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Abstract— We used a spiking neural network (SNN) to
decode neural data recorded from a 96-electrode array in
premotor/motor cortex while a rhesus monkey performed a
point-to-point reaching arm movement task. We mapped a
Kalman-filter neural prosthetic decode algorithm developed to
predict the arm’s velocity on to the SNN using the Neural
Engineering Framework and simulated it usingNengo, a freely
available software package. A 20,000-neuron network matched
the standard decoder’s prediction to within 0.03% (normalized
by maximum arm velocity). A 1,600-neuron version of this
network was within 0.27%, and run in real-time on a 3GHz
PC. These results demonstrate that a SNN can implement
a statistical signal processing algorithm widely used as the
decoder in high-performance neural prostheses (Kalman filter),
and achieve similar results with just a few thousand neurons.
Hardware SNN implementations—neuromorphic chips—may
offer power savings, essential for realizing fully-implantable
cortically controlled prostheses.

I. CORTICALLY-CONTROLLED MOTOR PROSTHESES

Neural prostheses aim to restore functions lost to neurolog-
ical disease and injury. Motor prostheses aim to help disabled
patients by translating neural signals from the brain into
control signals for prosthetic limbs or computer cursors. We
recently reported a closed-loop cortically-controlled motor
prosthesis capable of producing quick, accurate, and robust
computer cursor movements by decoding action potentials
from a 96-electrode array in rhesus macaque premotor/motor
cortex [1]-[4]. This design and previous high-performance
designs as well (e.g., [5]) employ versions of the Kalman
filter, ubiquitous in statistical signal processing.

While these recent advances are encouraging, true clini-
cal viability awaits fully-implanted systems which, in turn,
impose severe power dissipation constraints. For example,
to avoid heating the brain by more than 1◦C, which is
believed to be important for long term cell health, a 6×6mm2

This work was supported in part by the Belgian American Education
Foundation (J. Dethier), NSF and NDSEG Graduate Research Fellowships
(V. Gilja), Stanford NIH Medical Scientist Training Program (MSTP) and
Soros Fellowship (P. Nuyujukian), DARPA Revolutionizing Prosthetics pro-
gram (N66001-06-C-8005, K. V. Shenoy), and two NIH Director’s Pioneer
Awards (DP1-OD006409, K. V. Shenoy; DPI-OD000965, K. Boahen).

J. Dethier, S. A. Elassaad and K. Boahen are with the Department of
Bioengineering, Stanford University, Stanford, CA 94305,USA (email:
[jdethier, shauki, boahen]@stanford.edu).

V. Gilja is with the Department of Computer Science and Stanford
Institute for Neuro-Innovation and Translational Neuroscience, Stanford
University, Stanford, CA 94305, USA (email: gilja@stanford.edu).

P. Nuyujukian is with the Department of Bioengineering and MSTP, Stan-
ford University, Stanford, CA 94305, USA (email: paul@npl.stanford.edu).

K. V. Shenoy is with the Departments of Electrical Engineering and
Bioengineering, and Neurosciences Program, Stanford University, Stanford,
CA 94305, USA (email: shenoy@stanford.edu).

implant must dissipate less than 10mW [6]. Running the 96-
electrode to 2 degree-of-freedom Kalman-filter on a 3.06GHz
Core Duo Intel processor took 0.985µs/update, or 6,030
flops/update, which, at 66.3Mflops/watt, consumes 1.82mW
for 20 updates/sec. This lack of low-power circuits for neural
decoding is a major obstacle to the successful translation of
this new class of motor prostheses.

We focus here on a new approach to implementing
the Kalman filter that is capable of meeting these power
constraints: theneuromorphicapproach. The neuromorphic
approach combines digital’s and analog’s best features—
programmability and efficiency—offering potentially greater
robustness than either [7], [8]. At 50nW per silicon neuron
[9], a neuromorphic chip with 1,600 spiking neurons would
consume 80µW. To exploit this energy-efficient approach to
build a fully implantable and programmable decoder chip, the
first step is to explore the feasibility of implementing existing
decoder algorithms with spiking neural networks (SNN) in
software. We did this for the Kalman-filter based decoder
[1]-[4] using Nengo, a freely available simulator [10].

II. K ALMAN -FILTER DECODER

The concept behind the Kalman filter is to track the state
of a dynamical system throughout time using a model of its
dynamics as well as noisy measurements. The model gives
an estimate of the system’s state at the next time step. This
estimate is then corrected using the measurements at this time
step. The relative weights for these two pieces of information
are given by theKalman gain, K [11], [12].

