channel (Fig. 3.2. communications). For the source:

$$
X ; *[\text { true } \longrightarrow X!0 \mid \text { true } \longrightarrow X!1 \mid \text { true } \longrightarrow X ; X]]
$$

X and X correspond to two-phase handshakes (on x_{ϕ} and x_{e}) that demarcate the packet (see Table 3.3 for notation). X ! corresponds to repeated four-phase handshakes (on $x_{0,1}$ and x_{e}) that send the payload. For the sink:

$$
Y ; *[\overline{Y ?} \longrightarrow Y ? \square \bar{Y} \longrightarrow Y ; Y]]
$$

Note the unconventional use of the probe to check whether a datafull communication is pending. This probe $(\overline{Y ?})$ corresponds to $y_{0} \vee y_{1}$, whereas the dataless communication probe (\bar{Y}) corresponds to $\neg y_{\phi}$.

We introduce ?? and !! operators to describe serial read and write communications concisely (Fig. 3.2, communications). The source and sink are described as
$*[$ true $\longrightarrow X!$!null|true $\longrightarrow X!!\operatorname{Rand}()]] \| *[[Y ? ?]]$
where null is an empty string (i.e. the packet is empty) and $\operatorname{Rand}()$ returns a random, nonnegative integer.

3.4 Router Logical Design

The router consists of a transmitter and a receiver, both composed of a tree of nodes (Fig. 3.4.1). The transmitter merges packets from the clients into a single stream for transmission to the environment. The receiver does the inverse; it splits each packet in the stream off to the targeted client. For conciseness, we describe the nodes' operation for a binary tree (TX (2) and RV(2)). It is straightforward to extend these processes to a k-ary tree (TX (k) and $\operatorname{RV}(k))$.

For a design space exporation see appendices B, C, and D. Designs were evaluated by their transistor costs assuming an array of 4096 neurons, 1024 synapses, and 256 memory banks. With each group of 1 syanpse and 4 neurons uses 28 bits of memory.

3.4.1 Transmitter

A transmitter node merges packet streams from its children into a single packet stream for its parent (another node one level closer to the root, unless the node is itself the root):

$$
\begin{aligned}
& \operatorname{TX}(2) \\
\equiv & *\left[\left[\overline{C_{0}} \longrightarrow P!!\left(0 \oplus C_{0} ? ?\right) \mid \overline{C_{1}} \longrightarrow P!!\left(1 \oplus C_{1} ? ?\right)\right]\right]
\end{aligned}
$$

A packet from port $C_{0,1}$ is interpreted as a string; $a \oplus b$ prepends a to b (e.g., $1 \oplus 01=101$). Prepending a child's port index at that node in the tree to its data builds the overall path from leaf to root.

Expanding !! and ?? operators, and separating out arbitration, TX(2) becomes

$$
\begin{gathered}
*\left[\left[\overline{C_{0}} \longrightarrow P ; P!0 ; C_{0} ;\left[\overline{C_{0}} \longrightarrow P ; C_{0}\right]\right.\right. \\
\left.\quad \mid \overline{C_{1}} \longrightarrow P ; P!1 ; C_{1} ;\left[\overline{C_{1}} \longrightarrow P ; C_{1}\right]\right] \\
\| *\left[\left[\overline{C_{0}} \longrightarrow \longrightarrow P!C_{0} ? \square \overline{C_{1} ?} \longrightarrow P!C_{1} ?\right]\right]
\end{gathered}
$$

Communications that demarcate when packet transmission begins and ends at the child and parent ports are colored blue and red, respectively. Putting $P!\{0,1\}$ before $C_{0,1}$ ensures that the child's index is prepended to the packet before the child's data are forwarded with the $P!C_{0,1}$? communications.

Further expansion yields the following HSE.

$$
\begin{aligned}
& *\left[\left[c_{0 \phi} \longrightarrow p_{\phi} \uparrow ;\left[p_{e}\right] ; p_{0} \uparrow ;\left[\neg p_{e}\right] ; p_{0} \downarrow ;\left[p_{e}\right] ; c_{0 e} \uparrow ;\right.\right. \\
& \quad\left[\neg c_{0 \phi}\right] ; p_{\phi} \downarrow ;\left[\neg p_{e}\right] ; c_{0 e} \downarrow \\
& \quad \mid c_{1 \phi} \longrightarrow p_{\phi} \uparrow ;\left[p_{e}\right] ; p_{1} \uparrow ;\left[\neg p_{e}\right] ; p_{1} \downarrow ;\left[p_{e}\right] ; c_{1 e} \uparrow ; \\
& \left.\left.\quad\left[\neg c_{1 \phi}\right] ; p_{\phi} \downarrow ;\left[\neg p_{e}\right] ; c_{1 e} \downarrow\right]\right], \\
& *\left[\left[c_{00} \longrightarrow p_{0} \uparrow ;\left[\neg p_{e}\right] ; c_{0 e} \downarrow ;\left[\neg c_{00}\right] ; p_{0} \downarrow ;\left[p_{e}\right] ; c_{0 e} \uparrow\right.\right. \\
& \quad \text { प } c_{01} \longrightarrow p_{1} \uparrow ;\left[\neg p_{e}\right] ; c_{1 e} \downarrow ;\left[\neg c_{01}\right] ; p_{1} \downarrow ;\left[p_{e}\right] ; c_{1 e} \uparrow \\
& \quad \text { प } c_{10} \longrightarrow p_{0} \uparrow ;\left[\neg p_{e}\right] ; c_{0 e} \downarrow ;\left[\neg c_{10}\right] ; p_{0} \downarrow ;\left[p_{e}\right] ; c_{0 e} \uparrow \\
& \left.\left.\quad \text { प } c_{11} \longrightarrow p_{1} \uparrow ;\left[\neg p_{e}\right] ; c_{1 e} \downarrow ;\left[\neg c_{11}\right] ; p_{1} \downarrow ;\left[p_{e}\right] ; c_{1 e} \uparrow\right]\right]
\end{aligned}
$$

Note that the initial parent communication completes ($\left[p_{e}\right]$) and a code is transmitted to the parent before the initial child communication is acknowledged ($c_{0 e} \uparrow$ or $c_{1 e} \uparrow$). After that, the selection process relays the child's data.

We proceed by factorizing the arbitration process into the arbiter itself and the remaining childparent communication:

$$
\begin{gathered}
*\left[\left[c_{0 \phi} \longrightarrow s_{0} \uparrow ;\left[\neg c_{0 \phi}\right] ; s_{0} \downarrow \mid c_{1 \phi} \longrightarrow s_{1} \uparrow ;\left[\neg c_{1 \phi}\right] ; s_{1} \downarrow\right]\right], \\
*\left[\left[s_{0} \wedge \neg u \longrightarrow p_{\phi} \uparrow ;\left[p_{e}\right] ; w_{0} \uparrow ; p_{0} \uparrow ;\left[\neg p_{e}\right] ; u \uparrow ; w_{0} \downarrow ;\right.\right. \\
p_{0} \downarrow ;\left[p_{e}\right] ; c_{0} \uparrow ;\left[\neg s_{0}\right] ; p_{\phi} \downarrow ;\left[\neg p_{e}\right] ; c_{0 e} \downarrow ; u \downarrow \\
\quad \square s_{1} \wedge \neg u \longrightarrow p_{\phi} \uparrow ;\left[p_{e}\right] ; w_{1} \uparrow ; p_{1} \uparrow ;\left[\neg p_{e}\right] ; u \uparrow ; w_{1} \downarrow ; \\
\left.\left.p_{1} \downarrow ;\left[p_{e}\right] ; c_{1 e} \uparrow ;\left[\neg s_{1}\right] ; p_{\phi} \downarrow ;\left[\neg p_{e}\right] ; c_{1 e} \downarrow ; u \downarrow\right]\right]
\end{gathered}
$$

$s_{0,1}$ are introduced to store the selection result; $w_{0,1}$ are introduced to distinguish the state immediately after $\left[p_{e}\right]$ (prepending the index) from that immediately after $\left[p_{e}\right]$ (acknowledging the child); and u is introduced to preserve mutual exclusion in the selection process when its branches are implemented as concurrent processes. It prevents the s_{1} branch (i.e. $p_{\phi} \uparrow ;\left[p_{e}\right] ; \ldots$) from beginning before the s_{0} branch completes (i.e. $p_{\phi} \downarrow ;\left[\neg p_{e}\right] ; \ldots$) when $c_{1 \phi}$ is high and the arbiter executes $s_{1} \uparrow$ immediately after $s_{0} \downarrow$.

Our 4-ary transmitter tree's node uses a four-way arbiter (Fig. 3.4.1). Three mutual-exclusion elements are interconnected in a binary decision-tree by handshaking circuitry ($c_{0: 3 \phi}$ and $s_{0: 3}$ connect to the two ARB2's $c_{0,1 \mathrm{i}}$ inputs and $c_{0,1 \mathrm{o}}$ outputs, respectively) 32 . CHP and HSE are omitted
for brevity. For comparison, a binary tree's node requires just one mutual-exclusion element-with no additional overhead. Although the arbiter design used here contains no pipelining, a greedy, but fair arbiter is described in Appendix E. 2 .

The transmitter node's HSE (sans ARB(4)) is implemented by the following production rule set (PRS).

$$
\begin{array}{ll}
\neg u \wedge\left(s_{0} \vee s_{1}\right) & \rightarrow p_{\phi} \uparrow \\
\left(c_{0 e} \wedge \neg s_{0}\right) \vee\left(c_{1 e} \wedge \neg s_{1}\right) & \rightarrow p_{\phi} \downarrow \\
s_{0} \wedge p_{e} \wedge \neg u \rightarrow w_{0} \uparrow & u \rightarrow w_{0} \downarrow \\
s_{1} \wedge p_{e} \wedge \neg u \rightarrow w_{1} \uparrow & u \rightarrow w_{1} \downarrow \\
c_{00} \vee c_{10} \vee w_{0} \rightarrow p_{0} \uparrow & \neg\left(c_{00} \vee c_{10} \vee w_{0}\right) \rightarrow p_{0 \downarrow} \\
c_{01} \vee c_{11} \vee w_{1} \rightarrow p_{1} \uparrow & \neg\left(c_{01} \vee c_{11} \vee w_{1}\right) \rightarrow p_{1 \downarrow} \\
& \\
\left(w_{0} \vee w_{1}\right) \wedge \neg p_{e} \rightarrow u \uparrow & \neg\left(c_{0 e} \vee c_{1 e} \vee p_{\phi}\right) \rightarrow u \downarrow \\
s_{0} \wedge u \wedge p_{e} \wedge \neg c_{1 e} \rightarrow c_{0 e} \uparrow & \neg p_{e} \rightarrow c_{0 e \downarrow} \\
s_{1} \wedge u \wedge p_{e} \wedge \neg c_{0 e} \rightarrow c_{1 e} \uparrow & \neg p_{e} \rightarrow c_{1 e \downarrow}
\end{array}
$$

3.4.2 Receiver

A receiver node splits a packet stream from its parent into packet streams for its children (another node one level closer to the leaves, unless the node is a leaf itself):

$$
\begin{aligned}
& \operatorname{RV}(2) \\
\equiv & *\left[\left[P ? ?(s, d) \bullet\left[s=0 \longrightarrow C_{0}!!d \square s=1 \longrightarrow C_{1}!!d\right]\right]\right]
\end{aligned}
$$

It uses the packet's first word (written into s) to decide which child to send the remainder of the packet (written into d); s has 1 bit for a binary tree or 2 bits for a 4-ary tree (RV(4)).

We expand RV(2)'s ?? and !! communications as follows.

$$
\begin{aligned}
& P ; P ? s \bullet\left[s=0 \longrightarrow C_{0} \rrbracket s=1 \longrightarrow C_{1}\right] \\
& *\left[\left[\overline{P ?} \wedge s=0 \longrightarrow C_{0}!P ?\right.\right. \\
& \quad \square \overline{P ?} \wedge s=1 \longrightarrow C_{1}!P ? \\
& \quad \square \bar{P} \longrightarrow P \bullet\left[s=0 \longrightarrow C_{0} \square s=1 \longrightarrow C_{1}\right] \\
& \left.\left.\quad P ; P ? s \bullet\left[s=0 \longrightarrow C_{0} \square s=1 \longrightarrow C_{1}\right]\right]\right]
\end{aligned}
$$

This process can be expanded further as

```
*[[\mp@subsup{p}{0}{}\wedge\mp@subsup{s}{0}{}\longrightarrow\mp@subsup{c}{00}{}\uparrow;[\neg\mp@subsup{c}{0e}{}];\mp@subsup{p}{e}{}\downarrow;[\neg\mp@subsup{p}{0}{}];\mp@subsup{c}{00}{}\downarrow;[\mp@subsup{c}{0e}{}];\mp@subsup{p}{e}{}\uparrow
    \square\mp@subsup{p}{1}{}\wedge\mp@subsup{s}{0}{}\longrightarrow\mp@subsup{c}{01}{}\uparrow;[\neg\mp@subsup{c}{0e}{}];\mp@subsup{p}{e}{}\downarrow;[\neg\mp@subsup{p}{1}{}];\mp@subsup{c}{01}{}\downarrow;[\mp@subsup{c}{0e}{}];\mp@subsup{p}{e}{}\uparrow
    \square\mp@subsup{p}{0}{}\wedge\mp@subsup{s}{1}{}\longrightarrow\mp@subsup{c}{10}{}\uparrow;[\neg\mp@subsup{c}{1e}{}];\mp@subsup{p}{e}{}\downarrow;[\neg\mp@subsup{p}{0}{}];\mp@subsup{c}{10}{}\downarrow;[\mp@subsup{c}{1e}{}];\mp@subsup{p}{e}{}\uparrow
    \square\mp@subsup{p}{1}{}\wedge\mp@subsup{s}{1}{}\longrightarrow\mp@subsup{c}{11}{}\uparrow;[\neg\mp@subsup{c}{1e}{}];\mp@subsup{p}{e}{}\downarrow;[\neg\mp@subsup{p}{1}{}];\mp@subsup{c}{11}{}\downarrow;[\mp@subsup{c}{1e}{}];\mp@subsup{p}{e}{}\uparrow
    \square\neg\mp@subsup{p}{\phi}{}\longrightarrow\mp@subsup{s}{0}{}\downarrow,\mp@subsup{s}{1}{}\downarrow;
        c
        [p
        \square p
```

After reset, the process resumes at \square.
To realize these five branches as five concurrent processes, we must preclude the the first four from starting immediately after the fifth process executes $s_{0,1} \uparrow$. We accomplish this by replacing $s_{0,1}$ in their guards with $c_{0,1 \phi}$, which also indicate the selected child.

$$
\begin{aligned}
& *\left[\left[p_{0} \wedge c_{0 \phi} \longrightarrow c_{00} \uparrow ;\left[\neg c_{0 e}\right] ; p_{e} \downarrow ;\left[\neg p_{0}\right] ; c_{00} \downarrow ;\left[c_{0 e}\right] ; p_{e} \uparrow\right.\right. \\
& \quad \square p_{1} \wedge c_{0 \phi} \longrightarrow c_{01} \uparrow ;\left[\neg c_{0 e}\right] ; p_{e} \downarrow ;\left[\neg p_{1}\right] ; c_{01} \downarrow ;\left[c_{0 e}\right] ; p_{e} \uparrow \\
& \square p_{0} \wedge c_{1 \phi} \longrightarrow c_{10} \uparrow ;\left[\neg c_{1 e}\right] ; p_{e} \downarrow ;\left[\neg p_{0}\right] ; c_{10} \downarrow ;\left[c_{1 e}\right] ; p_{e} \uparrow \\
& \square p_{1} \wedge c_{1 \phi} \longrightarrow c_{11} \uparrow ;\left[\neg c_{1 e}\right] ; p_{e} \downarrow ;\left[\neg p_{1}\right] ; c_{11} \downarrow ;\left[c_{1 e}\right] ; p_{e} \uparrow \\
& \square \neg p_{\phi} \longrightarrow s_{0} \downarrow, s_{1} \downarrow ; s s \downarrow ; v \downarrow ; \\
& c_{0 \phi} \downarrow, c_{1 \phi} \downarrow ;\left[\neg c_{0 e} \wedge \neg c_{1 e}\right] ; p_{e} \downarrow\left[p_{\phi}\right] ; p_{e} \uparrow ; \\
& \quad\left[p_{0} \longrightarrow s_{0} \uparrow ; s s \uparrow ; p_{e} \downarrow ;\left[\neg p_{0}\right] ; v \uparrow ; c_{0 \phi} \uparrow ;\left[c_{0 e}\right] ; p_{e} \uparrow\right. \\
& \left.\left.\left.\quad \square p_{1} \longrightarrow s_{1} \uparrow ; s s \uparrow ; p_{e} \downarrow ;\left[\neg p_{1}\right] ; v \uparrow ; c_{1 \phi} \uparrow ;\left[c_{1 e}\right] ; p_{e} \uparrow\right]\right]\right]
\end{aligned}
$$

v is introduced to allow $c_{0,1 \phi}$ to be combinational and $s s$ is introduced to reduce the length of p_{e} 's pull-up and pull-down chains (see PRS below).

The following PRS implements the receiver node's HSE.

$$
\begin{array}{lr}
p_{\phi} \wedge \neg s s \vee c_{0 e} \vee c_{1 e} & \rightarrow p_{e} \uparrow \\
\left(\neg p_{\phi} \vee s s\right) \wedge \neg c_{0 e} \wedge \neg c_{1 e} \rightarrow p_{e} \downarrow \\
s_{0} \vee s_{1} \rightarrow s s \uparrow & \neg s_{0} \wedge \neg s_{1} \rightarrow s s \downarrow \\
& \\
p_{0} \wedge \neg v \rightarrow s_{0} \uparrow & \neg p_{\phi} \rightarrow s_{0} \downarrow \\
p_{1} \wedge \neg v \rightarrow s_{1} \uparrow & \neg p_{\phi} \rightarrow s_{1} \downarrow \\
& \\
s s \wedge \neg p_{0} \wedge \neg p_{1} \rightarrow v \uparrow & \neg s s \rightarrow v \downarrow \\
v \wedge s_{0} \rightarrow c_{0 \phi} \uparrow & \neg v \vee \neg s_{0} \rightarrow c_{0 \phi} \downarrow \\
v \wedge s_{1} \rightarrow c_{1 \phi} \uparrow & \neg v \vee \neg s_{1} \rightarrow c_{1 \phi} \downarrow \\
& \\
p_{0} \wedge c_{0 \phi} \rightarrow c_{00} \uparrow & \neg p_{0} \vee \neg c_{0 \phi} \rightarrow c_{00} \downarrow \\
p_{1} \wedge c_{0 \phi} \rightarrow c_{01} \uparrow & \neg p_{1} \vee \neg c_{0 \phi} \rightarrow c_{01} \downarrow \\
p_{0} \wedge c_{1 \phi} \rightarrow c_{10} \uparrow & \neg p_{0} \vee \neg c_{1 \phi} \rightarrow c_{10} \downarrow \\
p_{1} \wedge c_{1 \phi} \rightarrow c_{11} \uparrow & \neg p_{1} \vee \neg c_{1 \phi} \rightarrow c_{11 \downarrow} \downarrow
\end{array}
$$

3.5 Router Application

We connected a 2D array of spiking-neuron clusters to a datapath using our asynchronous serial treerouter, a natural choice for spike communication. A product of continuous, noisy analog dynamics at biological timescales, spikes are relatively infrequent (sub-kHz) and asynchronous (there's no clock). Each cluster contains 16 spike-generating soma circuits, 4 spike-consuming synapse circuits, and a configuration memory.

Clusters are tiled in a 16×16 array. To service the 4,096 somas, 1,024 synapses, and 256 memories, the transmitter's and receiver's trees are six $\left(4^{6}=4096\right)$ and five $\left(4^{5}=1024\right)$ levels deep, respectively. Half of the receiver's 1,024 output ports suffice to service all 1,024 synapses because each port supplies 2 bits (a 1 -of- 4 code) whereas each synapse needs only 1 bit (indicates whether a spike is excitatory or inhibitory). Thus, 512 ports are left over to service the 256 memories. We customized the transmitter's and receiver's leaf nodes to suit this application as follows.

3.5.1 Transmitter Leaf

The transmitter leaf transmits a soma's spike up the tree by creating a packet containing the soma's index. With no other data to convey, the transmitter node is simplified to

$$
\begin{aligned}
\operatorname{TXL}(2) \equiv *\left[\left[\overline{C_{0}}\right.\right. & \longrightarrow C_{0} \bullet(P ; P!0) ;\left[\overline{C_{0}} \longrightarrow C_{0} \bullet P\right] \\
\mid \overline{C_{1}} & \left.\longrightarrow C_{1} \bullet(P ; P!1) ;\left[\overline{C_{1}} \longrightarrow C_{1} \bullet P\right]\right]
\end{aligned}
$$

Note that our design actually instantiates TXL(4). We omit its HSE and PRS for brevity.
Somas lock up the transmitter during spike emission. When emitting a spike, a soma initiates packet transmission with a two-phase handshake $\left(C_{0,1}\right)$. Afterwards, the soma enters a refractory period for up to a few milliseconds before executing another two-phase handshake ($C_{0,1}$) to terminate transmission. If communications within the transmitter are slackless, the soma will lock up the transmitter during its refractory period. To prevent this, we insert a buffer (i.e., latch) between the soma and the transmitter's leaf.

3.5.2 Receiver Leaf

The receiver leaf services four synapses as well as a configuration memory (via a deserializer). We repurpose two of the receiver node's 2-bit ports to service the four synapses and use a third port to communicate with the memory:

$$
\begin{aligned}
& \mathrm{RVL}(4) \equiv P ; P ? s \bullet\left[s=2 \longrightarrow C_{2} \square s \neq 2 \longrightarrow \text { skip }\right] \\
& *\left[\left[\overline{P ?} \wedge s=0 \longrightarrow C_{0}!P ?\right.\right. \\
& \square \overline{P ?} \wedge s=1 \longrightarrow C_{1}!P ? \\
& \square \overline{P ?} \wedge s=2 \longrightarrow C_{2}!P ? \\
& \square \bar{P} \longrightarrow P \bullet\left[s=2 \longrightarrow C_{2} \square s \neq 2 \longrightarrow \text { skip }\right] \\
&\left.P ; P ? s \bullet\left[s=2 \longrightarrow C_{2} \square s \neq 2 \longrightarrow \text { skip }\right]\right]
\end{aligned}
$$

Only the third port $\left(C_{2}\right)$ continues with the serial protocol. HSE and PRS are omitted for brevity.
Synapses, like somas, require buffering. Depending on its analog biasing, a synapse may take up to a few milliseconds to acknowledge an input spike. We add a full cycle of slack to the otherwise slackless communication from root to synapse. One half-cycle is built into the leaf; a standard weak-precharge half-buffer provides the other.

The configuration memory accepts 6 bits of address and 2 bits of data (its 128 bits are organized into eight rows and eight 2-bit-wide columns). These 8 bits are encoded in four 1-of-4 codes that the deserializer receives in series from the receiver leaf and presents in parallel to the memory.

3.5.3 Serial-Parallel Conversion

The deserializer converts M sequentially delivered 1-of-4 codes into a $M \times 1$-of- 4 parallel code using a chain of M DEs (Fig. 3.4.2, DESERIAL). For 1-of-2 codes, DE's HSE is:

$$
\begin{aligned}
& *\left[\left[s_{i}\right] ;\right. {\left[x_{0} \longrightarrow y_{0} \uparrow ; x_{a} \uparrow ;\left[\neg x_{0}\right] ; s_{o} \uparrow ; x_{a} \downarrow ;\left[\neg s_{i}\right] ; y_{0} \downarrow ; s_{o} \downarrow\right.} \\
&\left.\left.\square x_{1} \longrightarrow y_{1} \uparrow ; x_{a} \uparrow ;\left[\neg x_{1}\right] ; s_{o} \uparrow ; x_{a} \downarrow ;\left[\neg s_{i}\right] ; y_{1} \downarrow ; s_{o} \downarrow\right]\right]
\end{aligned}
$$

For each conversion, $s_{i, o}$ propagate an event along the chain twice. The first time, serial input codes are latched to build the parallel output. The second time, the parallel output is cleared, which happens once a c-element that closes the chain receives the environment's acknowledge. PRS for a 1-of-2 version of DE is as follows.

$$
\begin{array}{llll}
\neg s_{o} \wedge s_{i} \wedge x_{0} & \rightarrow y_{0} \uparrow & \neg s_{i} & \rightarrow y_{0} \downarrow \\
\neg s_{o} \wedge s_{i} \wedge x_{1} & \rightarrow y_{1} \uparrow & s_{o} \vee \neg v_{y} & \rightarrow x_{a} \downarrow \\
\neg s_{o} \wedge v_{y} & \rightarrow x_{a} \uparrow & \neg s_{i} & \rightarrow y_{1} \downarrow \\
y_{0} \vee y_{1} & \rightarrow v_{y} \uparrow & \neg y_{0} \wedge \neg y_{1} & \rightarrow v_{y} \downarrow \\
v_{y} \wedge \neg x_{0} \wedge \neg x_{1} & \rightarrow s_{o} \uparrow & \neg v_{y} & \rightarrow s_{o} \downarrow
\end{array}
$$

v_{y} is introduced to shorten transistor chains.
The serializer does the converse of the deserializer: It uses a chain of M sEs to slice a $M \times 1$-of- 4 parallel code into M 1-of- 4 codes and forwards them sequentially to the environment using SEQ (Fig. 3.4.2, SERIAL). For 1-of-2 codes, SE's HSE is:

```
*[[si}]
[x }\longrightarrow\mp@subsup{y}{0}{}\uparrow;[\mp@subsup{y}{a}{}];u\uparrow;\mp@subsup{y}{0}{}\downarrow;[\neg\mp@subsup{y}{a}{}];\mp@subsup{s}{o}{}\uparrow;[\neg\mp@subsup{s}{i}{}];u\downarrow;[\neg\mp@subsup{x}{0}{}];\mp@subsup{s}{o}{}
\square}\mp@subsup{x}{1}{}\longrightarrow\mp@subsup{y}{1}{}\uparrow;[\mp@subsup{y}{a}{\prime}];u\uparrow;\mp@subsup{y}{1}{}\downarrow;[\neg\mp@subsup{y}{a}{}];\mp@subsup{s}{o}{}\uparrow;[\neg\mp@subsup{s}{i}{}];u\downarrow;[\neg\mp@subsup{x}{1}{}];\mp@subsup{s}{o}{}
]]
```

u is added to distinguish states before and after the $y_{0,1^{-}} y_{a}$ handshake. As with the deserializer, $s_{i, o}$ propagate an event along the chain twice for each conversion. The first time, each SE relays a code to SEQ. The second time, each SE checks that its parallel-input slice is cleared. SE's PRS is:

$$
\begin{array}{llll}
x_{0} \wedge \neg u \wedge s_{i} & \rightarrow y_{0} \uparrow & u \wedge \neg s_{o} & \rightarrow y_{0} \downarrow \\
x_{1} \wedge \neg u \wedge s_{i} & \rightarrow y_{1} \uparrow & u \wedge \neg s_{o} & \rightarrow y_{1} \downarrow \\
s_{i} \wedge y_{a} & \rightarrow u \uparrow & \neg s_{i} & \rightarrow u \downarrow \\
u \wedge \neg y_{a} & \rightarrow s_{o} \uparrow & & \rightarrow \wedge \neg x_{0} \wedge \neg x_{1} \rightarrow s_{o \downarrow}
\end{array}
$$

SEQ's HSE is:

$$
\begin{aligned}
& *\left[\left[s_{i}\right] ; s_{o} \uparrow ;\left[x_{0} \vee x_{1}\right] ; y_{\phi} \uparrow ;\left[\neg s_{i} \wedge y_{e}\right] ; y_{\phi} \downarrow ;\left[\neg y_{e}\right] ; s_{o} \downarrow\right], \\
& *\left[\left[x_{0} \wedge y_{e} \longrightarrow y_{0} \uparrow ;\left[\neg y_{e}\right] ; x_{a} \uparrow ;\left[\neg x_{0}\right] ; y_{0} \downarrow ;\left[y_{e}\right] ; x_{a} \downarrow\right.\right. \\
& \left.\left.\quad \square x_{1} \wedge y_{e} \longrightarrow y_{1} \uparrow ;\left[\neg y_{e}\right] ; x_{a} \uparrow ;\left[\neg x_{1}\right] ; y_{1} \downarrow ;\left[y_{e}\right] ; x_{a} \downarrow\right]\right]
\end{aligned}
$$

By closing the chain, it initiates $\left(y_{\phi} \uparrow ;\left[y_{e}\right]\right)$ and terminates $\left(y_{\phi} \downarrow ;\left[\neg y_{e}\right]\right)$ packet transmission on the event's first and second pass, respectively. In between, it forwards codes that ses provide. SEQ's PRS is:

$$
\begin{array}{llll}
x_{0} \vee x_{1} & \rightarrow y_{\phi} \uparrow & \neg s_{i} \wedge y_{e} & \rightarrow y_{\phi} \downarrow \\
\left(y_{0} \vee y_{1}\right) \wedge \neg y_{e} & \rightarrow x_{a} \uparrow & y_{e} & \rightarrow x_{a} \downarrow \\
y_{e} \wedge x_{0} & \rightarrow y_{0} \uparrow & \neg x_{0} & \rightarrow y_{0} \downarrow \\
y_{e} \wedge x_{1} & \rightarrow y_{1} \uparrow & \neg x_{1} & \rightarrow y_{1} \downarrow \\
\neg s_{i} \wedge \neg y_{e} \wedge \neg y_{\phi} & \rightarrow s_{o} \downarrow & s_{i} & \rightarrow s_{o} \uparrow
\end{array}
$$

3.6 Synthesis and Validation

For logical synthesis, we described logical hierarchy and PRS in the Asynchronous Compiler Tools (ACT) language 4^{4} We verified logical correctness with PRSIM, a discrete-event simulator that executes PRS with randomized delays [1] and then checked for logical-physical consistency in the presence of transistor parasitic capacitances with CoSIM, a PRSIM-SPICE co-simulator [1].

For physical synthesis, we decomposed our ACT into standard cells and generated their layouts with cellTK 22]. Encounter (Cadence) place-and-routed lower-level router circuitry-4 transmitter leaves (to service 16 somas), their parent node, a receiver leaf (to service 4 synapses and an SRAM), and a deserializer (to interface with the SRAM) - in the lower $43 \%\left(547 \mu \mathrm{~m}^{2}\right)$ of the neuron-cluster

[^6]tile $\left(1,261 \mu \mathrm{~m}^{2}\right)$. Of this router area, $14 \%\left(76 \mu \mathrm{~m}^{2}\right)$ was reserved (cutout) for higher-level circuitry (Fig. 3.4.2, TILE).

We placed tiles in a 16×16-array and placed the router's higher-level nodes in their cutouts, along with repeaters to drive long wires (Fig. 3.4.2, TILE16×16, and H-TREES). We extracted parasitic resistances and capacitances from this layout and performed simulations to check for spurious transitions and to predict the router's maximum throughput.

Our postlayout simulations predicted that the transmitter and receiver could communicate up to 42.5 and $50.8 \mathrm{Mspike} / \mathrm{s}$, respectively (Fig. 3.6) 5 Codes from (or to) nodes lower in the tree take longer (e.g., 4.31 ns from the transmitter tree's leaves versus 1.28 ns from its root) because the number of communications involved increases (from 6 at the leaf to 1 at the root). On average, 4.5 four-phase communications are performed, including one for the 2 two-phase communications that demarcate the packet. At 4 phases per communication and 4 transitions per phase, transversing six nodes involves 432 transitions ${ }^{6}$ Thus, the 42.5 Mspike/s cycle-rate corresponds to 56 ps per transition, in line with expectations for a $28-\mathrm{nm}$ process.

Post-fabrication in a $28-\mathrm{nm}$, fully depleted, silicon-on-insulator process, we brought the chip up and validated the router's functionality. (Fig. 3.6). From two chips, we measured maximum throughputs of 27.4 and 26.1 Mspikes/s for the transmitter and 18.1 and 18.5 Mspikes/s for the receiver $]^{[7}$ Differences between simulations the chip measurements are explained by additional delays introduced by unpipelined datapath communications.

3.7 Discussion

Pioneering researchers developed transmitters and receivers to write and read spikes to and from 1 D or 2 D arrays of silicon neurons using the address-event representation (AER; 4, 24, 27, 41]). A neuron's address is transmitted every time it spikes, hence the name address-event. In 1D, the spike is identified by a unique address assigned to each neuron. In 2D, the spike is identified by the neuron's row and column addresses and, in first-generation designs, these addresses are transmitted in parallel.

Second-generation designs communicated row and column addresses in series. In addition to saving wires by multiplexing, this so-called word-serial protocol supports packets with an arbitrary number of words. Thus, additional column addresses could be appended to communicate multiple spikes read from or written to the same row in parallel [5, 6. 25. This so-called burst-mode offered higher throughput, servicing arrays containing as many as 64 k somas and 256 k synapses 2 at rates up to 43.4 M spike/s (ignoring off-chip delays) [7]. Array or chip addresses could be prepended

[^7]to further expand the address-space. Thus, an address-event-based router could service multiple arrays distributed across multiple chips $11,36,38$. Further, data as well as addresses could be communicated over the link (or bus) connecting the transmitter to the receiver 17. In this fashion, multiple spikes read in parallel from small groups of neurons have been transmitted using a single dataword, boosting throughput, which had plateaued at 50 M spike/s 10 , to 300 M spike/s 42 .

To communicate configuration datawords to or from individual neurons-or clusters thereofwe could widen the neuronal interface, but the additional bandwidth would be largely wasted. Datawords use all of the wires but occur rarely, whereas spikes occur frequently but only use one (e.g., a soma's output) or two (e.g., a synapse's excitatory or inhibitory input) wires. We thus keep the neuronal interface narrow and transmit data serially, saving wires by taking more time. In addition to supporting multiple data-types efficiently, a serial protocol places no limit on the number of bits a dataword can have, unlike a parallel protocol.

We did away with timing-assumptions by switching from row-column addresses to tree paths. Striking a balance between node-count and node-complexity, we chose a 4 -ary over a binary tree, which reduced transistor-count by 19.1% overall. Returns diminish for higher degrees because realizing wider gates requires treeing narrower gates (with no more than four transistors in series) 8 Although its thin-oxide transistors outnumber the neuron-cluster's thick-oxide transistors 1.9:1, the router takes up only 43% of the total area because thick-oxide transistors are much larger than thin oxide transistors.

Throughput may be enhanced substantially by pipelining the otherwise slackless communication from leaf to root (transmitter) or root to leaf (receiver) and between router and datapath. Pipelining can be added to the current design at no additional area cost by replacing repeaters with latches or placing latches in unused tile cutouts (see Appendix E.1. Subsequent codes would take no more time than the first one, which takes 1.28 (transmitter) or 1.8 ns (receiver) (Fig. 3.6). Therefore, with seven communications per spike, pipelining would increase throughput from 42.5 M to 111.6 M spike/s (transmitter) or from 50.7 M to 79.4 M spike/s (receiver).

[^8]| Assignment | |
| :---: | :---: |
| $x \uparrow / x \downarrow$ | Set boolean variable x to true / false |
| Program Composition | |
| $s_{1} ; s_{2}$ | Execute segment s_{1} and then s_{2} |
| s_{1}, s_{2} | Execute s_{1} concurrently with s_{2} |
| * [s] | Execute s repeatedly |
| Boolean Operations | |
| $x / \neg x$ | Return the value of x / negated value of x |
| $e_{1} \wedge e_{2}$ | Return the logical-and of e_{1} and e_{2} |
| $e_{1} \vee e_{2}$ | Return the logical-or of e_{1} and e_{2} |
| Branching | |
| [e] | Wait until boolean expression e is true When e_{1} becomes true, execute s_{1} |
| $\left[e_{1} \rightarrow s_{1}\right]$ | |
| $\left[e_{1} \rightarrow s_{1} \mid e_{2} \rightarrow s_{2}\right]$ | If boolean $e_{1}\left(e_{2}\right)$ is true, execute $s_{1}\left(s_{2}\right)$ |
| | If both are true, execute either s_{1} or s_{2} If both are false, wait |
| $\left[e_{1} \rightarrow s_{1} \rrbracket e_{2} \rightarrow s_{2}\right]$ | If boolean $e_{1}\left(e_{2}\right)$ is true, execute $s_{1}\left(s_{2}\right)$ |
| | Assume e_{1} and e_{2} cannot both be true |

Table 3.2: Handshaking Expansion (HSE) Syntax

$x:=d$	Assignment	
	Set variable x to d 's value	
X	Communication	
$X!x$	Communicate on port X (dataless)	
$X ? x$	Write value of x to X	
$Y!X ?$	Read value from X to x	
\bar{X}	True if a communication is pending and false if not	
	Program Composition	
$S_{1} ; S_{2}$	Execute segment S_{1} and then S_{2}	
$S_{1} \\| S_{2}$	Execute S_{1} in parallel with S_{2}	
$S_{1} \bullet S_{2}$	Overlap the execution of S_{1} and S_{2} (called bullet)	
$*[S]$	Execute S repeatedly	
	Boolean Operations	
\neg, \wedge, \vee	Same as in Table 3.2	
$x=d$	Return true if x 's value equals d 's and false if not	
	Branching	
$\rightarrow, \mathrm{I}, \mathrm{\square}$	Same as in Table 3.2	

Table 3.3: Communicating Hardware Processes (CHP) Syntax

Figure 3.3: Router Process Decomposition
ROUTER: Facilitates communication between clients tiled in a 2D array and an external environment using a transmitter and a receiver. TRANSMITTER and RECEIVER: A pair of 4-ary trees provide an input and output port at their leaves for each client. TX(4) and RV(4): CHP ports (left) and HSE signals (right) that interface processes running in Transmitter's and Receiver's nodes with their environment. TXL(4) and RVL(4): Same as previous but for processes in the leaves.

