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Abstract—We present a novel approach to achieving
temperature-robust behavior in neuromorphic systems that op-
erates at the population level, trading an increase in silicon-
neuron count for robustness across temperature. Our silicon
neurons’ tuning curves were highly sensitive to temperature,
which could be decoded from a 400-neuron population with a
precision of 0.07◦C. We overcame this temperature-sensitivity by
combining methods from robust optimization theory with the
Neural Engineering Framework. We developed two algorithms
and compared their temperature-robustness across a range of
2◦C by decoding one period of a sinusoid-like function from
populations with 25 to 800 neurons. We find that 560 neurons
are required to achieve the same precision across this temperature
range as 35 neurons achieved at a single temperature.

I. TEMPERATURE’S EFFECT ON BIOLOGICAL AND
NEUROMORPHIC SYSTEMS

Temperature variation presents a major challenge for both
biological and silicon systems. The computational primitives
in both classes of systems—ion channels and transistors,
respectively—are inherently temperature sensitive, so achiev-
ing robustness to temperature variation is nontrivial. Never-
theless, neurons in cold-blooded animals, such as crustaceans,
manage to produce behavior that is robust over 20◦C. They
do so by regulating the concentrations of various species of
ion channels, each with a different temperature-sensitivity.
Temperature-robustness is achieved at the cost of adding more
ion-channel species than would otherwise be necessary to
produce the same behavior at a single temperature [1].

Taking inspiration from the crustacean’s solution, we
present a novel approach to temperature-robustness in neu-
romorphic systems that trades an increase in neuron count for
a decrease in temperature-variation. The Neural Engineering
Framework (NEF) [2], a common method for mapping com-
putations onto networks of spiking neurons, does not produce
temperature-robust computations (Fig. 1), because it assumes
that the neurons’ tuning curves do not vary with temperature
(Fig. 2). In this paper, we review the NEF (Section II),
extend it using robust optimization techniques (Section III),
describe the silicon-neuron circuits whose tuning curves we
measured (Section IV), and demonstrate that our extensions
produce computations that are robust to these tuning curves’
temperature variation (Section V).

Fig. 1: Computing with spiking silicon-neurons. a: To control a
robotic arm, for example, complicated functions of the joint angles
must be computed. b: When mapped onto silicon-neurons using
the NEF, this computation is not robust to temperature because the
neurons’ tuning curves are sensitive to temperature. c: The chip’s
temperature (black horizontal line segments) can be decoded (colored
vertical line segments) with 0.07◦C precision from a population of
400 neurons.

Fig. 2: Tuning curves’ temperature-variation a: Tuning curves of 1000
neurons at 25◦C. Differences arise from transistor mismatch, which
shifts and scales each curve differently. b: Tuning curves of the 5th,
50th and 95th-percentile neuron—ranked by the input level at which
spiking begins—at 24, 25, and 26◦C. As temperature increases, the
curves shift leftward.

II. THE NEURAL ENGINEERING FRAMEWORK

The Neural Engineering Framework (NEF) [2] provides a
framework for encoding continuous signals in populations of
spiking neurons and decoding transformations of those signals
from these populations. This framework enables arbitrary
static or dynamic transformations to be computed by networks
of spiking neurons. For this work, we focus on computing
static transformations.

An input signal x ∈ Rk is encoded into a collection of
spike-rates {aj(x)}Nj=1 of a population of N neurons. Each



neuron’s spike-rate is given by its tuning curve:

aj(x) = G(αj(ej · x) + βj) (1)

where G is the neuronal transfer function, which maps input
currents to steady-state spike-rates, αj is a gain factor, ej is
a unit-length encoding vector and βj is a bias. All three are
randomly distributed across the population. The transformation
f̂(x) computed by the population is obtained by taking a linear
combination of its tuning curves

f̂(x) =

N∑
j=1

djaj(x) (2)

where dj is the decoding weight assigned to neuron j.
To solve for the optimal decoding weights that implement a

transformation f : Rk → R of the input signal x encoded
by the population of N neurons, we sample x at equally
spaced points x1, ...,xQ and define the vector f(x) ∈ RQ

with elements f(x)i = f(xi). Similarly, we define each
neuron’s tuning curve over the discretized domain as the
vector aj(x) ∈ RQ with elements (aj(x))i = aj(xi)—
the spike-rate of neuron j in response to the input xi. We
define the vector of decoding weights d ∈ RN and the matrix
A ∈ RQ×N whose columns are the tuning curves aj(x). The
optimal decoding weights d∗ are computed by minimizing
‖f̂(x)− f(x)‖2 = ‖Ad− f(x)‖2. This is the traditional least-
squares problem, with solution given by

d∗ =

N∑
i=1

uᵀ
i f(x)

si
vi (3)

where ui and vi are the ith left and right singular vectors of
A and si is the corresponding singular value.