For neural applications, the cursor’s kinematics define the
system’s state vector,xt = [velxt ,velyt ,1]; the constant 1 allows
for a fixed offset compensation. The neural spike rate (spike
counts in each time step) of 96 channels of action-potential
threshold crossings defines the measurements vector,yt . And
the system’s dynamics are modeled by:

xt = Axt−1 +wt , (1)

yt = Cxt +qt , (2)

whereA is the state matrix,C is the observation matrix, and
wt and qt are additive, Gaussian noise sources withwt ∼

N(0,W) andqt ∼ N(0,Q). The model parameters (A, C, W
andQ) are fit with training data.

Assuming the system is stationary, we estimate the current
system state by combining the estimate at the previous time
step with the noisy measurements using the Kalman gain
K = (I +WCQ−1C)−1 W C Q−1. This yields:

x̂t = (I −KC)Ax̂t−1 +Ky t . (3)



III. N EURAL ENGINEERING FRAMEWORK

Neural engineers have developed a formal methodology
for mapping control-theory algorithms onto a computational
fabric consisting of a highly heterogeneous population of
spiking neurons simply by programming the strengths of
their connections [10]. These artificial neurons are char-
acterized by a nonlinear multi-dimensional-vector-to-spike-
rate function—ai(x(t)) for the ith neuron—with parameters
(preferred direction, gain, and threshold) drawn randomly
from a wide distribution (standard deviation≈ mean).

The neural engineering approach to configuring SNNs
to perform arbitrary computations involves representation,
transformation, and dynamics [10], [13]-[15]:

• Representation is defined by nonlinear encoding of
x(t) as a spike rate,ai(x(t)), combined with weighted
linear decoding ofai(x(t)) to recover an estimate of
x(t), x̂(t) = ∑i ai(x(t))φx

i . The decoding weights,φx
i ,

are obtained by minimizing the mean squared error.
• Transformation is performed by using alternate decod-

ing weights in the decoding operation to map transfor-
mations ofx(t) directly into transformations ofai(x(t)).
For example,y(t) = Ax(t) is represented by the spike
ratesb j(Ax̂(t)), where unit j ’s input is computed di-
rectly from uniti’s output usingAx̂(t) = ∑i ai(x(t))Aφx

i ,
an alternative linear weighting.

• Dynamics are realized by using the synapses’ spike
response,h(t), (aka, impulse response) to capture the
system’s dynamics. For example, forh(t) = τ−1e−t/τ ,
ẋ = Ax(t) is realized by replacingA with A′ = τA +
I . This so-calledneurally plausiblematrix yields an
equivalent dynamical system:x(t) = h(t)∗A′x(t), where
convolution replaces integration.

The nonlinear encoding process—from a multi-
dimensional stimulus,x(t), to a one-dimensional soma
current,Ji , to a firing rate,ai(x(t))—is specified as:

ai(x(t)) = G(Ji(x(t))). (4)

Here G() is the neurons’ nonlinear current-to-spike-rate
function, which is given by

G(Ji(x)) =
{

τ ref
− τRC ln(1−Jth/Ji(x))

}

−1
, (5)

for the leaky integrate-and-fire model (LIF). This model’s
subthreshold behavior is described by an RC circuit with time
constantτRC. When the voltage reaches the threshold,Vth, the
neuron emits a spikeδ (t− tn). After this spike, the neuron is
reset and rests forτ ref seconds (absolute refractory period)
before it resumes integrating.Jth = Vth/R is the minimum
input current that produces spiking. Ignoring the soma’s
RC time-constant when specifying the SNN’s dynamics is
reasonable because the neurons cross threshold at a rate that
is proportional to their input current, which thus sets the
spike rate instantaneously, without any filtering [10].

