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Silicon-Neuron Design: A Dynamical Systems
Approach

John V. Arthur, Member, IEEE, and Kwabena Boahen

Abstract—We present an approach to design spiking silicon
neurons based on dynamical systems theory. Dynamical systems
theory aids in choosing the appropriate level of abstraction,
prescribing a neuron model with the desired dynamics while
maintaining simplicity. Further, we provide a procedure to
transform the prescribed equations into subthreshold current-
mode circuits. We present a circuit design example, a positive-
feedback integrate-and-fire neuron, fabricated in 0.25 µm CMOS.
We analyze and characterize the circuit, and demonstrate that it
can be configured to exhibit desired behaviors, including spike-
frequency adaptation and two forms of bursting.

Index Terms—Neuromorphic engineering, silicon neuron, dy-
namical systems, bifurcation analysis, bursting.

I. SILICON NEURONS

Neuromorphic engineering aims to reproduce the spike-
based computation of the brain by morphing its anatomy and
physiology into custom silicon chips, which simulate neuronal
networks in real-time (i.e., emulate). The basic unit of these
chips is the silicon neuron, designed using analog circuits for
spike generation and digital ones for spike communication.
Engineers have built many silicon neuron chips, ranging in
complexity from simple current-to-spike frequency generators
to multicompartment, multichannel models, and ranging in
density from a single neuromorphic neuron to arrays of ten
thousand neurons [1, 2, 3, 4, 5, 6, 7]. Systems of silicon
neurons have realized numerous computations, such as visual
orientation maps, echolocation, and winner-take-all selection
[1, 8, 9, 10].

A fundamental choice in designing silicon neurons is se-
lecting the appropriate level of abstraction, with the field
segregated into two design styles, a top-down approach and
a bottom-up approach. The top-down approach aims to copy
neurobiology, building every possible detail into silicon neu-
rons. In this manner, designers aim to ensure that they include
all of neurobiology’s computing power. This approach comes
with a high price; engineers are unable to build large arrays
of such complex neurons. Further, even small arrays are
difficult to use, suffering from large variations among neurons,
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pushing them off the precipice into the Valley of Death.1

On the other hand, the bottom up approach aims to build
minimal neuron models, exploiting the inherent features of
a technology. Engineers are able to build dense arrays of
simple neurons, often expressing little variation, compared to
complex models; however, these simple models often fail to
reflect the properties of neurobiology. Unable to behave like
their biological counterparts, these models fail to compute like
them as well.

To avoid the precipice leading into the Valley of Death, we
aim to design silicon neurons that realize the simplest complete
model for intended tasks, keeping in mind that once a chip is
fabricated we can tune neuron properties (e.g., thresholds, time
constants, etc.) but cannot modify structure (i.e., we cannot add
missing components). Models should be complex enough to
express the same qualitative behavior and neurocomputational
properties as their biological counterparts, in contrast to simple
integrate-and-fire models; but they must accomplish this goal
without superfluous detail and complexity, in contrast to
biophysically detailed models [15, 16]. Recent work suggests
that simple phenomenological models can not only reproduce
the qualitative properties of biological neurons, but also their
precise spike times [14]. The tool we use to select the
appropriate level of abstraction between integrate-and-fire and
biophysical models is dynamical systems theory (DST).

DST prescribes how a system’s states evolve, focusing on
qualitative transitions among dynamical regimes as inputs
and other parameters vary. DST achieves this function by
finding equilibrium points, analyzing stability, and determining
bifurcations [17]. For example, from the DST perspective,
a bifurcation is responsible for a neuron’s transition from
resting to spiking, and can aid us in deducing a neuron’s
computational properties as they are linked to the type of bifur-
cation(s) a neuron undergoes. Experimental and computational
neuroscientists have used DST to study the behavior of both
individual neurons [18, 19] and neural networks [20], provid-
ing insight into how neural systems move among behavioral
regimes (for a review see [21]). Engineers have used DST to
analyze silicon models, elucidating their behavior [22, 23] and
showing similarities between silicon and neurobiology [5]. In
addition, one group has used DST to as a tool to transform
a neuron with one type of dynamics into another type with
distinct qualitative behavior [24].

1The Valley of Death is a conceptural region of neuron complexity where
neurons are too complex to be well matched and too simple to auto-
compensate for variation, resulting in poor system performance [11, 12].
Eventually, complexity (∝ transistor count) increases to the degree that
neurons can compensate for their variations, as occurs in neurobiology,
rescuing system performance [13].
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In this paper, we use DST to design a neuron with simple
but rich dynamics realized compactly in silicon. Until now,
no formal procedure existed to choose the appropriate level
of abstraction for a silicon neuron, and once the level of
abstraction is selected no systematic process existed to
design the neuron circuit. These challenges are particularly
daunting in designing neurons for large-scale models of the
brain, as they must optimize silicon area while maintaining
flexibility. Following the philosophy that the simplest capable
neuron results in the least variance, we limit our scope to
single-compartment neurons with two degrees of freedom:

ẋ = f1(x, y)
ẏ = f2(x, y) (1)

Such models have been studied from computational [25, 26]
and dynamical [21] perspectives, and are sufficient to produce
all the (practical) bifurcations between resting and spiking.
However, we do provide one example with three variables.