III. TEMPERATURE-ROBUST DECODING

Performing a singular-value decomposition (SVD) on Ã ∈
RRQ×N—a stack of tuning-curve matrices {ATk

}Rk=1 mea-
sured at R different temperatures—yields insight into the
nature of the neuronal population’s temperature variation. Each
of Ã’s left singular vectors, ũi, is naturally segmented into R
vectors, ui,Tk

, each associated with a particular temperature
(Fig. 3). Evidently, some modes vary with temperature more
than others. To quantify each mode’s temperature robustness,
we define the measure

ri =

R∑
k=1

uᵀ
i,Tk+1

ui,Tk
(4)

where ui,TR+1
:= ui,T1 . Note that −1 ≤ ri ≤ 1 because the ũi

are unit-vectors. The decrease in ri with increasing i indicates
that there is a trade-off between accuracy and temperature-
robustness (Fig. 4). Decoding becomes more accurate as
higher-order modes are included, however, these higher-order
modes are the least-temperature robust.

With the trade-off between decoding accuracy and
temperature-robustness in mind, we design two algorithms
that balance these competing objectives. The first, a simple
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Fig. 3: The first nine left singular vectors u1−9 of 21 stacked
matrices with 400 tuning-curves each. These matrices were measured
at temperatures equally spaced between 24◦C and 26◦C. Each panel
shows the corresponding 21 segments of a singular vector, color-
coded by temperature.

Fig. 4: Temperature-robustness (ri) and singular values (si) for all
400 left singular vectors. The noise floor was computed by measuring
the largest singular value of the difference between two different
samples of the tuning curve matrix.

extension of least-squares, minimizes a weighted average of
decoding error and temperature variation:

minimize
d

R∑
k=1

‖ATk
d− f(x)‖2 + κ

2
‖ATk+1

d−ATk
d‖2

(5)
where ATR+1

= AT1
and κ is the relative weighting. The

solution is given by

d∗ =

N∑
i=1

1

1 + κ (1− ri)

∑R
k=1 u

ᵀ
i,Tk

f(x)

si
vi (6)

which is equivalent to replacing ui in (3) with the sum of
ui,Tk

across temperature, except that each mode’s contribution
increases with its temperature-robustness, ri. We call this
algorithm MinChange.

The second algorithm, MinMax, minimizes a weighted sum
of the worst-case decoding-error across temperature and the
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Fig. 5: Bias-generator, DAC, gain-stage, and soma circuit. The bias
generator (MP1-2,MN1-2) produces a current proportional to T 1.5

(inversely proportional to mobility), where T is absolute temperature.
The DAC subdivides this current with 10-bit resolution. The gain-
stage mirrors or scales the DAC output by one of three options (d0-3).
The soma circuit (M1-12) is a low-pass filter (M1,7,10) with positive
feedback (M2-6), which together with the input can overpower the
leak to generate a spike, pulling REQ up to Vdd. Following a spike, the
refractory circuit is activated when ACK pulses from Vdd to ground,
enforcing a brief quiescent period.

average temperature-variation as follows

minimize
d

max
Tk

(
‖ATk

d− f(x)‖2
)
+
κ

2R

R∑
k=1

‖ATk+1
d−ATk

d‖2

(7)
This problem does not admit an analytical solution, but can
be solved rapidly after converting it to the Second-Order Cone
Program format [3].

IV. CIRCUIT DESCRIPTION

To test our temperature-robust algorithms, we collected data
from Neurogrid [4], a 16-chip neuromorphic system with one-
million spiking soma circuits. The biases for these circuits are
generated by a bias-generator, a Digital-to-Analog Converter
(DAC), and a programmable gain-stage [5], all of which
contribute to the temperature-dependence of the soma circuits’
tuning curves (Fig. 5). Note that the bias-generator’s primary
devices (MN1 and MN2) operate above-threshold, because of
the large device sizes required for subthreshold operation.

The soma circuit implements the Quadratic Integrate-and-
Fire (QIF) neuron model. Its dynamics are given by

τ
dv

dt
=

1

2
v2 − v + x0 (8)

where τ is the membrane time-constant and x0 is the input
current. For this work, we use a previous calibration [6] to
program the chip directly in terms of these dimensionless
model parameters instead of raw current biases.