Figure 3.4: Four-Way Arbiter
ARB(4): Selects one of four clients with one TOP and two ARB2s; k clients require $k-2$ ARB2s connected in a binary tree. TOP: Performs two-way selection with a MU. MU: Selects one of two active-low (indicated by underscore prefix) inputs ($_i_{0}$ and i_{1}) using cross-coupled NOR gates. Four additional transistors filter out metastable signals before toggling the outputs (o_{0} and $_o_{1}$). MU's custom standard-cell layout is shown. ARB2: Relays its childrens' requests to its parent and relays its parent's grant to a requesting child, selected beforehand by mu. The two, lower NOR gates ensure that handshakes on $c_{0 i, \mathrm{o}}$ and $c_{1 \mathrm{i}, \mathrm{o}}$ do not overlap; aC are asymmetric c-elements.

Figure 3.5: Serial-Parallel Conversion
DESERIAL: Serial input fans out to a chain of M DEs. An event moves from one to the next with each serial input; it loops back around through the c-element when parallel output occurs. SERIAL: Parallel input is divided among a chain of M SEs. As an event moves from one to the next, it outputs its data to SEQ. The event loops back around through SEQ when serial transmission is complete.

H-TREES

Figure 3.6: Tree Router Layout
TILE: Neuron cluster and low-level, local router circuits. Analog Neurons: Circuitry for 16 somas and 4 synapses. Config SRAM: Sixty-four 2-bit words-tiled in 8 rows and 8 columns-for analog circuitry configuration. Local Router: Four transmitter-tree leaves, their parent, a receiver-tree leaf, and a deserializer (SRAM interface). Cutout: Populated as needed with the transmitter or receiver trees' higher-level nodes or repeaters. TILE16×16: Full 2D array. Digital signals enter and exit on its left side, where the datapath is attached. To minimize crosstalk with analog circuitry, H-tree wires runs over the tiles' Local Routers and Config SRAMs. A one-tile horizontal displacement between the two H -trees makes wiring possible with just metal layers 5 (yellow) and 6 (purple). H-TREES: Placement of two H-trees' higher-level nodes and repeaters (green for transmitter and blue for receiver) in tiles (white squares) with routing overlaid. TX: Transmitter; RV: Receiver; ReP: Repeater.

Figure 3.7: Postlayout Transmitter and Receiver SPICE Simulations
Left: SomA 0 and 9 (000000 and 000021 in 4 -ary) spike simultaneously (Level 0). Their p_{ϕ} signals propagate up to Level 1 (only Soma 0's parent is shown) and Level 2, where Soma 0's subtree is selected. Thus, its p_{ϕ} signal propagates to the root (Level 6). Enabled by the environment's p_{e} signal (top), which propagates down the tree (not shown), each node forwards its requesting child's 1-of-4 coded index ($p_{0: 3}$) and then forwards indices forwarded by the child (they are all 0 for Soma 0). Each node clears its ${ }_{-} p_{\phi}$ once its child clears its ${ }_{_} p_{\phi}$, signaling that there are no more indices to be forwarded. A node is then free to select another requesting subtree, as happens at Level 2 for Soma 9's subtree. Right: The environment sends two inhibitory spikes to Synapse 0 by injecting two packets containing its path appended with 0 (i.e., 000000) at the root. Each node selects the child indexed by the first 1 -of- 4 code ($p_{0: 3}$) and forwards the remaining codes to that child after lowering ${ }_{-} p_{\phi}$. Note that the leaf (Level 1) does not propagate $\quad p_{\phi}$ to the synapse (Level 0).

Figure 3.8: Fabrication and validation
Left: Test chip containing analog neurons, the router presented herein, and a digital datapath. Center: Test board piggybacked on an FPGA development board (Opal Kelly) that provides a USB link to a host computer. Right: Visualization of a 32×32-soma patch of the chip's spiking activity. Each small square represents a soma; its brightness reflects the soma's spike rate. The four, bright soma clusters are receiving excitatory input from spikes delivered to nearby synapses.

4

Conclusions

In this thesis, I have described the theoretical underpinnings for Braindrop's accumulative hardware for spike-train weighting and summating and have detailed the physical router hardware for communicating spikes as well as programming packets to and from Braindrop's neuron array. With its completion, Braindrop affords neuromorphic engineers both a sufficient number of neurons for nontrivial tasks and, different from Neurogrid, a well-mapped, systematic means of configuring those neurons. It is my hope that Braindrop enbables neuromorphic engineers to convincingly demonstrate to the wider world that the brain still has something to teach us about computing.

Appendix A

Spike Summing and Weighting

A. 1 periodic SNR approximation

For $\lambda \tau \rightarrow \infty, \mathrm{SNR}_{\text {periodic }} \rightarrow 2 \sqrt{3} \lambda \tau$. Seeing this is not so straightforward since $\lim _{\lambda \tau \rightarrow \infty} \operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)$ is not defined, so we move forward using Taylor series approximations. Recalling that $\operatorname{coth}\left(\frac{1}{2 \lambda \tau}\right)=$ $\left(1+e^{-1 / \lambda \tau}\right)\left(1-e^{-1 / \lambda \tau}\right)^{-1}$,

$$
\begin{aligned}
\operatorname{SNR}(X) & =\sqrt{\frac{2 \lambda \tau}{\frac{1+e^{-1 / \lambda \tau}}{1-e^{-1 / \lambda \tau}}-2 \lambda \tau}}=\sqrt{\frac{2 \lambda \tau}{\frac{1+1-\frac{1}{\lambda \tau}+\frac{1}{2} \frac{1}{(\lambda \tau)^{2}}-\frac{1}{6} \frac{1}{(\lambda \tau)^{3}}+\ldots}{1-1+\frac{1}{\lambda \tau}-\frac{1}{2} \frac{1}{(\lambda \tau)^{2}}+\frac{1}{6} \frac{1}{(\lambda \tau)^{3}}+\ldots}-2 \lambda \tau}} \\
& =\sqrt{\frac{1}{\frac{1}{2 \lambda \tau} \frac{2-\frac{1}{\lambda \tau}+\frac{1}{2} \frac{1}{(\lambda \tau)^{2}}-\frac{1}{6} \frac{1}{(\lambda \tau}-\frac{1}{2} \frac{1}{(\lambda \tau)^{2}}+\frac{1}{6} \frac{1}{(\lambda \tau)^{3}}+\ldots}{}+1}} \\
& =\sqrt{\frac{1}{\frac{2-\frac{1}{\lambda \tau}+\frac{1}{2} \frac{1}{2-\frac{1}{\lambda \tau}+\frac{1}{3} \frac{1}{(\lambda \tau)^{2}}-\frac{1}{6} \frac{1}{(\lambda \tau)^{3}}+\ldots} \frac{1}{12} \frac{1}{(\lambda \tau)^{3}}+\ldots}{2}}}
\end{aligned}
$$

The Taylor series approximations begin to differ with the $\frac{1}{(\lambda \tau)^{2}}$ coefficients; we drop higher order terms that converge to 0 much faster.

$$
\begin{aligned}
& \operatorname{SNR}(X) \underset{\lambda \tau \rightarrow \infty}{=} \sqrt{\frac{1}{\frac{2-\frac{1}{\lambda \tau}+\frac{1}{2} \frac{1}{(\lambda \tau)^{2}}}{2-\frac{1}{\lambda \tau}+\frac{1}{3} \frac{1}{(\lambda \tau)^{2}}}}-1}
\end{aligned}=\sqrt{\frac{1}{\frac{1}{\frac{2-\frac{1}{\lambda \tau}+\frac{1}{3}}{2-\frac{1}{(\lambda))^{2}}+\frac{1}{6}} \frac{1}{(\lambda \tau)^{2}}}-1}}
$$

A. 2 p-thinning SNR approximation

As p tends to 0 , the p-thinned periodic SNR tends towards the Poisson SNR. As before, we Taylor series expand coth and find where terms begin to differ to find $\lim _{p \rightarrow 0} \operatorname{SNR}(X)$.

$$
\begin{aligned}
\lim _{p \rightarrow 0} \operatorname{SNR}(X) & =\lim _{p \rightarrow 0} \sqrt{\frac{2 \lambda \tau}{1+p \frac{1+\left(1-\frac{p}{\lambda \tau}+\frac{1}{2}\left(\frac{p}{\lambda \tau}\right)^{2}-\frac{1}{6}\left(\frac{p}{\lambda \tau}\right)^{3}+\ldots\right)}{1-\left(1-\frac{p}{\lambda \tau}+\frac{1}{2}\left(\frac{p}{\lambda \tau}\right)^{2}-\frac{1}{6}\left(\frac{p}{\lambda \tau}\right)^{3}+\ldots\right)}-2 \lambda \tau}} \\
& =\lim _{p \rightarrow 0} \sqrt{\frac{2 \lambda \tau}{1+2 \lambda \tau \frac{2-\frac{p}{\lambda \tau}+\frac{1}{2}\left(\frac{p}{\lambda \tau}\right)^{2}-\frac{p}{6}\left(\frac{p}{\lambda \tau}\right)^{3}+\ldots}{2\left(\frac{p}{3}\left(\frac{p}{\lambda \tau}\right)^{2}-\frac{1}{12}\left(\frac{p}{\lambda \tau}\right)^{3}-\ldots\right.}-2 \lambda \tau}} \\
& =\lim _{p \rightarrow 0} \sqrt{\frac{2 \lambda \tau}{1+2 \lambda \tau \frac{2-\frac{p}{\lambda \tau}+\frac{1}{3}\left(\frac{p}{\lambda \tau}\right)^{2}+\frac{1}{6}\left(\frac{p}{\lambda \tau}\right)^{2}}{2-\frac{p}{\lambda \tau}+\frac{1}{3}\left(\frac{p}{\lambda \tau}\right)^{2}}-2 \lambda \tau}} \\
& =\lim _{p \rightarrow 0} \sqrt{\frac{2 \lambda \tau}{1+2 \lambda \tau\left(1+\frac{\frac{1}{6}\left(\frac{p}{\lambda \tau}\right)^{2}}{2-\frac{p}{\lambda \tau}+\frac{1}{3}\left(\frac{p}{\lambda \tau}\right)^{2}}\right)-2 \lambda \tau}}
\end{aligned}
$$

A. 3 d-thinning SNR expansion

We express $\operatorname{SNR}_{\text {dthin }}(X)$ in terms of $\operatorname{SNR}_{\text {poi }}(X)$, by considering $\operatorname{SNR}_{\text {dthin }}(X)=\operatorname{SNR}_{\text {poi }}(X) / g$ and expanding binomials:

$$
\begin{aligned}
g^{2} & =\frac{(1+k \lambda \tau)^{k}+(k \lambda \tau)^{k}}{(1+k \lambda \tau)^{k}-(k \lambda \tau)^{k}}-2 \lambda \tau=\frac{\sum_{j=0}^{k}\binom{k}{j}(k \lambda \tau)^{j}+(k \lambda \tau)^{k}}{\sum_{j=0}^{k}\binom{k}{j}(k \lambda \tau)^{j}-(k \lambda \tau)^{k}}-2 \lambda \tau \\
& =\frac{1+\left(k^{2}-2\right) \lambda \tau+\ldots+\frac{1}{6} k^{k-2}(k-1)(k+4)(\lambda \tau)^{k-2}+k^{k-1}(\lambda \tau)^{k-1}}{1+k^{2} \lambda \tau+\ldots+\frac{1}{2} k^{k-1}(k-1)(\lambda \tau)^{k-2}+k^{k}(\lambda \tau)^{k-1}}
\end{aligned}
$$

By taking a fourth-order Taylor series approximation in the denominator of $\mathrm{SNR}_{\text {dthin }}$,

$$
\begin{aligned}
\operatorname{SNR}(X) & \approx \sqrt{\frac{2 \lambda \tau}{1+\frac{k^{4}-10 k^{2}+9}{15(2 \lambda \tau)^{4}}+\frac{-k^{4}+20 k^{2}-19}{45(2 \lambda \tau)^{3}}+\frac{k^{2}-1}{3(2 \lambda \tau)^{2}}+\frac{k^{2}-1}{3(2 \lambda \tau)}}} \\
& \approx \sqrt{2 \lambda \tau /\left(1+k^{2} / 3(2 \lambda \tau)\right)} \quad \text { assuming } k \gg 1 \text { and } \lambda \tau \gg 1
\end{aligned}
$$

Appendix B

AER Transmitter Design Space

This appendix explores the router's AER transmitter (AEXT) design space. From the implemented transmitter design described in Section 3.4.1, the designs described here are earlier iterations and listed in approximately reverse chronological order.

B. 1 AEXT Control Data decomposed (CD)

In this design, the control and data are separated; there is a control tree and a data tree (cf. AEXT ASPR and AEXT PSAR with combined control and data).

B.1.1 AEXT CD noTW CYC

The transmitter (AEXT) control-data decomposed (CD) without tailword (noTW) cyclic signaling (CYC) design make more efficient use of the control signaling (relative to AEXT CD noTW) by doing away with the data enable/acknowledge entirely.
Radix 2 accounting (2047 intermediate nodes, 2048 leaf nodes):

intermediate nodes			
component	transistors/component	components/node	transistors/node
NODE	90	1	
total transistors/intermediate node			90
leaf nodes			
component	transistors/component	components/node	transistors/node
LEAF	74	1	74
total transistors/leaf node			74

(90 transistors/intermediate node * 2047 intermediate nodes +74 transistors/leaf node $* 2048$ leaf nodes) / 4096 neurons $=\mathbf{8 2 . 0}$ transistors/neuron
Radix 4 accounting (341 intermediate nodes, 1024 leaf nodes):

intermediate nodes			
component	transistors/component	components/node	transistors/node
NODE	274	1	274
total transistors/intermediate node			
leaf nodes			
total transistors/leaf node			
component	transistors/component	components/node	transistors/node
LEAF	218	1	218
tomer			

(274 transistors/intermediate node * 341 intermediate nodes +218 transistors/leaf node * 1024 leaf nodes) / 4096 neurons $=77.3$ transistors/neuron

AEXT CD noTW CYC NODE

Intermediate node of AEXT tree.

```
* \([[c 0 \longrightarrow p o \uparrow ;[p i] ;\)
            \(w 0 \uparrow ;[\neg p i] ; u \uparrow ; w 0 \downarrow ;[p i] ;\)
            \(c 0 o \uparrow ;[\neg c 0] ; p o \downarrow ;[\neg p i] ; c 0 o \downarrow ; u \downarrow\)
        \(\square c 1 \longrightarrow p o \uparrow ;[p i] ;\)
            \(w 1 \uparrow ;[\neg p i] ; u \uparrow ; w 1 \downarrow ;[p i] ;\)
            \(c 1 o \uparrow ;[\neg c 1] ; p o \downarrow ;[\neg p i] ; c 1 o \downarrow ; u \downarrow\)
]]
*[ [ \(c 00 \vee c 10 \vee w 0 \longrightarrow p 0 \uparrow ;[\neg p i] ; c 0 o \downarrow ;[\neg c 00 \wedge \neg c 10 \wedge \neg w 0] ; p 0 \downarrow ;[p i \wedge c 0] ; c 0 o \uparrow\)
    \(\square c 01 \vee c 11 \vee w 1 \longrightarrow p 1 \uparrow ;[\neg p i] ; c 1 o \downarrow ;[\neg c 01 \wedge \neg c 10 \wedge \neg w 1] ; p 1 \downarrow ;[p i \wedge c 1] ; c 1 o \uparrow\)
]]
```

It's helpful to consider the projection of the HSE on to the parent control and data lines.

```
*[po\uparrow; [pi];
    [\negpi];[pi];
    (P\uparrow;[\negpi];P\downarrow;[pi])\times(m-1)
    po\downarrow;[\negpi]
]
```

The first line propagates the child request up the tree and waits for the parents to acknowledge.
The second line is the node outputting a new head word.
The third line repeats $(m-1)$ times where m is this node's level in the tree.
The fourth line propagates the child reset up the tree.

$$
\begin{aligned}
& \neg u \wedge(c 0 \vee c 1) \quad \rightarrow p o \uparrow \\
& (c 0 o \wedge \neg c 0) \vee(c 1 o \wedge \neg c 1) \rightarrow p o \downarrow \\
& c 0 \wedge p i \wedge \neg u \rightarrow w 0 \uparrow \quad c 1 \wedge p i \wedge \neg u \rightarrow w 1 \uparrow \\
& u \quad \rightarrow w 0 \downarrow \quad u \quad \rightarrow w 1 \downarrow \\
& (w 0 \vee w 1) \wedge \neg p i \quad \rightarrow u \uparrow \\
& \neg c 0 o \wedge \neg c 1 o \wedge \neg p o \rightarrow u \downarrow \\
& \begin{aligned}
c 0 \wedge u \wedge p i \wedge \neg c 1 o & \rightarrow c 0 o \uparrow & & c 1 \wedge u \wedge p i \neg c 0 o
\end{aligned} \rightarrow c 1 o \uparrow \\
& c 00 \vee c 10 \vee w 0 \quad \rightarrow p 0 \uparrow \quad c 01 \vee c 11 \vee w 1 \quad \rightarrow p 1 \uparrow \\
& \neg c 00 \wedge \neg c 10 \wedge \neg w 0 \rightarrow p 0 \downarrow \quad \neg c 01 \wedge \neg c 11 \wedge \neg w 1 \rightarrow p 1 \downarrow
\end{aligned}
$$

Radix 2 transistor approximate accounting:

rule	transistor count	comments
$c[0,1]$	12	2-way arbiter
p_{o}	11	
$w[0,1]$	16	
u	10	
$c[0,1]_{o}$	18	
$p[0,1]$	12	
total	79	

Radix 4 transistor approximate accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-way unpipelined arbiter
p_{o}	19	
$w[0,1,2,3]$	32	
u	10	
$c[0,1,2,3]_{o}$	44	
$p[0,1,2,3]$	40	
total	237	

CMOS-implementable PRS

$$
\begin{aligned}
& { }_{-} u \wedge(c 0 \vee c 1) \quad \rightarrow{ }_{-p o \downarrow} \quad \neg_{-} p o \rightarrow p o \uparrow \\
& \left(\neg_{-} c 0 o \wedge \neg c 0\right) \vee\left(\neg^{\prime} c 1 o \wedge \neg c 1\right) \rightarrow \quad \text { _po个 } \quad \text { _po } \rightarrow p o \downarrow \\
& c 0 \wedge p i \wedge{ }_{-} u \rightarrow{ }_{-} w 0 \downarrow \quad c 1 \wedge p i \wedge{ }_{_} u \rightarrow{ }_{-} w 1 \downarrow \\
& \neg_{-} u \quad \rightarrow{ }_{-} w 0 \uparrow \quad \neg_{-} u \quad \rightarrow \quad{ }_{-} 1 \uparrow \\
& \left(\neg _w 0 \vee \neg _w 1\right) \wedge \neg p i \rightarrow u \uparrow \quad \neg u \rightarrow{ }_{-} u \uparrow \\
& { }_{-} c 0 o \wedge_{_} c 1 o \wedge_{_} p o \quad \rightarrow u \downarrow \quad u \quad \rightarrow{ }_{-} u \downarrow \\
& c 0 \wedge u \wedge p i \wedge{ }_{_} c 1 o \rightarrow{ }_{-} c 0 o \downarrow \quad c 1 \wedge u \wedge p i i_{-} c 0 o \rightarrow{ }_{-} c 1 o \downarrow \\
& \neg p i \quad \rightarrow \quad c 0 o \uparrow \quad \rightarrow p i \quad \rightarrow \quad c 1 o \uparrow \\
& \neg_{-} c 0 o \rightarrow c 0 o \uparrow \quad \neg_{-} c 1 o \rightarrow c 1 o \uparrow \\
& { }_{-} c 0 o \rightarrow c 0 o \downarrow \quad \text { _c1o } \rightarrow c 1 o \downarrow \\
& \neg_{_} c 00 \vee \neg_{-} c 10 \vee \neg_{-} w 0 \rightarrow p 0 \uparrow \quad \neg_{-} c 01 \vee \neg_{-} c 11 \vee \neg_{-} w 1 \rightarrow p 1 \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \neg p 0 \rightarrow{ }_{-} p 0 \uparrow \quad \neg p 1 \rightarrow{ }_{-} p 1 \uparrow \\
& p 0 \quad \rightarrow \quad{ }^{2} 0 \downarrow \quad p 1 \quad \rightarrow \quad{ }_{-p} 1 \downarrow
\end{aligned}
$$

Note that the root NODE does not create $_p[0,1]$. We simply present a normal-sense p_{i}, p_{o}, and $p[0,1]$ interface to the environment.

We could make another another version of CMOS-implementable PRS to alternate with this version and eliminate the inverters creating $p_{o}, c[0,1]_{o}$, and ${ }_{p}[0,1]$. However, that version would have a PMOS pull up chain for $c[0,1]_{o}$ that doesn't scale. With a radix 2 tree the chain is already 4 transistors long. With a radix 4 tree the chain is 6 transitors long. We want to keep PMOS chains 3 long or shorter.
Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-way arbiter
p_{o}	11	
p_{o}	2	
${ }_{-w[0,1]}$	16	
u	10	
$-u$	2	
${ }^{\prime}[0,1]_{o}$	18	
$c[0,1]_{o}$	4	
$p[0,1]$	12	
$-p[0,1]$	4	
total	91	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-way unpipelined arbiter
$-p_{o}$	19	
p_{o}	2	
$_w[0,1,2,3]$	32	
u	10	
$_u$	2	
$_c[0,1,2,3]_{o}$	44	
$c[0,1,2,3]_{o}$	8	
$p[0,1,2,3]$	40	
$-p[0,1,2,3]$	8	
total	257	

AEXT CD noTW CYC NODE (reference implementation)
Intermediate node of AEXT tree

```
* [ \([c 0 \longrightarrow q 0 \uparrow ; p o \uparrow ; ~[p i] ;\)
        \(w 0 \uparrow ;[\neg p i] ; u \uparrow ; w 0 \downarrow ;[p i] ;\)
        \(c 0 o \uparrow ;[\neg c 0] ; q 0 \downarrow ; p o \downarrow ; u \downarrow ;[\neg p i] ; c 0 o \downarrow\)
    \(\square c 1 \longrightarrow q 1 \uparrow ; p o \uparrow ;[p i] ;\)
        \(w 1 \uparrow ;[\neg p i] ; u \uparrow ; w 1 \downarrow ;[p i] ;\)
        \(c 1 o \uparrow ;[\neg c 1] ; q 1 \downarrow ; p o \downarrow ; u \downarrow ;[\neg p i] ; c 1 o \downarrow\)
    ]]
\(*[[c 00 \vee c 10 \vee w 0 \longrightarrow p 0 \uparrow ;[\neg p i] ; c 0 o \downarrow ;[\neg c 00 \wedge \neg c 10 \wedge \neg w 0] ; p 0 \downarrow ;[p i \wedge q 0] ; c 0 o \uparrow\)
    \(\square c 01 \vee c 11 \vee w 1 \longrightarrow p 1 \uparrow ;[\neg p i] ; c 1 o \downarrow ;[\neg c 01 \wedge \neg c 10 \wedge \neg w 1] ; p 1 \downarrow ;[p i \wedge q 1] ; c 1 o \uparrow\)
    ]]
\(\begin{array}{lll}c 0 \wedge \neg c 1 o \rightarrow q 0 \uparrow & c 1 \wedge \neg c 0 o \rightarrow q 1 \uparrow \\ \neg c 0 \wedge c 0 o \rightarrow q 0 \downarrow & & \neg c 1 \wedge c 1 o \rightarrow q 1 \downarrow \\ q 0 \vee q 1 & \rightarrow p o \uparrow & \\ \neg q 0 \wedge \neg q 1 \rightarrow p o \downarrow & & \end{array}\)
\(q 0 \wedge p i \wedge \neg u \rightarrow w 0 \uparrow \quad q 1 \wedge p i \wedge \neg u \rightarrow w 1 \uparrow\)
\(u \quad \rightarrow w 0 \downarrow \quad u \quad \rightarrow w 1 \downarrow\)
\((w 0 \vee w 1) \wedge \neg p i \rightarrow u \uparrow\)
\(\neg p o \quad \rightarrow u \downarrow\)
\(q 0 \wedge u \wedge p i \quad \rightarrow c 0 o \uparrow \quad \rightarrow q 1 \wedge u \wedge p i \quad \rightarrow c 1 o \uparrow\)
\((\neg u \vee p 0 \vee p 1) \wedge \neg p i \rightarrow c 0 o \downarrow \quad(\neg u \vee p 0 \vee p 1) \wedge \neg p i \rightarrow c 1 o \downarrow\)
\(c 00 \vee c 10 \vee w 0 \quad \rightarrow p 0 \uparrow \quad c 01 \vee c 11 \vee w 1 \quad \rightarrow p 1 \uparrow\)
\(\neg c 00 \wedge \neg c 10 \wedge \neg w 0 \rightarrow p 0 \downarrow \quad \neg c 01 \wedge \neg c 11 \wedge \neg w 1 \rightarrow p 1 \downarrow\)
```

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-way arbiter
$q[0,1]$	16	
p_{o}	4	
$w[0,1]$	16	
u	8	
$c[0,1]_{o}$	22	
$p[0,1]$	12	
total	90	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-way unpipelined arbiter
$q[0,1,2,3]$	40	
p_{o}	8	
$w[0,1,2,3]$	32	
u	10	
$c[0,1,2,3]_{o}$	52	
$p[0,1,2,3]$	40	
total	274	

Radix 2 transistor accounting:

AEXT CD noTW CYC LEAF

Leaf node of AEXT tree

$$
\begin{aligned}
& \text { * }[[c 0 \longrightarrow p o \uparrow ;[p i] ; \\
& p 0 \uparrow ;[\neg p i] ; u \uparrow ; p 0 \downarrow ;[p i] ; \\
& c 0 o \uparrow ;[\neg c 0] ; p o \downarrow ;[\neg p i] ; c 0 o \downarrow ; u \downarrow \\
& \square c 1 \longrightarrow p o \uparrow ;[p i] ; \\
& p 1 \uparrow ;[\neg p i] ; u \uparrow ; p 1 \downarrow ;[p i] ; \\
& c 1 o \uparrow ;[\neg c 1] ; p o \downarrow ;[\neg p i] ; c 1 o \downarrow ; u \downarrow \\
& \text {]] }
\end{aligned}
$$

PRS

$$
\begin{aligned}
& \neg u \wedge c 0 \vee c 1 \quad \rightarrow p o \uparrow \\
& (c 0 o \wedge \neg c 0) \vee(c 1 o \wedge \neg c 1) \rightarrow p o \downarrow \\
& c 0 \wedge p i \wedge \neg u \rightarrow p 0 \uparrow \quad c 1 \wedge p i \wedge \neg u \rightarrow p 1 \uparrow \\
& u \quad \rightarrow p 0 \downarrow \quad u \quad \rightarrow p 1 \downarrow \\
& (p 0 \vee p 1) \wedge \neg p i \quad \rightarrow u \uparrow \\
& \neg c 0 o \wedge \neg c 1 o \wedge \neg p o \rightarrow u \downarrow \\
& c 0 \wedge u \wedge p i \wedge \neg c 1 o \rightarrow c 0 o \uparrow \quad c 1 \wedge u \wedge p i \wedge \neg c 0 o \rightarrow c 1 o \uparrow \\
& \neg u \wedge \neg p i \quad \rightarrow c 0 o \downarrow \quad \rightarrow u \wedge \neg p i \quad \rightarrow c 1 o \downarrow
\end{aligned}
$$

Radix 2 transistor approximate accounting:

rule	transistor count	comments
$c[0,1]$	12	2-way arbiter
p_{o}	11	
$p[0,1]$	16	
u	10	
$c[0,1]_{o}$	20	
total	69	

Radix 4 transistor approximate accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-way unpipelined arbiter
p_{o}	17	
$p[0,1,2,3]$	32	
u	14	
$c[0,1,2,3]_{o}$	48	
total	203	

CMOS-implementable PRS

$$
\begin{aligned}
& { }_{-} u \wedge c 0 \vee c 1 \quad \rightarrow{ }_{-} p o \downarrow \quad{ }^{\prime} \quad p o \rightarrow p o \uparrow \\
& \left(\neg _c 0 o \wedge \neg c 0\right) \vee\left(\neg _c 1 o \wedge \neg c 1\right) \rightarrow{ }_{-} p o \uparrow \quad{ }_{-} p o \quad \rightarrow p o \downarrow \\
& c 0 \wedge p i \wedge{ }_{-} u \rightarrow{ }_{-} p 0 \downarrow \quad c 1 \wedge p i \wedge_{{ }_{-}} u \rightarrow{ }_{-} p 1 \downarrow \\
& \neg_{-} u \quad \rightarrow{ }_{-} p 0 \uparrow \quad \neg_{-} u \quad \rightarrow{ }_{-} p 1 \downarrow \\
& \left(\neg _p 0 \vee \neg{ }_{-} p 1\right) \wedge \neg p i \rightarrow u \uparrow \quad \quad \neg u \rightarrow{ }_{-} u \uparrow \\
& { }_{-} c 0 o \wedge{ }_{-} c 1 o \wedge{ }_{-} p o \quad \rightarrow u \downarrow \quad u \quad \rightarrow{ }_{-} u \downarrow \\
& c 0 \wedge u \wedge p i \wedge{ }_{-} c 1 o \rightarrow{ }_{-} c 0 o \downarrow \quad \quad \neg_{-} c 0 o \rightarrow c 0 o \uparrow \\
& \neg u \wedge \neg p i \quad \rightarrow{ }_{-} c 0 o \uparrow \quad{ }_{-} c 0 o \quad \rightarrow c 0 o \downarrow \\
& c 1 \wedge u \wedge p i \wedge_{-} c 0 o \rightarrow{ }_{-} c 1 o \downarrow \quad \quad \neg_{-} c 1 o \rightarrow c 1 o \uparrow \\
& \neg u \wedge \neg p i \quad \rightarrow \quad _c 1 o \uparrow \quad{ }_{\quad} c 1 o \quad \rightarrow c 1 o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-way arbiter
p_{o}	11	
p_{o}	2	
$-p[0,1]$	16	
u	10	
$-u$	2	
$-c[0,1]_{o}$	20	
$c[0,1]_{o}$	4	
total	77	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-way unpipelined arbiter
p_{o}	17	
p_{o}	2	
$_[0,1,2,3]$	32	
u	14	
$-u$	2	
$_c[0,1,2,3]_{o}$	48	
$c[0,1,2,3]_{o}$	8	
total	215	

AEXT CD noTW CYC LEAF (reference implementation)

Leaf node of AEXT tree

$$
\begin{aligned}
*[[c 0 \longrightarrow & q 0 \uparrow ; p o \uparrow ;[p i] ; \\
& p 0 \uparrow ;[\neg p i] ; u \uparrow ; p 0 \downarrow ;[p i] ; \\
& c 0 o \uparrow ;[\neg c 0] ; q 0 \downarrow ; p o \downarrow ; u \downarrow ;[\neg p i] ; c 0 o \downarrow \\
\square c 1 \longrightarrow & q 1 \uparrow ; p o \uparrow ;[p i] ; \\
& p 1 \uparrow ;[\neg p i] ; u \uparrow ; p 1 \downarrow ;[p i] ; \\
& c 1 o \uparrow ;[\neg c 1] ; q 1 \downarrow ; p o \downarrow ; u \downarrow ;[\neg p i] ; c 1 o \downarrow
\end{aligned}
$$

]]

$$
\begin{array}{ll}
c 0 \wedge \neg c 1 o \rightarrow q 0 \uparrow & c 1 \wedge \neg c 0 o \rightarrow q 1 \uparrow \\
\neg c 0 \wedge c 0 o \rightarrow q 0 \downarrow & \neg c 1 \wedge c 1 o \rightarrow q 1 \downarrow \\
q 0 \vee q 1 \quad \rightarrow p o \uparrow & \\
\neg q 0 \wedge \neg q 1 \rightarrow p o \downarrow &
\end{array}
$$

$$
\left.\begin{array}{llll}
q 0 \wedge p i \wedge \neg u & \rightarrow p 0 \uparrow & & q 1 \wedge p i \wedge \neg u
\end{array} \begin{array}{lll}
u & \rightarrow p 1 \uparrow \\
u & p 0 \downarrow & u
\end{array}\right)
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-way arbiter
$q[0,1]$	16	
p_{o}	4	
$p[0,1]$	16	
u	8	
$c[0,1]_{o}$	18	
total	74	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-way unpipelined arbiter
$q[0,1,2,3]$	40	
p_{o}	8	
$p[0,1,2,3]$	32	
u	10	
$c[0,1,2,3]_{o}$	36	
total	218	

B.1.2 AEXT CD noTW

This design has no tail word.
Radix 2 accounting (2047 intermediate nodes, 2048 leaf nodes):

intermediate nodes			
component	transistors/component	components/node	transistors/node
CTRL	86	1	86
MERGE	28	1	28
total transistors/intermediate node			114
leaf nodes			
component	transistors/component	components/node	transistors/node
LEAF	64	1	64
total transistors/leaf node			

(114 transistors/intermediate node * 2047 intermediate nodes +64 transistors/leaf node $* 2048$ leaf nodes) / 4096 neurons $=89.0$ transistors/neuron
Radix 4 accounting (341 intermediate nodes, 1024 leaf nodes):

intermediate nodes			
component	transistors/component	components/node	transistors/node
CTRL	246	1	246
MERGE	60	1	60
total transistors/intermediate node			306
leaf nodes			
component	transistors/component	components/node	transistors/node
LEAF	204	1	204
total transistors/leaf node			

(306 transistors/intermediate node * 341 intermediate nodes +204 transistors/leaf node ${ }^{*} 1024$ leaf nodes) / 4096 neurons $=\mathbf{7 6 . 5}$ transistors/neuron

AEXT CD noTW CTRL

* [[C $0 \bullet P ; M ; C 0 \bullet P$
$\mathrm{I} C 1 \bullet P ; M ; C 1 \bullet P$
]]
* [$[c 0 \longrightarrow p o \uparrow ; ~[p i] ; c 0 o \uparrow ;$
$m w \uparrow ;[w e] ; w 0 \uparrow ;[\neg w e] ; w 0 \downarrow ; m w \downarrow ;$
$m 0 \uparrow ;[\neg c 0] ; p o \downarrow ;[\neg p i] ; c 0 o \downarrow ; m 0 \downarrow$
$\square c 1 \longrightarrow p o \uparrow ;[p i] ; c 1 o \uparrow ;$
$m w \uparrow ;[w e] ; w 1 \uparrow ;[\neg w e] ; w 1 \downarrow ; m w \downarrow ;$
$m 1 \uparrow ;[\neg c 1] ; p o \downarrow ;[\neg p i] ; c 1 o \downarrow ; m 1 \downarrow$
]]
* $[[c 0 \longrightarrow q 0 \uparrow ; p o \uparrow ;[p i] ;$
$m w \uparrow ; c 0 o \uparrow ;[w e] ; w 0 \uparrow ;[\neg w e] ; m 0 \uparrow ; m w \downarrow ; w 0 \downarrow$
[$\neg c 0] ; q 0 \downarrow ; p o \downarrow ;[\neg p i] ; m 0 \downarrow ; c 0 o \downarrow$
$\square c 1 \longrightarrow q 1 \uparrow ; p o \uparrow ;[p i] ;$
$m w \uparrow ; c 1 o \uparrow ;[w e] ; w 1 \uparrow ;[\neg w e] ; m 1 \uparrow ; m w \downarrow ; w 1 \downarrow$
$[\neg c 1] ; q 1 \downarrow ; p o \downarrow ;[\neg p i] ; m 1 \downarrow ; c 1 o \downarrow$
]]
sequence
$m x \downarrow ; c x o \downarrow$
required to lower control before releasing child to lower word line.