In Section II, we introduce the concept of dynamical
systems design, focusing on neuron bifurcations and their
influence on behavior. In Section III, we describe the design
process, focusing on how we use DST to create a positive-
feedback integrate-and-fire neuron. In addition, we describe
how we synthesize the neuron using log-domain circuits. In
Section IV, we analyze and characterize the neuron, focusing
on the neuron’s frequency-current relationship and showing
the match between the theoretical behavior and the silicon
neuron’s behavior. In Sections V through VII, we reapply the
design procedure, enabling the neuron to exhibit bursting and
spike-frequency adaptation by augmenting it with model ion-
channel populations, and we verify its behavior in silicon. In
Section VIII, we discuss the implications of our work, focusing
on neuron variation and the future of silicon neuron design.

II. DYNAMICAL SYSTEM THEORY

To design our silicon neuron, we employ DST to achieve
the desired neuron properties while maintaining simplicity—
dynamical system design (DSD). First, we determine the
appropriate bifurcation(s) for the neuron to transition from
resting to spiking. Second, we select whether the neuron
should support bistability, monostability, or both. Third, we
include additional properties that are important for a given
neuron’s application, or that relate to a property we wish to
study (e.g., spike-frequency adaptation). In general, a neuron’s
required degree of complexity would depend strongly on the
application(s) for which it is intended; however application-
driven specifications are outside the scope of this paper.

Though biological and silicon neurons realize their tran-
sitions from resting to spiking in a myriad of ways, from
a dynamical systems perspective, they all transition via two
bifurcation types: saddle node or Androv–Hopf [21]. A saddle-
node bifurcation occurs when two equilibrium points, one
stable and one unstable, collide and annihilate each other. An
Androv–Hopf bifurcation occurs when a stable equilibrium
point transforms into an unstable one. In both cases, the

elimination of the stable point causes the neuron’s potential
to increase, eliciting a spike. These two bifurcation types
result in different behaviors: Neurons expressing a saddle-node
bifurcation integrate; excitatory input promotes spiking and
inhibitory input represses spiking [27]. In contrast, neurons
expressing a Androv–Hopf bifurcation resonate; excitatory or
inhibitory input promotes or represses depending on timing
[28].

In addition to the bifurcation type, we must choose whether
the neuron expresses bistability. Each bifurcation type comes
in two varieties, depending on whether a stable (spiking) limit
cycle exists before the bifurcation occurs or only after. If the
stable limit cycle exists before the bifurcation, the neuron is
bistable since both resting and spiking are simultaneously sta-
ble. In addition, this bistability results in hysteresis: If the input
current increases enough to cause spiking, the neuron will
continue to spike even after it decreases below the bifurcation
point. On the other hand, for a monostable neuron, the same
input may cause a single spike, rather than continuous spiking.

The four combinations of bifurcation types and stability
yield different neuron membrane (black) behaviors when
driven with an increasing ramp of current (gray), followed
by a decreasing one (Table I). Neurons expressing a monos-
table saddle-node bifurcation integrate, exhibiting a continuous
current-frequency curve. They spike at a near-zero frequency
when the current surpasses a threshold. As the current drops
below this threshold, they cease spiking. Neurons expressing
a bistable saddle-node bifurcation also integrate, but exhibit
a discontinous current-frequency curve. They spike at a non-
zero frequency when the current surpasses a threshold. As
the current drops below the original threshold, they continue
spiking, until it decreases further to a new threshold. Neurons
expressing a monostable Androv–Hopf bifurcation resonate,
expressing increasing subthreshold oscillations until spikes
reach their full amplitude. As the current drops, their spikes
cease and the oscillation’s amplitudes decrease. Neurons ex-
pressing a bistable Androv–Hopf bifurcation resonate, but
express only low-amplitude subthreshold oscillations until
spikes jump to their full amplitude. As the current drops below
the original threshold, they continue spiking, until it decreases
further to a new threshold.

Table I: Resting-to-Spiking & Spiking-to-Resting
Bifurcations

Saddle node Androv–Hopf

Monostable

Bistable

Using the DST strategy, we can design a neuron that
integrates, resonates, or does one or the other, depending
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on its settings. Such reconfigurability can be realized by
adding an inhibitory or excitatory state variable that opposes
the membrane potential’s change, activating or inactivating
as the membrane potential increases [28]. Depending on the
variable’s speed and sensitivity the neuron could integrate,
resonate, or switch between types [29]. In this paper, we
focus on the saddle-node bifurcation, designing a neuron that
integrates rather than one that resonates.

III. NEURON DESIGN

In this section, we present a method to design and to
implement a silicon neuron, using DSD. We show how to
move from the dimensionless ordinary differential equation
(ODE) that describes the desired bifurcation to one in terms of
currents. Finally, we show how this ODE can be implemented
in circuits with logarithmically related voltages (V ∝ log(I)).

A. Saddle-Node Bifurcation

The saddle-node bifurcation is simpler than the Androv–
Hopf one, requiring only a single state variable (plus a reset)
to realize spiking. We choose this simpler type because we
are not exploring subthreshold oscillations or other effects of
resonance with this chip.

The canonical saddle-node bifurcation uses quadratic
positive feedback [17, 21]:

τ ẋ = r − rth +
1
2

(x − xi)
2

= r − 1
2

+
1
2

(x− 1)2

= −x + r +
x2

2
(2)

where r and x are the neuron’s dimensionless input current
and membrane potential, respectively. τ is its membrane time
constant, rth = 1/2 is its threshold input, and xi = 1 is
the inflection point, above which x accelerates (i.e., spiking
occurs). The −x term corresponds to a leak conductance,
a current proportional to membrane potential. We use the
slightly more complex cubic system:

τ ẋ = −x + r +
x3

3
(3)

with xi = 1 and rth = 2/3. Using cubic positive feed-
back has two advantages over quadratic feedback: its circuit
implementation is more flexible and its spike acceleration
is sharper, better approximating biological spike-generating
sodium currents [16, 30].