V. VALIDATION WITH NEUROMORPHIC-CHIP DATA

To test the temperature-robust decoding algorithms, we
measured tuning curves from 1000 of Neurogrid’s spiking
soma circuits. We swept x0 over 500 equally-spaced values
from 0.32 to 0.68, a range within which 80% of the neurons go
from quiescence to spiking. Neurons that did not spike in this
range were not included in decoding. All the neurons’ spike-
trains were measured simultaneously using the chip’s high-
throughput spike-routing interface [7]. These measurements

Fig. 6: The temperature-robust algorithms produce fairly accurate
computations across a 2◦C range. Decodes are computed using 400
neurons at 21 different temperature values.

were repeated across 21 temperatures—equally spaced from
24 to 26◦C—by regulating the chip’s temperature using a TE
Technology TC-36-25-RS232 proportional-integral-derivative
temperature controller.

To evaluate the algorithms’ performance we began by
setting half of the encoders ej to +1 and half to −1 (flipping
half of the tuning curves). We computed a static transformation
f(x0), synthesized from the ui,Tk

at Tk = 25◦C. f(x0) has
75% of its power in the first 4 modes, which are temperature-
robust and above the noise floor, 24% of its power in modes
5 through 10, which are not temperature-robust but are above
the noise floor, and the remaining 1% of its power in the
higher modes, which are neither temperature-robust nor above
the noise floor. We defined the noise floor to be the largest
singular value of the difference between two different samples
of the tuning curve matrix, a value below which modes can
vary substantially across different samples of the data. To solve
for the decoding weights, for MinChange we used the pseudo-
inverse method and for MinMax we used the CVXPY package
[8]. In all cases, we added a regularization term, λ‖d‖2 to the
objective function.

With respect to decoding accuracy, both algorithms had
roughly similar performance (Fig. 6). Upon closer inspection,
MinChange achieved a lower error than MinMax (Fig. 7).
However, MinMax achieved a lower error at the temperature
extremes. For both algorithms, increasing κ trades decoding
error for temperature robustness, as expected.

Next, we examined the cost in number of neurons of
decoding accurately across temperature (Fig. 8). The average
decoding error across temperature decreased as N−0.22 and
N−0.39 for MinChange with κ = 0, 10, and as N−0.37 and
N−0.47 for MinMax with κ = 0, 10. An approximately 16-fold
increase in neuron-count—for example from 35 to 560—is re-
quired for the robust algorithms to match the decode accuracy
of least-squares trained and tested at a single temperature.

To gain insight into how MinChange trades decode-accuracy
for temperature-robustness, we solved for decoders at different
values of κ. For each decoder, we computed the fraction of
cumulative power contained in the first i modes

p(i;dκ) =

∑i
j=1 s

2
j (v

ᵀ
jdκ)

2∑N
j=1 s

2
j (v

ᵀ
jdκ)

2
(9)

Since the lower modes are more temperature-robust, Min-



Fig. 7: Tradeoff between decoding accuracy and temperature-
robustness. a: Decoding error across temperature. b: temperature-
variation error across temperature. c-d: The trade-off between av-
erage or maximum decoding error and temperature variation error
achieved by MinMax and MinChange as κ varies between 0 and
5000.

Fig. 8: The temperature-robust algorithms’ decoding error as a func-
tion of the number of neurons used across 21 different temperatures
from 24 − 26◦C (log-log scale). The Least-Squares line shows the
performance of least-squares trained and tested at 25◦C.

Change assigns them increasingly more power as κ increases
(Fig. 9).

VI. SUMMARY

In this paper, we presented a novel solution for comput-
ing with neuromorphic chips in a temperature-robust way.
Crucially, our solution required neither modifications to the
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Fig. 9: Temperature-robustness entails shifting the decoder’s power
to lower modes at the expense of accuracy. a: The fraction of the
cumulative power contained in the first i singular vectors for decoders
obtained with MinChange at different values of κ. b: Corresponding
functions decoded along with the target function f(x).

underlying circuits nor energetically-expensive temperature-
regulators. Instead, we solved for temperature-robust decoders
using algorithms from robust optimization theory.

We presented two temperature-robust algorithms that are
convex and can be solved rapidly with standard software.
To validate our solutions, we tested them on tuning curves
measured from a neuromorphic chip at many different tem-
peratures. From these results, we demonstrated that the cost
of this temperature-robustness is an increase in the number of
silicon neurons needed to decode a transformation at a given
accuracy level.
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