$$
\begin{aligned}
& c 0 \wedge \neg m 0 \wedge \neg c 1 o \rightarrow q 0 \uparrow \quad c 1 \wedge \neg m 1 \wedge \neg c 0 o \rightarrow q 1 \uparrow \\
& \neg c 0 \wedge m 0 \wedge \neg w 0 \rightarrow q 0 \downarrow \quad \neg c 1 \wedge m 1 \wedge \neg w 1 \rightarrow q 1 \downarrow \\
& q 0 \vee q 1 \quad \rightarrow p o \uparrow \\
& \neg q 0 \wedge \neg q 1 \rightarrow p o \downarrow \\
& q 0 \wedge m w \quad \rightarrow c 0 o \uparrow \quad q 1 \wedge m w \quad \rightarrow c 1 o \uparrow \\
& \neg m 0 \wedge \neg p i \rightarrow c 0 o \downarrow \quad \neg m 1 \wedge \neg p i \rightarrow c 1 o \downarrow \\
& c 0 o \wedge w e \rightarrow w 0 \uparrow \quad c 1 o \wedge w e \rightarrow w 1 \uparrow \\
& \neg m w \quad \rightarrow w 0 \downarrow \quad \neg m w \quad \rightarrow w 1 \downarrow \\
& p i \wedge \neg m 0 \wedge \neg m 1 \rightarrow m w \uparrow \\
& \neg p i \vee m 0 \vee m 1 \rightarrow m w \downarrow \\
& w 0 \wedge \neg w e \rightarrow m 0 \uparrow \quad w 1 \wedge \neg w e \rightarrow m 1 \uparrow \\
& \neg p i \quad \rightarrow m 0 \downarrow \quad \rightarrow p i \quad \rightarrow m 1 \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-input arbiter
$q[0,1]$	20	
p_{o}	4	
$c[0,1]_{o}$	16	
$w[0,1]$	14	
$m w$	6	
$m[0,1]$	14	
total	86	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-input arbiter
$q[0,1,2,3]$	48	
p_{o}	8	
$c[0,1,2,3]_{o}$	32	
$w[0,1,2,3]$	28	
$m w$	10	
$m[0,1,2,3]$	28	
total	246	

$$
\begin{aligned}
& \text { AEXT CD noTW MERGE } \\
& p e \wedge m 0 \quad \rightarrow c 0 e \uparrow \quad \text { pe } \wedge m w \quad \rightarrow c w e \uparrow \\
& \neg p e \vee \neg m 0 \rightarrow c 0 e \downarrow \quad \neg p e \vee \neg m w \rightarrow c w e \downarrow \\
& p e \wedge m 1 \quad \rightarrow c 1 e \uparrow \\
& \neg p e \vee \neg m 1 \rightarrow c 1 e \downarrow \\
& c 00 \vee c 10 \vee c w 0 \quad \rightarrow p 0 \uparrow \quad c 01 \vee c 11 \vee c w 1 \rightarrow p 1 \uparrow \\
& \neg c 00 \wedge \neg c 10 \wedge \neg c w 0 \rightarrow p 0 \downarrow \quad \neg c 01 \wedge \neg c 11 \wedge \neg c w 1 \rightarrow p 1 \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1, w] e$	12	
$p[0,1]$	12	
total	24	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3, w] e$	20	
$p[0,1,2,3]$	40	
total	60	

```
AEXT CD noTW LEAF
    * [ \([C 0 \bullet P ; W!0 ; C 0 \bullet P\)
        | \(C 1 \bullet P ; W!1 ; C 1 \bullet P\)
    ]]
    * [ \([c 0 \longrightarrow p o \uparrow ; ~[p i] ; c 0 o \uparrow ;\)
        [we]; w0个; [ \(\neg w e] ; w 0 \downarrow\)
        \([\neg c 0] ; p o \downarrow ;[\neg p i] ; c 0 o \downarrow\)
    \(\square c 1 \longrightarrow p o \uparrow ;[p i] ; c 1 o \uparrow ;\)
        [we]; w1丹; [ \(\neg w e] ; w 1 \downarrow\)
        \([\neg c 1] ; p o \downarrow ;[\neg p i] ; c 1 o \downarrow\)
    ]]
    * \([[c 0 \longrightarrow q 0 \uparrow ; p o \uparrow ;[p i] ; c 0 o \uparrow ;\)
        \([\neg c 0 \wedge w e] ; w 0 \uparrow ;[\neg w e] ; q 0 \downarrow ; p o \downarrow ;[\neg p i] ; w 0 \downarrow ;\)
        \(c 0 o \downarrow\)
    \(\square c 1 \longrightarrow q 1 \uparrow ; p o \uparrow ;[p i] ; c 1 o \uparrow ;\)
        \([\neg c 1 \wedge w e] ; w 1 \uparrow ;[\neg w e] ; q 1 \downarrow ; p o \downarrow ;[\neg p i] ; w 1 \downarrow\);
        \(c 1 o \downarrow\)
    ]]
```

The sequence of
$[\neg w e] ; p o \downarrow ;[\neg p i] ; w x \downarrow ;$
is very important. Parent nodes need to reset control of merge before lowering word line.

$$
\begin{array}{lll}
c 0 \wedge \neg c 1 o \rightarrow q 0 \uparrow & c 0 \wedge \neg c 1 o \rightarrow q 1 \uparrow \\
w 0 \wedge \neg w e \rightarrow q 0 \downarrow & w 1 \wedge \neg w e \rightarrow q 1 \downarrow \\
q 0 \vee q 1 & \rightarrow p o \uparrow & \\
\neg q 0 \wedge \neg q 1 \rightarrow p o \downarrow & \\
q 0 \wedge \neg c 0 \wedge w e \rightarrow w 0 \uparrow & q 1 \wedge \neg c 1 \wedge w e \rightarrow w 1 \uparrow \\
\neg p i & \rightarrow w 0 \downarrow & \neg p i
\end{array}
$$

$$
\begin{aligned}
& q 0 \wedge p i \quad \rightarrow c 0 o \uparrow \quad q 1 \wedge p i \quad \rightarrow c 1 o \uparrow \\
& \neg w 0 \wedge \neg p i \rightarrow c 0 o \downarrow \quad \neg w 1 \wedge \neg p i \rightarrow c 1 o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-input arbiter
$q[0,1]$	16	
p_{o}	4	
$w[0,1]$	16	
$c[0,1]_{o}$	16	
total	64	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-input arbiter
$q[0,1,2,3]$	40	
p_{o}	8	
$w[0,1,2,3]$	32	
$c[0,1,2,3]_{o}$	32	
total	204	

B.1.3 AEXT CD TW

This design has a tail word.
Radix 2 accounting (4095 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
CTRL	84	1	84
MERGE	28	1	28
FWDT	15	2	30
total transistors/node			142

142 transistors/node $* 4095$ nodes / 4096 neurons $=142.0$ transistors/neuron
We also need
8 transistors / INT $* 1$ INT / neuron $=8$ transistors/neuron
This gives us
$142+8=\mathbf{1 5 0}$ transistors/neuron
Radix 4 transistor accounting (1365 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
CTRL	238	1	238
MERGE	68	1	68
FWDT	15	4	60
total transistors/node			366

366 transistors/node $* 1365$ nodes / 4096 neurons $=122.0$ transistors/neuron
We also need
8 transistors / INT * 1 INT / neuron $=8$ transistors/neuron
This gives us
$122+8=\mathbf{1 3 0}$ transistors/neuron

AEXT CD TW CTRL

Control.

```
* \([\overline{C 0} \longrightarrow P ; m h \bullet H!0 ; m 0 \bullet F 0 ; C 0\)
    \(\mid \overline{C 1} \longrightarrow P ; m h \bullet H!1 ; m 1 \bullet F 1 ; C 1\)
    ]]
    * \([[c 0 \longrightarrow p o \uparrow ;[p i] ;\)
            \(m w \uparrow ;[w e] ; w 0 \uparrow ;[\neg w e] ; m w \downarrow ; w 0 \downarrow ;\)
            \(m 0 \uparrow ; f 0 o \uparrow ;[f 0 i] ; m 0 \downarrow ; f 0 o \downarrow ;[\neg f 0 i]\)
            \(c 0 o \uparrow ;[\neg c 0] ; p o \downarrow ;[\neg p i] ; c 0 o \downarrow\)
        \(\square c 1 \longrightarrow p o \uparrow ;[p i] ;\)
            \(m w \uparrow ;[w e] ; w 1 \uparrow ;[\neg w e] ; m w \downarrow ; w 1 \downarrow ;\)
            \(m 1 \uparrow ; f 1 o \uparrow ;[f 1 i] ; m 1 \downarrow ; f 1 o \downarrow ;[\neg f 1 i]\)
            \(c 1 o \uparrow ;[\neg c 1] ; p o \downarrow ;[\neg p i] ; c 1 o \downarrow\)
    ]]
* \([[c 0 \longrightarrow p o \uparrow ;[p i] ;\)
            ( \(c 0 o \uparrow ;[\neg c 0]\) ),
            ( \(m w \uparrow\); [we]; \(w 0 \uparrow ;[\neg w e] ; m 0 \uparrow ; m w \downarrow ; w 0 \downarrow\);
            \(f 0 o \uparrow ;[f 0 i] ; p o \downarrow ;[\neg p i])\);
            \(m 0 \downarrow ; f 0 o \downarrow ; c 0 o \downarrow ;[\neg f 0 i]\)
    \(\square c 1 \longrightarrow p o \uparrow ;[p i] ;\)
            ( \(c 1 o \uparrow ;\) [ \(\neg c 1]\) ),
            ( \(m w \uparrow ;[w e] ; w 1 \uparrow ;[\neg w e] ; m 1 \uparrow ; m w \downarrow ; w 1 \downarrow\);
            \(f 1 o \uparrow ;[f 1 i] ; p o \downarrow ;[\neg p i])\);
            \(m 1 \downarrow ; f 1 o \downarrow ; c 1 o \downarrow ;[\neg f 1 i]\)
]]
```

$$
\begin{aligned}
& (c 0 \vee c 1) \wedge \neg f 1 i \wedge \neg f 0 i \rightarrow p o \uparrow \\
& f 1 i \vee f 0 i \quad \rightarrow p o \downarrow \\
& \begin{array}{ll}
p i \wedge \neg m 0 \wedge \neg m 1 \rightarrow m w \uparrow & w 1 \wedge \neg w e \rightarrow m 1 \uparrow \\
\neg p i \vee m 0 \vee m 1 \quad \rightarrow m w \downarrow & \neg p i \wedge \neg c 1 \rightarrow m 1 \downarrow
\end{array} \\
& w 0 \wedge \neg w e \rightarrow m 0 \uparrow \\
& \neg p i \wedge \neg c 0 \rightarrow m 0 \downarrow \\
& c 0 o \wedge w e \rightarrow w 0 \uparrow \quad c 1 o \wedge w e \rightarrow w 1 \uparrow \\
& \neg m w \quad \rightarrow w 0 \downarrow \quad \neg m w \rightarrow w 1 \downarrow \\
& m 0 \wedge \neg w 0 \rightarrow f 0 o \uparrow \quad m 1 \wedge \neg w 1 \rightarrow f 1 o \uparrow \\
& \neg m 0 \vee w 0 \rightarrow f 0 o \downarrow \quad \neg m 1 \vee w 1 \rightarrow f 0 o \downarrow \\
& c 0 \wedge p i \wedge \neg c 1 o \rightarrow c 0 o \uparrow \quad c 1 \wedge p i \wedge \neg c 0 o \rightarrow c 1 o \uparrow \\
& \neg f 0 o \wedge \neg p i \quad \rightarrow c 0 o \downarrow \quad \neg f 1 o \wedge \neg p i \quad \rightarrow c 1 o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1]$	12	2-input arbiter
p_{o}	10	
$m w$	6	
$m[0,1]$	16	
$w[0,1]$	14	
$f[0,1]_{o}$	8	
$c[0,1]_{o}$	18	
total	84	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3]$	92	4-input arbiter
p_{o}	16	
$m w$	10	
$m[0,1,2,3]$	32	
$w[0,1,2,3]$	28	
$f[0,1,2,3]_{o}$	16	
$c[0,1,2,3]_{o}$	44	
total	238	

AEXT CD TW MERGE

Controlled merge.

$$
\begin{aligned}
& *[[\overline{M 0} \longrightarrow *[P!(C 0 ?)] \\
& \square \overline{M 1} \longrightarrow *[P!(C 1 ?)] \\
& \square \overline{M h} \longrightarrow P!(H ?) \\
& \text {]] } \\
& \text { *[[pe]; } \\
& {[m 0 \longrightarrow c 0 e \uparrow ;} \\
& {[c 00 \longrightarrow p 0 \uparrow ;[\neg p e] ; c 0 e \downarrow ;[\neg c 00] ; p 0 \downarrow} \\
& \square c 01 \longrightarrow p 1 \uparrow ;[\neg p e] ; c 0 e \downarrow ;[\neg c 01] ; p 1 \downarrow \\
& \square c 0 t \longrightarrow p t \uparrow ;[\neg p e] ; c 0 e \downarrow ;[\neg c 0 t] ; p t \downarrow] \\
& \square m 1 \longrightarrow c 1 e \uparrow ; \\
& {[c 10 \longrightarrow p 0 \uparrow ;[\neg p e] ; c 1 e \downarrow ;[\neg c 10] ; p 0 \downarrow} \\
& \square c 11 \longrightarrow p 1 \uparrow ;[\neg p e] ; c 1 e \downarrow ;[\neg c 11] ; p 1 \downarrow \\
& \square c 1 t \longrightarrow p t \uparrow ;[\neg p e] ; c 1 e \downarrow ;[\neg c 1 t] ; p t \downarrow] \\
& \square m w \longrightarrow c w e \uparrow \\
& {[c w 0 \longrightarrow p 0 \uparrow ;[\neg p e] ; c w e \downarrow ;[\neg c w 0] ; p 0 \downarrow} \\
& \square c w 1 \longrightarrow p 1 \uparrow ;[\neg p e] ; c w e \downarrow ;[\neg c w 1] ; p 1 \downarrow] \\
& \text {]] } \\
& p e \wedge m 0 \quad \rightarrow c 0 e \uparrow \quad \text { pe^ } m w \quad \rightarrow c w e \uparrow \\
& \neg p e \vee \neg m 0 \rightarrow c 0 e \downarrow \quad \neg p e \vee \neg m w \rightarrow c w e \downarrow \\
& p e \wedge m 1 \rightarrow c 1 e \uparrow \\
& \neg p e \vee \neg m 1 \rightarrow c 1 e \downarrow \\
& c 00 \vee c 10 \vee c w 0 \quad \rightarrow p 0 \uparrow \quad c 0 t \vee c 1 t \quad \rightarrow p t \uparrow \\
& \neg c 00 \wedge \neg c 10 \wedge \neg c w 0 \rightarrow p 0 \downarrow \quad \neg c 0 t \wedge \neg c 1 t \rightarrow p t \downarrow \\
& c 01 \vee c 11 \vee c w 1 \quad \rightarrow p 1 \uparrow \\
& \neg c 01 \wedge \neg c 11 \wedge \neg c w 1 \rightarrow p 1 \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$c[0,1, w] e$	12	
$p[0,1]$	12	
$p t$	4	
total	28	

Radix 4 transistor accounting:

rule	transistor count	comments
$c[0,1,2,3, w] e$	20	
$p[0,1,2,3]$	40	
$p t$	8	
total	68	

AEXT CD TW WORD

Output a word.

* $[Y!(X ?)]$
*[[ye];xe个;
$[x 0 \longrightarrow y 0 \uparrow ;[\neg y e] ; x e \downarrow ;[\neg x 0] ; y 0 \downarrow$
$\square x 1 \longrightarrow y 1 \uparrow ;[\neg y e] ; x e \downarrow ;[\neg x 1] ; y 1 \downarrow$
]]
$y e \rightarrow x e \uparrow$
$\neg y e \rightarrow x e \downarrow$
$x 0 \rightarrow y 0 \uparrow \quad x 1 \rightarrow y 1 \uparrow$
$\neg x 0 \rightarrow y 0 \downarrow \quad \neg x 1 \rightarrow y 1 \downarrow$

Radix 2 transistor accounting:

rule	transistor count	comments
total	0	all wires

Radix 4 transistor accounting:

rule	transistor count	comments
total	0	all wires

AEXT CD TW FWDT

Forward and detect tail.

* [$C \uparrow ;$
$[X=0 \longrightarrow Y!X$
$\square X=1 \longrightarrow Y!X$
$\square X=t \longrightarrow Y!X ; C \downarrow$
]]
*[[ci^ye]; xe ;
[$x 0 \longrightarrow y 0 \uparrow ;[\neg y e] ; x e \downarrow ;[\neg x 0] ; y 0 \downarrow$
$\square x 1 \longrightarrow y 1 \uparrow ;[\neg y e] ; x e \downarrow ;[\neg x 1] ; y 1 \downarrow$
$\square x t \longrightarrow y t \uparrow ;[\neg y e] ; x e \downarrow ; c o \uparrow ;[\neg x t \wedge \neg c i] ; y t \downarrow ; c o \downarrow$
]]
how do I express this in CHP?

$$
\begin{array}{lrl}
c i \wedge y e & \rightarrow x e \uparrow & y t \wedge \neg x e \rightarrow c o \uparrow \\
\neg c i \vee \neg y e & \rightarrow x e \downarrow & \neg y t \vee x e \rightarrow c o \downarrow \\
x 0 & \rightarrow y 0 \uparrow & x t \\
\neg x 0 \rightarrow y 0 \downarrow & \neg x t \wedge \neg c i \rightarrow y t \uparrow
\end{array}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$x e$	4	
c_{o}	4	wires
$y[0,1]$	0	
$y t$	7	
total	15	

Radix 4 transistor accounting:

rule	transistor count	comments
$x e$	4	
c_{o}	4	
$y[0,1,2,3]$	0	wires
$y t$	7	
total	15	

AEXT CD TW INT

Neuron interface.

* $[N ; C ; D]$
*[[ni]; co个; $[c i \wedge d e] ; d t \uparrow ; n o \uparrow ;$
$[\neg n i] ; c o \downarrow ;[\neg c i \wedge \neg d e] ; d t \downarrow ; n o \downarrow]$

$$
\begin{array}{ll}
n i \quad \rightarrow c o \uparrow & d t \quad \rightarrow n o \uparrow \\
\neg n i \rightarrow c o \downarrow & \neg d t \rightarrow n o \downarrow \\
& \\
c i \wedge d e \quad \rightarrow d t \uparrow &
\end{array}
$$

Transistor accounting:

rule	transistor count	comments
c_{o}	0	wires
$d t$	8	
n_{o}	0	wires
total	8	

B. 2 AEXT Control Data Combined

In these designs, the control and data are not decomposed.

B. 3 AEXT ASPR NODE

The active-sender, passive-receiver (ASPR) design assumes that the children actively send data to their passively receveiving parents. The following describes a monolithic node process encapsulating that idea.

```
\(N O D E \equiv\)
*[ \(\mathrm{h} h \longrightarrow\)
        \([\overline{C 0} \longrightarrow s:=0, P!(0) ;\)
        \(\mid \overline{C 1} \longrightarrow s:=1, P!(1)] ;\)
        \(h:=\) false
    \(\square \neg h \longrightarrow\)
    \([s=0 \longrightarrow C 0 ? x ; P!x\)
    \(\square s=1 \longrightarrow C 1 ? x ; P!x\)
    ]; \(h:=\) x.tail
```

]]

B. 4 AEXT ASPR PFWD/MERGE (PM)

The monolithic NODE can be decomposed into PFWD, which prepends a word to the packet indicating which branch the packet is coming from and MERGE processes, and MERGE, which arbitrates between incoming packet streams and outputs them one at a time.

Radix 2 accounting (4095 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
PFWD	53	2	106
MERGE	90	1	90
total transistors/node			196

196 transistors/node * 4095 nodes / 4096 neurons $=196.0$ transistors/neuron
The leaf node PFWDs only need to communicate the tail bit and their prepend bit and can leave off the other bit. This saves 2 production rules, or 14 transistors per node. With 2048 leaf nodes, this saves us 28672 transistors.
(196 transistors/node * 4095 nodes - 28672) / 4096 neurons $=\mathbf{1 8 9 . 0}$ transistors/neuron Radix 4 transistor accounting (1365 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
PFWD	73	4	292
MERGE	288	1	288
total transistors/node			580

580 transistors/node * 1365 nodes / 4096 neurons $=193.3$ transistors/neuron
The leaf node PFWDs only need to communicate the tail bit and their prepend bit and can leave off the other bit. This saves 4 production rules, or 32 transistors per node. With 1024 leaf nodes, this saves us 32768 transistors.
(698 transistors/node $* 4095$ nodes - 32768) / 4096 neurons $=\mathbf{1 8 5 . 3}$ transistors/neuron

B. 5 AEXT ASPR PM PFWD unpipelined

HSE

$$
\left.\left.\begin{array}{rl}
* & {[h} \\
\wedge & (x 0 \vee x 1 \vee x t) \longrightarrow q \uparrow ; y p \uparrow ;[y i] ; h \downarrow ; y p \downarrow ;[\neg y i] ; q \downarrow \\
\quad \square \neg h & \wedge \neg q
\end{array}\right) x 0 \longrightarrow y 0 \uparrow ;[y i] ; x o \uparrow ;[\neg x 0] ; y 0 \downarrow ;[\neg y i] ; x o \downarrow\right\}
$$

PRS

$$
\begin{aligned}
& \neg x t \wedge y t \rightarrow h \uparrow \quad h \wedge(x 0 \vee x 1 \vee x t) \rightarrow q \uparrow \\
& q \wedge y i \quad \rightarrow h \downarrow \quad \rightarrow h \wedge \neg y i \quad \rightarrow q \downarrow \\
& \neg q \wedge y i \rightarrow x o \uparrow \\
& q \vee \neg y i \rightarrow x o \downarrow
\end{aligned}
$$

$$
\begin{array}{lll}
h \wedge q & \rightarrow y p \uparrow & \\
\neg h \wedge q \wedge y i & \rightarrow y p \downarrow & \\
& & \\
\neg h \wedge \neg q \wedge x 0 & \rightarrow y 0 \uparrow & \neg h \wedge \neg q \wedge x t \rightarrow y t \uparrow \\
\neg q \wedge \neg x 0 & \rightarrow y 0 \downarrow & h \\
& & \\
\neg h \wedge \neg q \downarrow \\
\neg q \wedge \neg x 1 & \rightarrow y 1 \downarrow &
\end{array}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
h	8	
q	10	
x_{o}	4	
$y p$	5	OR'ed with a y rule below which also provides the staticizer
$y[0,1]$	18	
$y t$	8	
total	53	

Radix 4 transistor accounting:

rule	transistor count	comments
h	8	
q	12	
x_{o}	4	OR'ed with a y rule below which also provides the staticizer
$y p$	5	
$y[0,1,2,3]$	36	
$y t$	8	
total	73	

B. 6 AEXT ASPR PM PFWD pipelined hq

This version has fewer state variables than AEXT PFWD hu, but the pull-up and pull-down chains are too long.

CHP

```
\(P F W D \equiv\)
    \(h:=\) true;
    *[[h^ \(\bar{X} \longrightarrow Y\) !(header) \(; h \downarrow\)
        \(\square \neg h \wedge \bar{X} \longrightarrow Y!(X ?) \bullet[X=t \longrightarrow h \uparrow] ;\)
        ]
    ]
```

HSE

* $[h \wedge(x 0 \vee x 1 \vee x t) \longrightarrow y p \uparrow ;[y i] ; q \uparrow ; y p \downarrow ;[\neg y i] ; h \downarrow ; q \downarrow$
$\square \neg h \wedge x 0 \longrightarrow y 0 \uparrow ; x o \uparrow ;[y i] ; y 0 \downarrow ;[\neg x 0] ; x o \downarrow ;[\neg y i]$
$\square \neg h \wedge x 1 \longrightarrow y 1 \uparrow ; x o \uparrow ;[y i] ; y 1 \downarrow ;[\neg x 1] ; x o \downarrow ;[\neg y i]$
$\square \neg h \wedge x t \longrightarrow y t \uparrow ; x o \uparrow ;[y i] ; h \uparrow ; y t \downarrow ;[\neg x t] ; x o \downarrow ;[\neg y i]]$

PRS

$$
\begin{aligned}
& h \wedge y i \wedge y p \rightarrow q \uparrow \quad y t \wedge x o \wedge y i \rightarrow h \uparrow \\
& \neg h \quad \rightarrow q \downarrow \quad q \wedge \neg y i \quad \rightarrow h \downarrow \\
& \neg h \wedge(y 0 \vee y 1 \vee y t) \quad \rightarrow x o \uparrow \\
& \neg x 0 \wedge \neg x 1 \wedge \neg x t \wedge \neg y 0 \wedge \neg y 1 \wedge \neg y t \rightarrow x o \downarrow \\
& h \wedge \neg q \wedge \neg y i \wedge \neg x o \wedge(x 0 \vee x i \vee x t) \rightarrow y p \uparrow \\
& q \quad \rightarrow y p \downarrow \\
& \neg h \wedge \neg q \wedge \neg y i \wedge x 0 \wedge \neg x o \rightarrow y 0 \uparrow \quad \neg h \wedge \neg q \wedge \neg y i \wedge x 1 \wedge \neg x o \rightarrow y 1 \uparrow \\
& y i \wedge x o \quad \rightarrow y 0 \downarrow \quad y i \wedge x o \quad \rightarrow y 1 \downarrow \\
& \neg h \wedge \neg q \wedge \neg y i \wedge x t \wedge \neg x o \rightarrow y t \uparrow \\
& h \wedge x o \quad \rightarrow y t \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
q	8	
h	9	
$x o$	14	
$y p$	8	OR'ed with a y rule below which also provides the staticizer
$y[0,1]$	22	
$y t$	11	
total	72	

Radix 4 transistor accounting:

rule	transistor count	comments
q	8	
h	9	
$x o$	20	
$y p$	10	OR'ed with a y rule below which also provides the staticizer
$y[0,1,2,3]$	44	
$y t$	11	
total	102	

B. 7 AEXT ASPR PM PFWD hu

This version has more state variables than AEXT PFWD hq, but has reasonable pull-up and pulldown chains.

```
CHP
    PFWD \equiv
        *[[h\wedge\overline{X}\longrightarrowY!(header); h\downarrow
        \square\negh\wedge\overline{X}\longrightarrowX?u\bulletY!u,[u=t\longrightarrowh
        ]
        ]
```

HSE

```
*[[h\wedge(x0\vee x1\vee xt)\longrightarrowyp\uparrow; [yi];h\downarrow;yp\downarrow;[\negyi]
    \square\negh\wedgex0\longrightarrowu0\uparrow;(xo\uparrow; [\negx0]),(y0\uparrow; [yi]);u0\downarrow; (y0\downarrow; [\negyi]), xo\downarrow
    \square\negh\wedgex1\longrightarrowu1\uparrow;(xo\uparrow;[\negx1]),(y1\uparrow; [yi]);u1\downarrow;(y1\downarrow;[\negyi]), xo\downarrow
    \square\negh\wedgext\longrightarrowut\uparrow;(xo\uparrow; [\negxt]),(yt\uparrow; h\uparrow; [yi]);ut\downarrow;(yt\downarrow; [\negyi]), xo\downarrow
    ]
    ]
```

```
* \([[h \wedge(x 0 \vee x 1 \vee x t) \longrightarrow y p \uparrow ;[y i] ; h \downarrow ; y p \downarrow ;[\neg y i]\)
    \(\square \neg h \wedge x 0 \longrightarrow u 0 \uparrow ;[\neg x 0 \wedge y i] ; u 0 \downarrow ;[\neg y i]\)
    \(\square \neg h \wedge x 1 \longrightarrow u 1 \uparrow ;[\neg x 1 \wedge y i] ; u 1 \downarrow ;[\neg y i]\)
        \(\square \neg h \wedge x t \longrightarrow u t \uparrow ;[\neg x t \wedge h \wedge y i] ; u t \downarrow ;[\neg y i]\)
        ]
    ]
* [u0 \(\longrightarrow x o \uparrow, y 0 \uparrow ;[\neg u 0] ; y 0 \downarrow, x o \downarrow\)
        \(\square u 1 \longrightarrow x o \uparrow, y 1 \uparrow ;[\neg u 1] ; y 1 \downarrow, x o \downarrow\)
        \(\square u t \longrightarrow x o \uparrow,(y t \uparrow ; h \uparrow) ;[u t \downarrow] ; y t \downarrow, x o \downarrow\)
        ]
```

PRS

$$
\begin{aligned}
& y t \quad \rightarrow h \uparrow \\
& y p \wedge y i \rightarrow h \downarrow \\
& h \wedge(x 0 \vee x 1 \vee x t) \wedge \neg y i \wedge \neg y t \rightarrow y p \uparrow \\
& \neg h \wedge y i \wedge \neg u n \quad \rightarrow y p \downarrow \\
& u 0 \vee u 1 \vee u t \quad \rightarrow x o \uparrow \\
& \neg u 0 \wedge \neg u 1 \wedge \neg u t \rightarrow x o \downarrow \\
& \neg h \wedge x 0 \wedge \neg y i \rightarrow u 0 \uparrow \quad \neg h \wedge x 1 \wedge \neg y i \rightarrow u 1 \uparrow \\
& \neg x 0 \wedge y i \quad \rightarrow u 0 \downarrow \quad \neg x 1 \wedge y i \quad \rightarrow u 1 \downarrow \\
& \neg h \wedge x t \wedge \neg y i \rightarrow u t \uparrow \\
& h \wedge \neg x t \wedge y i \quad \rightarrow u t \downarrow \\
& u 0 \quad \rightarrow y 0 \uparrow \quad u 1 \quad \rightarrow y 1 \uparrow \\
& \neg h \wedge \neg u 0 \rightarrow y 0 \downarrow \quad \quad \neg h \wedge \neg u 1 \rightarrow y 1 \downarrow \\
& u t \quad \rightarrow y t \uparrow \\
& \neg u t \rightarrow y t \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
h	7	
$y p$	9	OR'ed with a y rule below which also provides the staticizer
$x o$	6	
$u[0,1]$	18	
$u t$	10	
$y[0,1]$	14	
$y t$	6	
total	70	

Radix 4 transistor accounting:

rule	transistor count	comments
h	7	
$y p$	11	OR'ed with a y rule below which also provides the staticizer
$x o$	10	
$u[0,1,2,3]$	36	
$u t$	10	
$y[0,1,2,3]$	28	
$y t$	6	
total	108	

B. 8 AEXT ASPR PM MERGE unpipelined

HSE

* $[[\neg a 0 \wedge \neg a 1 \wedge(c 00 \vee c 01 \vee c 0 t) \longrightarrow a 0 \uparrow$
$\mid \neg a 0 \wedge \neg a 1 \wedge(c 10 \vee c 11 \vee c 1 t) \longrightarrow a 1 \uparrow]]$
*[[$a 0 \wedge c 00 \longrightarrow p 0 \uparrow ;[p i] ; c 0 o \uparrow ;[\neg c 00] ; p 0 \downarrow ;[\neg p i] ; c 0 o \downarrow$
ロ $a 0 \wedge c 01 \longrightarrow p 1 \uparrow ;[p i] ; c 0 o \uparrow ;[\neg c 01] ; p 1 \downarrow ;[\neg p i] ; c 0 o \downarrow$
$\square a 0 \wedge c 0 t \longrightarrow p t \uparrow ;[p i] ; c 0 o \uparrow ;[\neg c 0 t] ; a 0 \downarrow ; p t \downarrow ;[\neg p i] ; c 0 o \downarrow$
ロ $a 1 \wedge c 10 \longrightarrow p 0 \uparrow ;[p i] ; c 1 o \uparrow ;[\neg c 10] ; p 0 \downarrow ;[\neg p i] ; c 1 o \downarrow$
■ $a 1 \wedge c 11 \longrightarrow p 1 \uparrow ;[p i] ; c 1 o \uparrow ;[\neg c 11] ; p 1 \downarrow ;[\neg p i] ; c 1 o \downarrow$
$\square a 1 \wedge c 1 t \longrightarrow p t \uparrow ;[p i] ; c 1 o \uparrow ;[\neg c 1 t] ; a 1 \downarrow ; p t \downarrow ;[\neg p i] ; c 1 o \downarrow$]

PRS

$(c 00 \vee c 01 \vee c 0 t) \wedge \neg a 0 \rightarrow a 0 i \uparrow$	$a 0 o \wedge \neg a 1 \wedge \neg p i \rightarrow a 0 \uparrow$
$a 0 \quad \rightarrow a 0 i \downarrow$	$\neg a 0 o \wedge p t \wedge \neg c 0 t \rightarrow a 0 \downarrow$
$(c 10 \vee c 11 \vee c 1 t) \wedge \neg a 1 \rightarrow a 1 i \uparrow$	$a 1 o \wedge \neg a 0 \wedge \neg p i \rightarrow a 1 \uparrow$
$a 1 \quad \rightarrow a 1 i \downarrow$	$\neg a 1 o \wedge p t \wedge \neg c 1 t \rightarrow a 1 \downarrow$
$(a 0 \wedge c 00 \vee a 1 \wedge c 10) \rightarrow p 0 \uparrow$	$(a 0 \wedge c 0 t \vee a 1 \wedge c 1 t) \rightarrow p t \uparrow$
$(a 0 \wedge \neg c 00 \vee a 1 \wedge \neg c 10) \rightarrow p 0 \downarrow$	$\neg a 0 \wedge \neg a 1{ }^{\text {a }}$ (
$(a 0 \wedge c 00 \vee a 1 \wedge c 10) \quad \rightarrow p 0 \uparrow$	
$(a 0 \wedge \neg c 00 \vee a 1 \wedge \neg c 10) \rightarrow p 0 \downarrow$	
$a 0 \wedge p i \quad \rightarrow c 0 o \uparrow \quad a 1 \wedge p i$	$\rightarrow c 1 o \uparrow$
$\neg a 0 \vee \neg p i \rightarrow c 0 o \downarrow$ 仡 $\quad \neg a 1 \vee \neg p i$	$\rightarrow c 1 o \downarrow$

Radix 2 transistor accounting:

rule	transistor count	comments
$a[0,1] i$	16	can be combinational with radix 2
$a[0,1] o$	12	2-way arbiter
$a[0,1]$	20	
$p[0,1]$	24	
$p t$	10	
$c[0,1] o$	8	
total	90	

Radix 4 transistor accounting:

rule	transistor count	comments
$a[0,1,2,3] i$	44	
$a[0,1,2,3] o$	92	4-way unpipelined arbiter
$a[0,1,2,3]$	40	
$p[0,1,2,3]$	80	
$p t$	16	
$c[0,1,2,3] o$	16	
total	288	

B. 9 AEXT ASPR PM MERGE pipelined a_a

I don't like this version because the pullup chains for the state variables are too long and won't scale to higher radix encoding.