The saddle-node bifurcation occurs as r increases, moving
from resting to spiking. For small r, Equation 3 has two
equilibrium points, one stable (near r) and one unstable
(higher): Starting at x = 0, the system will settle at the stable
equilibrium (Fig. 1). As r increases, the stable and unstable
equilibrium points increase and decrease, respectively. At
r = rth, the two equilibrium points collide, annihilating each
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Fig. 1. Measured silicon neuron membrane traces (x, normalized) rise like a
resistor-capacitor circuit, with a positive feedback spike for several step-input
current levels (r=0.48, 0.57, 0.69, 0.82, 0.98, and 1.2). Below a threshold
input, the neuron reaches a steady state at which the input and positive
feedback are insufficient to overpower the leak. Above threshold, larger inputs
enable the positive feedback to overcome the leak more quickly, resulting in
a shorter time to spike. Inset The neuron’s phase plot shows ẋ versus x
(black), fit with a cubic (gray). The neuron has two fixed points (circles)
when its input is small, r < 2/3, one stable (filled) and one unstable (open).
As r increases above 2/3, the fixed points merge and destroy each other,
undergoing a saddle-node bifurcation, the transition from resting to spiking.
Phase plot traces filtered by a 5 ms halfwidth gaussian.

other—a saddle-node bifurcation. Once this bifurcation occurs,
x increases without bound, until it reaches xMAX (� 1), at
which point a spike is declared and the neuron reset.

To visualize the dynamics of the spike, we use a DST
workhorse, the phase plot (see [17, 21]). Phase plots show
the relationships among states and dynamics of the system.
For our one-dimensional neuron, we plot ẋ versus x, revealing
how the neuron’s membrane changes depending on its current
state (Fig. 1 inset).

B. Circuit Synthesis

To implement the neuron circuit, we compute the polyno-
mial expressions by using currents to represent our variables
of interest. In the subthreshold regime, a (metal-oxide semi-
conductor) transistor’s (gate–source) voltage is logarithmically
related to its (drain–source) current. Therefore, currents can be
multiplied simply by adding voltages. Furthermore, since we
store the circuit’s state on capacitors, as voltage, we need to
compute the derivative of the logarithm.

The process to convert the neuron ODE into a circuit re-
quires three steps. First, we transform the ODE into a current-
mode description by replacing each dimensionless variable
with a ratio of currents. Second, based on a current’s time
derivative, we compute the capacitor voltage’s time derivative
(CV̇ = ΣIi(t)). Third, we design a subcircuit to implement
each current term, Ii(t).

First, we transform Equation 3 by replacing each
dimensionless variable with a ratio of currents, x =

√
3Ix

IC
,

r =
√

3Ir

IC
, where IC is constant, yielding:
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Fig. 2. The neuron circuit comprises a capacitor Cx, driven by three currents:
an input (Mr), a leak (ML), and positive feedback (MF1-5). When the input
and positive feedback currents drive Vx low enough, REQ transitions from
low to high, signaling a spike.

τ
√

3
İx

IC
= −

√
3
Ix

IC
+

√
3
Ir

IC
+
√

3
(

Ix

IC

)3

⇔ τ İx = −Ix + Ir +
Ix

3

IC
2 (4)

To find a description in terms of a capacitor’s voltage, we
find the relation between İx and V̇x, where Vx is the gate
voltage (referenced below the positive voltage supply, VDD)
of the transistor whose current is Ix. Since we tune the
PMOS transistors to be in the subthreshold regime:

Ix = I0e
κVx/Ut

⇒ İx =
κ

Ut
I0e

κVx/Ut V̇x

=
κ

Ut
IxV̇x (5)

where I0 and κ are transistor parameters, and Ut is the thermal
voltage. Substituting Equation 5 into Equation 4, we find:

τ
κ

Ut
IxV̇x = −Ix + Ir +

Ix
3

IC
2

CxUt

κIL

κ

Ut
IxV̇x = −Ix + Ir +

Ix
3

IC
2

⇔ CxV̇x = −IL +
ILIr

Ix
+

Ix
2

Ipth
(6)

where τ ≡ CxUt
κIL

(see [31]), and we define Ipth = IC
2

IL
.2

To realize the circuit we require three currents to drive the
capacitor (Fig. 2): one current decreases the capacitor voltage
(towards VDD) and two increase it (towards GND). The first
current term (IL) corresponds to x’s decay towards zero; ML

accomplishes this decay.
The second term corresponds to r, realized by driving Vx

towards GND. It equals the product of the input (Ir) and

2The last term of Equation 6 is implemented as Ix
2+Ipth/Ix

, which approxi-

mates Ix
2

Ipth
for Ix � Ipth. This assumption is violated during the period when

Ipth < Ix < Iinv, the current level where REQ transitions from low to high,
signaling a spike. This period is negligible for large Ipth (Vpth ≥ 0.5 V).

leak currents (IL), divided by the membrane current (Ix).
We generate this current using the translinear principle for
subthreshold transistors [32, 33]. In short, we set Mr’s gate to
VL + Vr to generate ILIr . Connecting its source and bulk to
Vx realizes division by Ix, yielding ILIr

Ix
.

The third term corresponds to the cubic (positive) feedback,
x3/3, driving Vx towards GND. It equals the membrane
current squared divided by a constant current (Ipth). Again,
we use the translinear principle, mirroring Ix (MF2,3) to a
differential pair (MF4,5) and shorting one side’s gate to the
mirror, which realizes the square. The bias voltage on the
other side of the pair sets Ipth, which sets the current–voltage
range over which the neuron operates. Alternatively, we could
implement quadratic feedback by removing MF4,5, but we
would have less control, as our operating range would be set
by transistor sizing alone.

The base circuit requires eight transistors and one capacitor
(Fig. 2). When the input and positive feedback currents drive
Vx low enough, Mx and MF1 behave like an inverter [34],
generating a digital request, REQ, which transitions from low
to high, signaling a spike. After a neuron spikes, it is reset.

The neuron’s reset drives x to xRES by driving Vx towards
VDD. In the simplest implementation, the reset briefly sets
VL = 0; ML overcomes the positive feedback and resets Vx.
The duration of the reset pulse (tr) sets xRES. A long reset
pulse, sets Vx = VDD, corresponding to xRES = 0; a shorter
reset pulse, sets Vx < VDD, corresponding to xRES > 0.
In practice, we do not use ML, but use another circuit that
provides better control over tr (see Fig. 7).

Biasing the neuron circuit requires us to set each current
such that ratios of currents realize the dimensionless variables
in Equation 3. From Equation 6, we see that we only need to
set three currents: IL, Ipth, and Ir . First, we set IL to obtain
the desired τ . Next, we set Ipth to obtain the desired threshold,
which defines the sub-spike-threshold range (Vpth = 0.8 V for
all data in this paper). In general, as Vpth increases the neuron
uses greater power, but the signals sent off-chip are easier to
measure. Finally, we set Ir to achieve a specified r, using

Ir =
r
√

IpthIL√
3

.

The Neuron chip was fabricated through MOSIS in 1P5M
0.25 µm CMOS process, consuming 10 mm2 of area. It has
a 16 by 16 array of microcircuits. Each microcircuit contains
four neurons (77 by 14 µm each) and one interneuron (not
used here). Each neuron has 21 STDP circuits (not used here).
The Neuron Chip uses the address-event representation (AER)
to transmit spikes off chip and to receive spike input [35, 36]
in addition to an analog scanner that allows us to observe
the state of one neuron at a time. The chip consumes on the
order of 1-5 mW with all neurons and interneurons spiking at
average rates up to 40 Hz.3 All data figures in this work are
recorded from a single neuron on this chip. For a complete
description of the Neuron chip, circuit layout, and test board,
see [31].

3In simulation, when spiking at 100 Hz, a single neuron consumes 50-1000
nW depending on its biases.
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IV. DYNAMICAL SYSTEMS ANALYSIS

In this section, we analyze and characterize the neuron’s
frequency-current relation. First, we use Equation 3 to obtain
both exact and approximate solutions to the neuron’s period
as a function of input current in the monostable regime. Then,
we use these results to fit measured data from a silicon neuron.
Next, we show that we can configure the neuron in the bistable
regime in which it expresses spike-frequency hysteresis.

A. Frequency-Current Relation

As r surpasses rth, the neuron moves from the resting state
to the spiking state (reset to xres = 0). Once the neuron
enters the spiking state, its frequency increases as r increases
above rth. We view this relationship in terms of the neuron’s
phase plot (Fig. 1 inset). Increasing r drives the phase plot
up, increasing ẋ for all x values. If ẋ lies just above zero,
x increases slowly near the inflection point, resulting in a
long period, T , and a low spike frequency, f . Increasing ẋ
decreases the time x spends near its inflection, increasing the
spike frequency.

We calculate T by summing the time intervals the neuron
takes to increase from x to x + ∆x for constant values of r
and xres, equivalent to integrating 1

ẋ from Equation 3 with
respect to x from xres to ∞:

T (r, xres) = τ

∫ ∞

xres

dx

−x + r + x3

3

= τ

3∑

i=1

log(xres − pi)
−p2

i + 1
(7)

where pi is the ith root of the neuron’s characteristic polyno-
mial: p3/3 − p + r. Though analytically tractable this exact
solution is sufficiently complicated to preclude us from gaining
much insight into neuron behavior, so we choose not to
evaluate it further.

To gain intuition, we simplify Equation 7 in the regime
where r � x. We ignore x and replace r with r − rth, which
preserves the bifurcation point. Also, to simplify the integral,
we set xres = 0, yielding:

T (r, 0) ≈ τ

∫ ∞

0

dx

r − rth + x3

3

=
2πτ

37/6 (r − rth)
2/3

(8)

We see that for large r, f(r, 0) = 1/T (r, 0) increases as r2/3.
To characterize the neuron’s frequency-current relationship,

we drove the neuron by stepping r from zero to a range
of values (input currents) and measured the neuron’s time to
spike, the inverse of which corresponds to f .4 We step r up

4Alternatively, we could have measured the neuron’s interspike intervals;
however, then we would have to account for the effects of the reset–refractory
period.
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Fig. 3. The silicon neuron responds sublinearly to current above a threshold
(dots). See text for fit equation. Inset f2 is fit (gray line) versus the input to
find and normalize to the threshold r = 2/3.

by stepping Vr down towards GND (transistor Mr’s gate bias
Vr +VL; see Fig. 2), and measure f over a range of Vr values.