CHP

$$
\begin{aligned}
& M E R G E \equiv \\
& \qquad[[h \longrightarrow[\overline{C 0} \longrightarrow a:=0 \mid \overline{C 1} \longrightarrow a:=1] ; h \downarrow \\
& \quad \square \neg h \wedge a=0 \longrightarrow P!(C 0 ?) \\
& \quad \square \neg h \wedge a=0 \longrightarrow P!(C 1 ?)
\end{aligned}
$$

]]

HSE

$$
*[[\neg a 0 \wedge \neg a 1 \wedge(c 00 \vee c 01 \vee c 0 t) \longrightarrow a 0 \uparrow
$$

$$
\mid \neg a 0 \wedge \neg a 1 \wedge(c 10 \vee c 11 \vee c 1 t) \longrightarrow a 1 \uparrow]]
$$

*[[$a 0 \wedge c 00 \longrightarrow p 0 \uparrow ; c 0 o \uparrow ;[p i \wedge \neg c 00] ; p 0 \downarrow ; c 0 o \downarrow ;[\neg p i]$
$\square a 0 \wedge c 01 \longrightarrow p 1 \uparrow ; c 0 o \uparrow ;[p i \wedge \neg c 01] ; p 1 \downarrow ; c 0 o \downarrow ;[\neg p i]$
$\square a 0 \wedge c 0 t \longrightarrow p t \uparrow ; c 0 o \uparrow ;[p i \wedge \neg c 0 t] ; a 0 \downarrow ; p t \downarrow ; c 0 o \downarrow ;[\neg p i]$
$\square a 1 \wedge c 10 \longrightarrow p 0 \uparrow ; c 1 o \uparrow ;[p i \wedge \neg c 10] ; p 0 \downarrow ; c 1 o \downarrow ;[\neg p i]$
$\square a 1 \wedge c 11 \longrightarrow p 1 \uparrow ; c 1 o \uparrow ;[p i \wedge \neg c 11] ; p 1 \downarrow ; c 1 o \downarrow ;[\neg p i]$
$\square a 1 \wedge c 1 t \longrightarrow p t \uparrow ; c 1 o \uparrow ;[p i \wedge \neg c 1 t] ; a 1 \downarrow ; p t \downarrow ; c 1 o \downarrow ;[\neg p i]$
]]

PRS

Radix 2 transistor accounting:

$$
\begin{aligned}
& \neg a 0 \wedge(c 00 \vee c 01 \vee c 0 t) \wedge \neg c 0 o \rightarrow a 0 i \uparrow \quad a 0 o \wedge \neg a 1 \wedge \neg c 1 o \wedge \neg p i \rightarrow a 0 \uparrow \\
& a 0 \quad \rightarrow a 0 i \downarrow \quad \neg a 0 o \wedge p i \wedge p t \wedge \neg c 0 t \quad \rightarrow a 0 \downarrow \\
& \begin{array}{lll}
\neg a 1 \wedge(c 10 \vee c 11 \vee c 1 t) \wedge \neg c 1 o & \rightarrow a 1 i \uparrow & \\
a 1 & & a 1 o \wedge \neg a 0 \wedge \neg c 0 o \wedge \neg p i \rightarrow a 1 \uparrow \\
a b 1 i \downarrow & & \neg a 1 o \wedge p i \wedge p t \wedge \neg c 1 t \rightarrow a 1 \downarrow
\end{array} \\
& \neg p i \wedge(a 0 \wedge c 00 \vee a 1 \wedge c 10) \quad \rightarrow p 0 \uparrow \quad \neg p i \wedge(a 0 \wedge c 0 t \vee a 1 \wedge c 1 t) \rightarrow p t \uparrow \\
& p i \wedge\left(\neg_{-} a 0 \wedge \neg c 00 \vee \neg_{-} a 1 \wedge \neg c 10\right) \rightarrow p 0 \downarrow \quad \rightarrow p t \downarrow \\
& \neg p i \wedge(a 0 \wedge c 01 \vee a 1 \wedge c 11) \quad \rightarrow p 1 \uparrow \\
& p i \wedge\left(\neg_{-} a 0 \wedge \neg c 01 \vee \neg_{-} a 1 \wedge \neg c 11\right) \rightarrow p 1 \downarrow \\
& a 0 \wedge(p 0 \vee p 1 \vee p t) \rightarrow c 0 o \uparrow \quad a 1 \wedge(p 0 \vee p 1 \vee p t) \rightarrow c 1 o \uparrow \\
& \neg p 0 \wedge \neg p 1 \wedge \neg p t \quad \rightarrow c 0 o \downarrow \quad \neg p 0 \wedge \neg p 1 \wedge \neg p t \quad \rightarrow c 1 o \downarrow
\end{aligned}
$$

rule	transistor count	comments
$a[0,1] i$	20	
$a[0,1] o$	12	2-way arbiter
$a[0,1]$	24	
$p[0,1]$	28	
$p t$	11	
$c[0,1] o$	22	
total	117	

Radix 4 transistor accounting:

rule	transistor count	comments
$a[0,1,2,3] i$	48	
$a[0,1,2,3] o$	92	4-way unpipelined arbiter
$a[0,1,2,3]$	48	
$p[0,1,2,3]$	88	
$p t$	17	
$c[0,1,2,3] o$	60	
total	353	

B. 10 AEXT ASPR PM MERGE pipelined ah

This one has acceptable pullup/pulldown chains, but I'm worried about making it CMOS implementable
HSE

$$
\begin{aligned}
& *[[\neg a 0 \wedge(c 00 \vee c 01 \vee c 0 t) \longrightarrow a 0 \uparrow ; h \downarrow ;[\neg a 0] ; h \uparrow \\
& \quad \mid \neg a 1 \wedge(c 10 \vee c 11 \vee c 1 t) \longrightarrow a 1 \uparrow ; h \downarrow ;[\neg a 1] ; h \uparrow]] \\
& *[[\quad a 0 \wedge c 00 \longrightarrow p 0 \uparrow ; c 0 o \uparrow ;[p i \wedge \neg c 00] ; p 0 \downarrow ; c 0 o \downarrow ;[\neg p i] \\
& \quad \text { ■ } a 0 \wedge c 01 \longrightarrow p 1 \uparrow ; c 0 o \uparrow ;[p i \wedge \neg c 01] ; p 1 \downarrow ; c 0 o \downarrow ;[\neg p i] \\
& \quad \text { ■ } a 0 \wedge c 0 t \longrightarrow p t \uparrow ; c 0 o \uparrow ;[p i \wedge \neg c 0 t] ; a 0 \downarrow ; p t \downarrow ; c 0 o \downarrow ;[\neg p i] \\
& \quad \text { ■ } a 1 \wedge c 10 \longrightarrow p 0 \uparrow ; c 1 o \uparrow ;[p i \wedge \neg c 10] ; p 0 \downarrow ; c 1 o \downarrow ;[\neg p i] \\
& \quad \text { ■ } a 1 \wedge c 11 \longrightarrow p 1 \uparrow ; c 1 o \uparrow ;[p i \wedge \neg c 11] ; p 1 \downarrow ; c 1 o \downarrow ;[\neg p i] \\
& \quad \text { ■ } a 1 \wedge c 1 t \longrightarrow p t \uparrow ; c 1 o \uparrow ;[p i \wedge \neg c 1 t] ; a 1 \downarrow ; p t \downarrow ; c 1 o \downarrow ;[\neg p i] \\
& \quad]]
\end{aligned}
$$

PRS

$$
\begin{aligned}
& (c 00 \vee c 01 \vee c 0 t) \wedge \neg a 0 \rightarrow a 0 i \uparrow \quad h \wedge a 0 o \wedge \neg p i \quad \rightarrow a 0 \uparrow \\
& \neg h \wedge a 0 \quad \rightarrow a 0 i \downarrow \quad p t \wedge p i \wedge c 0 o \wedge \neg c 0 t \wedge \neg a 0 o \rightarrow a 0 \downarrow \\
& (c 10 \vee c 11 \vee c 1 t) \wedge \neg a 1 \rightarrow a 1 i \uparrow \quad h \wedge a 1 o \wedge \neg p i \quad \rightarrow a 1 \uparrow \\
& \neg h \wedge a 1 \quad \rightarrow a 1 \downarrow \downarrow \quad \text { pt } \wedge p i \wedge c 1 o \wedge \neg c 1 t \wedge \neg a 1 o \rightarrow a 1 \downarrow \\
& \neg a 0 \wedge \neg a 1 \quad \rightarrow h \uparrow \\
& a 0 \vee a 1 \wedge \neg c 0 o \wedge \neg c 1 o \rightarrow h \downarrow \\
& \neg p i \wedge(a 0 \wedge c 00 \vee a 1 \wedge c 10) \wedge \neg h \rightarrow p 0 \uparrow \quad \neg p i \wedge(a 0 \wedge c 0 t \vee a 1 \wedge c 1 t) \wedge \neg h \rightarrow p t \uparrow \\
& p i \wedge(a 0 \wedge \neg c 00 \vee a 1 \wedge \neg c 10) \quad \rightarrow p 0 \downarrow \quad \rightarrow p t \downarrow \\
& \neg p i \wedge(a 0 \wedge c 01 \vee a 1 \wedge c 11) \wedge \neg h \rightarrow p 1 \uparrow \\
& p i \wedge(a 0 \wedge \neg c 01 \vee a 1 \wedge \neg c 11) \quad \rightarrow p 1 \downarrow \\
& a 0 \wedge(p 0 \vee p 1 \vee p t) \rightarrow c 0 o \uparrow \quad a 1 \wedge(p 0 \vee p 1 \vee p t) \rightarrow c 1 o \uparrow \\
& \neg p 0 \wedge \neg p 1 \wedge \neg p t \quad \rightarrow c 0 o \downarrow \quad \neg p 0 \wedge \neg p 1 \wedge \neg p t \quad \rightarrow c 1 o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$a[0,1] i$	20	
$a[0,1] o$	12	2-way arbiter
$a[0,1]$	24	
h	10	
$p[0,1]$	30	
$p t$	12	
$c[0,1] o$	22	
total	130	

Radix 4 transistor accounting:

rule	transistor count	comments
$a[0,1,2,3] i$	48	
$a[0,1,2,3] o$	92	4-way unpipelined arbiter
$a[0,1,2,3]$	48	
h	14	
$p[0,1,2,3]$	52	
$p t$	16	
$c[0,1,2,3] o$	100	
total	370	

B. 11 AEXT ASPR PFWD PREPEND/FWD/SIMPLE_MERGE

PREPEND and FWD are further decomposed into PREPEND, FWD, and SIMPLE_MERGE.

B. 12 AEXT ASPR PFWD PREPEND

HSE
$*[[s i] ; y p \uparrow ;[y i] ; y p \downarrow ;[\neg y i] ; s o \uparrow ;[\neg s i] ; s o \downarrow]$

B. 13 AEXT PFWD FWD

hSE

$$
\begin{aligned}
& *[[x 0 \vee x 1 \vee x t] ; s o \uparrow ;[s i] ; \text { so } \downarrow ;[\neg s i] ; \\
& \quad[x 0 \longrightarrow y 0 \uparrow ;[y i] ; y 0 \downarrow ;[\neg y i] \\
& \quad \square x 1 \longrightarrow y 1 \uparrow ;[y i] ; y 1 \downarrow ;[\neg y i] \\
& \square x t \longrightarrow y t \uparrow ;[y i] ; y t \downarrow ;[\neg y i] \\
&]]
\end{aligned}
$$

B. 14 AEXT ASPR PFWD SIMPLE_MERGE

Assumes that its inputs are mutually exclusive.
HSE

$$
\begin{aligned}
& *[[c 00 \longrightarrow p 0 \uparrow ;[p i] ; c 0 o \uparrow ;[\neg c 00] ; p 0 \downarrow ;[\neg p i] ; c 0 o \downarrow \\
& \quad \square c 01 \longrightarrow p 1 \uparrow ;[p i] ; c 0 o \uparrow ;[\neg c 01] ; p 1 \downarrow ;[\neg p i] ; c 0 o \downarrow \\
& \quad \square c 0 t \longrightarrow p t \uparrow ;[p i] ; c 0 o \uparrow ;[\neg c 0 t] ; p t \downarrow ;[\neg p i] ; c 0 o \downarrow \\
& \quad \square c 10 \longrightarrow p 0 \uparrow ;[p i] ; c 1 o \uparrow ;[\neg c 00] ; p 0 \downarrow ;[\neg p i] ; c 1 o \downarrow \\
& \square c 11 \longrightarrow p 1 \uparrow ;[p i] ; c 1 o \uparrow ;[\neg c 01] ; p 1 \downarrow ;[\neg p i] ; c 1 o \downarrow \\
& \text { प } c 1 t \longrightarrow p t \uparrow ;[p i] ; c 1 o \uparrow ;[\neg c 0 t] ; p t \downarrow ;[\neg p i] ; c 1 o \downarrow \\
& \\
& \text {]] }
\end{aligned}
$$

PRS

$$
\begin{array}{lll}
c 00 \vee c 10 & \rightarrow p 0 \uparrow & c 0 t \vee c 1 t \quad \rightarrow p t \uparrow \\
\neg c 00 \wedge \neg c 10 & \rightarrow p 0 \downarrow & \neg c 0 t \wedge \neg c 1 t \rightarrow p t \downarrow \\
& & \\
c 01 \vee c 11 & \rightarrow p 1 \uparrow & \\
\neg c 01 \wedge \neg c 11 \rightarrow p 1 \downarrow & &
\end{array}
$$

$$
\begin{aligned}
& p i \wedge(c 00 \vee c 01 \vee c 0 t) \rightarrow c 0 o \uparrow \quad \text { pi } \wedge(c 10 \vee c 11 \vee c 1 t) \rightarrow c 1 o \uparrow \\
& \neg p i \quad \rightarrow c 0 o \downarrow \quad \rightarrow p i \quad \rightarrow c 1 o \downarrow
\end{aligned}
$$

B. 15 AEXT ASPR MERGE

MERGE sequences between outputting two serialized packet streams.

$$
\begin{aligned}
& \text { MERGE } \equiv \\
& \qquad \begin{array}{l}
\text { [[} \neg \wedge \neg \neg \longrightarrow \\
\quad[\bar{L} \longrightarrow l:=\text { true }
\end{array} \\
& \quad \mid \bar{R} \longrightarrow r:=\text { true } \\
& \quad] \\
& \square l \vee r \longrightarrow \\
& {[l \longrightarrow O!(L ?)} \\
& \quad[r \longrightarrow O!(R ?) \\
& \text {]] }
\end{aligned}
$$

Appendix C

AER Receiver Design Space

This appendix explores the AER receiver (AERV) design space in reverse chronological order.

C. 1 Receiver tree structure

The receiver tree structure is dictated by its interface with the synapse and neuron/synapse configuration memory. We could place a memory for each group of 1 synapse and 4 neurons, Tree structure:

$$
\begin{array}{cc}
1 \mathrm{NODE} & \\
4 \mathrm{NODE} & \\
16 \mathrm{NODE} & \\
64 \mathrm{NODE} & \\
256 \mathrm{LEAF} & \\
1024 \mathrm{SYN} & 1024 \mathrm{DESERIAL} \\
& 1024 \mathrm{MEM} 4
\end{array}
$$

Accounting:

component	transistors/component	components	transistors	comments
AERV NODE	152	85	12920	
AERV LEAF	152	256	38912	
DESERIAL	216	1024	221184	6 1-of-2 words
OR	4	1024	4096	
total				277112

This design is expensive. We are required to use the 1 -of- 2 instead of 1 -of- 4 deserializer. The deserializer costs are derived from the number of words, which are derived from the shape of the memory as detailed in Section D.28.

To reduce overhead and use a 1-of-4 deserializer, we bundle 2 synapses (8 neurons) into each port and consolidate the memories for the 16 neurons and their synapses into a single memory:

By consolidating the memories, we further save a port on each leaf node.
Tree structure:

Accounting:

component	transistors/component	components	transistors	comments
AERV NODE	152	85	12920	
AERV LEAF(3)	114	256	29184	
DESERIAL	126	256	32256	4 1-of-4 words
OR	4	512	2048	
total				86408
total/neuron				21.10

We could continue this line of thought by consolidating synapses and memories until all configuration data is stored in a single, monolithic memory.

Tree structure:

1 NODE (3)	
2 NODE	DESERIAL
8 NODE	MEM4096
32 NODE	
128 LEAF	
128 SYN8	

Accounting:

component	transistors/component	components	transistors	comments
AERV NODE(3)	114	1	114	
AERV NODE	152	42	6384	
AERV LEAF	152	128	19456	
DESERIAL	352	1	352	
OR	4	512	2048	
total				
28354				

This design is the cheapest, but would would be difficult to layout and wire.

C. 2 AERV CD noTW cyclic control (CYC)

Builds off AERV CD noTW (Section C.6) by reusing the control lines to request and acknowledge the data as is done in AEXT CD noTW cyc (Section B.1.1).
Radix 2 accounting:

intermediate nodes			
component	transistors/component	components/node	transistors/node
NODE	60	1	60
total transistors/intermediate node			
leaf nodes 60			
component	transistors/component	components/node	transistors/node
LEAF	60	1	60
total transistors/leaf node			

(60 transistors/intermediate node * 511 intermediate nodes +60 transistors/leaf node * 512 leaf nodes) / 4096 neurons $=\mathbf{1 5 . 0}$ transistors/neuron
Radix 4 accounting:

intermediate nodes			
component	transistors/component	components/node	transistors/node
NODE	152	1	152
total transistors/intermediate node			
leaf nodes			
total transistors/leaf node			
component	transistors/component	components/node	transistors/node
LEAF	152	1	152

(152 transistors/intermediate node $* 256$ intermediate nodes +152 transistors/leaf node $* 85$ leaf nodes) / 4096 neurons $=12.7$ transistors/neuron

C. 3 AERV CD noTW CYC NODE

HSE

```
* [[p\phi \longrightarrow po\uparrow;
            [p0\longrightarrowu0\uparrow;uu\uparrow;po\downarrow; [\negp0];v\uparrow;c0\phi\uparrow;[c0i];po\uparrow
            \squarep1\longrightarrowu1\uparrow;uu\uparrow;po\downarrow; [\negp1];v\uparrow;c1\phi\uparrow;[c1i];po\uparrow
        ]
        \squarep0\wedgec0\phi\longrightarrowc00\uparrow;[\negc0i];po\downarrow;[\negp0]; c00\downarrow;[c0i];;po\uparrow
        \square p1^c0\phi \longrightarrowc01\uparrow; [\negc0i];po\downarrow; [\negp1]; c01\downarrow; [c0i];;po\uparrow
        \squarep0\wedgec1\phi}\longrightarrowc10\uparrow;[\negc1i];po\downarrow;[\negp0];c10\downarrow;[c1i];;po
        \squarep1\wedgec1\phi}\longrightarrowc11\uparrow;[\negc1i];po\downarrow;[\negp1];c11\downarrow;[c1i];;po
        \negp\phi\longrightarrowu0\downarrow,u1\downarrow;uu\downarrow,(c0\phi\downarrow,c1\phi\downarrow;[\negc0i\wedge\negc1i];po\downarrow),v\downarrow
```

]]
 PRS

$$
\begin{aligned}
& u 0 \vee u 1 \quad \rightarrow u u \uparrow \\
& \neg u 0 \wedge \neg u 1 \rightarrow u u \downarrow \\
& p \phi \wedge \neg u u \vee c 0 i \vee c 1 i \quad \rightarrow p o \uparrow \\
& (\neg p \phi \vee u u) \wedge \neg c 0 i \wedge \neg c 1 i \rightarrow p o \downarrow \\
& p 0 \wedge \neg v \rightarrow u 0 \uparrow \\
& \neg p \phi \quad \rightarrow u 0 \downarrow \\
& p 1 \wedge \neg v \rightarrow u 1 \uparrow \\
& \neg p \phi \quad \rightarrow u 1 \downarrow \\
& u u \wedge \neg p 0 \wedge \neg p 1 \rightarrow v \uparrow \\
& \neg u u \quad \rightarrow v \downarrow \\
& v \wedge u 0 \quad \rightarrow c 0 \phi \uparrow \\
& \neg v \vee \neg u 0 \rightarrow c 0 \phi \downarrow \\
& v \wedge u 1 \quad \rightarrow c 1 \phi \uparrow \\
& \neg v \vee \neg u 1 \rightarrow c 1 \phi \downarrow
\end{aligned}
$$

$$
\begin{array}{ll}
p 0 \wedge c 0 \phi & \rightarrow c 00 \uparrow \\
\neg p 0 \vee \neg c 0 \phi & \rightarrow c 00 \downarrow \\
p 1 \wedge c 0 \phi & \rightarrow c 01 \uparrow \\
\neg p 1 \vee \neg c 0 \phi & \rightarrow c 01 \downarrow \\
& \\
p 0 \wedge c 1 \phi & \rightarrow c 10 \uparrow \\
\neg p 0 \vee \neg c 1 \phi & \rightarrow c 10 \downarrow \\
& \\
p 1 \wedge c 1 \phi & \rightarrow c 11 \uparrow \\
\neg p 1 \vee \neg c 1 \phi & \rightarrow c 11 \downarrow
\end{array}
$$

Radix 4 transistor approximate accounting：

rule	transistor count	comments
$u u$	8	
p_{o}	12	
$u[0,1,2,3]$	28	
v	10	
$c[0,1,2,3] \phi$	16	
$c[0,1,2,3][0,1,2,3]$	64	
total	138	

Alternative 0：HSE

$$
\begin{aligned}
& \text { *[[pi];po个; } \\
& {[p 0 \longrightarrow u 0 \uparrow ; u u \uparrow ; p o \downarrow ;[\neg p 0] ; c 0 o \uparrow ; c c o \uparrow ; u 0 \downarrow ; u u \downarrow ;[c 0 i] ; c c i \uparrow ;} \\
& \text { po个; [} \neg p i] ; c 0 o \downarrow ; c c o \downarrow,([\neg c 0 i] ; c c i \downarrow) ; p o \downarrow \\
& \square p 1 \longrightarrow u 1 \uparrow ; u u \uparrow ; p o \downarrow ;[\neg p 1] ; c 1 o \uparrow ; c c o \uparrow ; u 1 \downarrow ; u u \downarrow ;[c 1 i] ; c c i \uparrow ; \\
& p o \uparrow ;[\neg p i] ; c 1 o \downarrow ; c c o \downarrow,([\neg c 1 i] ; c c i \downarrow) ; p o \downarrow \\
& \text {]; } \\
& \text {] } \\
& \text { *[[c0oo } \wedge p 0 \longrightarrow c 00 \uparrow ;[\neg c 0 i] ; c c i \downarrow ; p o \downarrow ;[\neg p 0] ; c 00 \downarrow ;[c 0 i] ; c c i \uparrow ; p o \uparrow \\
& \square c 0 o \wedge p 1 \longrightarrow c 01 \uparrow ;[\neg c 0 i] ; c c i \downarrow ; p o \downarrow ;[\neg p 1] ; c 01 \downarrow ;[c 0 i] ; c c i \uparrow ; p o \uparrow \\
& \square c 1 o \wedge p 0 \longrightarrow c 10 \uparrow ;[\neg c 1 i] ; c c i \downarrow ; p o \downarrow ;[\neg p 0] ; c 10 \downarrow ;[c 1 i] ; c c i \uparrow ; p o \uparrow \\
& \square c 1 o \wedge p 1 \longrightarrow c 11 \uparrow ;[\neg c 1 i] ; c c i \downarrow ; p o \downarrow ;[\neg p 1] ; c 11 \downarrow ;[c 1 i] ; c c i \uparrow ; p o \uparrow \\
& \text {]] }
\end{aligned}
$$

PRS

$$
\begin{aligned}
& (p i \wedge \neg c c o \vee c c i) \wedge \neg u u \rightarrow p o \uparrow \\
& (\neg p i \vee c c o) \wedge \neg c c i \vee u u \rightarrow p o \downarrow \\
& p 0 \wedge \neg c c o \rightarrow u 0 \uparrow \quad p 1 \wedge \neg c c o \rightarrow u 1 \uparrow \\
& \text { cco } \rightarrow u 0 \downarrow \quad \text { cco } \rightarrow u 1 \downarrow \\
& u 0 \vee u 1 \quad \rightarrow u u \uparrow \\
& \neg u 0 \wedge \neg u 1 \rightarrow u u \downarrow \\
& u 0 \wedge \neg p 0 \rightarrow c 0 o \uparrow \quad u 1 \wedge \neg p 1 \rightarrow c 1 o \uparrow \\
& \neg p i \quad \rightarrow c 0 o \downarrow \quad \rightarrow p i \quad \rightarrow c 1 o \downarrow \\
& c 0 o \vee c 1 o \quad \rightarrow c c o \uparrow \quad c 0 i \vee c 1 i \quad \rightarrow c c i \uparrow \\
& \neg c 0 o \wedge \neg c 1 o \rightarrow c c o \downarrow \quad \neg c 0 i \wedge \neg c 1 i \rightarrow c c i \downarrow \\
& c 0 o \wedge p 0 \quad \rightarrow c 00 \uparrow \quad c 1 o \wedge p 0 \quad \rightarrow c 10 \uparrow \\
& \neg c 0 o \vee \neg p 0 \rightarrow c 00 \downarrow \quad \neg c 1 o \vee \neg p 0 \rightarrow c 10 \downarrow \\
& c 0 o \wedge p 1 \quad \rightarrow c 01 \uparrow \quad c 1 o \wedge p 1 \quad \rightarrow c 11 \uparrow \\
& \neg c 0 o \vee \neg p 1 \rightarrow c 01 \downarrow \quad \neg c 1 o \vee \neg p 1 \rightarrow c 11 \downarrow
\end{aligned}
$$

Radix 2 transistor approximate accounting:

rule	transistor count	comments
p_{o}	8	
$u[0,1]$	14	
$u u$	4	could flatten in p_{o}
$c[0,1]_{o}$	14	
$c c_{o}$	4	
$c c_{i}$	4	could flatten in p_{o}
$c[0,1][0,1]$	16	
total	64	60 if $c c_{i}$ and $u u$ flattened in p_{o}

Radix 4 transistor approximate accounting:

rule	transistor count	comments
p_{o}	8	
$u[0,1,2,3]$	28	
$u u$	8	
$c[0,1,2,3]_{o}$	28	
$c c_{o}$	8	
$c c_{i}$	8	
$c[0,1,2,3][0,1,2,3]$	64	flattening $c c_{i}$ and $u u$ would make p_{o} pullup chain too long

Radix 3, 1-of-4 out transistor approximate accounting: This is used in some of the receiver designs.

rule	transistor count	comments
p_{o}	8	
$u[0,1,2]$	21	
$u u$	6	
$c[0,1,2]_{o}$	21	
$c c_{o}$	6	
$c c_{i}$	6	
$c[0,1,2][0,1,2,3]$	48	
total	116	114 if $c c_{i}$ or $u u$ flattened in p_{o} (can't flatten both; pullup chain too long)

CMOS-implementable PRS

$$
\begin{aligned}
& \text { ᄀ_cci } \rightarrow \text { _-cci } \uparrow \\
& \ldots c c i \quad \rightarrow \quad \text { _-cci } \downarrow \\
& \neg \mathrm{cco} \rightarrow \text { _cco个 } \\
& \text { cco } \rightarrow \text { _cco } \downarrow \\
& \left(p i \wedge_{_} c c o \vee{ }_{--} c c i\right) \wedge_{_} u u \quad \rightarrow \quad{ }_{-p o \downarrow} \\
& \left(\neg p i \vee \neg_{-} c c o\right) \wedge \neg_{-} c c i \vee \neg _u u \rightarrow \quad \text { _po } \\
& \neg p 0 \rightarrow{ }_{-} p 0 \uparrow \quad \quad \neg p 1 \rightarrow{ }_{-} p 1 \uparrow \\
& p 0 \rightarrow{ }_{-} p 0 \downarrow \quad p 1 \rightarrow{ }_{-} p 1 \downarrow \\
& \neg_{-} c c o \rightarrow \quad \text { _-cco } \uparrow \\
& _ \text {_coo } \rightarrow \text { _-cco } \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { __cco } \quad \rightarrow u 0 \downarrow \quad \text { _-cco } \quad \rightarrow u 1 \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& u 0 \vee u 1 \quad \rightarrow \quad u u \downarrow \\
& \neg u 0 \wedge \neg u 1 \rightarrow{ }_{-} u u \uparrow \\
& u 0 \wedge{ }_{_} p 0 \rightarrow{ }_{-} c 0 o \downarrow \quad u 1 \wedge{ }_{_} p 1 \rightarrow{ }_{\wedge} c 1 o \downarrow \\
& \neg p i \quad \rightarrow{ }_{c} c 0 o \uparrow \quad \rightarrow p i \quad \rightarrow \quad c 1 o \uparrow \\
& \neg_{-} c 0 o \vee \neg_{-} c 1 o \rightarrow c c o \uparrow \quad c 0 i \vee c 1 i \quad \rightarrow \quad c c i \downarrow \\
& { }_{_} c 0 o \wedge{ }^{\prime} c 1 o \quad \rightarrow c c o \downarrow \quad \quad \neg c 0 i \wedge \neg c 1 i \rightarrow \quad \text { _cci个 } \\
& \neg_{-} c 0 o \wedge \neg_{-} p 0 \rightarrow c 00 \uparrow \quad \quad{ }^{\prime}-c 1 o \wedge \neg^{\prime} p 0 \rightarrow c 10 \uparrow \\
& { }_{-} c 0 o \vee{ }_{-} p 0 \quad \rightarrow c 00 \downarrow \quad{ }_{-} c 1 o \vee{ }_{_} p 0 \quad \rightarrow c 10 \downarrow \\
& \neg_{-} c 0 o \wedge \text { __ }^{\prime} 1 \rightarrow c 01 \uparrow \quad \quad \neg_{-} c 1 o \wedge \neg_{_} p 1 \rightarrow c 11 \uparrow \\
& { }_{-} c 0 o \vee{ }_{\text {_ }} 1 \quad \rightarrow c 01 \downarrow \quad{ }_{-} c 1 o \vee{ }_{_} p 1 \quad \rightarrow c 11 \downarrow \\
& \neg_{-} c 0 o \rightarrow c 0 o \uparrow \quad \neg_{-} c 1 o \rightarrow c 1 o \uparrow \\
& { }_{-} c 0 o \rightarrow c 0 o \downarrow \quad \text { _c } 1 o \rightarrow c 1 o \downarrow \\
& \neg _p o \rightarrow p o \uparrow \\
& \text { _po } \rightarrow p o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
${ }_{\text {__ }} c c_{i}$	2	
${ }_{-} c c_{o}$	2	
p_{o}	8	
${ }_{-} p[0,1]$	4	
__cco	2	
$u[0,1]$	14	
_uu	4	
${ }_{-c}[0,1]_{o}$	14	
$c c_{o}$	4	
cc c{i}	4	
$c[0,1][0,1]$	16	
$c[0,1]_{o}$	4	
p_{o}	2	
total	80	

Radix 4 transistor accounting:

rule	transistor count	comments
$__{1} c c_{i}$	2	
$_c c_{o}$	2	
p_{o}	8	
$_p[0,1,2,3]$	8	
$\quad _c c_{o}$	2	
$u[0,1,2,3]$	28	
$_u u$	8	
$_[0,1,2,3]_{o}$	28	
$c c_{o}$	8	
$_c c_{i}$	8	
$c[0,1,2,3][0,1,2,3]$	64	
$c[0,1,2,3]_{o}$	8	
p_{o}	2	
total	176	

C. 4 AERV CD noTW CYC LEAF

This leaf design does not transmit the c_{o} signals to the neuron. Rather data just shows up on the $c x x$ lines and the neurons acknowledge on the c_{i} lines.

```
*[[pi];po\uparrow;
        [p0\longrightarrowu0\uparrow;uu\uparrow;po\downarrow;[\negp0];c0\uparrow;cc\uparrow;u0\downarrow;uu\downarrow;
        po\uparrow;[\negpi];c0\downarrow;cc\downarrow;po\downarrow
        \squarep1\longrightarrowu1\uparrow;uu\uparrow;po\downarrow; [\negp1];c1\uparrow;cc\uparrow;u1\downarrow;uu\downarrow;
        po\uparrow;[\negpi];c1\downarrow;cc\downarrow;po\downarrow
        ];
]
*[[c0\wedge p0\longrightarrowc00\uparrow; [c0i]; cci\uparrow;po\downarrow; [\negp0];c00\downarrow; [\negc0i];cci\downarrow;po\uparrow
    \squarec0^p1\longrightarrowc01\uparrow; [c0i];cci\uparrow;po\downarrow; [\negp1];c01\downarrow; [\negc0i];cci\downarrow;po\uparrow
    \squarec1^p0\longrightarrowc10\uparrow; [c1i];cci\uparrow; po\downarrow; [\negp0];c10\downarrow; [\negc1i];cci\downarrow; po\uparrow
    \squarec1^p1\longrightarrowc11\uparrow;[c1i];cci\uparrow;po\downarrow; [\negp1];c11\downarrow;[\negc1i];cci\downarrow;po\uparrow
    ]]
```


PRS

$$
(p i \vee c c o) \wedge \neg u u \wedge \neg c c i \rightarrow p o \uparrow
$$

$$
\neg p i \wedge \neg c c o \vee u u \vee c c i \quad \rightarrow p o \downarrow
$$

$\neg c c \wedge p 0 \rightarrow u 0 \uparrow$	$\neg c c \wedge p 1 \rightarrow u 1 \uparrow$
$c c \quad \rightarrow u 0 \downarrow$	$c c \quad \rightarrow u 1 \downarrow$
$u 0 \vee u 1 \rightarrow u u \uparrow$	
$\neg u 0 \wedge \neg u 1 \rightarrow u u \downarrow$	
$u 0 \wedge \neg p 0 \rightarrow c 0 \uparrow$	$u 1 \wedge \neg p 1 \rightarrow c 1 \uparrow$
$\neg p i \quad \rightarrow c 0 \downarrow$	$\neg p i \quad \rightarrow c 1 \downarrow$
$c 0 \vee c 1 \rightarrow c c \uparrow$	$c 0 i \vee c 1 i \quad \rightarrow c c i \uparrow$
$\neg c 0 \wedge \neg c 1 \rightarrow c c \downarrow$	$\neg c 0 i \wedge \neg c 1 i \rightarrow c c i \downarrow$
$c 0 \wedge p 0 \rightarrow c 00 \uparrow$	$c 1 \wedge p 0 \quad \rightarrow c 10 \uparrow$
$\neg c 0 \vee \neg p 0 \rightarrow c 00 \downarrow$	$\neg c 1 \vee \neg p 0 \rightarrow c 10 \downarrow$
$c 0 \wedge p 1 \rightarrow c 01 \uparrow$	$c 1 \wedge p 1 \rightarrow c 11 \uparrow$
$\neg c 0 \vee \neg p 1 \rightarrow c 01 \downarrow$	$\neg c 1 \vee \neg p 1 \rightarrow c 11 \downarrow$

Radix 2 transistor approximate accounting:

rule	transistor count	comments
p_{o}	8	
$u[0,1]$	14	
$u u$	4	could flatten in p_{o}
$c[0,1]_{o}$	14	
$c c_{o}$	4	
$c c_{i}$	4	could flatten in p_{o}
$c[0,1][0,1]$	16	
total	64	60 if $c c_{i}$ and $u u$ flattened in p_{o}

Radix 4 transistor approximate accounting:

rule	transistor count	comments
p_{o}	8	
$u[0,1,2,3]$	28	
$u u$	8	
$c[0,1,2,3]_{o}$	28	
$c c_{o}$	8	
$c c_{i}$	8	
$c[0,1,2,3][0,1,2,3]$	64	flattening $c c_{i}$ and $u u$ would make p_{o} pullup chain too long

Radix 3, 1-of-4 out transistor approximate accounting: This is used in some of the receiver designs.

rule	transistor count	comments
p_{o}	8	
$u[0,1,2]$	21	
$u u$	6	
$c[0,1,2]_{o}$	21	
$c c_{o}$	6	
$c c_{i}$	6	
$c[0,1,2][0,1,2,3]$	48	114 if $c c_{i}$ or $u u$ flattened in p_{o} (can't flatten both; pullup chain too long)
total	116	

CMOS-implementable PRS

$$
\begin{aligned}
& \neg p i \rightarrow{ }_{-p i \uparrow} \\
& p i \rightarrow{ }^{\prime} p i \downarrow \\
& \neg_{-} c c i \rightarrow \text { _-cci } \uparrow \\
& \text { _cci } \rightarrow \text { _-cci } \downarrow \\
& \left(\neg_{-} p i \vee \neg_{-} c c\right) \wedge \neg u u \wedge \neg __c c i \rightarrow p o \uparrow \\
& { }_{-} p i \wedge \text { _cc } \vee u u \vee{ }_{\text {_ }} c c i \quad \rightarrow p o \downarrow \\
& { }_{-} c c \wedge p 0 \rightarrow{ }_{-} u 0 \downarrow \quad{ }_{-} c c \wedge p 1 \rightarrow{ }_{-} u 1 \downarrow \\
& \neg_{-} c c \quad \rightarrow{ }_{-} u 0 \uparrow \quad \neg_{-} c c \quad \rightarrow \quad-u 1 \uparrow \\
& \neg _u 0 \vee \neg _u 1 \rightarrow u u \uparrow \\
& { }_{-} u 0 \wedge{ }_{-} u 1 \quad \rightarrow u u \downarrow \\
& \neg _u 0 \wedge \neg p 0 \rightarrow c 0 \uparrow \quad \quad \neg-u 1 \wedge \neg p 1 \rightarrow c 1 \uparrow \\
& { }_{-} p i \quad \rightarrow c 0 \downarrow \quad{ }^{-} \quad \text { pi } \quad \rightarrow c 1 \downarrow \\
& c 0 \vee c 1 \quad \rightarrow \quad c c \downarrow \quad c 0 i \vee c 1 i \quad \rightarrow \quad \text { _cci } \downarrow \\
& \neg c 0 \wedge \neg c 1 \rightarrow{ }_{\text {_ }} c c \uparrow \quad \quad \neg c 0 i \wedge \neg c 1 i \rightarrow{ }_{\text {_ }} c c i \uparrow \\
& c 0 \wedge p 0 \quad \rightarrow \quad{ }_{-} c 00 \downarrow \quad c 1 \wedge p 0 \quad \rightarrow \quad{ }_{-} 10 \downarrow \\
& \neg c 0 \vee \neg p 0 \rightarrow{ }_{_} c 00 \uparrow \quad \neg c 1 \vee \neg p 0 \rightarrow{ }_{c} c 10 \uparrow \\
& c 0 \wedge p 1 \quad \rightarrow{ }_{-} c 01 \downarrow \quad c 1 \wedge p 1 \quad \rightarrow \quad{ }^{c} 11 \downarrow \\
& \neg c 0 \vee \neg p 1 \rightarrow{ }_{_} c 01 \uparrow \quad \neg c 1 \vee \neg p 1 \rightarrow{ }_{_} c 11 \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \neg_{-} c 00 \rightarrow c 00 \uparrow \quad \quad \neg_{-} c 10 \rightarrow c 10 \uparrow \\
& { }_{-} c 00 \rightarrow c 00 \downarrow \quad{ }^{-} c 10 \quad \rightarrow c 10 \downarrow \\
& \neg_{-} c 01 \rightarrow c 01 \uparrow \quad \quad \neg_{-} c 11 \rightarrow c 11 \uparrow \\
& { }_{-} c 01 \rightarrow c 01 \downarrow \quad \text { - } 11 \quad \rightarrow c 11 \downarrow
\end{aligned}
$$