We fit f versus r to Equation 7 (Fig. 3). We found that f was
within 5% of the predicted value for all r values (τ = 27.1
ms). We calibrated Ir’s dependence on Vr (Ir = I0e

κVr/Ut )
using a property of the monostable saddle-node bifurcation:
The neuron spikes when r > rth = 2

3 and near the bifurcation
f2 ∝ r − 2

3 [21]. Therefore, we find the smallest five values
of Ir that result in the neuron spiking and fit the frequency
squared to find r’s value as a function of Ir (Fig. 3 inset). This
procedure yielded I0 and the value of Ir that corresponds to
r = 2

3 .5

B. Frequency Bistability

We verified that our saddle-node-bifurcation neuron is ca-
pable of expressing bistability (Fig. 4). We put the neuron in
the bistable regime by setting xres ≈ 1.7. We drove the neuron
with a below-threshold input current, r = 0.36. The neuron did
not spike; its membrane settled to a constant level. Next, we
increased r to 0.70, causing the neuron to spike repeatedly at
36 Hz. Then, we returned the input to the previous level 0.36,
but because the neuron’s membrane potential x was never
pulled below it’s unstable point (about 1.57 for r = 0.36),
it continued spiking at a reduced rate of 22 Hz.

V. SQUARE-WAVE BURSTING

In this and the following two sections, we apply the dy-
namical systems design approach to design neurons capable
of bursting and adaptation by adding model voltage-gated
ion channels. We chose types of bursting and adaptation
that are commonly found in computational models as well
as observed in biology [21]. We implement these dynamics
with channels that increment their activity only during a
spike (high-threshold variety) and decay thereafter, and limit
ourselves to adding at most one excitatory and one inhibitory
channel population to the neuron.

5We measured κ = 0.69 in a separate experiment.
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Fig. 4. The neuron expresses frequency bistability when reset to 1.7. Initially,
when the input is low, r = 0.36, the neuron is silent, but when it increases
to 0.70 then, drops back to 0.36, the neuron spikes at 22 Hz. Inset The
neuron trajectory (black) follows the fits for r = 0.36,0.70 (gray). When
it is reset above the unstable point (open circle) for r = 0.36, the neuron
spikes; otherwise it sits at the stable point (filled circle). Phase plot traces
filtered by a 5 ms halfwidth gaussian.

To augment the neuron, we follow the DSD procedure
introduced in Sections II and III: We determine the bifurca-
tion(s) and equation(s) that implement the desired dynamics
and implements them in circuits. In the case of reconfiguring
the neuron, we modify and augment Equation 3, rather than
starting from a canonical equation.

Square-wave bursting (SWB) is characterized by a silent
phase with low membrane potential followed by a high-
frequency spiking phase with high membrane potential (i.e.,
xres > 1) (Fig. 5). During the high phase, sodium positive
feedback remains active, causing repetitive spiking (Fig. 5
inset). Spiking ends when an inhibitory potassium conductance
grows strong enough to overcome the positive feedback, which
pulls the membrane low, removing the positive feedback and
terminating the burst until the potassium conductance decays.
We use DSD to endow our neuron with the appropriate
bifurcations to realize SWB.

A. Design

SWB requires two bifurcations, one from resting to spiking
and one from spiking to resting. For its resting-to-spiking
bifurcation, SWB employs a bistable saddle, setting its reset
above the saddle’s unstable equilibrium (as in Section IV-B).
For its spiking-to-resting bifurcation, SWB employs a homo-
clinic bifurcation, moving its unstable point up to intersect the
(spiking) limit cycle; an inhibitory conductance (gk), which
increments after each spike, achieves this. When the unstable
point crosses the limit cycle, spiking ceases and x drops to the
stable point. In a dynamical-systems context SWB is referred
to as fold-homoclinc bursting [37]; a bistable saddle is also
known as a fold bifurcation.

gk is situated in parallel with the neuron’s leak, augmenting
Equation 3:

0 100 200 300
0

1

2

3

4

time (ms)

x,
 g

k

1 2 3
−2

0
2
4
6

x

dx
/d

t (
1/

τ)

→→

→→

Fig. 5. In square-wave bursting, as gk decays the burst begins, x spikes
rapidly until gk overcomes the positive feedback. Inset The neuron rests at its
stable point (closed circle), which becomes destabilized when the ẋ versus
x curve rises as gk decays, starting a burst (arrows). During the burst, the ẋ
versus x curve drops as gk rises, eventually pushing the unstable point (open
circle) above xres, which terminates the burst. Phase plot and gk traces filtered
by a 5 ms halfwidth gaussian.

τ ẋ = −x(1 + gk) + r +
x3

3
(9)

As gk increases, the bifurcation point, rth = 2
3
(1 + gk)3/2,

increases, reducing r − rth and hence ẋ. We model gk after
the M-type potassium (MK) channel [38]. An MK channel
population has a slow decay and high activation threshold.
Its high threshold ensures that the MK population is only
activated during spikes and decays during interspike intervals.
Its slow decay enables MK channels to integrate across spikes,
increasing their conductance in proportion to spike frequency.

We model gk as a first-order ODE with a spike response
described by:

τkġk = −gk + gmax pk(t) (10)

where pk(t) equals one for a brief duration (tk) after the neuron
spikes, resulting in an increase in gk by ∆gk = gmaxtm/τk (for
gk � gmax).

B. Circuit

Once we know the dynamics and equations we want to
implement, we need to generate circuit implementations
for the channel population (Equation 10) and connect it to
the neuron circuit (Equation 9). We use the same approach
presented in Section III-B: We replace each variable with a
ratio of currents (gk = Ik

IL
, where Ik = I0e

κVk/Ut ) and use the
translinear principle to construct appropriate subcircuits. The
resulting circuit equations are:
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Fig. 6. The ion-channel population circuit consists of two modules, one
implements the pulse-like spike response, p(t) (Mp1,2 and Cp), and the other
implements the first-order dynamics, Vch (Mch1-3 and Cch). Vch generates the
output current, Ich, when it is applied to the gate of an output transistor Mout.
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REQ
ACK

Mk

Mca

SPK SPK

Fig. 7. To implement adapting and bursting the neuron circuit is augmented
with two ion-channel population circuits, realizing gk (Mk) and rca (Mca),
and a reset circuit (Mres).