Alternative 1: HSE

```
* \([[p \phi \longrightarrow p o \uparrow ;\)
        \([p 0 \longrightarrow u 0 \uparrow ; u u \uparrow ; p o \downarrow ;[\neg p 0] ; v \uparrow ; c 0 s \uparrow ;, p o \uparrow\)
        \(\square p 1 \longrightarrow u 1 \uparrow ; u u \uparrow ; p o \downarrow ;[\neg p 1] ; v \uparrow ; c 1 s \uparrow ;, p o \uparrow\)
        ]
    \(\square p 0 \wedge c 0 s \longrightarrow c 00 \uparrow ;[c 0 i] ; c c i \uparrow ; p o \downarrow ;[\neg p 0] ; c 00 \downarrow ;[\neg c 0 i] ; c c i \downarrow ; p o \uparrow\)
        \(\square p 1 \wedge c 0 s \longrightarrow c 01 \uparrow ;[c 0 i] ; c c i \uparrow ; p o \downarrow ;[\neg p 1] ; c 01 \downarrow ;[\neg c 0 i] ; c c i \downarrow ; p o \uparrow\)
        \(\square p 0 \wedge c 1 s \longrightarrow c 10 \uparrow ;[c 1 i] ; c c i \uparrow ; p o \downarrow ;[\neg p 0] ; c 10 \downarrow ;[\neg c 1 i] ; c c i \downarrow ; p o \uparrow\)
        \(\square p 1 \wedge c 1 s \longrightarrow c 11 \uparrow ;[c 1 i] ; c c i \uparrow ; p o \downarrow ;[\neg p 1] ; c 11 \downarrow ;[\neg c 1 i] ; c c i \downarrow ; p o \uparrow\)
        \(\square \neg p \phi \longrightarrow u 0 \downarrow, u 1 \downarrow ; u u \downarrow, c 0 s \downarrow, c 1 s \downarrow ; v \downarrow, p o \downarrow\)
    ]]
\(u 0 \vee u 1 \quad \rightarrow u u \uparrow\)
\(\neg u 0 \wedge \neg u 1 \rightarrow u u \downarrow\)
\(c 0 i \vee c 1 i \quad \rightarrow c c i \uparrow\)
\(\neg c 0 i \wedge \neg c 1 i \rightarrow c c i \downarrow\)
\(p \phi \wedge \neg u u \vee v \wedge \neg c c i \quad \rightarrow p o \uparrow\)
\((\neg p \phi \vee u u) \wedge(\neg v \vee c c i) \rightarrow p o \downarrow\)
\(p 0 \wedge \neg v \rightarrow u 0 \uparrow\)
\(\neg p \phi \quad \rightarrow u 0 \downarrow\)
\(p 1 \wedge \neg v \rightarrow u 1 \uparrow\)
\(\neg p \phi \quad \rightarrow u 1 \downarrow\)
\(u u \wedge \neg p 0 \wedge \neg p 1 \quad \rightarrow v \uparrow\)
\(\neg u u \wedge \neg c 0 s \wedge \neg c 1 s \rightarrow v \downarrow\)
\(v \wedge u 0 \quad \rightarrow c 0 s \uparrow\)
\(\neg v \vee \neg u 0 \rightarrow c 0 s \downarrow\)
\(v \wedge u 1 \quad \rightarrow c 1 s \uparrow\)
\(\neg v \vee \neg u 1 \rightarrow c 1 s \downarrow\)
```

$$
\begin{array}{ll}
p 0 \wedge c 0 s & \rightarrow c 00 \uparrow \\
\neg p 0 \vee \neg c 0 s & \rightarrow c 00 \downarrow \\
p 1 \wedge c 0 s & \rightarrow c 01 \uparrow \\
\neg p 1 \vee \neg c 0 s & \rightarrow c 01 \downarrow \\
& \\
p 0 \wedge c 1 s & \rightarrow c 10 \uparrow \\
\neg p 0 \vee \neg c 1 s & \rightarrow c 10 \downarrow \\
& \\
p 1 \wedge c 1 s & \rightarrow c 11 \uparrow \\
\neg p 1 \vee \neg c 1 s & \rightarrow c 11 \downarrow
\end{array}
$$

Radix 2 transistor approximate accounting:

rule	transistor count	comments
$u u$	4	
$c c_{i}$	4	could flatten in p_{o}
p_{o}	8	
$u[0,1]$	14	
v	10	
$c[0,1] s$	8	
$c[0,1][0,1]$	16	67 if $c c_{i}$ flattened in p_{o}
total	69	

Radix 4 transistor approximate accounting:

rule	transistor count	comments
$u u$	8	
$c c_{i}$	8	could flatten in p_{o}
p_{o}	8	
$u[0,1,2,3]$	28	
v	14	
$c[0,1,2,3] s$	16	
$c[0,1,2,3][0,1,2,3]$	64	144 if $c c_{i}$ flattened in p_{o}

C. 5 AERV CD noTW CYC LEAF (no data)

If we don't need to send any data to the neurons we can make very cheap leaf nodes.

```
*[ [pi]; po \(\uparrow ;\)
    \([p 0 \longrightarrow c 0 o \uparrow ;[c 0 i] ; p o \downarrow ;[\neg p 0] ; u \uparrow ; p o \uparrow ;[\neg p i] ; c 0 o \downarrow[\neg c 0 i] ; u \downarrow ; p o \downarrow\)
    \(\square p 1 \longrightarrow c 1 o \uparrow ;[c 1 i] ; p o \downarrow ;[\neg p 1] ; u \uparrow ; p o \uparrow ;[\neg p i] ; c 1 o \downarrow[\neg c 1 i] ; u \downarrow ; p o \downarrow\)
    ];
]
```


PRS

$$
\begin{aligned}
& (p i \wedge \neg c 0 i \wedge \neg c 1 i) \vee u \rightarrow p o \uparrow \\
& (\neg p i \vee c 0 i \vee c 1 i) \wedge \neg u \rightarrow p o \downarrow \\
& p 0 \rightarrow c 0 o \uparrow \quad p 1 \quad \rightarrow c 1 o \uparrow \\
& \neg p i \rightarrow c 0 o \downarrow \quad \rightarrow p i \rightarrow c 1 o \downarrow \\
& c 0 i \wedge \neg p 0 \vee c 1 i \wedge \neg p 1 \quad \rightarrow u \uparrow \\
& (\neg c 0 i \vee p 0) \wedge(\neg c 1 i \vee p 1) \rightarrow u \downarrow
\end{aligned}
$$

Radix 2 transistor approximate accounting:

rule	transistor count	comments
p_{o}	8	
$c[0,1]_{o}$	12	
$u[0,1]$	8	
total	28	

Radix 4 transistor approximate accounting:

rule	transistor count	comments
p_{o}	12	
$c[0,1,2,3]_{o}$	24	
$u[0,1,2,3]$	16	
total	52	

CMOS-implementable PRS

$$
\begin{aligned}
& \neg c 0 i \rightarrow{ }^{c} 0 i \uparrow \quad \quad \neg c 1 i \rightarrow{ }^{\prime} c 1 i \uparrow \\
& c 0 i \rightarrow{ }^{2} 0 i \downarrow \quad c 1 i \quad \rightarrow \quad c 1 i \downarrow \\
& \left(p i \wedge_{-} c 0 i \wedge{ }_{-} c 1 i\right) \vee u \quad \rightarrow{ }_{-} p o \downarrow \\
& \left(\neg p i \vee \neg_{-} c 0 i \vee \neg_{-} c 1 i\right) \wedge \neg u \rightarrow p o \uparrow \\
& p 0 \rightarrow{ }_{-c 0 o \downarrow} \quad p 1 \quad \rightarrow{ }_{-} c 1 o \downarrow \\
& \neg p i \rightarrow{ }_{-} c 0 o \uparrow \quad \neg p i \rightarrow{ }_{-} 1 o \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \neg_{-} c 0 i \wedge \neg p 0 \vee \neg_{-} c 1 i \wedge \neg p 1 \rightarrow u \uparrow \\
& \left(_c 0 i \vee p 0\right) \wedge\left({ }_{-} 1 i \vee p 1\right) \quad \rightarrow u \downarrow \\
& \neg_{-} c 0 o \rightarrow c 0 o \uparrow \quad \neg_{-} c 1 o \rightarrow c 1 o \uparrow \\
& { }_{-} c 0 o \rightarrow c 0 o \downarrow \quad{ }_{-} c 1 o \rightarrow c 1 o \downarrow \\
& \neg_{-} p o \rightarrow p o \uparrow \\
& -p o \rightarrow p o \downarrow
\end{aligned}
$$

C. 6 AERV Control Data decomposed (CD) no tailword (noTW)

Separating control from data and removing the tail word reduced the number of transistors in the transmitter. We'll try to apply these same techniques to the receiver. Specifically, we'll want something that can interface with the control/data decomposed, no tail word, cyclic control, transmitter developed in Section B.1.1.

The accounting depends on whether we need the receiver to deliver payload or not. Without payload, we can simplify the leaf node circuitry. With payload, we'll need a more complicated interface with the neuron to be developed.

First we'll consider the case without payload:
Radix 2 accounting (2047 intermediate nodes, 2048 leaf nodes):

intermediate nodes			
component	transistors/component	components/node	transistors/node
SPLIT	30	1	30
CTRL	36	1	36
total transistors/intermediate node			
leaf nodes			
component	transistors/component	components/node	transistors/node
LEAF	30	1	30
total transistors/leaf node			

(66 transistors/intermediate node $* 2047$ intermediate nodes +30 transistors/leaf node $* 2048$ leaf nodes) / 4096 neurons $=48.0$ transistors/neuron
Radix 4 accounting (341 intermediate nodes, 1024 leaf nodes):

intermediate nodes			
component	transistors/component	components/node	transistors/node
SPLIT	90	1	90
CTRL	68	1	68
total transistors/intermediate node			
leaf nodes			158
total transistors/leaf node			
component	transistors/component	components/node	transistors/node
LEAF	58	1	58

(158 transistors/intermediate node ${ }^{*} 341$ intermediate nodes +58 transistors/leaf node ${ }^{*} 1024$ leaf nodes) / 4096 neurons $=27.7$ transistors/neuron

Now we'll consider the case where we have to deliver payload. In this case, we cannot use the simplified leaf nodes because there is data to be sent to the neuron. In addition, we'll need to develop more circuitry per neuron to set bits. We haven't specified what or how data will be set, so this will be developed in the future.

Radix 2 accounting (4095 nodes):
(66 transistors/node * 4095 nodes) / 4096 neurons $=\mathbf{6 6 . 0}$ transistors/neuron
Radix 4 accounting (1365 nodes):
(158 transistors/node * 1365 nodes) / 4096 neurons $=\mathbf{5 2 . 6}$ transistors/neuron

C. 7 AERV CD noTW SPLIT

*[[$\overline{C 0} \wedge S=0 \longrightarrow C 0!(P ?)$
$\overline{C 1} \wedge S=1 \longrightarrow C 1!(P ?)$
$\square \overline{C 2} \wedge S=2 \longrightarrow C 2!(P ?)$

```
*[ \([c 0 e \longrightarrow p e \uparrow ;\)
    \([s 0 \wedge p 0 \longrightarrow c 00 \uparrow ;[\neg c 0 e] ; p e \downarrow ;[\neg p 0] ; c 00 \downarrow\)
    \(\square s 0 \wedge p 1 \longrightarrow c 01 \uparrow ;[\neg c 0 e] ; p e \downarrow ;[\neg p 1] ; c 01 \downarrow\)
    ]
    \(\square c 1 e \longrightarrow p e \uparrow ;\)
        \([s 1 \wedge p 0 \longrightarrow c 10 \uparrow ;[\neg c 1 e] ; p e \downarrow ;[\neg p 0] ; c 10 \downarrow\)
        \(\square s 1 \wedge p 1 \longrightarrow c 11 \uparrow ;[\neg c 1 e] ; p e \downarrow ;[\neg p 1] ; c 11 \downarrow\)
        ]
    \(\square c 2 e \longrightarrow p e \uparrow ;\)
        \([s 2 \wedge p 0 \longrightarrow c 20 \uparrow ;[\neg c 2 e] ; p e \downarrow ;[\neg p 0] ; c 20 \downarrow\)
        \(\square s 2 \wedge p 1 \longrightarrow c 21 \uparrow ;[\neg c 2 e] ; p e \downarrow ;[\neg p 1] ; c 21 \downarrow\)
        ]
    ]]
\(c 0 e \vee c 1 e \vee c 2 e \quad \rightarrow p e \uparrow\)
\(\neg c 0 e \wedge \neg c 1 e \wedge \neg c 2 e \rightarrow p e \downarrow\)
\(s 0 \wedge p 0 \quad \rightarrow c 00 \uparrow \quad s 1 \wedge p 1 \quad \rightarrow c 11 \uparrow\)
\(\neg s 0 \vee \neg p 0 \rightarrow c 00 \downarrow \quad \neg s 1 \vee \neg p 1 \rightarrow c 11 \downarrow\)
\(s 0 \wedge p 1 \quad \rightarrow c 01 \uparrow \quad s 2 \wedge p 0 \quad \rightarrow c 20 \uparrow\)
\(\neg s 0 \vee \neg p 1 \rightarrow c 01 \downarrow \quad \neg s 2 \vee \neg p 0 \rightarrow c 21 \downarrow\)
\(s 1 \wedge p 0 \quad \rightarrow c 10 \uparrow \quad s 2 \wedge p 1 \quad \rightarrow c 21 \uparrow\)
\(\neg s 1 \vee \neg p 0 \rightarrow c 10 \downarrow \quad \neg s 2 \vee \neg p 1 \rightarrow c 21 \downarrow\)
```

Radix 2 transistor accounting:

rule	transistor count	comments
$p e$	6	
$c[0,1,2][0,1]$	24	
total	30	

Radix 4 transistor accounting:

rule	transistor count	comments
$p e$	10	
$c[0,1,2,3,4][0,1,2,3]$	80	
total	90	

C. 8 AERV CD noTW CTRL

$$
\begin{aligned}
& \text { * [}[\bar{P} \longrightarrow X ? u \bullet S:=2 \\
& {[u=0 \longrightarrow S:=0 ; C 0 ; P} \\
& \square u=1 \longrightarrow S:=1 ; C 1 ; P \\
& \text {] } \\
& \text {]] } \\
& \text { *[[pi]; } x e \uparrow ; s 2 \uparrow ; \\
& {[x 0 \longrightarrow u 0 \uparrow \square x 1 \longrightarrow u 1 \uparrow] ; x e \downarrow ;[\neg x 0 \wedge \neg x 1] ; s 2 \downarrow ;} \\
& {[u 0 \longrightarrow s 0 \uparrow ; c 0 o \uparrow ;[c 0 i] ; p o \uparrow ;[\neg p i] ; u 0 \downarrow ; s 0 \downarrow ; c 0 o \downarrow ;[\neg c 0 i]} \\
& \square u 1 \longrightarrow s 1 \uparrow ; c 1 o \uparrow ;[c 1 i] ; p o \uparrow ;[\neg p i] ; u 1 \downarrow ; s 1 \downarrow ; c 1 o \downarrow ;[\neg c 1 i] \\
& \text {];po } \downarrow \\
& \text {] } \\
& p i \wedge \neg u 0 \wedge \neg u 1 \rightarrow x e \uparrow \\
& \neg p i \vee u 0 \vee u 1 \quad \rightarrow x e \downarrow \\
& x e \vee x 0 \vee x 1 \quad \rightarrow s 2 \uparrow \\
& \neg x e \wedge \neg x 0 \wedge \neg x 1 \rightarrow s 2 \downarrow \\
& x 0 \rightarrow u 0 \uparrow \quad x 1 \rightarrow u 1 \uparrow \\
& \neg p i \rightarrow u 0 \downarrow \quad \neg p i \rightarrow u 1 \downarrow \\
& u 0 \wedge \neg s 2 \rightarrow s 0 \uparrow \quad u 1 \wedge \neg s 2 \rightarrow s 1 \uparrow \\
& \neg u 0 \vee s 2 \rightarrow s 0 \downarrow \quad \neg u 1 \vee s 2 \rightarrow s 1 \downarrow \\
& s 0 \rightarrow c 0 o \uparrow \quad s 1 \quad \rightarrow c 1 o \uparrow \\
& \neg s 0 \rightarrow c 0 o \downarrow \quad \neg s 1 \rightarrow c 1 o \downarrow \\
& c 0 i \vee c 1 i \quad \rightarrow p o \uparrow \\
& \neg c 0 i \wedge \neg c 1 i \rightarrow p o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$x e$	6	
$s 2$	6	
$u[0,1]$	12	
$s[0,1]$	8	$s[0,1]=c[0,1]_{o}$
$c[0,1]_{o}$	0	
p_{o}	4	
total	36	

Radix 4 transistor accounting:

rule	transistor count	comments
$x e$	10	
$s 4$	10	
$u[0,1,2,3]$	24	
$s[0,1,2,3]$	16	
$c[0,1,2,3] o$	0	$s, 1,2,3]=c[0,1,2,3]_{o}$
$p o$	8	
total	68	

C. 9 AERV CD noTW LEAF

In the case that we don't need to deliver payload to the neuron, we can use this LEAF process to interface with the neuron.

$$
\begin{aligned}
& \text { * }[\bar{P} \longrightarrow X ? u \\
& {[u=0 \longrightarrow C 0 ; P} \\
& \square u=1 \longrightarrow C 1 ; P \\
& \text {] } \\
& \text {]] } \\
& \text { *[[pi]; xe个; } \\
& {[x 0 \longrightarrow u 0 \uparrow \square x 1 \longrightarrow u 1 \uparrow] ; x e \downarrow ;[\neg x 0 \wedge \neg x 1] ;} \\
& {[u 0 \longrightarrow c 0 o \uparrow ;[c 0 i] ; p o \uparrow ;[\neg p i] ; u 0 \downarrow ; c 0 o \downarrow ;[\neg c 0 i]} \\
& \square u 1 \longrightarrow c 1 o \uparrow ;[c 1 i] ; p o \uparrow ;[\neg p i] ; u 1 \downarrow ; c 1 o \downarrow ;[\neg c 1 i] \\
& \text {];po } \downarrow \\
& \text {] } \\
& p i \wedge \neg u 0 \wedge \neg u 1 \rightarrow x e \uparrow \\
& \neg p i \vee u 0 \vee u 1 \rightarrow x e \downarrow \\
& x 0 \rightarrow u 0 \uparrow \quad x 1 \rightarrow u 1 \uparrow \\
& \neg p i \rightarrow u 0 \downarrow \quad \neg p i \rightarrow u 1 \downarrow \\
& \begin{array}{ll}
u 0 \wedge \neg x 0 \rightarrow c 0 o \uparrow & u 1 \wedge \neg x 1 \rightarrow c 1 o \uparrow \\
\neg u 0 \vee x 0 \rightarrow c 0 o \downarrow & \\
\neg u 1 \vee x 1 \rightarrow c 1 o \downarrow
\end{array} \\
& c 0 i \vee c 1 i \quad \rightarrow p o \uparrow \\
& \neg c 0 i \wedge \neg c 1 i \rightarrow p o \downarrow
\end{aligned}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
$x e$	6	
$u[0,1]$	12	
$c[0,1]_{o}$	8	
p_{o}	4	
total	30	

Radix 4 transistor accounting:

rule	transistor count	comments
$x e$	10	
$u[0,1,2,3]$	24	
$c[0,1,2,3] o$	16	
$p o$	8	
total	58	

C. 10 AERV ASPR BCAST pipelined

HSE
strict cpcp
$B C A S T \equiv$
*[[$p 0 \longrightarrow c 00 \uparrow, c 10 \uparrow ; p o \uparrow ;[c 0 i \wedge c 1 i \wedge \neg p 0] ; c 00 \downarrow, c 10 \downarrow ; p o \downarrow ;[\neg c 0 i \wedge \neg c 1 i] ;$
$\square p 1 \longrightarrow c 01 \uparrow, c 11 \uparrow ; p o \uparrow ;[c 0 i \wedge c 1 i \wedge \neg p 1] ; c 01 \downarrow, c 11 \downarrow ; p o \downarrow ;[\neg c 0 i \wedge \neg c 1 i] ;$
$\square p t \longrightarrow c 0 t \uparrow, c 1 t \uparrow ; p o \uparrow ;[c 0 i \wedge c 1 i \wedge \neg p t] ; c 0 t \downarrow, c 1 t \downarrow ; p o \downarrow ;[\neg c 0 i \wedge \neg c 1 i] ;$
]]
BCAST \equiv
*[[$p 0 \longrightarrow q 0 \uparrow ; c 00 \uparrow, c 10 \uparrow ; p o \uparrow ;[c 0 i \wedge c 1 i \wedge \neg p 0] ; q 0 \downarrow ; c 00 \downarrow, c 10 \downarrow ; p o \downarrow ;[\neg c 0 i \wedge \neg c 1 i]$
$\square p 1 \longrightarrow q 1 \uparrow ; c 01 \uparrow, c 11 \uparrow ; p o \uparrow ;[c 0 i \wedge c 1 i \wedge \neg p 1] ; q 1 \downarrow ; c 01 \downarrow, c 11 \downarrow ; p o \downarrow ;[\neg c 0 i \wedge \neg c 1 i]$
$\square p t \longrightarrow q t \uparrow ; c 0 t \uparrow, c 1 t \uparrow ; p o \uparrow ;[c 0 i \wedge c 1 i \wedge \neg p t] ; q t \downarrow ; c 0 t \downarrow, c 1 t \downarrow ; p o \downarrow ;[\neg c 0 i \wedge \neg c 1 i]$
]]

PRS

$$
\begin{aligned}
& q 0 \rightarrow c 00 \uparrow \quad q 0 \quad \rightarrow c 10 \uparrow \\
& \neg q 0 \rightarrow c 00 \downarrow \quad \neg q 0 \rightarrow c 10 \downarrow \\
& q 1 \rightarrow c 01 \uparrow \quad q 1 \rightarrow c 11 \uparrow \\
& \neg q 1 \rightarrow c 01 \downarrow \quad \neg q 1 \rightarrow c 11 \downarrow \\
& q t \rightarrow c 0 t \uparrow \quad q t \rightarrow c 1 t \uparrow \\
& \neg q t \rightarrow c 0 t \downarrow \quad \neg q t \rightarrow c 1 t \downarrow \\
& \neg c 0 i \wedge \neg c 1 i \wedge p 0 \rightarrow q 0 \uparrow \quad \neg c 0 i \wedge \neg c 1 i \wedge p t \rightarrow q t \uparrow \\
& c 0 i \wedge c 1 i \wedge \neg p 0 \quad \rightarrow q 0 \downarrow \quad c 0 i \wedge c 1 i \wedge \neg p t \quad \rightarrow q t \downarrow \\
& \neg c 0 i \wedge \neg c 1 i \wedge p 1 \rightarrow q 1 \uparrow \\
& c 0 i \wedge c 1 i \wedge \neg p 1 \rightarrow q 1 \downarrow
\end{aligned}
$$

HSE

output ordering cpcp parallelized
$B C A S T \equiv$

* [[$p 0 \longrightarrow([\neg c 0 i] ; c 00 \uparrow),([\neg c 1 i] ; c 10 \uparrow) ; p o \uparrow ;[\neg p 0] ;([c 0 i] ; c 00 \downarrow),([c 1 i] ; c 10 \downarrow) ; p o \downarrow$;
$\square p 1 \longrightarrow([\neg c 0 i] ; c 01 \uparrow),([\neg c 1 i] ; c 11 \uparrow) ; p o \uparrow ;[\neg p 1] ;([c 0 i] ; c 01 \downarrow),([c 1 i] ; c 11 \downarrow) ; p o \downarrow ;$ $\square p t \longrightarrow([\neg c 0 i] ; c 0 t \uparrow),([\neg c 1 i] ; c 1 t \uparrow) ; p o \uparrow ;[\neg p t] ;([c 0 i] ; c 0 t \downarrow),([c 1 i] ; c 1 t \downarrow) ; p o \downarrow ;$]]

PRS

$$
\begin{array}{ll}
\neg c 0 i \wedge p 0 \rightarrow c 00 \uparrow & \neg c 1 i \wedge p 0 \rightarrow c 10 \uparrow \\
c 0 i \wedge \neg p 0 \rightarrow c 00 \downarrow & c 1 i \wedge \neg p 0 \rightarrow c 10 \downarrow \\
\neg c 0 i \wedge p 1 \rightarrow c 01 \uparrow & \neg c 1 i \wedge p 1 \rightarrow c 11 \uparrow \\
c 0 i \wedge \neg p 1 \rightarrow c 01 \downarrow & c 1 i \wedge \neg p 1 \rightarrow c 11 \downarrow \\
\neg c 0 i \wedge p t \rightarrow c 0 t \uparrow & \neg c 1 i \wedge p t \rightarrow c 1 t \uparrow \\
c 0 i \wedge \neg p t \rightarrow c 0 t \downarrow & c 1 i \wedge \neg p t \rightarrow c 1 t \downarrow \\
V N(C) \rightarrow p o \uparrow & \\
\neg V N(C) \rightarrow p o \downarrow &
\end{array}
$$

po is the output of a VN detector

HSE

swap ordering of p and c in reset output ordering cppc parallelized

```
BCAST \(\equiv\)
*[[ \(p 0 \longrightarrow([\neg c 0 i] ; c 00 \uparrow),([\neg c 1 i] ; c 10 \uparrow) ;(p o \uparrow ;[\neg p 0] ; p o \downarrow) ;([c 0 i] ; c 00 \downarrow),([c 1 i] ; c 10 \downarrow)\)
        \(\square p 1 \longrightarrow([\neg c 0 i] ; c 01 \uparrow),([\neg c 1 i] ; c 11 \uparrow) ;(p o \uparrow ;[\neg p 1] ; p o \downarrow) ;([c 0 i] ; c 01 \downarrow),([c 1 i] ; c 11 \downarrow)\)
        \(\square p t \longrightarrow([\neg c 0 i] ; c 0 t \uparrow),([\neg c 1 i] ; c 1 t \uparrow) ;(p o \uparrow ;[\neg p t] ; p o \downarrow) ;([c 0 i] ; c 0 t \downarrow),([c 1 i] ; c 1 t \downarrow)\)
```

]

PRS

$$
\begin{array}{llll}
\neg c 0 i \wedge p 0 & \rightarrow c 00 \uparrow & & \neg c 1 i \wedge p 0 \\
c 0 i \wedge \neg p 0 \wedge \neg p o & \rightarrow c 00 \downarrow & & \rightarrow c 10 \uparrow \\
& & & \\
\neg c 0 i \wedge \neg p 0 \wedge \neg p o & \rightarrow c 10 \downarrow \\
c 0 i \wedge \neg p 1 \wedge \neg p o & \rightarrow c 01 \uparrow & & \neg c 1 i \wedge p 1 \\
& & \rightarrow 1 i \wedge \neg p 1 \wedge \neg p o & \rightarrow c 11 \uparrow \\
& & & \\
\neg c 0 i \wedge p t & \rightarrow c 0 t \uparrow & \neg c 1 i \wedge p t & \rightarrow c 1 t \uparrow \\
c 0 i \wedge \neg p t \wedge \neg p o & \rightarrow c 0 t \downarrow & c 1 i \wedge \neg p t \wedge \neg p o & \rightarrow c 1 t \downarrow \\
& & & \\
(c 00 \wedge c 10 \vee c 01 \wedge c 11 \vee c 0 t \wedge c 1 t) \wedge(p 0 \vee p 1 \vee p t) & \rightarrow p o \uparrow \\
\neg p 0 \wedge \neg p 1 \wedge \neg p t & & \rightarrow p o \downarrow
\end{array}
$$

instability on down phases of c because p input can rise at anytime Could probably fix with state variables.

C. 11 AERV ASPR BCAST unpipelined

HSE

$$
\begin{aligned}
& B C A S T \equiv \\
& *[[[p 0 \longrightarrow c 00 \uparrow, c 10 \uparrow ;[c 0 i \wedge c 1 i] ; p o \uparrow ;[\neg p 0] ; c 00 \downarrow, c 10 \downarrow ;[\neg c 0 i \wedge \neg c 1 i] ; p o \downarrow \\
& \quad \begin{array}{l}
\text { p1 } \longrightarrow c 01 \uparrow, c 11 \uparrow ;[c 0 i \wedge c 1 i] ; p o \uparrow ;[\neg p 1] ; c 01 \downarrow, c 11 \downarrow ;[\neg c 0 i \wedge \neg c 1 i] ; p o \downarrow \\
\quad \text { ppt } \longrightarrow c 0 t \uparrow, c 1 t \uparrow ;[c 0 i \wedge c 1 i] ; p o \uparrow ;[\neg p t] ; c 0 t \downarrow, c 1 t \downarrow ;[\neg c 0 i \wedge \neg c 1 i] ; p o \downarrow \\
]]
\end{array}
\end{aligned}
$$

PRS

$$
\begin{array}{ll}
p 0 \rightarrow c 00 \uparrow & p 0 \rightarrow c 10 \uparrow \\
\neg p 0 \rightarrow c 00 \downarrow & \neg p 0 \rightarrow c 10 \downarrow \\
& \\
p 1 \rightarrow c 01 \uparrow & p 1 \rightarrow c 11 \uparrow \\
\neg p 1 \rightarrow c 01 \downarrow & \neg p 1 \rightarrow c 11 \downarrow \\
& \\
p t \rightarrow c 0 t \uparrow & p t \rightarrow c 1 t \uparrow \\
\neg p t \rightarrow c 0 t \downarrow & \neg p t \rightarrow c 1 t \downarrow \\
& \\
c 0 i \wedge c 1 i & \rightarrow p o \uparrow \\
\neg c 0 i \wedge \neg c 1 i \rightarrow p o \downarrow &
\end{array}
$$

C. 12 AERV PSAR

This makes the circuitry much simpler

C. 13 AERV PSAR decomposed into ROUTE, READ_HEAD, FWD_BODY (RHB)

ROUTE sends a parent's signal to one of its children depending on which child requests. Assumes requests are mutually exclusive.

READ_HEAD reads the head word and signals FWD_BODY which way to forward the body packet

FWD_BODY forwards words to the children based on command from DEC

Radix 2 accounting (4095 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
ROUTE	39	1	39
READ_HEAD	29	1	29
FWD_BODY	51	1	51
total transistors/node			119

119 transistors/node * 4095 nodes / 4096 neurons $=119.0$ transistors/neuron
Radix 4 transistor accounting (1365 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
ROUTE	71	1	71
READ_HEAD	53	1	53
FWD_BODY	125	1	125
total transistors/node			249

249 transistors/node * 1365 nodes / 4096 neurons $=\mathbf{8 3 . 0}$ transistors/neuron
However, we can still send a payload to the neurons with 1-of-2 data instead of 1-of-4 data at the leaf nodes. There are 1024 leaf nodes. This will simplify the leaf node ROUTE and FWD_BODY components because their children only need to see the 1-bit payload and tail. Each leaf node ROUTE can lose 1 bit (i.e. 2 data lines or 2 asymmetric c-elements or 14 transistors). Each leaf node FWD_BODY can lose 1 bit (i.e. 2 data lines or 2 AND-gates or 8 transistors) for each of 4 children. Therefore we can subtract
$1024^{*}\left(14+8^{*} 4\right)=47104$ transistors.
Leaving out the high bit from the leaf nodes yields
(249 transistors/node * 1365 nodes - 47104 transistors) / 4096 neurons $=\mathbf{7 1 . 5}$ transistors/neuron

C. 14 AERV PSAR RHB ROUTE unpipelined

Note that when communicating with READ_HEAD, ROUTE does not need to send the tail bit; READ_HEAD should never see a tail bit.

CHP

* [[$\overline{C 0!} ; C 0!(P ?)$ [$\overline{H!} ; H!(P ?)]$
]
HSE
*[[c0eVhe];pe个
[$p 0 \wedge c 0 e \longrightarrow c 00 \uparrow ;[\neg c 0 e] ; p e \downarrow ;[\neg p 0] ; c 00 \downarrow$
$\square p 1 \wedge c 0 e \longrightarrow c 01 \uparrow ;[\neg c 0 e] ; p e \downarrow ;[\neg p 1] ; c 01 \downarrow$
$\square p t \wedge c 0 e \longrightarrow c 0 t \uparrow ;[\neg c 0 e] ; p e \downarrow ;[\neg p t] ; c 0 t \downarrow$
$\square p 0 \wedge h e \longrightarrow h 0 \uparrow ;[\neg h e] ; p e \downarrow ;[\neg p 0] ; h 0 \downarrow$
$\square p 1 \wedge h e \longrightarrow h 1 \uparrow ;[\neg h e] ; p e \downarrow ;[\neg p 1] ; h 1 \downarrow$
]
]

PRS

$$
\begin{aligned}
& c 0 e \vee h e \quad \rightarrow p e \uparrow \\
& \neg c 0 e \wedge \neg h e \rightarrow p e \downarrow \\
& p 0 \wedge c 0 e \rightarrow c 00 \uparrow \quad p 0 \wedge h e \rightarrow h 0 \uparrow \\
& \neg p 0 \quad \rightarrow c 00 \downarrow \quad \neg p 0 \quad \rightarrow h 0 \downarrow \\
& p 1 \wedge c 0 e \rightarrow c 01 \uparrow \quad p 1 \wedge h e \rightarrow h 1 \uparrow \\
& \neg p 1 \quad \rightarrow c 01 \downarrow \quad \neg p 1 \quad \rightarrow h 1 \downarrow \\
& p t \wedge c 0 e \rightarrow c 0 t \uparrow \\
& \neg p t \quad \rightarrow c 0 t \downarrow
\end{aligned}
$$

Radix 2 accounting:

rule	transistor count	comments
$p e$	4	
$c 0[0,1, t]$	21	
$h[0,1]$	14	
total	39	

Radix 4 transistor accounting:

rule	transistor count	comments
$p e$	8	
$c 0[0,1,2,3, t]$	35	
$h[0,1,2,3]$	28	
total	71	

C. 15 AERV PSAR RHB READ_HEAD

HSE

```
*[[si]; xe\uparrow;
    [ x0\longrightarrowu0\uparrow;xe\downarrow; [\negx0];s0\uparrow;[\negsi];u0\downarrow;s0\downarrow
            \square x1 \longrightarrowu1\uparrow; xe\downarrow; [\negx1];s1\uparrow;[\negsi];u1\downarrow;s1\downarrow
        ]
    ]
```

PRS

$$
\begin{array}{ll}
s i \wedge \neg u 0 \wedge \neg u 1 & \rightarrow x e \uparrow \\
u 0 \vee u 1 & \rightarrow x e \downarrow
\end{array}
$$

$$
\begin{array}{ll}
x 0 \rightarrow u 0 \uparrow & u 0 \wedge \neg x 0 \rightarrow s 0 \uparrow \\
\neg s i \rightarrow u 0 \downarrow & \neg u 0 \vee x 0 \rightarrow s 0 \downarrow \\
& \\
x 1 \rightarrow u 1 \uparrow & u 1 \wedge \neg x 1 \rightarrow s 1 \uparrow \\
\neg s i \rightarrow u 1 \downarrow & \neg u 1 \vee x 1 \rightarrow s 1 \downarrow
\end{array}
$$

Radix 2 accounting:

rule	transistor count	comments
$x e$	9	
$u[0,1]$	12	
$s[0,1]$	8	
total	29	

Radix 4 transistor accounting:

rule	transistor count	comments
$x e$	13	
$u[0,1,2,3]$	24	
$s[0,1,2,3]$	16	
total	53	

C. 16 AERV PSAR RHB FWD_BODY unpipelined

HSE

```
*[[\negs0\wedge\negs1\longrightarrowso个;
        \square s0 \longrightarrow [c0e];pe\uparrow;
            [ p0\longrightarrowc00\uparrow; [\negc0e];pe\downarrow; [\negp0];c00\downarrow
            \squarep1\longrightarrowc01\uparrow; [\negc0e];pe\downarrow; [\negp1];c01\downarrow
            \squarept\longrightarrowc0t\uparrow;[\negc0e];pe\downarrow;[\negpt];so\downarrow; [\negs0];c0t\downarrow
            ]
        \squares1\longrightarrow[c1e];pe\uparrow;
            [ p0\longrightarrowc10\uparrow; [\negc1e];pe\downarrow; [\negp0];c10\downarrow
            \squarep1\longrightarrowc11\uparrow;[\negc1e];pe\downarrow; [\negp1];c11\downarrow
            \squarept\longrightarrowc1t\uparrow;[\negc1e];pe\downarrow;[\negpt];so\downarrow;[\negs1];c1t\downarrow
            ]
        ]
    ]
```


PRS

$$
\begin{aligned}
& s 0 \wedge c 0 e \vee s 1 \wedge c 1 e \quad \rightarrow p e \uparrow \quad \rightarrow c 0 t \wedge \neg c 1 t \quad \rightarrow s o \uparrow \\
& s 0 \wedge \neg c 0 e \vee s 1 \wedge \neg c 1 e \rightarrow p e \downarrow \quad \neg p t \wedge(c 0 t \vee c 1 t) \rightarrow s o \downarrow \\
& p 0 \wedge s 0 \quad \rightarrow c 00 \uparrow \quad p 0 \wedge s 1 \quad \rightarrow c 10 \uparrow \\
& \neg p 0 \vee \neg s 0 \rightarrow c 00 \downarrow \quad \neg p 0 \vee \neg s 1 \rightarrow c 10 \downarrow \\
& p 1 \wedge s 0 \quad \rightarrow c 01 \uparrow \quad p 1 \wedge s 1 \quad \rightarrow c 11 \uparrow \\
& \neg p 1 \vee \neg s 0 \rightarrow c 01 \downarrow \quad \neg p 1 \vee \neg s 1 \rightarrow c 11 \downarrow \\
& p t \wedge s 0 \rightarrow c 0 t \uparrow \quad \quad p t \wedge s 1 \rightarrow c 1 t \uparrow \\
& \neg s 0 \quad \rightarrow c 0 t \downarrow \quad \neg s 1 \quad \rightarrow c 1 t \downarrow
\end{aligned}
$$

Radix 2 accounting:

rule	transistor count	comments
$p e$	12	
s_{o}	9	
$c[0,1][0,1]$	16	
$c[0,1] t$	14	
total	51	

Radix 4 transistor accounting:

rule	transistor count	comments
$p e$	20	
s_{o}	13	
$c[0,1,2,3][0,1,2,3]$	64	
$c[0,1,2,3] t$	28	
total	125	

C. 17 AERV PSAR RHB FWD_BODY pipelined

HSE

```
*[so个; [s0 \(0 \vee s 1] ; p e \uparrow ;\)
    [ \(p 0 \wedge s 0 \wedge c 0 e \longrightarrow c 00 \uparrow ; p e \downarrow ;[\neg p 0 \wedge \neg c 0 e] ; c 00 \downarrow\)
    \(\square p 1 \wedge s 0 \wedge c 0 e \longrightarrow c 01 \uparrow ; p e \downarrow ;[\neg p 1 \wedge \neg c 0 e] ; c 01 \downarrow\)
    \(\square p t \wedge s 0 \wedge c 0 e \longrightarrow c 0 t \uparrow ; p e \downarrow ;[\neg p t \wedge \neg c 0 e] ; s o \downarrow ;[\neg s 0] ; c 0 t \downarrow\)
    \(\square p 0 \wedge s 1 \wedge c 1 e \longrightarrow c 10 \uparrow ; p e \downarrow ;[\neg p 0 \wedge \neg c 1 e] ; c 10 \downarrow\)
    \(\square p 1 \wedge s 1 \wedge c 1 e \longrightarrow c 11 \uparrow ; p e \downarrow ;[\neg p 1 \wedge \neg c 1 e] ; c 11 \downarrow\)
    \(\square p t \wedge s 1 \wedge c 1 e \longrightarrow c 1 t \uparrow ; p e \downarrow ;[\neg p t \wedge \neg c 1 e] ; s o \downarrow ;[\neg s 1] ; c 1 t \downarrow\)
        ]
    ]
```


PRS

$$
\begin{aligned}
& s 0 \vee s 1 \wedge \neg q \rightarrow p e \uparrow \quad c 00 \vee c 01 \vee c 0 t \vee c 10 \vee c 11 \vee c 1 t \quad \rightarrow q \uparrow \\
& q \quad \rightarrow p e \downarrow \quad \neg c 00 \wedge \neg c 01 \wedge \neg c 0 t \wedge \neg c 10 \wedge \neg c 11 \wedge \neg c 1 t \rightarrow q \downarrow \\
& \neg q \quad \rightarrow s o \uparrow \\
& \neg p t \wedge(\neg c 0 e \wedge c 0 t \vee \neg c 1 e \wedge c 1 t) \rightarrow s o \downarrow \\
& p 0 \wedge s 0 \wedge c 0 e \rightarrow c 00 \uparrow \quad p 0 \wedge s 1 \wedge c 1 e \rightarrow c 10 \uparrow \\
& \neg p 0 \wedge \neg c 0 e \quad \rightarrow c 00 \downarrow \quad \neg p 0 \wedge \neg c 0 e \quad \rightarrow c 10 \downarrow \\
& p 1 \wedge s 0 \wedge c 0 e \rightarrow c 01 \uparrow \quad p 1 \wedge s 1 \wedge c 1 e \rightarrow c 11 \uparrow \\
& \neg p 1 \wedge \neg c 0 e \quad \rightarrow c 01 \downarrow \quad \neg p 1 \wedge \neg c 0 e \quad \rightarrow c 11 \downarrow \\
& p t \wedge s 0 \wedge c 0 e \rightarrow c 0 t \uparrow \quad \quad p t \wedge s 1 \wedge c 1 e \rightarrow c 1 t \uparrow \\
& \neg s 0 \quad \rightarrow c 0 t \downarrow \quad \rightarrow s 1 \quad \rightarrow c 1 t \downarrow
\end{aligned}
$$

Radix 2 accounting:

rule	transistor count	comments
total	90	

Radix 4 transistor accounting:

rule	transistor count	comments
total	262	

C. 18 AERV PSAR decomposed into ROUTE PULL_CTRL PULL (RCP)

ROUTE sends a parent's signal to one of its children depending on which child requests. Assumes requests are mutually exclusive. This is same ROUTE as above.