CxV̇x = −IL − Ik +
ILIr

Ix
+

Ix
2

Ipth

CkV̇k = −ILk +
ILkIkmax

Ik
pk(t) (11)

where ILk determines gk’s decay constant: τk ≡ CkUt
κILk

. gk’s first-
order dynamics are realized in the same manner as the neuron
circuit with the addition of a series transistor to gate the input
by pk(t), which is provided by a pulse-extender circuit (Fig. 6).
SWB is realized by placing the pulse extender and low-pass
filter in a feedback loop around the positive-feedback neuron
(Fig. 7). To bias gk, we set τk with ILk, and we set gmax with
Ikmax relative to IL. For example, if gmax is 10, we set Ikmax to
10 times IL.

C. Analysis and Characterization

To understand the mechanics of SWB, we recall the bistable
neuron without an MK conductance. If xRES > 1, the sodium
overpowers the leak conductance, and therefore even if we
lower r spiking continues. The high reset realizes bistability
in the spike rate: For r near the bifurcation, the neuron can
be active or silent. Similarly, for gk near the bifurcation, the
neuron can be active or silent.

To characterize SWB, we set xRES = 2.35 and drove the
neuron with r = 0.9, observing bursting with three spikes
per burst. We calculate the values to which gk must decay

0 0.5 1 1.5 2
0

1

2

3

4

g
k

x

Fig. 8. In square-wave bursting, x and gk follow a trajectory (black) in which
x moves towards either a stable equilibrium or a spiking limit cycle. Initially
for low gk (below 0.22), x enters the spiking limit cycle (light gray shading).
As gk increases (between 0.22 and 1.22), x remains in its spiking limit cycle,
even though a stable point and an unstable point have appeared (solid and
dashed lines). Once gk exceeds 1.22, the limit cycle becomes unstable (dark
gray shading); x drops to its only stable point, until gk decays below 0.22,
repeating the cycle. Traces filtered by a 5 ms halfwidth gaussian; dots are 5
ms apart.

and grow to initiate and terminate the burst, respectively. To
initiate the burst, gk must decay enough such that r > rth =
2
3(1 + gk)3/2, which yields gk <

(
3
2r

)2/3 − 1 = 0.22. To
terminate the burst, gk must grow enough such that xRES equals
x’s unstable equilibrium. We find this equilibrium by setting
ẋ = 0 (Equation 9) and solving for gk given x = xRES, which
yields gk = 3r+x3

RES
3xRES

− 1 = 1.22. To analyze SWB, we again
use a phase plot.

The SWB neuron’s phase plot considers the relationship
between x and gk (Fig. 8). For gk below 0.22, x has no (posi-
tive) equilibria points (it has only a stable spiking limit cycle).
For gk above 0.22, x has two equilibria points, one stable
and one unstable (as well as the stable spiking limit cycle).
However for gk greater than 1.22, the unstable equilibrium
enters the spiking limit cycle, destabilizing it. When its limit
cycle becomes unstable the neuron can still spike if it is kicked
into the limit cycle’s region of phase space, but only once, then
the neuron is reset and descends to the stable equilibrium.

From this phase-space perspective, we see that for small
gk, after a silent phase, x enters the spiking limit cycle. As
gk increases, the spiking limit cycle remains stable despite
the creation of the two other equilibria; so in the absence
of perturbation, the neuron continues spiking. Only when gk

exceeds 1.22 does the limit cycle become unstable, resulting
in one last spike, ending the burst. During the silent phase, as
gk decays, x follows its calculated (not fit) stable equilibrium.

VI. SPIKE-FREQUENCY ADAPTATION

Spike-frequency adaptation (SFA) reduces a neuron’s sen-
sitivity to sustained excitatory input, lowering its spike fre-
quency over time (Fig. 9). For example, if an adapting neuron
receives a potent input current step, it will fire several rapid
spikes, but each subsequent period will be longer than the
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Fig. 9. In spike-frequency adaptation, as gk (dark gray) increases x’s (light
gray) spike frequency decreases. Inset gk decreases frequency by decreasing ẋ
(black) towards zero, slowing spiking. Fits (gray) are a guide for the eye. Phase
plot and gk traces filtered by 10 and 5 ms halfwidth gaussians, respectively.

one before, until the neuron reaches a steady-state frequency.
Like SWB, SFA is realized by a potassium conductance that
builds up from one spike to another. Unlike SWB, however, the
neuron is reset below its unstable point, eliminating bistability.

A. Design

We realize SFA by pushing the neuron progressively closer
to the saddle-node bifurcation responsible for its transition
from resting to spiking. For a fixed input current r, the
bifurcation occurs at gkth =

(
3
2r

)2/3 − 1. As gk approaches
this value, ẋ decreases, lowering the neuron’s frequency (Fig. 9
inset).

B. Circuit

SFA’s circuit is identical to the one used in SWB (Fig. 7),
described by Equation 11. The one difference is that we set
the reset circuit to deliver a longer reset pulse, resulting in
xres = 0, below the unstable point.

C. Analysis and Characterization

Once the circuit is implemented, we analyze and charac-
terize its behavior, focusing on SFA’s response to steps to a
range of r values. We drove the adapting neuron with five r
values (1.0, 2.0, 3.7, 6.7, and 11.8) and observed f and gk.
We consider f instead of x, since gk and f directly depend
on each other, whereas x influences gk only through f . For
each r value, we allow the neuron’s frequency to reach steady
state.

To visualize the dynamics, we again use a phase plot, show-
ing the f-gk trajectory (Fig. 10). In addition, we plot a nullcline
for each variable. The f-nullcline is the curve where f is in
equilibrium for a given value of gk (df(gk)

dt
= 0). Similarly,

the gk-nullcline is the curve where gk is in equilibrium for
a given value of f (dgk(f)

dt = 0). Nullclines provide insight
into the dynamics of the system; from any given point on the
phase plot, f and gk always move along their respective axes

0 1 2 3 4 5
0

20

40

60

80
f−nullcline

gk
−nullcline

f−nullcline

gk
−nullcline

→

f−nullcline

gk
−nullcline→ →

f−nullcline

gk
−nullcline

→ → → →

f−nullcline

gk
−nullcline

→
→ → → → →

 1.0

 2.0

 3.7

 6.7

11.8

g
k

f (
H

z)

Fig. 10. In spike-frequency adaptation, f starts high but decreases as gk
increases (arrows), following the f -nullcline (light gray) until it crosses the gk
nullcline, reaching a stable equilibrium. Each dot corresponds to one interspike
interval’s instantaneous f and mean gk. gk values filtered by a 5 ms halfwidth
gaussian.

towards their respective nullclines. Eventually, f and gk arrive
at the intersection of their nullclines, an equilibrium point.
This equilibrium is stable: If we perturb the system, it returns.

To find the neuron’s f-nullcline, we calculate T in the
same manner as Section IV, by integrating 1

ẋ
from Equation 9

with respect to x, from xres(= 0) to ∞:

T (r, xres, gk) = τ

∫ ∞

xres

dx

−x(1 + gk) + r + x3

3

= τ

3∑

i=1

log(xres − pi)
−p2

i + 1 + gk
(12)

where pi is the ith root of the neuron’s characteristic polyno-
mial: p3/3 − p(1 + gk) + r. f(r, xres, gk) = 1/T corresponds
to the f nullclines (Fig. 10). These nullclines assume gk is
constant; because we set gk to be slow (τk = 190 ms, fitted),
it is approximately constant over a neuron’s interspike interval.

To find the neuron’s gk-nullcline with respect to f , we
calculate gk’s steady-state conductance, gk∞(f) by equating
its decay over one period to its growth, ∆gk:

gk∞(f) =
1

e1/(fτk) − 1
∆gk

≈ f τk∆gk (13)

which is a good approximation (within 8%) for f τk > 1
(Fig. 10). This linear relationship enables us to obtain ∆gk(=
0.60) from the gk-nullcline’s slope.

VII. PARABOLIC BURSTING

Parabolic bursting (PB) is characterized by a quiescent
phase followed by a bursting phase in which the spike fre-
quency rises and falls like a parabola (Fig. 11). After the
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Fig. 11. In parabolic bursting, as gk (dark gray) decays the burst begins,
x (light) spikes faster then slower until the burst ends. Inset gk shifts the
conceptual f(rca) curve. For medium gk (middle curve), two stable points
coexist (filled circles), one at a high frequency and one at a low, with an
unstable point in between (open circle). For low gk (top curve), the low stable
point collides with the unstable point, leaving only the high stable point,
initiating spiking. For high gk (bottom curve), the high stable point collides
with the unstable point, leaving only the low stable point, terminating spiking.
gk filtered by a 5 ms halfwidth gaussian.

quiescent phase, each interspike interval becomes shorter until
a peak frequency is reached, after which each interspike
interval becomes longer until the burst terminates, resulting
in another quiescent phase. This smooth frequency increase
and decrease contrasts with SWB’s abrupt frequency changes,
which arise from bistability in the membrane potential. Re-
seting its membrane potential to zero after a spike eliminates
this source of bistability and calls for a different mechanism,
which directly produces bistability in spike frequency. The
membrane potential’s bifurcations remain monostable—also
known as circle bifurcations—hence PB is referred to as circle-
circle bursting [37].

A. Design

We realize frequency bistability by introducing positive
feedback in the form of an excitatory current, rca, which
models a calcium channel (CC) population:

τ ẋ = −x(1 + gk) + r + rca +
x3

3
(14)

Each time the neuron spikes, rca increments, but decays
slowly, increasing the drive to the neuron and making it spike
more frequently. This linear frequency-to-rca curve (see be-
low) intersects the neuron’s compressive current-to-frequency
curve in three places, producing two stable points separated
by an unstable one (Fig. 11 Inset). This situation pertains
to intermediate gk values that shift the neuron’s current-to-
frequency curve to the right a moderate amount. For lower
gk values, the lower stable point disappears (transition from
resting to spiking); for higher gk values, the higher stable point
disappears (transition from spiking to resting).
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Fig. 12. In parabolic bursting, f and gk follow a trajectory (black) in which
both move towards stable portions of their respective nullclines (dark and light
gray). Each dot corresponds to one interspike interval’s instantaneous f and
mean gk. gk values filtered by a 5 ms halfwidth gaussian.