PULL_CTRL reads the head word and indicates which PULL should request data from ROUTE. PULL requests data from ROUTE and passes the data to the child.

Radix 2 accounting (4095 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
ROUTE	62	1	62
PULL_CTRL	28	1	28
PULL	14	2	28
total transistors/node			118

118 transistors/node * 4095 nodes / 4096 neurons $=118.0$ transistors/neuron
Radix 4 transistor accounting (1365 nodes / 4096 neurons):

component	transistors/component	components/node	transistors/node
ROUTE	178	1	178
PULL_CTRL	58	1	58
PULL	14	4	56
total transistors/node			292

292 transistors/node * 1365 nodes / 4096 neurons $=\mathbf{9 7 . 3}$ transistors/neuron
However, we can still send a payload to the neurons with 1-of-2 data instead of 1-of-4 data at the leaf nodes. There are 1024 leaf nodes. This will simplify the leaf node ROUTE component because its children only need to see the 1-bit payload and tail. Each leaf node ROUTE can lose 1 bit (i.e. 2 data lines or 2 asymmetric c-elements or 14 transistors) for each of 4 children. Therefore we can subtract $1024^{*} 14^{*} 4=57344$ transistors

Leaving out the high bit from the leaf nodes yields
(292 transistors/node * 1365 nodes - 57344 transistors)/4096 neurons $=\mathbf{8 3 . 3}$ transistors/neuron

C. 19 AERV PSAR RCP ROUTE

This decomposition largely reuses the unpipelined ROUTE in Section C. 14 above. For this decomposition, ROUTE connects to [radix] instances of PULL and 1 instance of PULL_CTRL. Radix 2 accounting:

rule	transistor count	comments
$p e$	6	
$c[0,1][0,1, t]$	42	
$h[0,1]$	14	
total	62	

Radix 4 transistor accounting:

rule	transistor count	comments
$p e$	10	
$c[0,1,2,3][0,1,2,3, t]$	140	
$h[0,1,2,3]$	28	
total	178	

C. 20 AERV PSAR PULL_CTRL

CHP

HSE

```
*[[s0i\wedges1i]; xe\uparrow;
    [ x0\longrightarrowu0\uparrow;xe\downarrow; [\negx0];s0o\uparrow; [\negs0i];u0\downarrow; s0o\downarrow
    \square \1 \longrightarrowu1\uparrow;xe\downarrow; [\negx1];s1o\uparrow;[\negs0i];u1\downarrow;s0o\downarrow
    ]]
```

PRS

$s 0 i \wedge s 1 i \wedge q$	$\rightarrow x e \uparrow$	
$\neg u 0 \wedge \neg u 1$	$\rightarrow q \uparrow$	
$\neg s 0 i \vee \neg s 1 i \vee \neg q$	$\rightarrow x e \downarrow$	
$u 0 \vee u 1$	$\rightarrow q \downarrow$	

| $x 0$ | $\rightarrow u 0 \uparrow$ | $x 1$ |
| :--- | :--- | :--- |$\rightarrow u 1 \uparrow$

$$
u 0 \wedge \neg x 0 \rightarrow s 0 o \uparrow \quad u 1 \wedge \neg x 1 \rightarrow s 1 o \uparrow
$$

$$
\neg u 0 \vee x 0 \rightarrow s 0 o \downarrow \quad \neg u 1 \vee x 1 \rightarrow s 1 o \downarrow
$$

Radix 2 accounting:

rule	transistor count	comments
$x e$	8	no q
$u[0,1]$	12	
$s[0,1]_{o}$	8	
total	28	

Radix 4 transistor accounting:

rule	transistor count	comments
$x e$	10	
q	8	
$u[0,1,2,3]$	24	
$s[0,1,2,3]_{o}$	16	
total	58	

C. 21 AERV PSAR RCP PULL unpipelined

HSE

```
*[\negsi\longrightarrowso\uparrow;
    \si\longrightarrow[ye];xe\uparrow
        [ x0\longrightarrowy0\uparrow; [\negye];xe\downarrow; [\negx0];y0\downarrow
        \squarex1\longrightarrowy1\uparrow;[\negye];xe\downarrow; [\negx1];y1\downarrow
        \squarext\longrightarrowyt\uparrow;[\negye];xe\downarrow;[\negxt]; so\downarrow; [\negsi];yt\downarrow
        ]
    ]
```


PRS

$$
\begin{array}{ll}
\neg y t \wedge \neg s i \rightarrow s o \uparrow & \text { si } \wedge y e \\
y t \wedge \neg x t \rightarrow x e \uparrow \\
& \rightarrow s i \downarrow \neg y e \rightarrow x e \downarrow \\
x 0 \rightarrow y 0 \uparrow & \\
\neg x 0 \rightarrow y 0 \downarrow & \neg s i \rightarrow y t \downarrow \\
& \\
x 1 \rightarrow y 1 \uparrow & \\
\neg x 1 \rightarrow y 1 \downarrow &
\end{array}
$$

Radix 2 transistor accounting:

rule	transistor count	comments
s_{o}	4	
$x e$	4	wires
$y[0,1]$	0	
$y t$	6	
total	14	

Radix 4 transistor accounting:

rule	transistor count	comments
s_{o}	4	
$x e$	4	
$y[0,1,2,3]$	0	wires
$y t$	6	
total	14	

Appendix D

AER Interface Design Space

The router interfaces include conversions between the serial protocol as well as deserializers and serializers.

D. 1 OUT e1ofN

Interfaces AEXT/AERV serial format to elofN channel.

```
* \([[x i \wedge y e] ; x o \uparrow ;[\neg x i \wedge \neg y e] ; x o \downarrow]\)
*[[x0 \(\longrightarrow y 0 \uparrow ; ~[\neg x 0] ; y 0 \downarrow\)
    \(\square x 1 \longrightarrow y 1 \uparrow ;[\neg x 1] ; y 1 \downarrow\)
    ]]
```

PRS

$$
\begin{array}{ll}
x i \wedge y e & \rightarrow x o \uparrow \\
\neg x i \vee \neg y e & \rightarrow x o \downarrow \\
& \\
x 0 \quad \rightarrow y 0 \uparrow & x 1 \rightarrow y 1 \uparrow \\
\neg x 0 \rightarrow y 0 \downarrow & \neg x 1 \rightarrow y 1 \downarrow
\end{array}
$$

CMOS-implementable PRS version 0

$$
\begin{aligned}
& x i \wedge y e \quad \rightarrow \text { _xo } \downarrow \quad \quad \text { __xo } \rightarrow x o \downarrow \\
& \neg x i \vee \neg y e \rightarrow _x o \uparrow \quad \text { _xo } \quad \rightarrow x o \uparrow \\
& x 0 \rightarrow y 0 \uparrow \quad x 1 \rightarrow y 1 \uparrow \\
& \neg x 0 \rightarrow y 0 \downarrow \quad \neg x 1 \rightarrow y 1 \downarrow
\end{aligned}
$$

CMOS-implementable PRS version 1

\[

\]

Radix 2 transistor accounting:

rule	transistor count	comments
$x o$	4	
$y[0,1]$	0	wires
total	4	

Radix 4 transistor accounting:

rule	transistor count	comments
$x o$	4	
$y[0,1]$	0	wires
total	4	

D. 2 OUT a1ofN

Interfaces AEXT/AERV serial format to a1ofN channel.

$$
\begin{aligned}
& *[[x i] ; x o \uparrow ;[\neg x i] ; x o \downarrow] \\
& *[[x 0 \longrightarrow y 0 \uparrow ;[y a] ; x o \downarrow ;[\neg x 0] ; y 0 \downarrow ;[\neg y a] ; x o \uparrow \\
& \quad \begin{array}{l}
\text { • } \\
\quad \text {] }]
\end{array}
\end{aligned}
$$

PRS

$$
\begin{array}{ll}
x i \wedge \neg y a \rightarrow x o \uparrow & \\
\neg x i \vee y a \rightarrow x o \downarrow \\
x 0 \rightarrow y 0 \uparrow & x 1 \rightarrow y 1 \uparrow \\
\neg x 0 \rightarrow y 0 \downarrow & \neg x 1 \rightarrow y 1 \downarrow
\end{array}
$$

CMOS-implementable PRS version 0

$$
\begin{array}{lll}
x i \wedge _y a & \rightarrow _x o \downarrow & \\
\neg _x o & \rightarrow x o \uparrow \\
\neg x i \vee \neg_{1} y a & \rightarrow _x o \uparrow & \\
-x o & \rightarrow x o \downarrow
\end{array}
$$

$$
\begin{array}{lll}
x 0 & \rightarrow{ }{-} y 0 \downarrow & \\
\neg-x 1 & \rightarrow \quad{ }_{-} y 1 \downarrow \\
\neg-y 0 \uparrow & & { }^{2}-x 1
\end{array} \rightarrow{ }_{-} y 1 \uparrow
$$

Radix 2 transistor accounting:

rule	transistor count	comments
x_{o}	4	
x_{o}	2	
$-y[0,1]$	0	wires
total	6	

Radix 4 transistor accounting:

rule	transistor count	comments
x_{o}	4	
x_{o}	2	
$-y[0,1]$	0	wires
total	6	

D. 3 Deserializer

The deserializer converts 1-of-N serial data into M-1-of-N parallel data.

```
* \(\left[X ? y_{m} ;\right.\)
    \([m<M-1 \longrightarrow m:=m+1\)
    \(\square m=M-1 \longrightarrow Y!y ; m:=0\)
    ]
]
```

We place a deserializer at output of the transmitter to interface with the datapath circuitry. It is the first in a series of processes that communicate with the outside environment:
transmitter \rightarrow deserializer \rightarrow 1-of-4-to-1-of-2 converter (if needed) \rightarrow [Datapath] \rightarrow serializer \rightarrow receiver
We also place a deserializer at the output of the receiver to interface with the neuron configuration memory.

D. 4 Ring Deserializer

This design uses a ring of nodes receiving data from a central splitter to sequence words into their respective place in the parallel output. We decompose this process into SPLIT and NODE. This
design has a slightly cheaper 1-of-4 implementation than the chain deserializer of Section D.9. However, the data signals in SPLIT and the environment enable signal have fanouts that grow with the number of words. The below figure shows the decomposition for packets containing $M 1$-of-2 words.

An OUT alofN process (if necessary and described above) first converts the AEXT/AERV serial communication protocol to the standard a1ofN protocol.
1-of-2 approximate scaling:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
SPLIT	$3 M-2$	1	$3 M-2$
NODE	32	M	$32 M$
C	8	1	8
approx. transistors/deserializer			$35 M+10$

1-of-4 approximate scaling:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
SPLIT	$3 M-2$	1	$3 M-2$
NODE	54	M	$54 M$
C	8	1	8
approx. transistors/deserializer			$57 M+10$

For the transmitter to handle 4096 neurons encoded as 1-of-2 or 1-of-4 words, we would need 12 and 6 NODEs, respectively.
1-of-2 accounting:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
SPLIT	30	1	30
NODE	32	12	384
C	8	1	8
total transistors/deserializer			426

1-of-4 accounting:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
SPLIT	16	1	16
NODE	54	6	324
C	8	1	8
total transistors/deserializer			352

D. 5 SPLIT

SPLIT takes incoming words and routes them to their respective locations in the parallel output.
For M words per packet,

* $[[x 0 \longrightarrow y 00 \uparrow, . ., y(M-1) 0 \uparrow ;[y 0 a \vee . . \vee y(M-1) a] ; x a \uparrow ;$
$[\neg x 0] ; y 00 \downarrow, . ., y(M-1) 1 \downarrow ;[\neg y 0 a \wedge . . \wedge \neg y(M-1) a] ; x a \downarrow$
$\square x 1 \longrightarrow y 01 \uparrow, . ., y(M-1) 1 \uparrow ;[y 0 a \vee \ldots \vee y(M-1) a] ; x a \uparrow ;$
$[\neg x 0] ; y 01 \downarrow, . ., y(M-1) 1 \downarrow ;[\neg y 0 a \wedge . . \wedge \neg y(M-1) a] ; x a \downarrow$
]]
For a 2-word packet,
* $[[x 0 \longrightarrow y 00 \uparrow, y 10 \uparrow ;[y 0 a \vee y 1 a] ; x a \uparrow ;$
$[\neg x 0] ; y 00 \downarrow, y 01 \downarrow ;[\neg y 0 a \wedge \neg y 1 a] ; x a \downarrow$
$\square x 1 \longrightarrow y 01 \uparrow, y 11 \uparrow ;[y 0 a \vee y 1 a] ; x a \uparrow ;$
$[\neg x 0] ; y 01 \downarrow, y 11 \downarrow ;[\neg y 0 a \wedge \neg y 1 a] ; x a \downarrow$
]]
PRS

$$
\begin{array}{ll}
x 0 \rightarrow y 00 \uparrow & x 1 \rightarrow y 01 \uparrow \\
\neg x 0 \rightarrow y 00 \downarrow & \neg x 1 \rightarrow y 01 \downarrow \\
& \\
x 0 \rightarrow y 10 \uparrow & x 1 \rightarrow y 11 \uparrow \\
\neg x 0 \rightarrow y 10 \downarrow & \neg x 1 \rightarrow y 11 \downarrow
\end{array}
$$

$$
\begin{array}{ll}
y 0 a \vee y 1 a & \rightarrow x a \uparrow \\
\neg y 0 a \wedge \neg y 1 a & \rightarrow x a \downarrow
\end{array}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$y[0 . . M-1][0,1]$	0	wires
$x a$	$8(M-1) / 3$	4-ary OR-tree approx.
approx. total	$3 M-2$	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$y[0 . . M-1][0,1,2,3]$	0	wires
$x a$	$8(M-1) / 3$	4-ary OR-tree approx.
approx. total	$3 M-2$	

CMOS-implementable PRS

$$
\begin{aligned}
& { }_{-} x 0 \rightarrow{ }_{-} y 00 \uparrow \quad __{-} x 1 \rightarrow{ }_{-} 001 \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& { }_{_} x 0 \rightarrow{ }_{-} y 10 \uparrow \quad{ }_{-} x 1 \rightarrow{ }_{-} y 11 \uparrow \\
& \neg _x 0 \rightarrow{ }_{-} y 10 \downarrow \quad \neg _x 1 \rightarrow{ }_{-} 11 \downarrow \\
& y 0 a \vee y 1 a \rightarrow{ }_{\wedge} x a \downarrow \\
& \neg y 0 a \wedge \neg y 1 a \rightarrow _x a \uparrow \\
& \neg _y 00 \rightarrow y 00 \uparrow \quad \quad \neg-y 01 \rightarrow y 01 \uparrow \\
& { }_{-} y 00 \rightarrow y 00 \downarrow \quad{ }_{-y} 01 \quad \rightarrow y 01 \downarrow \\
& \text { ᄀ_y } 10 \rightarrow y 10 \uparrow \quad \quad \text { _- } y 11 \rightarrow y 11 \uparrow \\
& { }_{-} y 10 \rightarrow y 10 \downarrow \quad{ }_{-} y 11 \quad \rightarrow y 11 \downarrow
\end{aligned}
$$

D. 6 NODE

NODE latches data from SPLIT.
*[[si];
$[x 0 \longrightarrow y 0 \uparrow ; x a \uparrow ;[\neg x 0] ; s \uparrow ; s o \uparrow ; x a \downarrow ;[\neg s i] ; y 0 \downarrow ; s \downarrow ; s o \downarrow$
$\square x 1 \longrightarrow y 1 \uparrow ; x a \uparrow ;[\neg x 1] ; s \uparrow ; s o \uparrow ; x a \downarrow ;[\neg s i] ; y 1 \downarrow ; s \downarrow ; s o \downarrow$]
]

The s state variable is necessary for bubble reshuffling. It breaks a cycle of isochronic branches with an odd number of bubbles (See Section D.8), which would be impossible to make CMOSimplementable.

PRS

$$
\begin{aligned}
& \neg s \wedge s i \wedge x 0 \rightarrow y 0 \uparrow \quad \neg s \wedge s i \wedge x 1 \rightarrow y 1 \uparrow \\
& \neg s i \quad \rightarrow y 0 \downarrow \quad \neg s i \quad \rightarrow y 1 \downarrow \\
& \neg s o \wedge v y \rightarrow x a \uparrow \\
& s o \vee \neg v y \rightarrow x a \downarrow \\
& v y \wedge \neg x 0 \wedge \neg x 1 \rightarrow s \uparrow \\
& \neg v y \quad \rightarrow s \downarrow \\
& s \rightarrow s o \uparrow \\
& \neg s \rightarrow s o \downarrow \\
& y 0 \vee y 1 \rightarrow v y \uparrow \\
& \neg y 0 \wedge \neg y 1 \rightarrow v y \downarrow
\end{aligned}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$y[0,1][0,1]$	16	
$x a$	4	
s_{o}	8	
$v y$	4	
total	32	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$y[0,1,2,3][0,1,2,3]$	32	
$x a$	4	
s_{o}	10	
$v y$	8	
total	54	

CMOS-implementable PRS

$$
\begin{array}{lll}
\neg_{-} & \rightarrow & -_s \uparrow \\
_s & \rightarrow & \ldots s \downarrow
\end{array}
$$

$$
\begin{aligned}
& \text { _si } \rightarrow y 0 \downarrow \quad \text { _si } \rightarrow y 1 \downarrow \\
& \text { _so } \wedge v y \quad \rightarrow \quad \text { _xa } \downarrow \\
& \neg-s o \vee \neg v y \rightarrow \text { _xa个 } \\
& v y \wedge _x 0 \wedge _x 1 \rightarrow _s \downarrow \\
& \neg v y \quad \rightarrow \quad _\uparrow \\
& \text { _-s } \rightarrow \text { _so } \downarrow \\
& \neg-_s \rightarrow \text { _so个 } \\
& \neg y 0 \rightarrow-y 0 \uparrow \quad \neg y 1 \rightarrow-y 1 \uparrow \\
& y 0 \rightarrow{ }_{-y 0 \downarrow} \quad y 1 \rightarrow{ }_{-y 1 \downarrow} \\
& \neg-y 0 \vee \neg-y 1 \rightarrow v y \uparrow \\
& -y 0 \wedge-y 1 \quad \rightarrow v y \downarrow
\end{aligned}
$$

D． 7 C

C in the ring deserializer of Section D．4 is a C－element taking in the environment enable signal and the last node＇s s_{o} signal to produce first node＇s s_{i} signal．s_{i} indicates whether we are in the up or down phase of the serial－to－parallel conversion．
PRS

$$
\begin{aligned}
& \neg s o \wedge x e \rightarrow s i \uparrow \\
& s o \wedge \neg x e \rightarrow s i \downarrow
\end{aligned}
$$

A C－element costs 8 transistors．

CMOS－implementable PRS

$$
\begin{array}{ll}
\text { _so } \wedge x e & \rightarrow \text { _si } \downarrow \\
\neg _s o \wedge \neg x e & \rightarrow \text { _si }
\end{array}
$$

D． 8 RING

In the interest of bubble reshuffling，the deserial ring NODEs and C－element should be described in a single process．

```
*[[ye]; s0个;
    \([x 0 \longrightarrow y 00 \uparrow ; x 0 a \uparrow ; ~[\neg x 0]\)
    \(\square x 1 \longrightarrow y 01 \uparrow ; x 0 a \uparrow ;[\neg x 1]\)
    ]; \(s 01 \uparrow ; s 1 \uparrow ; x 0 a \downarrow ;\)
    \([x 0 \longrightarrow y m 0 \uparrow ; x m a \uparrow ;[\neg x 0]\)
    \(\square x 1 \longrightarrow y m 1 \uparrow ; x m a \uparrow ;[\neg x 1]\)
    ]; sm( \(m+1) \uparrow ; s(m+1) \uparrow ; x m a \downarrow ;\)
    \([x 0 \longrightarrow y(M-1) 0 \uparrow ; x(M-1) a \uparrow ;[\neg x 0]\)
    \(\square x 1 \longrightarrow y(M-1) 1 \uparrow ; x(M-1) a \uparrow ;[\neg x 1]\)
    ] ; \(s(M-1) M \uparrow ; s M \uparrow ; x(M-1) a \downarrow ;\)
    [ \(\neg y e] ; s 0 \downarrow\);
    \(y 00 \downarrow, y 01 \downarrow ; s 01 \downarrow ; s 1 \downarrow ;\)
    \(y m 0 \downarrow, y m 1 \downarrow ; s m(m+1) \downarrow ; s(m+1) \downarrow\)
    ...
    \(y(M-1) 0 \downarrow, y(M-1) 1 \downarrow ; s(M-1) M \downarrow ; s M \downarrow\)
]
```

Recall in Section D. 6 that we had an apparently extraneous state variable s. If we removed the state variable, the NODE processes would share share isochronic branches, which would create a cycle of isochronic branches among NODES. Further, this cycle would have an odd number of bubbles and be impossible to make CMOS-implementable.

PRS

Y data:

$$
\begin{array}{llll}
\neg s 01 \wedge s 0 \wedge x 0 & \rightarrow y 00 \uparrow & & \neg s 01 \wedge s 0 \wedge x 1
\end{array} \rightarrow y 01 \uparrow .
$$

$$
\begin{aligned}
& \neg s m(m+1) \wedge s m \wedge x 0 \rightarrow y m 0 \uparrow \quad \neg s m(m+1) \wedge s m \wedge x 1 \rightarrow y m 1 \uparrow \\
& \neg s m \quad \rightarrow y m 0 \downarrow \quad \rightarrow s m \quad \rightarrow y m 1 \downarrow
\end{aligned}
$$

$$
\begin{array}{llll}
\neg s(M-1) M \wedge s(M-1) \wedge x 0 & \rightarrow y(M-1) 0 \uparrow & & \neg s(M-1) M \wedge s(M-1) \wedge x 1
\end{array} \rightarrow y(M-1) 1 \uparrow .
$$

X acknowledge:

$$
\begin{aligned}
& \neg s 01 \wedge v 0 y \rightarrow x 0 a \uparrow \\
& s 01 \vee \neg v 0 y \rightarrow x 0 a \downarrow \\
& \\
& \neg s m(m+1) \wedge v m y \rightarrow x m a \uparrow \\
& \operatorname{sm}(m+1) \vee \neg v m y \rightarrow x m a \downarrow
\end{aligned}
$$

$$
\neg s(M-1) M \wedge v(M-1) y \rightarrow x(M-1) a \uparrow
$$

$$
s(M-1) M \vee \neg v(M-1) y \rightarrow x(M-1) a \downarrow
$$

S buffer states:

$$
\begin{array}{ll}
v 0 y \wedge \neg x 0 \wedge \neg x 1 & \rightarrow s 01 \uparrow \\
\neg v 0 y & \rightarrow s 01 \downarrow
\end{array}
$$

...

$$
\begin{array}{ll}
v m y \wedge \neg x 0 \wedge \neg x 1 & \rightarrow \operatorname{sm}(m+1) \uparrow \\
\neg v m y & \rightarrow \operatorname{sm}(m+1) \downarrow
\end{array}
$$

...

$$
\begin{array}{ll}
v(M-1) y \wedge \neg x 0 \wedge \neg x 1 & \rightarrow s(M-1) M \uparrow \\
\neg v(M-1) y & \rightarrow s(M-1) M \downarrow
\end{array}
$$

S input states:

$$
\begin{aligned}
& \neg s M \wedge y e \rightarrow s 0 \uparrow \\
& s M \wedge \neg y e \rightarrow s 0 \downarrow \\
& s 01 \quad \rightarrow s 1 \uparrow \\
& \neg s 01 \rightarrow s 1 \downarrow
\end{aligned}
$$

$$
\begin{array}{ll}
s m(m+1) & \rightarrow s(m+1) \uparrow \\
\neg s m(m+1) & \rightarrow s(m+1) \downarrow
\end{array}
$$

$$
s(M-1) M \quad \rightarrow s M \uparrow
$$

$$
\neg s(M-1) M \rightarrow s M \downarrow
$$

Y valid detectors:

$$
\begin{array}{ll}
y 00 \vee y 01 & \rightarrow v 0 y \uparrow \\
\neg y 00 \wedge \neg y 01 & \rightarrow v 0 y \downarrow
\end{array}
$$

$$
\begin{aligned}
& y m 0 \vee y m 1 \quad \rightarrow v m y \uparrow \\
& \neg y m 0 \wedge \neg y m 1 \rightarrow v m y \downarrow \\
& \\
& y(M-1) 0 \vee y(M-1) 1 \quad \rightarrow v(M-1) y \uparrow \\
& \neg y(M-1) 0 \wedge \neg y(M-1) 1 \rightarrow v(M-1) y \downarrow
\end{aligned}
$$

CMOS-implementable PRS

Y data:

$$
\begin{aligned}
& \neg_{-} 01 \rightarrow __{0} s 01 \uparrow \\
& _s 01 \quad \rightarrow \quad _s 01 \downarrow
\end{aligned}
$$

$$
\left.\begin{array}{llll}
\neg __s 01 \wedge \neg _s 0 \wedge \neg _x 0 & \rightarrow y 00 \uparrow & & \neg_{-_} s 01 \wedge \\
_s 0 & \rightarrow y 00 \downarrow & & s 0
\end{array}\right)
$$

$$
\neg_{_} s m(m+1) \rightarrow \text { _-sm }(m+1) \uparrow
$$

$$
_\operatorname{sm}(m+1) \quad \rightarrow \quad _-s m(m+1) \downarrow
$$

$$
\begin{array}{llll}
\neg __s m(m+1) \wedge \neg _s m \wedge \neg _x 0 & \rightarrow y m 0 \uparrow & & \neg-_s m(m+1) \wedge \neg _s m \wedge \neg _x 1
\end{array} \rightarrow y m 1 \uparrow 1
$$

$$
\neg _s(M-1) M \rightarrow \text { _- } s(M-1) M \downarrow
$$

$$
_s(M-1) M \quad \rightarrow \quad \ldots s(M-1) M \downarrow
$$

$$
\neg __s(M-1) M \wedge \neg _s(M-1) \wedge \neg _x 0 \rightarrow y(M-1) 0 \uparrow
$$

$$
\neg_{-} s(M-1) M \wedge \neg_{-} s(M-1) \wedge \neg_{-} x 1 \rightarrow y(M
$$

$$
\begin{array}{llll}
-s(M-1) & \rightarrow y(M-1) 0 \downarrow & -s(M-1) \quad & \rightarrow y(M-1
\end{array}
$$

X acknowledge:

$$
\begin{array}{ll}
\neg-_s 01 \wedge_{\wedge} \neg_{-} v 0 y & \rightarrow x 0 a \uparrow \\
__{-} s 01 \vee _v 0 y & \rightarrow x 0 a \downarrow
\end{array}
$$

$$
\begin{array}{ll}
\neg-_s m(m+1) \wedge \quad \neg_{-} v m y & \rightarrow x m a \uparrow \\
__{-} s m(m+1) \vee _v m y & \rightarrow x m a \downarrow
\end{array}
$$

$$
\begin{aligned}
& \text { ᄀ_-s } s(M-1) M \wedge \neg _v(M-1) y \rightarrow x(M-1) a \uparrow \\
& { }_{--} s(M-1) M \vee{ }_{-} v(M-1) y \quad \rightarrow x(M-1) a \downarrow
\end{aligned}
$$

S buffer states:

$$
\begin{array}{lll}
\neg-v 0 y^{\rightarrow} \rightarrow-_v 0 y & -_v 0 y \wedge _x 0 \wedge _x 1 & \rightarrow _s 01 \downarrow \\
_v 0 y \rightarrow-_v 0 y & & \rightarrow-_v 0 y
\end{array}
$$

$$
\begin{aligned}
& \text { ᄀ_vmy } \rightarrow \text { _-vmy } \quad \text { _-vmy } \wedge _x 0 \wedge _x 1 \rightarrow \quad _s m(m+1) \downarrow \\
& \text { _vmy } \rightarrow \text { _-vmy } \quad \text { _-_vmy } \quad \rightarrow \quad \text { _sm }(m+1) \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \neg_{-} v(M-1) y \rightarrow-_v(M-1) y \quad-_v(M-1) y \wedge _x 0 \wedge _x 1 \rightarrow _s(M-1) M \downarrow \\
& \begin{array}{r}
-v(M-1) y \quad \rightarrow-_v(M-1) y \quad \rightarrow-_v(M-1) y \quad \rightarrow _s(M-1) M \uparrow ~
\end{array}
\end{aligned}
$$

S input/output states:

$$
\begin{aligned}
& \text { _s } M \wedge y e \quad \rightarrow \quad s 0 \downarrow \\
& \neg _s M \wedge \neg y e \rightarrow _s 0 \uparrow \\
& \neg^{\prime} _s 01 \rightarrow \text { _s } 1 \uparrow \\
& \text { __s01 } \rightarrow \text { _s } 1 \downarrow
\end{aligned}
$$

$$
\begin{array}{ll}
\neg _-s m(m+1) & \rightarrow _s(m+1) \uparrow \\
-_s m(m+1) & \rightarrow _s(m+1) \downarrow
\end{array}
$$

$$
\begin{aligned}
& \neg_{-_s(M-1) M} \rightarrow __{-} s M \uparrow \\
& -_s(M-1) M \rightarrow{ }_{-} s M \downarrow
\end{aligned}
$$

Y valid detectors:

$$
\begin{array}{ll}
y 00 \vee y 01 & \rightarrow-v 0 y \downarrow \\
\neg y 00 \wedge \neg y 01 & \rightarrow-v 0 y \uparrow
\end{array}
$$

```
ym0\vee ym1 
```

$\neg y m 0 \wedge \neg y m 1 \rightarrow _v m y \uparrow$

$$
\begin{array}{ll}
y(M-1) 0 \vee y(M-1) 1 & \rightarrow-v(M-1) y \downarrow \\
\neg y(M-1) 0 \wedge \neg y(M-1) 1 & \rightarrow-v(M-1) y \uparrow
\end{array}
$$

D. 9 CHAIN Deserializer

This design uses a chain of nodes to sequence words into their respective place in the parallel output. That is, it takes as input a1ofN data and outputs eMx1ofN data. We decompose this process into HEAD, NODE, and TAIL processes. Although it has a bit more expensive 1-of- 4 implementation than the split ring of Section D.4 its signal fanouts remain constant as the number of words in the packet grows. The below figure shows the decomposition for packets consisting of $M 1$-of- 2 groups.

An OUT alofN process (described above) first converts the AEXT/AERV serial communication protocol to the standard a1ofN protocol. Each link in the chain outputs one of the words in the parallel output.
1-of-2 approximate scaling:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
HEAD	28	1	28
NODE	38	$M-2$	$38(M-2)$
TAIL	34	1	34
transistors/deserializer		$38 M-10$	

1-of-4 approximate scaling:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
HEAD	50	1	50
NODE	68	$M-2$	$68(M-2)$
TAIL	66	1	66
transistors/deserializer			$68 M-16$

For the transmitter encoding 4096 neurons as 1 -of- 2 or 1-of- 4 words, we would need 12 and 6 links in the chain, respectively.
1-of-2 approximate accounting:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
HEAD	28	1	28
NODE	38	10	380
TAIL	34	1	34
total transistors/deserializer			446

1-of- 4 approximate accounting:

component	transistors/component	components/deserializer	transistors/deserializer
OUT a1ofN	4	1	4
HEAD	50	1	50
NODE	68	4	272
TAIL	66	1	66
total transistors/deserializer			392

D. 10 HEAD

PRS

$$
\begin{aligned}
& \text { si } \wedge x 0 \rightarrow d 0 \uparrow \quad \text { si } \wedge x 1 \rightarrow d 1 \uparrow \\
& \neg s i \quad \rightarrow d 0 \downarrow \quad \rightarrow s i \quad \rightarrow d 1 \downarrow \\
& \neg x 0 \wedge \neg x 1 \wedge v d \rightarrow s o \uparrow \\
& x 0 \vee x 1 \vee \neg v d \rightarrow s o \downarrow \\
& \neg s o \wedge v d \rightarrow x a \uparrow \\
& \text { so } \vee \neg v d \rightarrow x a \downarrow \\
& d 0 \vee d 1 \quad \rightarrow v d \uparrow \\
& \neg d 0 \wedge \neg d 1 \rightarrow v d \downarrow
\end{aligned}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$d[0,1]$	14	
s_{o}	6	
$x a$	4	
$v d$	4	
total	28	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$d[0,1,2,3]$	28	
s_{o}	10	
$x a$	4	
$v d$	8	
total	50	

CMOS-implementable PRS

$$
\begin{aligned}
& \text { si } \wedge x 0 \rightarrow{ }_{-} d 0 \downarrow \quad \text { si } \wedge x 1 \rightarrow{ }_{_} d 1 \downarrow \\
& \neg s i \quad \rightarrow \quad d 0 \uparrow \quad \neg^{2} i \quad \rightarrow \quad d 1 \uparrow \\
& \neg_{-} d 0 \rightarrow d 0 \uparrow \quad \quad{ }_{-} d 1 \rightarrow d 1 \uparrow \\
& { }_{-} d 0 \quad \rightarrow d 0 \downarrow \quad \quad{ }_{-} d 1 \quad \rightarrow d 1 \downarrow \\
& \neg x 0 \wedge \neg x 1 \wedge \neg-v d \rightarrow s o \uparrow \\
& x 0 \vee x 1 \vee{ }_{\text {_ }} d \quad \rightarrow s o \downarrow \\
& \neg s o \rightarrow \text { _so } \uparrow \\
& s o \rightarrow s o \downarrow \\
& \text { _so } \wedge v d \quad \rightarrow \quad \text { _ } x a \downarrow \\
& \neg_{\text {_so }} \vee \neg v d \rightarrow \text { _ } x a \uparrow \\
& \neg_{-} d 0 \vee \neg_{-} d 1 \rightarrow v d \uparrow \\
& { }_{-} d 0 \wedge{ }_{-} d 1 \quad \rightarrow v d \downarrow \\
& \neg v d \rightarrow \quad . v d \uparrow \\
& v d \rightarrow _v d \downarrow \\
& \text { ᄀ_xa } \rightarrow x a \uparrow \\
& -x a \rightarrow x a \downarrow
\end{aligned}
$$

1-of-2 transistor accounting:

rule	transistor count	comments
$_[0,1]$	14	
$d[0,1]$	4	
s_{o}	6	
$-s_{o}$	2	
$_x a$	4	
$v d$	4	
$-v d$	2	
$x a$	2	
total	38	

1-of-4 transistor accounting:

rule	transistor count	comments
$-d[0,1,2,3]$	28	
$d[0,1,2,3]$	8	
s_{o}	10	
$-s_{o}$	2	
$-x a$	4	
$v d$	8	
$-v d$	2	
$x a$	2	
total	64	

D. 11 NODE

*[[$\neg \mathrm{si} \wedge X \longrightarrow Y \uparrow ;[y a] ; x a \uparrow ;[\neg X] ; Y \downarrow ;[s i \longrightarrow[\neg y a] ; x a \downarrow \square \neg y a \longrightarrow x a \downarrow]$
$\square s i \wedge X \longrightarrow D \uparrow ; x a \uparrow ;[\neg X] ;$ so $; x a \downarrow ;[\neg s i] ; D \downarrow ;$ so \downarrow
]]

PRS

$$
\begin{array}{ll}
\neg s i \wedge x 0 \rightarrow y 0 \uparrow & \neg s i \wedge x 1 \rightarrow y 1 \uparrow \\
\text { si } \vee \neg x 0 \rightarrow y 0 \downarrow & \text { si } \vee \neg x 1 \rightarrow y 1 \downarrow \\
& \\
\text { si } \wedge x 0 \rightarrow d 0 \uparrow & \text { si } \wedge x 1 \rightarrow d 1 \uparrow \\
\neg s i & \rightarrow d 0 \downarrow \\
& \rightarrow x 0 \wedge \neg x 1 \wedge v d \rightarrow s o \uparrow \\
x 0 \vee x 1 \vee \neg v d & \rightarrow s o \downarrow
\end{array}
$$

$$
\begin{aligned}
& y a \vee \neg s o \wedge v d \quad \rightarrow x a \uparrow \\
& \neg y a \wedge(s o \vee \neg v d) \rightarrow x a \downarrow \\
& d 0 \vee d 1 \quad \rightarrow v d \uparrow \\
& \neg d 0 \wedge \neg d 1 \rightarrow v d \downarrow
\end{aligned}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$y[0,1]$	8	
$d[0,1]$	14	
s_{o}	6	
$x a$	6	
$v d$	4	
total	38	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$y[0,1,2,3]$	16	
$d[0,1,2,3]$	28	
s_{o}	10	
$x a$	6	
$v d$	8	
total	68	

CMOS-implementable PRS

```
\(\neg x 0 \rightarrow \_x 0 \downarrow \quad \neg x 1 \rightarrow \_x 1 \downarrow\)
\(x 0 \rightarrow \_x 0 \uparrow \quad x 1 \quad \rightarrow \quad x 1 \uparrow\)
\(\neg\) si \(\wedge \neg \_x 0 \rightarrow y 0 \uparrow \quad \quad \neg\) si \(\wedge \neg \_x 1 \rightarrow y 1 \uparrow\)
si \(\vee \_x 0 \quad \rightarrow y 0 \downarrow \quad\) si \(\vee \_x 1 \quad \rightarrow y 1 \downarrow\)
\(\neg s i \rightarrow\) _si个
\(s i \quad \rightarrow\) _si \(\downarrow\)
\(\neg \_s i \wedge \neg \_x 0 \rightarrow d 0 \uparrow \quad \quad \neg \_s i \wedge \neg \_x 1 \rightarrow d 1 \downarrow\)
_si \(\quad \rightarrow d 0 \downarrow \quad \rightarrow\) si \(\quad \rightarrow d 1 \uparrow\)
\(\neg \_v d \rightarrow v d \uparrow\)
\(-v d \quad \rightarrow v d \downarrow\)
```

$$
\begin{aligned}
& { }_{-} x 0 \wedge _x 1 \wedge v d \quad \rightarrow \text { _so } \downarrow \\
& \neg _x 0 \vee \neg _x 1 \vee \neg v d \rightarrow _s o \uparrow \\
& \text { ᄀ_so } \rightarrow \text { so个 } \\
& \text { _so } \rightarrow \text { so } \downarrow \\
& \neg s o \rightarrow-\quad \text {-_so个 } \\
& \text { so } \rightarrow \text { _-_so } \downarrow \\
& y a \vee \ldots _s o \wedge v d \quad \rightarrow \quad x a \downarrow \\
& \neg y a \wedge(\neg-\ldots s o \vee \neg v d) \rightarrow _x a \uparrow \\
& d 0 \vee d 1 \quad \rightarrow \quad-v d \downarrow \\
& \neg d 0 \wedge \neg d 1 \rightarrow \neg v d \uparrow \\
& \neg _x a \rightarrow x a \uparrow \\
& _x a \rightarrow x a \downarrow
\end{aligned}
$$

1－of－2 transistor accounting：

rule	transistor count	comments
$_x[0,1]$	4	
$y[0,1]$	8	
$-s_{i}$	2	
$d[0,1]$	14	
$v d$	2	
$-s_{o}$	6	
s_{o}	2	
$--s_{o}$	2	
$-x a$	6	
$-v d$	4	
$x a$	2	
total	38	

1－of－4 transistor accounting：

rule	transistor count	comments
$_x[0,1,2,3]$	8	
$y[0,1,2,3]$	16	
$_s_{i}$	2	
$d[0,1,2,3]$	28	
$v d$	2	
s_{o}	10	
s_{o}	2	
$_x a$	6	
$-v d$	8	
$x a$	2	
total	84	

D. 12 TAIL

*[[$\neg s i \wedge X \longrightarrow Y \uparrow ;[y a] ; x a \uparrow ;[\neg X] ; Y \downarrow ;[s i \longrightarrow[\neg y a] ; x a \downarrow \square \neg y a \longrightarrow x a \downarrow]$ \square si $\wedge X \longrightarrow D \uparrow ; x a \uparrow ;[\neg s i \wedge \neg X] ; D \downarrow ; x a \downarrow$
]]

PRS

$$
\begin{array}{lrl}
\neg s i \wedge x 0 \wedge \neg d 0 \rightarrow y 0 \uparrow & \neg s i \wedge x 1 \wedge \neg d 1 \rightarrow y 1 \uparrow \\
\text { si } \vee \neg x 0 \vee d 0 \rightarrow y 0 \downarrow & \text { si } \vee \neg x 1 \vee d 1 \quad \rightarrow y 1 \downarrow \\
\text { si } \wedge x 0 \quad \rightarrow d 0 \uparrow & \text { si } \wedge x 1 \quad \rightarrow d 1 \uparrow & \\
\neg \text { si } \wedge \neg x 0 \rightarrow d 0 \downarrow & \neg s i \wedge \neg x 1 \rightarrow d 1 \downarrow & \\
y a \vee d 0 \vee d 1 & \rightarrow x a \uparrow &
\end{array}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$y[0,1]$	12	
$d[0,1]$	16	
$x a$	6	
total	34	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$y[0,1,2,3]$	24	
$d[0,1,2,3]$	32	
$x a$	10	
total	66	

CMOS-implementable PRS

$$
\left.\begin{array}{lll}
\neg s i \wedge \neg _x 0 \wedge \neg d 0 & \rightarrow y 0 \uparrow & \neg s i \wedge \neg _x 1 \wedge \neg d 1
\end{array} \rightarrow y 1 \uparrow \begin{array}{l}
\text { si } \vee x 1 \vee d 1
\end{array}\right) \rightarrow y 1 \downarrow
$$

1-of-2 transistor accounting:

rule	transistor count	comments
$y[0,1]$	12	
$_s_{i}$	2	
$d[0,1]$	16	
$-x a$	6	
total	36	

1-of-4 transistor accounting:

rule	transistor count	comments
$y[0,1,2,3]$	24	
$-s_{i}$	2	
$d[0,1,2,3]$	32	
$x a$	10	
total	68	

D. 13 Split Chain Deserializer

This design uses a chain of nodes pulling data from a central splitter to sequence words into their respective place in the parallel output. We decompose this process into SPLIT and NODE. The below figure shows the decomposition for packets containing M 1-of-2 words.

An OUT elofN process (described above) first converts the AEXT/AERV serial communication protocol to the standard e1ofN protocol.
1-of-2 approximate scaling:

component	transistors/component	components/deserializer	transistors/deserializer
OUT e1ofN	4	1	4
SPLIT	$17 M-2$	1	$17 M-2$
NODE (int)	28	$M-1$	$28(M-1)$
NODE (end)	20	1	20
approx. transistors/deserializer			$45 M-6$

1-of-4 approximate scaling:

component	transistors/component	components/deserializer	transistors/deserializer
OUT e1ofN	4	1	4
SPLIT	$31 M-2$	1	$31 M-2$
NODE (int)	50	$M-1$	$50(M-1)$
NODE (end)	38	1	38
approx. transistors/deserializer			$81 M-10$

For the transmitter to handle 4096 neurons encoded as 1-of-2 or 1-of-4 words, we would need 12 and 6 NODEs, respectively.
1-of-2 accounting:

component	transistors/component	components/deserializer	transistors/deserializer
OUT e1ofN	4	1	4
SPLIT	198	1	198
NODE (int)	28	11	308
NODE (end)	20	1	20
total transistors/deserializer			530

1-of-4 accounting:

component	transistors/component	components/deserializer	transistors/deserializer
OUT e1ofN	4	1	4
SPLIT	184	1	184
NODE (int)	50	5	250
NODE (end)	38	1	38
total transistors/deserializer			476

D. 14 SPLIT

SPLIT takes incoming words and routes them to their respective locations in the parallel output.
For M words per packet,

```
*[[y0e \longrightarrowxe\uparrow;
            [x0\longrightarrowy00\uparrow; [\negy0e];xe\downarrow; [\negx0];y00\downarrow
            \squarex1\longrightarrowy01\uparrow;[\negy0e];xe\downarrow;[\negx1];y01\downarrow
        ]
    [..
    \square y(M - 1)e\longrightarrowxe\uparrow;
            [x1\longrightarrowy(M-1)0\uparrow;[\negy(M - 1)e];xe\downarrow;[\negx0];y(M - 1)0\downarrow
            \square x \longrightarrow }\longrightarrowy(M-1)1\uparrow;[\negy(M-1)e];xe\downarrow;[\negx1];y(M-1)1\downarrow
        ]
    ]
]
```

For a 2-word packet,

```
*[[y0e \(\longrightarrow x e \uparrow ;\)
            \([x 0 \longrightarrow y 00 \uparrow ;[\neg y 0 e] ; x e \downarrow ;[\neg x 0] ; y 00 \downarrow\)
            \(\square x 1 \longrightarrow y 01 \uparrow ;[\neg y 0 e] ; x e \downarrow ;[\neg x 1] ; y 01 \downarrow\)
        ]
    \(\square y 1 e \longrightarrow x e \uparrow ;\)
            \([x 1 \longrightarrow y 10 \uparrow ;[\neg y 1 e] ; x e \downarrow ;[\neg x 0] ; y 10 \downarrow\)
            \(\square x 1 \longrightarrow y 11 \uparrow ;[\neg y 1 e] ; x e \downarrow ;[\neg x 1] ; y 11 \downarrow\)
    ]
]]
\(y 0 e \vee y 1 e \quad \rightarrow x e \uparrow\)
\(\neg y 0 e \wedge \neg y 1 e \rightarrow x e \downarrow\)
\(y 0 e \wedge x 0 \rightarrow y 00 \uparrow \quad y 0 e \wedge x 1 \rightarrow y 01 \uparrow\)
\(\neg x 0 \quad \rightarrow y 00 \downarrow \quad \rightarrow x 1 \quad \rightarrow y 01 \downarrow\)
\(y 1 e \wedge x 0 \rightarrow y 10 \uparrow \quad y 1 e \wedge x 1 \rightarrow y 11 \uparrow\)
\(\neg x 0 \quad \rightarrow y 10 \downarrow \quad \rightarrow x 1 \quad \rightarrow y 11 \downarrow\)
```

1-of-2 transistor accounting:

rule	transistor count	comments
$x e$	$8(M-1) / 3$	4-ary OR-tree approx.
$y[0 . . M-1][0,1]$	$14 M$	
approx. total	$17 M-2$	

1-of-4 transistor accounting:

rule	transistor count	comments
$x e$	$8(M-1) / 3$	4-ary OR-tree approx.
$y[0 . . M-1][0,1,2,3]$	$28 M$	
approx. total	$31 M-2$	

D. 15 NODE

NODE latches data from SPLIT. For beginning and intermediate NODEs,
*[[ye];xe个; [X];Y个;xe $\downarrow ; \neg X] ; s e \uparrow ;[\neg y e] ; Y \downarrow ; s e \downarrow]$
$y e \wedge \neg v y \rightarrow x e \uparrow$
$\neg y e \vee v y \rightarrow x e \downarrow$

$$
\begin{array}{ll}
x 0 \rightarrow y 0 \uparrow & x 1 \quad \rightarrow y 1 \uparrow \\
\neg y e \rightarrow y 0 \downarrow & \neg y e \rightarrow y 1 \downarrow \\
& \rightarrow x 0 \wedge \neg x 1 \wedge v y \rightarrow s e \uparrow \\
\neg v y \quad & \rightarrow s e \downarrow \\
& \\
\\
y 0 \vee y 1 \quad \rightarrow v y \uparrow & \\
\neg y 0 \wedge \neg y 1 \rightarrow v y \downarrow
\end{array}
$$

1-of-2 transistor accounting:

rule	transistor count	comments
$x e$	4	
$y[0,1]$	12	
$s e$	8	
$v y$	4	
total	28	

1-of-4 transistor accounting:

rule	transistor count	comments
$x e$	4	
$y[0,1,2,3]$	28	
$s e$	10	
$v y$	8	
total	50	

The end NODE of a chain does not need to forward an se signal,

$$
\begin{aligned}
& \text { *[[ye];xe个; [X]; } Y \uparrow ; x e \downarrow ;[\neg X \wedge \neg y e] ; Y \downarrow] \\
& y e \wedge \neg y 0 \wedge \neg y 1 \rightarrow x e \uparrow \\
& \neg y e \vee y 0 \vee y 1 \quad \rightarrow x e \downarrow \\
& \neg x 0 \wedge \neg y e \rightarrow y 0 \downarrow \quad \neg x 1 \wedge \neg y e \rightarrow y 1 \downarrow
\end{aligned}
$$

1-of-2 transistor accounting:

rule	transistor count	comments
$x e$	6	
$y[0,1]$	14	
total	20	

1-of-4 transistor accounting:

rule	transistor count	comments
$x e$	10	
$y[0,1,2,3]$	28	
total	38	

D. 16 Serializer

The serializer converts M-1-of-N parallel data into in 1-of-N serial data. We cannot create standard alofN or elofN input interfaces to the serial protocol (like we could with output interfaces in Sections D.1 and D.2 because the serial protocol requires a signal indicating the transitions between packets, which the standard a1ofN and e1ofN channels cannot provide.

D. 17 Ring serializer

The ring serializer uses a ring of NODES to sequence the words of an eMx1ofN channel. A C-element indicates the transition between the up and down phases of the sequencing.

Note the shared ye and $y[0,1]$ between the NODE processes.
1-of-2 approximate scaling:

component	transistors/component	components/serializer	transistors/serializer
NODE	34	M	$34 M$
SEQ	38	1	38
approx. transistors/serializer			$34 M+38$

1-of-4 approximate scaling:

component	transistors/component	components/serializer	transistors/serializer
NODE	54	M	$54 M$
SEQ	56	1	56
approx. transistors/serializer		$54 M+56$	

For the receiver to handle 4096 neurons (and no data) encoded as 1-of-2 or 1-of-4 words, we would need 12 and 6 NODEs, respectively.
1-of-2 accounting:

component	transistors/component	components/serializer	transistors/serializer
NODE	34	12	408
SEQ	38	1	38
total transistors/serializer		446	

1-of-4 accounting:

component	transistors/component	components/serializer	transistors/serializer
NODE	54	6	324
SEQ	56	1	56
total transistors/serializer		380	

D. 18 Ring serializer NODE

*[[si];
[$x 0 \longrightarrow y 0 \uparrow ;[y a] ; u \uparrow ; y 0 \downarrow ;[\neg y a] ; s o \uparrow ;[\neg s i] ; u \downarrow ;[\neg x 0] ; s o \downarrow$
$\square x 1 \longrightarrow y 1 \uparrow ;[y a] ; u \uparrow ; y 1 \downarrow ;[\neg y a] ; s o \uparrow ;[\neg s i] ; u \downarrow ;[\neg x 1] ; s o \downarrow$
]]

PRS

$$
\begin{array}{llll}
x 0 \wedge \neg u \wedge s i & \rightarrow y 0 \uparrow & x 1 \wedge \neg u \wedge s i & \rightarrow y 1 \uparrow \\
u \wedge \neg s o & \rightarrow y 0 \downarrow & u \wedge \neg s o & \rightarrow y 1 \downarrow \\
\text { si } \wedge y a \rightarrow u \uparrow & & & \\
\neg s i \quad \rightarrow u \downarrow & & &
\end{array}
$$

$$
\begin{array}{ll}
u \wedge \neg y a & \rightarrow s o \uparrow \\
\neg u \wedge \neg x 0 \wedge \neg x 1 & \rightarrow s o \downarrow
\end{array}
$$

1-of-2 transistor accounting:

rule	transistor count	comments
$y[0,1]$	18	
u	7	
s_{o}	9	
total	34	

1-of-4 transistor accounting:

rule	transistor count	comments
$y[0,1,2,3]$	36	
u	7	
s_{o}	11	
total	54	

CMOS-implementable PRS

$$
\begin{aligned}
& \neg_{-} u \rightarrow \quad \text { _- } u \uparrow \\
& _u \quad \rightarrow \quad \text { _- } u \downarrow \\
& \neg s o \rightarrow _s o \uparrow \\
& \text { so } \quad \rightarrow \text { _so } \downarrow \\
& \neg_{-} x 0 \wedge \neg_{--} u \wedge \neg_{-} s i \rightarrow y 0 \uparrow \quad \quad \neg_{-} x 1 \wedge \neg_{--} u \wedge \neg_{-s i} \rightarrow y 1 \uparrow \\
& \text { _- } u \wedge \text { _so } \quad \rightarrow y 0 \downarrow \quad \rightarrow-u \wedge \text { _so } \quad \rightarrow y 1 \downarrow \\
& \neg^{\prime} s i \rightarrow \text { __si } \uparrow \\
& \text { _si } \rightarrow \text { __si } \downarrow \\
& \text { _-si } \wedge y a \rightarrow{ }^{\prime} u \downarrow \\
& \neg \text { __si } \quad \rightarrow \text { _ } u \uparrow \\
& \text { ᄀ_- } u \rightarrow \text { _-_ } u \uparrow \\
& \text { _-u } \rightarrow \text { _-_ } u \downarrow \\
& \neg-\ldots u \wedge \neg y a \quad \rightarrow s o \uparrow \\
& -_u \wedge _x 0 \wedge _x 1 \rightarrow s o \downarrow \\
& \neg y 0 \rightarrow{ }_{-} y 0 \uparrow \quad \neg y 1 \rightarrow{ }_{-} y 1 \uparrow \\
& y 0 \quad \rightarrow \quad{ }_{-} y 0 \downarrow \quad y 1 \quad \rightarrow \quad{ }_{-} y 1 \downarrow
\end{aligned}
$$

D. 19 Ring serializer sequencer

```
*[ [ \(s i] ; s o \uparrow ;[x 0 \vee x 1] ; y o \uparrow ;\)
        \([\neg s i \wedge y i] ; y o \downarrow ;[\neg y i] ; s o \downarrow]\)
*[ \([x 0 \longrightarrow y 0 \uparrow ;[\neg y i] ; x a \uparrow ;[\neg x 0] ; y 0 \downarrow ;[y i] ; x a \downarrow\)
        \(\square x 1 \longrightarrow y 1 \uparrow ;[\neg y i] ; x a \uparrow ;[\neg x 1] ; y 1 \downarrow ;[y i] ; x a \downarrow\)
    ]]
```

PRS
$x 0 \vee x 1 \rightarrow y o \uparrow$
$\neg s i \wedge y i \rightarrow y o \downarrow$
$\begin{array}{ll}s i & \rightarrow s o \uparrow \\ \neg s i \wedge \neg y i \wedge \neg y o & \rightarrow s o \downarrow\end{array}$
$y i \wedge x 0 \rightarrow y 0 \uparrow \quad y i \wedge x 1 \rightarrow y 1 \uparrow$
$\neg x 0 \quad \rightarrow y 0 \downarrow \quad \neg x 1 \quad \rightarrow y 1 \downarrow$
$(y 0 \vee y 1) \wedge \neg y i \rightarrow x a \uparrow$
$y i \quad \rightarrow x a \downarrow$

1-of-2 transistor accounting:

rule	transistor count	comments
y_{o}	8	
s_{o}	8	
$y[0,1]$	14	
$x a$	8	
total	38	

1-of-4 transistor accounting:

rule	transistor count	comments
y_{o}	10	
s_{o}	8	
$y[0,1,2,3]$	28	
$x a$	10	
total	56	

CMOS-implementable PRS

$$
\begin{aligned}
& \neg _x 0 \vee \neg _x 1 \rightarrow y o \uparrow \\
& \text { _si } \wedge \text { yi } \rightarrow \text { yoね } \\
& \text { ᄀ_si } \rightarrow \text { _-si个 } \\
& \text { _si } \rightarrow \text { _-si } \downarrow \\
& \text { _-si } \rightarrow \text { _so } \downarrow \\
& \neg _-s i \wedge \neg y i \wedge \neg y o \rightarrow _s o \uparrow \\
& \neg _x 0 \rightarrow _-x 0 \uparrow \quad \quad __x 1 \rightarrow \quad _x 1 \uparrow \\
& _x 0 \rightarrow-_x 0 \downarrow \quad{ }_{-x} 1 \quad \rightarrow \quad-_1 \downarrow \\
& y i \wedge _x 0 \rightarrow{ }_{-y 0 \downarrow} \quad y i \wedge _-x 1 \rightarrow \quad{ }_{-} y 1 \downarrow \\
& \neg_{-} x 0 \quad \rightarrow \quad-y 0 \uparrow \quad \neg_{0}-\ldots 1 \quad \rightarrow \quad-y 1 \uparrow \\
& (\neg-y 0 \vee \neg-y 1) \wedge \neg y i \rightarrow x a \uparrow \\
& y i \quad \rightarrow x a \downarrow \\
& \neg-y 0 \rightarrow y 0 \uparrow \quad \neg-y 1 \rightarrow y 1 \uparrow \\
& { }_{-} y 0 \rightarrow y 0 \downarrow \quad{ }_{-y 1} \rightarrow y 1 \downarrow
\end{aligned}
$$

D． 20 Ring serializer 2

This design uses more conventional channels and more sequencing than the previous serial ring． Since there＇s only one serializer per neuron array，the cost per neuron is still trivial．

D. 21 Ring serializer 2 NODE

$$
\begin{aligned}
& \text { *[[si } \wedge x 0 \longrightarrow y 0 \uparrow, y v \uparrow ;[y a] ; u \downarrow ; y 0 \downarrow, y v \downarrow ;[\neg y a] ; s o \uparrow ;[\neg \text { si } \wedge \neg x 0] ; u \uparrow ; s o \downarrow \\
& \square s i \wedge x 1 \longrightarrow y 1 \uparrow, y v \uparrow ;[y a] ; u \downarrow ; y 1 \downarrow, y v \downarrow ;[\neg y a] ; s o \uparrow ;[\neg s i \wedge \neg x 1] ; u \uparrow ; s o \downarrow \\
& \text {]] }
\end{aligned}
$$

PRS

$$
\begin{aligned}
& \text { si } \wedge x 0 \wedge u \quad \rightarrow y 0 \uparrow \quad \text { si } \wedge x 1 \wedge u \quad \rightarrow y 1 \uparrow \\
& \neg s i \vee \neg x 0 \vee \neg u \rightarrow y 0 \downarrow \quad \neg s i \vee \neg x 1 \vee \neg u \rightarrow y 1 \downarrow \\
& \text { si } \wedge(x 0 \vee x 1) \wedge u \quad \rightarrow y v \uparrow \\
& \neg s i \vee \neg x 0 \wedge \neg x 1 \vee \neg u \rightarrow y v \downarrow \\
& \neg s i \wedge \neg x 0 \wedge \neg x 1 \rightarrow u \uparrow \\
& y a \rightarrow u \downarrow \\
& \neg u \wedge \neg y a \rightarrow s o \uparrow \\
& u \vee y a \quad \rightarrow s o \downarrow
\end{aligned}
$$

CMOS-implementable PRS

$$
\begin{aligned}
& \text { si } \wedge x 0 \wedge u \quad \rightarrow{ }_{-y} y \downarrow \quad \text { si } \wedge x 1 \wedge u \quad \rightarrow{ }_{-} y 1 \downarrow \\
& \neg s i \vee \neg x 0 \vee \neg u \rightarrow{ }_{-} y 0 \uparrow \quad \neg s i \vee \neg x 1 \vee \neg u \rightarrow{ }_{-} y 1 \uparrow \\
& \text { si } \wedge(x 0 \vee x 1) \wedge u \quad \rightarrow \quad-y v \downarrow \\
& \neg s i \vee \neg x 0 \wedge \neg x 1 \vee \neg u \rightarrow{ }_{-} y v \uparrow \\
& \neg s i \wedge \neg x 0 \wedge \neg x 1 \rightarrow u \uparrow \\
& y a \rightarrow u \downarrow \\
& \neg u \wedge \neg y a \rightarrow s o \uparrow \\
& u \vee y a \quad \rightarrow s o \downarrow \\
& \text { ᄀ_ } y 0 \rightarrow y 0 \uparrow \quad \quad \text { _- } y 1 \rightarrow y 1 \uparrow \\
& { }_{-} y 0 \rightarrow y 0 \downarrow \quad \quad-y 1 \quad \rightarrow y 1 \downarrow
\end{aligned}
$$

D. 22 Ring serializer 2 MERGE

for M words,

```
*[[ \(\neg s i \wedge \neg y i] ; s o \uparrow ;[s i \wedge y i] ; s o \downarrow]\)
*[[ \(x 00 \longrightarrow u 0 \uparrow,[y i] ; y 0 \uparrow ; v y \uparrow ;[x 0 v \wedge \neg y i] ; x 0 a \uparrow ;([\neg x 00] ; u 0 \downarrow ; y 0 \downarrow ; v y \downarrow),[\neg x 0 v] ; x 0 a \downarrow\)
    \(\square x 01 \longrightarrow u 1 \uparrow,[y i] ; y 1 \uparrow ; v y \uparrow ;[x 0 v \wedge \neg y i] ; x 0 a \uparrow ;([\neg x 01] ; u 1 \downarrow ; y 1 \downarrow ; v y \downarrow),[\neg x 0 v] ; x 0 a \downarrow\)
    ...
    \(\square x m 0 \longrightarrow u 0 \uparrow,[y i] ; y 0 \uparrow ; v y \uparrow ;[x m v \wedge \neg y i] ; x m a \uparrow ;([\neg x m 0] ; u 0 \downarrow ; y 0 \downarrow ; v y \downarrow),[\neg x m v] ; x m a \downarrow\)
    \(\square x m 1 \longrightarrow u 1 \uparrow,[y i] ; y 1 \uparrow ; v y \uparrow ;[x m v \wedge \neg y i] ; x m a \uparrow ;([\neg x m 1] ; u 1 \downarrow ; y 1 \downarrow ; v y \downarrow),[\neg x m v] ; x m a \downarrow\)
    \(\square x(M \downarrow 1) 0 \longrightarrow u 0 \uparrow,[y i] ; y 0 \uparrow ; v y \uparrow ; \quad[x(M \downarrow 1) v \wedge \neg y i] ; x(M \downarrow 1) a \uparrow ;([\neg x(M \downarrow 1) 0] ; u 0 \downarrow ; y 0 \downarrow ; v y \downarrow),[\neg x(M \downarrow 1) v]\)
    \(\square x(M \downarrow 1) 1 \longrightarrow u 1 \uparrow,[y i] ; y 1 \uparrow ; v y \uparrow ; \quad[x(M \downarrow 1) v \wedge \neg y i] ; x(M \downarrow 1) a \uparrow ;([\neg x(M \downarrow 1) 1] ; u 1 \downarrow ; y 1 \downarrow ; v y \downarrow),[\neg x(M \downarrow 1) v]\)
    ]]
    \(*[[\neg s i \wedge \neg y i] ; s o \uparrow ;[s i \wedge y i] ; s o \downarrow]\)
    *[[ \(x 00 \longrightarrow u 0 \uparrow,[y i] ; y 0 \uparrow ; v y \uparrow ;[x 0 v \wedge \neg y i] ; x 0 a \uparrow ;([\neg x 00] ; u 0 \downarrow ; y 0 \downarrow ; v y \downarrow),[\neg x 0 v] ; x 0 a \downarrow\)
        \(\square x 01 \longrightarrow u 1 \uparrow,[y i] ; y 1 \uparrow ; v y \uparrow ;[x 0 v \wedge \neg y i] ; x 0 a \uparrow ;([\neg x 01] ; u 1 \downarrow ; y 1 \downarrow ; v y \downarrow),[\neg x 0 v] ; x 0 a \downarrow\)
        \(\square x 10 \longrightarrow u 0 \uparrow,[y i] ; y 0 \uparrow ; v y \uparrow ;[x 1 v \wedge \neg y i] ; x 1 a \uparrow ;([\neg x 10] ; u 0 \downarrow ; y 0 \downarrow ; v y \downarrow),[\neg x 1 v] ; x 1 a \downarrow\)
        \(\square x 11 \longrightarrow u 1 \uparrow,[y i] ; y 1 \uparrow ; v y \uparrow ;[x 1 v \wedge \neg y i] ; x 1 a \uparrow ;([\neg x 11] ; u 1 \downarrow ; y 1 \downarrow ; v y \downarrow),[\neg x 1 v] ; x 1 a \downarrow\)
    ]]
\(\neg s i \wedge \neg y i \rightarrow s o \uparrow\)
\(s i \wedge y i \quad \rightarrow s o \downarrow\)
\(x 00 \vee x 10 \quad \rightarrow u 0 \uparrow \quad x 01 \vee x 11 \quad \rightarrow u 1 \uparrow\)
\(\neg x 00 \wedge \neg x 10 \rightarrow u 0 \downarrow \quad \neg x 01 \wedge \neg x 11 \rightarrow u 1 \downarrow\)
\(u 0 \wedge y i \rightarrow y 0 \uparrow \quad u 1 \wedge y i \rightarrow y 1 \uparrow\)
\(\neg u 0 \quad \rightarrow y 0 \downarrow \quad \neg u 1 \quad \rightarrow y 1 \downarrow\)
\(y 0 \vee y 1 \quad \rightarrow v y \uparrow\)
\(\neg y 0 \wedge \neg y 1 \rightarrow v y \uparrow\)
\(x 0 v \wedge \neg y i \wedge v y \rightarrow x 0 a \uparrow \quad x 1 v \wedge \neg y i \wedge v y \rightarrow x 1 a \uparrow\)
\(\neg x 0 v \wedge \neg v y \quad \rightarrow x 0 a \downarrow \quad \neg x 1 v \wedge \neg v y \quad \rightarrow x 1 a \downarrow\)
```

for $M=2$,

CMOS-implementable PRS

$$
\begin{array}{ll}
\neg s i \wedge \neg y i & \rightarrow s o \uparrow \\
s i \wedge y i & \rightarrow s o \downarrow
\end{array}
$$

$$
\begin{aligned}
& x 00 \vee x 10 \quad \rightarrow u 0 \uparrow \quad x 01 \vee x 11 \rightarrow u 1 \uparrow \\
& \neg x 00 \wedge \neg x 10 \rightarrow u 0 \downarrow \quad \neg x 01 \wedge \neg x 11 \rightarrow u 1 \downarrow \\
& u 0 \wedge y i \rightarrow{ }_{-y 0 \downarrow} \quad u 1 \wedge y i \rightarrow{ }_{-} y 1 \downarrow \\
& \neg u 0 \quad \rightarrow{ }_{-y 0 \uparrow} \quad \neg u 1 \quad \rightarrow \quad{ }_{-} 1 \uparrow \\
& \text { ᄀ_y } 0 \rightarrow y 0 \uparrow \quad \quad \text { ᄀ_ } y 1 \rightarrow y 1 \uparrow \\
& { }_{-} y 0 \rightarrow y 0 \downarrow \quad{ }^{-} y 1 \quad \rightarrow y 1 \downarrow \\
& y 0 \vee y 1 \quad \rightarrow \quad-v y \downarrow \\
& \neg y 0 \wedge \neg y 1 \rightarrow \quad v y \uparrow \\
& \neg _x 0 v \wedge \neg y i \wedge \neg _v y \rightarrow x 0 a \uparrow \quad \quad \neg _x 1 v \wedge \neg y i \wedge \neg _v y \rightarrow x 1 a \uparrow \\
& { }_{-} x 0 v \wedge{ }_{-} v y \quad \rightarrow x 0 a \downarrow \quad{ }_{-x} 1 v \wedge{ }_{-} v y \quad \rightarrow x 1 a \downarrow
\end{aligned}
$$

D. 23 Chain serializer

The chain serializer uses a chain of NODES to sequence the words of an eMx1ofN channel. A C-element indicates the transition between the up and down phases of the sequencing.