As the CC population has a high threshold, only activating
during spikes, we model rca in the same manner as gk:

τcaṙca = −rca + rmax pca(t) (15)

where pca(t) equals one for a period (tca) after the neuron
spikes, resulting in an increase in rca by ∆rca = rmaxtca/τca

(for rca � rmax). We tune CC to have a decay slow
enough to enable it to integrate across spikes. In that case,
Equation 13 applies, yielding a linear frequency relationship
rca∞ = fτca∆rca for rca’s steady-state value. Note that
this design assumes that both rca and gk approach values
proportional to f , requiring both to decay on a time scale
slower than the membrane and spike dynamics. We measured
τk = 190 ms and τca = 53 ms, compared to a typical intraburst
spike interval of 17ms.

B. Circuit

Except for the addition of ion-channel population circuit
for rca =

√
3 Ica

IC
, PB’s circuit (Fig. 7) is identical to SFA’s:

CxV̇x = −IL − Ik +
IL (Ir + Ica)

Ix
+

Ix
2

Ipth

Cca ˙Vca = −ILca +
ILcaIrmax

Ica
pca(t) (16)

where τca ≡ CcaUt
κILca

and gk’s equation is omitted (See Equa-
tion 11). Notice that Ica and Ir are in parallel. We realize
pca(t) by putting a transistor in series with the input transistor
( ILcaIrmax

Ica
), turned on for period tca after each spike (Fig. 7). To

bias rca, we set τca with ILca, and we set Irmax in the same
manner we set Ir in Section III-B.
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C. Analysis and Characterization

To understand PB, we again employ a two-dimensional
phase plot with two nullclines, for f and gk (Fig. 12).6

Whereas the gk nullcline is identical to the one for SFA, the
f nullcline has three branches, which trace the loci of f’s
three fixed points as gk varies (Fig. 11 Inset). As gk increases,
the upper stable point drops (in frequency), the lower stable
point remains at zero, and the unstable point rises. These
three branches coexist over an intermediate range of gk values
(bistable region) whose lower and upper limits correspond to
the values of gk at which resting-to-spiking and spiking-to-
resting transitions occur, respectively. We determine the lower
limit the same way we did for SWB’s transition to spiking,
yielding gk <

(
3
2
r
)2/3 − 1 = 0.31 for r = 1.0. We determine

the upper limit by finding when the two curves in Fig. 11 Inset
are tangential, which does not yield a closed-form solution.

Although we also cannot obtain the f-nullcline analytically,
we can characterize it experimentally by varying ∆gk. Re-
ducing ∆gk increases the gk-nullcline’s slope, causing it to
intersect the f-nullcline’s upper stable branch, and the neuron
to fire at the corresponding frequency. Thus, we can trace
this branch by sweeping ∆gk until the neuron starts bursting.
We estimate the middle branch by extrapolating between this
point and the calculated lower limit. The resulting nullcline is
consistent with the measured bursting limit cycle (Fig. 12).

Once we have obtained the nullcline, we track a burst
through its phase space (Fig. 12). A burst initiates when gk

decays below its lower limit, causing f to move towards
its nullcline’s upper branch. This trajectory crosses the gk

nullcline, causing gk to move to the right. Eventually, this
upward and rightward trajectory crosses the f nullcline. The
burst terminates when gk exceeds its upper limit, causing f
to move towards its nullcline’s lower branch. The trajectory
crosses the gk nullcline once again, causing gk to move to the
left, initiating a new burst.

VIII. DISCUSSION

We presented DSD, an approach to design silicon neurons
at the appropriate level of abstraction, epitomized by simple
but complete. This approach uses dynamical systems theory to
develop equations that describe model neurons. Our work of-
fers a solution to selecting an appropriate level of abstraction,
a fundamental challenge in neuromorphic design.

DSD strikes a balance between biologically-detailed top-
down and technologically-simple bottom-up approaches, tak-
ing strengths from each one. DSD allows the designer to match
biological neurons’ dynamics, thereby reproducing much of
their computing power. Further, it allows the designer to
reproduce these dynamics while maintaining circuit simplicity
and density, keeping the system away from the Valley of
Death.

We provided a method to transform DSD-derived equations
into subthreshold log-domain (current-mode) circuits, an ef-
ficient implementation technique. We demonstrated this tech-
nique by designing compact neuron circuits that realize regular

6It is important to note that f ’s dynamics reflect rca’s, since the latter
changes much more slowly.

spiking, square-ware bursting, spike-frequency adaptation, and
parabolic bursting. The 1,024 excitatory neurons on the chip
presented in this work express a spike-frequency coefficient of
variation (CV) between 18 and 25 percent, depending on their
settings, whereas we have previously designed neurons with
similar behaviors but with greater transistors counts expressing
variations close to 100 percent [11], validating the simple but
complete axiom.

DSD will remain a viable design strategy as technology
advances due to its flexibility. Agnostic to current, voltage,
or any physical quantity, DSD simply prescribes the behavior
of the system. Such flexibility is crucial to enable the use
of whatever circuit medium is available to scale artificial
neurons towards the integration density and energy efficiency
of neurobiology.

APPENDIX A
TRANSISTOR SIZES AND CAPACITOR VALUES

Transistor Width / Length Transistor Width / Length
(µm / µm) (µm / µm)

ML, p2, ch3, k 0.7 / 4.7 Mp1 1.0 / 1.6
Mr, ca 1.4 / 2.0 Mch1 1.2 / 4.7
Mx, out 1.4 / 3.2 Mch2 1.7 / 2.5
MF1-3, F5 0.6 / 2.4 Mres 0.6 / 1.4
MF4 0.6 / 2.2
Capacitor Value (fF) Capacitor Value (fF)
Cx 900 Cp 60
Cch 840
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