1-of-2 approximate scaling:

component	transistors/component	components/serializer	transistors/serializer
NODE	39	$M-1$	$39(M-1)$
TAIL	33	1	33
C	8	1	8
approx. transistors/serializer		$39 M+2$	

1-of-4 approximate scaling:

component	transistors/component	components/serializer	transistors/serializer
NODE	65	$M-1$	$65(M-1)$
TAIL	53	1	53
C	8	1	8
approx. transistors/serializer		$65 M-4$	

For the receiver to handle 4096 neurons (and no data) encoded as 1-of-2 or 1-of-4 words, we would need 11 and 5 NODEs, respectively.
1-of-2 accounting:

component	transistors/component	components/serializer	transistors/serializer
NODE	39	11	429
TAIL	33	1	33
C	8	1	8
total transistors/serializer			470

1-of-4 accounting:

component	transistors/component	components/serializer	transistors/serializer
NODE	65	5	325
TAIL	53	5	53
C	8	1	8
total transistors/serializer		386	

D. 24 Chain serializer NODE

*[[ye];
$[\neg u \longrightarrow$
$\quad[d 0 \longrightarrow y 0 \uparrow ;[\neg y e] ; u \uparrow ; y 0 \downarrow$
$\square d 1 \longrightarrow y 1 \uparrow ;[\neg y e] ; u \uparrow ; y 1 \downarrow$
]
$\square u \longrightarrow x e \uparrow ;$
$[x 0 \longrightarrow y 0 \uparrow ;[\neg y e] ; x e \downarrow ;[\neg x 0] ; y 0 \downarrow$
$\square x 1 \longrightarrow y 1 \uparrow ;[\neg y e] ; x e \downarrow ;[\neg x 1] ; y 1 \downarrow$
$\square \neg d 0 \wedge \neg d 1 \longrightarrow u \downarrow ;[\neg y e] ; x e \downarrow$
]
]]

PRS

$$
\begin{aligned}
& y e \wedge \neg u \wedge d 0 \vee x 0 \rightarrow y 0 \uparrow \quad y e \wedge \neg u \wedge d 1 \vee x 1 \rightarrow y 1 \uparrow \\
& \neg y e \wedge u \wedge \neg x 0 \quad \rightarrow y 0 \downarrow \quad \neg y e \wedge u \wedge \neg x 1 \quad \rightarrow y 1 \downarrow \\
& y 0 \vee y 1 \quad \rightarrow v y \uparrow \quad d 0 \vee d 1 \quad \rightarrow v d \uparrow \\
& \neg y 0 \wedge \neg y 1 \rightarrow v y \downarrow \quad \neg d 0 \wedge \neg d 1 \rightarrow v d \downarrow \\
& v y \wedge v d \quad \rightarrow u \uparrow \\
& \neg v y \wedge \neg v d \rightarrow u \downarrow
\end{aligned}
$$

$$
\begin{array}{ll}
y e \wedge u \wedge \neg v y & \rightarrow x e \uparrow \\
\neg y e \wedge(\neg u \vee v y) & \rightarrow x e \downarrow
\end{array}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$y[0,1]$	20	
u	9	
$x e$	10	
total	39	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$y[0,1]$	40	
u	13	
$x e$	12	
total	65	

CMOS-implementable PRS

$$
\begin{aligned}
& \neg u \rightarrow{ }_{_} u \uparrow \\
& u \rightarrow _u \downarrow \\
& y e \wedge{ }_{_} u \wedge d 0 \vee x 0 \rightarrow{ }_{-} y 0 \downarrow \quad y e \wedge{ }_{-} u \wedge d 1 \vee x 1 \rightarrow{ }_{-y} 1 \downarrow \\
& \neg y e \wedge \neg_{-} u \wedge \neg x 0 \rightarrow{ }_{-} y 0 \uparrow \quad \quad \neg y e \wedge \neg_{-} u \wedge \neg x 1 \rightarrow{ }_{-} y 1 \uparrow \\
& \neg_{-} y 0 \rightarrow{ }_{--} y 0 \uparrow \quad \quad \neg_{-} y 1 \rightarrow{ }_{-} y 1 \uparrow \\
& { }_{-} y 0 \rightarrow{ }_{\text {_- }} y 0 \downarrow \quad{ }^{-} y 1 \quad \rightarrow{ }_{\text {_- }} y 1 \downarrow \\
& { }_{--} y 0 \vee{ }_{\text {_- }} y 1 \quad \rightarrow \quad{ }_{-v} \downarrow \downarrow \quad d 0 \vee d 1 \quad \rightarrow \quad{ }_{-} d \downarrow \\
& \neg _-y 0 \wedge \neg _-y 1 \rightarrow \quad v y \uparrow \quad \neg d 0 \wedge \neg d 1 \rightarrow \quad v d \uparrow \\
& \text { ᄀ_vy } \wedge \neg _v d \rightarrow u \uparrow \\
& { }_{-v y \wedge} \wedge v d \rightarrow u \downarrow \\
& \text { ᄀ_u } \rightarrow \text { _- } u \uparrow \\
& _u \quad \rightarrow \quad-\quad u \downarrow \\
& y e \wedge{ }_{\text {_- }} u \wedge{ }_{_} v y \quad \rightarrow \quad \text { _xe } \downarrow \\
& \neg y e \wedge\left(\neg_{-} u \vee \neg_{-} v y\right) \rightarrow _x e \uparrow
\end{aligned}
$$

D. 25 Chain serializer TAIL

```
*[[ye];
        [\negu\longrightarrow
            [d0\longrightarrowy0\uparrow;u\uparrow;[\negye];y0\downarrow
            \squared1\longrightarrowy1\uparrow; u\uparrow; [\negye];y1\downarrow
            ]
        \square u\longrightarrowxe\uparrow;[\negd0^\negd1];u\downarrow;[\negye];xe\downarrow
        ]]
```


PRS

$$
\begin{array}{lll}
y e \wedge \neg u \wedge d 0 & \rightarrow y 0 \uparrow & y e \wedge \neg u \wedge d 1 \rightarrow y 1 \uparrow \\
\neg y e \wedge u \quad & \rightarrow y 0 \downarrow & \neg y e \wedge u \quad \rightarrow y 1 \downarrow \\
y 0 \vee y 1 \quad \rightarrow v y \uparrow & d 0 \vee d 1 \quad \rightarrow v d \uparrow \\
\neg y 0 \wedge \neg y 1 \rightarrow v y \downarrow & \neg d 0 \wedge \neg d 1 \rightarrow v d \downarrow \\
v y \wedge v d \quad \rightarrow u \uparrow & & \\
\neg v y \wedge \neg v d \rightarrow u \downarrow & & \\
y e \wedge u \wedge \neg v y \quad \rightarrow x e \uparrow & & \\
\neg y e \wedge(\neg u \vee v y) \rightarrow x e \downarrow & &
\end{array}
$$

1-of-2 transistor approximate accounting:

rule	transistor count	comments
$y[0,1]$	16	
u	9	
$x e$	8	
total	33	

1-of-4 transistor approximate accounting:

rule	transistor count	comments
$y[0,1]$	32	
u	13	
$x e$	8	
total	53	

CMOS-implementable PRS

$\neg u \rightarrow$ _ u个
$u \rightarrow _$_u

$$
\begin{aligned}
& y e \wedge{ }_{_} u \wedge d 0 \rightarrow{ }_{-} y 0 \downarrow \quad y e \wedge{ }_{-} u \wedge d 1 \rightarrow{ }_{-} y 1 \downarrow \\
& \neg y e \wedge \neg_{-} u \quad \rightarrow \quad y 0 \uparrow \quad \quad \neg y e \wedge \neg_{-} u \quad \rightarrow \quad y 1 \uparrow \\
& \neg _y 0 \vee \neg _y 1 \rightarrow v y \uparrow \quad d 0 \vee d 1 \quad \rightarrow \quad{ }_{-} v d \downarrow \\
& { }_{-} y 0 \wedge{ }^{\prime} y 1 \quad \rightarrow v y \downarrow \quad \neg d 0 \wedge \neg d 1 \rightarrow{ }_{-} v d \uparrow \\
& \neg _v d \rightarrow \quad-\quad v d \uparrow \\
& { }_{-} v d \rightarrow-\quad v d \downarrow \\
& \neg _v y \wedge \neg _v d \rightarrow u \uparrow \\
& { }_{-v y \wedge} \wedge v d \rightarrow u \downarrow \\
& \text { ᄀ_u } \rightarrow \text { _- } u \uparrow \\
& _u \quad \rightarrow \quad _u \downarrow \\
& y e \wedge __{-} u \wedge \wedge_{~} v y \quad \rightarrow x e \uparrow \\
& \neg y e \wedge\left(\neg-_u \vee \neg _v y\right) \rightarrow x e \downarrow
\end{aligned}
$$

D. 26 Chain serializer C

The C process in the chain serializer is a C-element and costs 8 transistors.

$$
\begin{array}{lll}
x e \wedge p o & \rightarrow s \downarrow \\
\neg x e \wedge \neg p o & \rightarrow s \uparrow
\end{array}
$$

D. 27 Serial merge

The receiver is responsible for sending spikes to neurons and data to the neuron and synapse configuration memory. This designs uses an arbiter to handle concurrent input so that we can send spikes and write to the configuration memeory on the fly.
For M inputs and 1-of-D encoding,
*[
$\langle\mid m: M: x m i \longrightarrow y o \uparrow ;[y i] ; x m o \uparrow ;[\neg x m i] ; y o \downarrow ;[\neg y i] ; x m o \downarrow\rangle$
]]
*[$\langle\square m: M:\langle\square d: D: x m d \longrightarrow y d \uparrow ; x m o \downarrow ;[\neg x m d] ; y d \downarrow ; x m o \downarrow\rangle\rangle$
]]

For $\mathrm{M}=2$ and $\mathrm{D}=2$,

```
* [ [ \(x 0 i \longrightarrow y o \uparrow ; ~[y i] ; x 0 o \uparrow ; ~[\neg x 0 i] ; y o \downarrow ;[\neg y i] ; x 0 o \downarrow\)
    \(\mid x 1 i \longrightarrow y o \uparrow ;[y i] ; x 1 o \uparrow ;[\neg x 1 i] ; y o \downarrow ;[\neg y i] ; x 1 o \downarrow\)
    ]]
* [ [x00 \(\longrightarrow y 0 \uparrow ;[\neg y i] ; x 0 o \downarrow ;[\neg x 00] ; y 0 \downarrow ;[y i] ; x 0 o \downarrow\)
    \(\square x 01 \longrightarrow y 1 \uparrow ;[\neg y i] ; x 0 o \downarrow ;[\neg x 01] ; y 1 \downarrow ;[y i] ; x 0 o \downarrow\)
    \(\square x 10 \longrightarrow y 0 \uparrow ;[\neg y i] ; x 1 o \downarrow ;[\neg x 10] ; y 0 \downarrow ;[y i] ; x 1 o \downarrow\)
    \(\square x 11 \longrightarrow y 1 \uparrow ;[\neg y i] ; x 1 o \downarrow ;[\neg x 11] ; y 1 \downarrow ;[y i] ; x 1 o \downarrow\)
    ]]
```


PRS

The parent requests and grants are handled by the standard n-way arbiter with its parent ports exposed. Otherwise,

$$
\begin{aligned}
& x 00 \vee x 10 \quad \rightarrow y 0 \uparrow \quad x 01 \vee x 11 \rightarrow y 1 \uparrow \\
& \neg x 00 \wedge \neg x 10 \rightarrow y 0 \downarrow \quad \neg x 01 \wedge \neg x 11 \rightarrow y 1 \downarrow
\end{aligned}
$$

CMOS-implementable PRS:

$$
\begin{aligned}
& x 00 \vee x 10 \rightarrow{ }_{-y 0 \uparrow} \quad x 01 \vee x 11 \quad \rightarrow{ }_{-} y 1 \uparrow \\
& \neg x 00 \wedge \neg x 10 \rightarrow{ }_{-} y 0 \downarrow \quad \neg x 01 \wedge \neg x 11 \rightarrow{ }_{-} y 1 \downarrow \\
& \text { ᄀ_y } 0 \rightarrow \text { _- } y 0 \downarrow \quad \quad{ }^{2}-y 1 \rightarrow \quad \text { _- } y 1 \downarrow \\
& { }_{-} y 0 \rightarrow{ }_{--} y 0 \uparrow \quad{ }_{-} y 1 \quad \rightarrow \quad{ }_{-} y 1 \uparrow
\end{aligned}
$$

D. 28 Memory

Each group of 4 neurons and 1 synapse needs at least 28 bits of memory. However, given the shape and size constraints of the memory, we may end up using larger memories. This memory will only be written, not read.

A memory consists of a two dimensional array of bitcells. Rows are addressed by a read/write lines, and columns are addressed by the data itself. That is, we write an entire row at a time.

The shape of the memory dictates the size of the input we deliver to it. For each write operation, we indicate the address (which write line) and data to write. The address is encoded in 1-of-2 or 1 -of- 4 words. The data is communicated as it will be written. It is cheaper to have write lines than data lines because the size of the encoded address scales with the logarithm of the number of write lines. So we usually maximize the number of write lines within the aspect ratio constraint of the neuron layout. Further, using 1-of-4 encoding requires that we use at least 2 data bits.

Here are some memory sizes and their required deserializer bits:

neurons/synapses	memory bits	write lines	write bits	data bits	total bits	word size	words
$4 / 1$	32	32	5	1	6	2	6
$16 / 4$	128	64	6	2	8	4	4
$16 / 4$	128	32	5	4	9	4	4.5
$4096 / 1024$	32768	16384	14	2	16	4	8

We can reduce the number of words if the memory supports banking, a level of address heirarchy on top of the address itself.

Appendix E

Serial Router Supplement

This appendix describes some components that were not used in the serial H-Tree router described in Section 3.4

E. 1 Half-Cycle Slack Buffer

The serial router as laid out did not contain any pipelining. As a result, its throughput was throttled by additional unpipelined communications that extended well into the datapath. For reference, here is a buffer process that provides a half-cycle of slack. Buffers could be placed in the cutouts of the router and between the router and datapath to improve the router's throughput.
HSE

$$
\begin{aligned}
& *\left[\left[x_{\phi} \longrightarrow y_{\phi} \uparrow ; x_{e} \uparrow,\left[y_{e}\right]\right.\right. \\
& \quad \square x_{0} \longrightarrow y_{0} \uparrow ; x_{e} \downarrow ;\left[\neg y_{e} \wedge \neg x_{0}\right] ; y_{0} \downarrow ; x_{e} \uparrow ;\left[y_{e}\right] \\
& \quad \square x_{1} \longrightarrow y_{1} \uparrow ; x_{e} \downarrow ;\left[\neg y_{e} \wedge \neg x_{1}\right] ; y_{1} \downarrow ; x_{e} \uparrow ;\left[y_{e}\right] \\
& \quad \square \neg x_{\phi} \longrightarrow y_{\phi} \downarrow ; x_{e} \downarrow ;\left[\neg y_{e}\right] \\
& \quad]]
\end{aligned}
$$

PRS

$$
\begin{aligned}
& x_{\phi} \wedge \neg y_{e} \rightarrow y_{\phi} \uparrow \\
& \neg x_{\phi} \wedge y_{e} \rightarrow y_{\phi} \downarrow \\
& y_{\phi} \wedge \neg y_{0} \wedge \neg y_{1} \rightarrow x_{e} \uparrow \\
& \neg y_{\phi} \vee y_{0} \vee y_{1} \rightarrow x_{e \downarrow} \downarrow \\
& x_{0} \wedge y_{e} \rightarrow y_{0} \uparrow \\
& \neg x_{0} \wedge \neg y_{e} \rightarrow y_{0} \downarrow
\end{aligned} \begin{array}{ll}
x_{1} \wedge y_{e} \rightarrow y_{1} \uparrow \\
\neg x_{1} \wedge \neg y_{e} \rightarrow y_{1} \downarrow
\end{array}
$$

CMOS-Implementable PRS

$$
\begin{aligned}
& \neg x_{\phi} \rightarrow __{\phi} \uparrow \quad \quad \neg_{-} x_{\phi} \wedge \neg y_{e} \rightarrow y_{\phi} \uparrow \\
& x_{\phi} \rightarrow{ }_{-} x_{\phi} \downarrow \quad{ }_{-} x_{\phi} \wedge y_{e} \quad \rightarrow y_{\phi} \downarrow \\
& y_{\phi} \wedge{ }_{-} y_{0} \wedge{ }_{-} y_{1} \quad \rightarrow{ }_{-} x_{e \downarrow} \quad \neg_{-} x_{e} \rightarrow{ }_{-_} x_{e} \uparrow \\
& \neg y_{\phi} \vee \neg y_{0} \vee \neg y_{1} \rightarrow{ }_{x} \uparrow \quad \quad x_{e} \quad \rightarrow \quad _x_{e} \downarrow \\
& x_{0} \wedge y_{e} \quad \rightarrow \quad{ }_{-} y_{0} \downarrow \quad \quad \neg_{-} y_{0} \rightarrow \quad{ }_{--} y_{0} \uparrow \\
& \neg x_{0} \wedge \neg y_{e} \rightarrow{ }_{-} y_{0} \uparrow \quad{ }_{-} y_{0} \quad \rightarrow \quad--y_{0} \downarrow \\
& x_{1} \wedge y_{e} \quad \rightarrow{ }_{-} y_{1} \downarrow \quad \quad{ }_{-} y_{1} \rightarrow \quad{ }_{--} y_{1} \uparrow \\
& \neg x_{1} \wedge \neg y_{e} \rightarrow{ }_{-} y_{1} \uparrow \quad{ }_{-} y_{1} \quad \rightarrow \quad{ }_{--} y_{1} \downarrow
\end{aligned}
$$

4-ary Accounting

rule	transistor count	comments
x_{ϕ}	2	
y_{ϕ}	8	
x_{e}	10	
$-x_{e}$	2	
$_y[0,1,2,3]$	16	staticized by $_-y[0,1,2,3]$
$_y[0,1,2,3]$	16	
total	54	

E. 2 Greedy but Fair N-way Arbiter using Tree/Ring Sequencing

Although the serial router used unpipelined 4-way arbiters for minimal transistor counts, a designer may want an N -way arbiter with pipelining. This appendix presents a pipelined, N -way arbiter which unifies the ring and tree approaches by parameterizing a tree via K, its radix. When $K=1$, the arbiter is a flat ring, and when $K=2$, the arbiter is a binary tree. The tree is built from NODEs. The leaves of the tree service requests from N clients.

Accounting

NODES cost $30 K+18$ transistors, where K is the radix of the tree.

Configuration	transistors
K-ary tree	$(30 K+18) \frac{N-1}{K-1}$
Flat ring	$30 N+18$
Binary tree	$78(N-1)$
4 -ary tree	$46(N-1)$

E. 3 NODE

For a binary tree,

```
*[[\overline{\mp@subsup{C}{0}{}}\vee\overline{\mp@subsup{C}{1}{}}];P\bullet(
    [\overline{\mp@subsup{C}{0}{}}\longrightarrow\mp@subsup{C}{0}{};\mp@subsup{C}{0}{\prime}|\neg\overline{\mp@subsup{C}{0}{}}\longrightarrow\mathrm{ skip];}
    [\overline{C}}\longrightarrow\mp@subsup{C}{1}{};\mp@subsup{C}{1}{}|\neg\overline{C
    ]
```

For a K-ary tree,

```
*[[〈२k:K: \(\left.\left.\overline{C_{k}}\right\rangle\right]\);
    \(P \bullet\left\langle; k: K:\left[\overline{C_{0}} \longrightarrow C_{0} ; C_{0} \mid \neg \overline{C_{0}} \longrightarrow\right.\right.\) skip \(\left.]\right\rangle\)
]]
```

We decompose NODE into PRODUCER and CONSUMER processes.

Accounting

component	transistors/component	components/NODE	transistors/NODE
PRODUCER	$18+K$	1	$18+K$
CONSUMER	29	K	$29 K$
total transistors/NODE		$30 K+18$	

E.3.1 PRODUCER

PRODUCER produces parent requests upon sensing child requests and sequences between CONSUMERs. For a binary tree,

$$
\left.*\left[\left[\overline{C_{0}} \vee \overline{C_{1}}\right] ; P \bullet\left\langle\bullet K: k: S_{k}\right\rangle\right]\right]
$$

For a K-ary tree,

$$
\left.*\left[\left[\left\langle\vee K: k: \overline{C_{k}}\right\rangle\right] ; P \bullet\left\langle\bullet K: k: S_{k}\right\rangle\right]\right]
$$

We decompose PRODUCER into CTRL and SEQ.

Accounting

component	transistors/component	components/PRODUCER	transistors/PRODUCER
CTRL	$18+K$	1	$18+K$
SEQ	0	1	0
total transistors/PRODUCER		$18+K$	

CTRL

CTRL relays the child requests to the parent and initiates the sequencing between CONSUMERS. CHP

For a binary tree,

$$
*\left[\left[\overline{C_{0}} \vee \overline{C_{1}}\right] ; P \bullet S\right]
$$

For a K-ary tree,

$$
*\left[\left[\left\langle\vee K: k: \overline{C_{k}}\right\rangle\right] ; P \bullet S\right]
$$

HSE

For a binary tree,

* [[pe]; [c0r $\vee c 1 r] ; x \downarrow ;$
$p r \uparrow ;[\neg p e] ;$
$s r \uparrow ;[s a] ; x \uparrow ; s r \downarrow ;[\neg s a] ;$
$p r \downarrow]$
PRS
$p e \wedge(c 0 r \vee c 1 r) \rightarrow x \downarrow$
$s a \quad \rightarrow x \uparrow$
$\neg x \vee s a \rightarrow p r \uparrow$
$x \wedge \neg s a \rightarrow p r \downarrow$
$\neg x \wedge \neg p e \rightarrow s r \uparrow$
$x \vee p e \quad \rightarrow s r \downarrow$

CMOS-implementable PRS

$$
\begin{aligned}
& { }_{-p e} \wedge(c 0 r \vee c 1 r) \rightarrow x \downarrow \\
& \text { ᄀ_sa } \quad \rightarrow x \uparrow \\
& \neg x \vee \neg _s a \rightarrow p r \uparrow \\
& x \wedge _s a \rightarrow p r \downarrow \\
& \neg x \wedge \neg _p e \rightarrow s r \uparrow \\
& x \vee _p e \quad \rightarrow s r \downarrow \\
& p e \quad \rightarrow \quad \text { _pe } \downarrow \quad s a \quad \rightarrow \quad \text { _sa } \downarrow \\
& \neg p e \rightarrow \text { pe } \uparrow \quad \neg s a \rightarrow \text { _s } \uparrow \uparrow
\end{aligned}
$$

Accounting

rule	transistor count	comments
x	$2+K+4$	
$p r$	4	
$s r$	4	
$p e$	2	
$s a$	2	
total	$18+K$	

SEQ

SEQ sequences through the consumers.
CHP
In general,

$$
\begin{aligned}
& S E Q(K) \equiv \\
& *\left[S P \bullet\left\langle\bullet k: K: S C_{k}\right\rangle\right]
\end{aligned}
$$

For a binary tree,

$$
*\left[S P \bullet S C_{0} \bullet S C_{1}\right]
$$

We build a K-way sequencer as K^{\prime}-way sequencer tree defined recursively as

$$
S E Q(K) \equiv S E Q\left(K^{\prime}\right)\left\|\left\langle\| k^{\prime}: K^{\prime}-1: S E Q\left(K / K^{\prime}\right)\right\rangle\right\| S E Q\left(K-\left(K^{\prime}-1\right) K / K^{\prime}\right)
$$

where the recursion ends when $K \leq K^{\prime}$. For example, a binary tree would be defined recursively as

$$
S E Q(K)=S E Q(2)\|S E Q(K / 2)\| S E Q(K-K / 2)
$$

The $S C$ channels of the parent sequencer are the $S P$ channels of the the child sequencers. The $S C$ channels of the leaf sequencers connect to the consumers.
HSE
For a binary tree,

```
*[[spr];
    \(s c_{0} r \uparrow ;\left[s c_{0} a\right] ; s c_{1} r \uparrow ;\left[s c_{1} a\right] ;\)
    \(s p a \uparrow ; ~[\neg s p r] ;\)
    \(s c_{0} r \downarrow ;\left[\neg s c_{0} a\right] ; s c_{1} r \downarrow ;\left[\neg s c_{1} a\right] ;\)
    \(s p a \downarrow\)
]
```

In general,

```
* [[spr];
        \langle;\mp@subsup{k}{}{\prime}:\mp@subsup{K}{}{\prime}:s\mp@subsup{c}{k}{\prime}r\uparrow;[s\mp@subsup{c}{k}{\prime}a]\rangle
        spa\uparrow; [\negspr];
        \langle; k': K':sc
        spa\downarrow
    ]
```

PRS

$$
\begin{array}{lll}
s p r \rightarrow s c 0 r \uparrow & s c\left(k^{\prime}-1\right) r & \rightarrow s p a \uparrow \\
\neg s p r \rightarrow s c 0 r \downarrow & \neg s c\left(k^{\prime}-1\right) r \rightarrow s p a \downarrow \\
s c k^{\prime} a \rightarrow s c\left(k^{\prime}+1\right) r \uparrow & \\
\neg s c k^{\prime} a \rightarrow s c\left(k^{\prime}+1\right) r \downarrow &
\end{array}
$$

These are just wires, so all K^{\prime}-way tree sequencers that implement a K-way sequencer are equivalent.

E.3.2 CONSUMER

CONSUMER checks and services requests from children.

CHP

$$
\begin{gathered}
*[[\bar{C} \longrightarrow S ; C \\
\mid \bar{S} \longrightarrow S]]
\end{gathered}
$$

which is a variation on the precise exceptions circuit of 28 .
HSE

```
*[[cr\longrightarrow[sr];sa\uparrow;[\negsr];ce\downarrow; [\negcr];sa\downarrow;ce\uparrow
    | sr\longrightarrowsa\uparrow; [\negsr];sa\downarrow
]]
```

We break out nondeterministic selection.

```
*[[cr\longrightarrowc\uparrow;[\negcr];c\downarrow
    | sa\longrightarrows\uparrow;[\negsa];s\downarrow
    ]]
*[[c\longrightarrow[sr];sta\uparrow;[\negsr];ce\downarrow; [\negc];sta\downarrow;ce\uparrow
    |}\longrightarrowsfa\uparrow;[\negs];sfa
    ]]
*[[sta\veesfa];sa\uparrow; [\negsta ^\negsfa];sa\downarrow]
```


PRS

$$
\begin{array}{ll}
c \wedge s r \rightarrow s t a \uparrow & s \rightarrow s f a \uparrow \\
\neg c \quad \rightarrow s t a \downarrow & \neg s \rightarrow s f a \downarrow \\
& \\
\neg s t a \vee s r \rightarrow c e \uparrow & \\
s t a \wedge \neg s r \rightarrow c e \downarrow & \\
& \\
s t a \vee s f a \rightarrow s a \uparrow & \\
\neg s t a \wedge \neg s f a \rightarrow s a \downarrow &
\end{array}
$$

CMOS-implementable PRS

$$
\begin{aligned}
& c \wedge s r \rightarrow \text { _sta } \downarrow \\
& s \rightarrow \text { _sfa } \downarrow \\
& \neg c \quad \rightarrow \quad \text { sta } \uparrow \\
& \neg s \rightarrow \quad \text { sfa } \uparrow \\
& \text { _sta } \vee s r \quad \rightarrow \text { _ce } \downarrow \\
& \neg _s t a \wedge \neg s r \rightarrow \text { _ce个 } \\
& \neg _s t a \vee \neg \text { _sfa } \rightarrow s a \uparrow \\
& \text { _sta } \wedge \text { _sfa } \rightarrow s a \downarrow
\end{aligned}
$$

Accounting

rule	transistor count	comments
$[c, s]$	12	2-way active-low arbiter
$_s t a$	7	
$_s f a$	2	
$_c e$	4	
$s a$	4	
total	29	

Bibliography

[1] Filipp Akopyan, Carlos Tadeo, Ortega Otero, and Rajit Manohar. Hybrid synchronousasynchronous tool flow for emerging VLSI design. In IEEE International Workshop on Logic Synthesis, 2016.
[2] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R. Chandrasekaran, Jean Marie Bussat, Rodrigo Alvarez-Icaza, John V. Arthur, Paul A. Merolla, and Kwabena Boahen. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proceedings of the IEEE, 102(5):699-716, 2014.
[3] Kwabena Boahen. A neuromorph's prospectus. Computing in Science and Engineering, 19(2):14-28, 2017.
[4] Kwabena A Boahen. Point-to-point connectivity between neuromorphic chips using addressevents. IEEE Transactions on Circuits \mathcal{G} Systems II: Analog and Digital Signal Processing, 47(5):416-434, 1999.
[5] Kwabena A. Boahen. A burst-mode word-serial address-event link-I: transmitter design. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7):1269-1280, 2004.
[6] Kwabena A Boahen. A burst-mode word-serial address-event link-II: receiver design. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7), 2004.
[7] Kwabena A. Boahen. A burst-mode word-serial address-event link-III: testing and results. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7):1292-1300, 2004.
[8] Martin Boerlin, Christian K. Machens, and Sophie Denève. Predictive coding of dynamical variables in balanced spiking networks. PLoS Computational Biology, 9:1-16, 2013.
[9] Alexander Borst and Frdric Theunissen. Information theory and neural coding. Nature Neuroscience, 2(11):947-957, 1999.
[10] Christian Brandli, Raphael Berner, Minhao Yang, Shih Chii Liu, and Tobi Delbruck. A 240180 $130 \mathrm{~dB} 3 \mu \mathrm{~s}$ latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 49(10):2333-2341, 2014.
[11] T. Y W Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E. Shi. Neuromorphic implementation of orientation hypercolumns. IEEE Transactions on Circuits and Systems I: Regular Papers, 52-I:1049-1060, 2005.
[12] Swadesh Choudhary, Steven Sloan, Sam Fok, Alexander Neckar, Eric Trautmann, Peiran Gao, Terry Stewart, Chris Eliasmith, and Kwabena Boahen. Silicon neurons that compute. In International Conference on Artificial Neural Networks, pages 121-128, 2012.
[13] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with low precision multiplications. ArXiv e-prints, 2014.
[14] Hideyuki Cteau and Alex D. Reyes. Relation between single neuron and population spiking statistics and effects on network activity. Physical Review Letters, 2006.
[15] Chris Eliasmith and Charles H Anderson. Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT press, 2004.
[16] William Ft Softky and Christof Koch. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience, 13(1):334-350, 1993.
[17] Julius Georgiou, Andreas G Andreou, and Philippe 0 Pouliquen. A mixed analog/digital asynchronous processor for cortical computations in 3D SQl-CMOS. In 2006 IEEE International Symposium on Circuits and Systems, pages 4 pp.-, 2006.
[18] Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 2009.
[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized neural networks: training neural networks with low precision weights and activations. CoRR, 2016.
[20] Eric Jonas and Konrad Paul Kording. Could a neuroscientist understand a microprocessor? PLoS Computational Biology, 13(1), 2017.
[21] Norman P. Jouppi, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Cliff Young, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Nishant Patil, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, David Patterson, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Gaurav Agrawal, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir

Salek, Raminder Bajwa, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Sarah Bates, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, Doe Hyun Yoon, Suresh Bhatia, and Nan Boden. In-datacenter performance analysis of a Tensor Processing Unit. ACM SIGARCH Computer Architecture News, 45(2):1-12, 2017.
[22] Robert Karmazin, Carlos Tadeo Ortega Otero, and Rajit Manohar. cellTK: automated layout for asynchronous circuits with nonstandard cells. In Proceedings - International Symposium on Asynchronous Circuits and Systems, 2013.
[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in neural information processing systems, pages 1097-1105, 2012.
[24] John Lazzaro, John Wawrzynek, M. Mahowald, Massimo Sivilotti, and Dave Gillespie. Silicon auditory processors as computer peripherals. IEEE Transactions on Neural Networks, 4(3):523528, 1993.
[25] Joseph Lin and Kwabena Boahen. A delay-insensitive address-event link. In IEEE Symposium on Asynchronous Circuits and Systems, 2009.
[26] Benjamin Lindner. Superposition of many independent spike trains is generally not a Poisson process. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2006.
[27] M Mahowald. An analog VLSI stereoscopic vision system, volume 1. Springer, Boston, 1994.
[28] R. Manohar, M. Nyström, and A. J. Martin. Precise exceptions in asynchronous processors. In Proceedings - 2001 Conference on Advanced Research in VLSI, ARVLSI 2001, 2001.
[29] Rajit Manohar. Comparing stochastic and deterministic computing. IEEE Computer Architecture Letters, 14(2):119-122, 2015.
[30] Rajit Manohar and Yoram Moses. The eventual C-element theorem for delay-insensitive asynchronous circuits. In 2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), pages 102-109, 2017.
[31] Alain Martin. The limitations to delay-insensitivity in asynchronous circuits. In Proceedings of the 6th MIT Conference on Advanced Research in VLSI. MIT Press, 1990.
[32] Alain J. Martin and Mika Nyström. Asynchronous techniques for system-on-chip design. Proceedings of the IEEE, 94(6):1089-1120, 2006.
[33] Carver Mead. Analog VLSI and neural systems. Addison-Wesley, 1989.
[34] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629-1636, 1990.
[35] Samir Menon, Sam Fok, Alex Neckar, Oussama Khatib, and Kwabena Boahen. Controlling articulated robots in task-space with spiking silicon neurons. In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pages 181-186, 2014.
[36] Paul Merolla, John Arthur, Rodrigo Alvarez, Jean Marie Bussat, and Kwabena Boahen. A multicast tree router for multichip neuromorphic systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3):820-833, 2014.
[37] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D Flickner, William P Risk, Rajit Manohar, and Dharmendra S Modha. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197):668-673, 2014.
[38] Paul A. Merolla, John V. Arthur, Bertram E. Shi, and Kwabena A. Boahen. Expandable networks for neuromorphic chips. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(2):301-311, 2007.
[39] Jongkil Park, Theodore Yu, Siddharth Joshi, Christoph Maier, and Gert Cauwenberghs. Hierarchical address event routing for reconfigurable large-scale neuromorphic systems. IEEE Transactions on Neural Networks and Learning Systems, 28(10):2408-2422, 2017.
[40] Sheldon Ross. Stochastic Processes. John Wiley \& Sons, 2nd edition, 1996.
[41] Massimo Antonio Sivilotti. Wiring considerations in analog VLSI systems, with application to field-programmable networks. PhD thesis, California Institute of Technology, Pasadena, CA, USA, 1991.
[42] Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun Seok Kim, Changwoo Shin, Keunju Park, Kyoobin Lee, Jinman Park, Jooyeon Woo, Yohan Roh, Hyunku Lee, Yibing Wang, Ilia Ovsiannikov, and Hyunsurk Ryu. A 640480 dynamic vision sensor with a 9 m pixel and 300 Meps address-event representation. In Digest of Technical Papers - IEEE International Solid-State Circuits Conference, pages 66-67, 2017.
[43] Dominik Thalmeier, Marvin Uhlmann, Hilbert J. Kappen, and Raoul Martin Memmesheimer. Learning universal computations with spikes. PLoS Computational Biology, 12:1-29, 2016.
[44] John Von Neumann. The Computer and the Brain. Yale University Press, New Haven, 3rd edition, 2012.

[^0]: ${ }^{1}$ A spike train with rate λ is thinned by dropping a fraction $(1-w)$ of the spikes to produce a spike train with rate $w \lambda$, thus weighting the spike train by w. Although this method applies to positive signals, it is readily extended to negative signals by permitting spikes to be signed. Zero is still implicitly represented by an absence of spikes (i.e., zero represents itself).

[^1]: ${ }^{2}$ It is crucial that the individual spike-train rates tend to 0 as the number of spike-trains tends to infinity in contrast to scaling the spike amplitudes (represented by delta functions). If only the spikes themselves are scaled, the superposed independent sources will not converge to a Poisson process-even in the limit 26]. As a consequence, spike times will synchronize more strongly through multiple, feed-forward layers of a neural network 14 .

[^2]: ${ }^{3} \mathrm{CV}(X)=\sqrt{\operatorname{Var}(X)} / \mathbf{E}[X]$, where $\mathbf{E}[X]$ is X 's expectation (i.e, mean), and $\operatorname{Var}(X)$ is its variance. For ISIs in a periodic spike-train, $\mathrm{CV}_{\text {per }}(X)=0$, and for ISIs in a Poisson spike-train, $\mathrm{CV}_{\text {poi }}(X)=1$ (Table 2.1 .
 ${ }^{4}$ When $\Delta T_{\text {in }}$ is exponentially distributed, $\Delta T_{\text {out }}$, will be gamma-or more specifically Erlang-distributed as the sum of IID exponentials.

[^3]: ${ }^{5}$ The characteristic function is related to the Fourier transform: $\varphi_{X}(s)=\mathcal{F}_{f_{X}}\left(\frac{-s}{2 \pi}\right)$ since $\varphi_{X}(s)=\int e^{i s x} f_{X}(x) d x$ for random variable X with probability density function $f_{X}(x)$ and $\mathcal{F}_{g}(\omega)=\int e^{-2 \pi i x \omega} g(x) d x$ for function $g(x)$.

[^4]: ${ }^{1}$ In emerging 3D processes, with wire-segments traveling along three axes, segment-count still halves at each level towards the root, but segment-length only doubles every third level (c.f. every other level in 2D). As a result, $W_{\mathrm{t}}=\frac{7}{24} W_{\mathrm{g}} \approx 0.29 W_{\mathrm{g}}$: the tree uses up to 71% less wiring.
 ${ }^{2}$ Doubling occurs if combinational gates (e.g., NANDs or Nors)—whose transistor count is $2 \times$ their fan-indominate. For sequential gates-whose state-holding elements are not replicated-the increase is sublinear. When gates are treed to build wider gates, the increase is supralinear.

[^5]: ${ }^{3}$ The leaf node's communication is dataless-it requests or acknowledges.

[^6]: ${ }^{4}$ Available at https://github.com/samfok/AER_serial_tree_router

[^7]: ${ }^{5}$ In operation, somas generate up to 500 spike/s each, and synapses consume up to 1000 spikes/s each, so we expect the transmitter and receiver to communicate 2 and 1 Mspikes/s, respectively
 ${ }^{6}$ In our PRSIM simulations, we counted 422 transitions for the transmitter and serializer and 481 transitions for the deserializer and receiver.
 ${ }^{7}$ Equivalently, the fabricated router can service arrays of up to 53.5 k somas and 18.3 k synapses, respectively

[^8]: ${ }^{8}$ Gates with longer chains operate much slower, increasing the duration that downstream gates pass short-circuit currents.