The conversion from a multi-dimensional stimulus,x(t),
to a one-dimensional soma current,Ji , is performed by
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Fig. 1. a. 1D tuning curves of a population of 50 leaky integrate-and-fire
neurons. The maximum firing rate andx-intercept are chosen from uniform
distributions with range 200Hz to 400Hz and−1 to +1, respectively.b.
The neurons’ spike responses to a stimulusx = 0.5 (same color code).

assigning to the neuron a preferred direction,φ̃x
i , in the

stimulus space and taking the dot-product:

Ji(x(t)) = αi
〈

φ̃x
i ·x(t)

〉

+Jbias
i , (6)

whereαi is a gain or conversion factor, andJbias
i is a bias

current that accounts for background activity. For a 1D space,
φ̃x

i is either 1 or−1 (drawn randomly). For a 2D space,
φ̃x

i is uniformly distributed on the unit circle. The resulting
tuning curvesand spike responses are illustrated in Fig. 1
for 1D. The information lost by decoding this nonlinear
representation using simple linear weighting is not severe,
and can be alleviated by increasing the population size [10].

IV. K ALMAN FILTER WITH SPIKING NEURONS

To implement the Kalman filter with a SNN by applying
the Neural Engineering Framework (NEF), we first convert
(3) from discrete time (DT) to continuous time (CT), then
we replace the CT matrices with neurally plausible ones, and
use them to specify the SNN’s weights (Fig. 2). This yields:

x(t) = h(t)∗
(

A′x(t)+B′y(t)
)

, (7)

where

A′ = τMCT
x + I =

τ
∆t

(MDT
x − I)+ I , (8)

B′ = τMCT
y =

τ
∆t

MDT
y . (9)

MDT
x = (I −KC)A andMDT

y = K are the Kalman matrices,
∆t is the discrete time step (50ms), andτ is the synaptic
time constant.

The j th neuron’s input current (see (6)) is computed from
the system’s current state,x(t), which is computed from
estimates of the system’s previous state (x̂(t) = ∑i ai(t)φx

i )
and current input (̂y(t) = ∑k bk(t)φ

y
k ) using (7). This yields:

α j
〈

φ̃x
j ·x(t)

〉

+Jbias
j

= α j
〈

φ̃x
j ·h(t)∗

(

A′x̂(t)+B′ŷ(t)
)〉

+Jbias
j

= α j

〈

φ̃x
j ·h(t)∗

(

A′∑
i

ai(t)φx
i +B′∑

k

bk(t)φ
y
k

)〉

+ . . .

= h(t)∗

(

∑
i

ω ji ai(t)+∑
k

ω jkbk(t)

)

+Jbias
j (10)

whereω ji = α j

〈

φ̃x
j A′φx

i

〉

and ω jk = α j

〈

φ̃x
j B′φy

k

〉

are the
recurrent and feedforward weights, respectively.



ba

By(t)

A

dt x(t)

By(t) h(t)

A

x(t)

x(t)

y(t)

bk(t)

aj(t)

B

A

Fig. 2. Implementing a Kalman filter with spiking neurons.a. Original
Kalman filter (top) and neurally plausible version (bottom). The integrator
is replaced with the synapses’ spike response,h(t), and the matrices are
replaced withA′ = τA + I and B′ = τB to compensate.b. Spiking neural
network implementation with populationsbk(t) and aj (t) representing
y(t) and x(t), respectively, and with feedforward and recurrent weights
determined byB′ andA′, respectively.

V. RESULTS

An adult male rhesus macaque (monkey L) was trained
to perform variants of a point-to-point arm movement task
in a 3D experimental apparatus for juice reward [1].1 A 96-
electrode silicon array (Blackrock Microsystems) was then
implanted in premotor/motor cortex. Array recordings (-4.5
RMS threshold crossing applied to each electrode’s signal)
yielded tuned activity for the direction and speed of arm
movements. As detailed in [1], a standard Kalman filter
model was fit by correlating the observed hand kinematics
with the simultaneously measured neural signals, while the
monkey was performing the point-to-point reaching task
(Fig. 3). The resulting model was used online to control an
on-screen cursor in real time. This model and 500 of these
trials (2010-03-08) serves as the standard against which the
SNN implementation’s performance is compared.

Starting with the matrices obtained by correlating the
observed hand kinematics with the simultaneously measured
neural signals, we built a SNN using the NEF methodology
and simulated it inNengousing the parameter values listed in
Table I. We ensured that the time constantsτRC

i ,τ ref
i , andτPSC

i
were smaller than the implementation’s time step (50ms).

1Animal protocols were approved by the Stanford IACUC.

TABLE I

MODEL PARAMETERS

Symbol Range Description
max G(Jj (x)) 200-400 Hz Maximum firing rate
G(Jj (x)) = 0 −1 to 1 Normalizedx-axis intercept
Jbias

j Satisfies first two Bias current
α j Satisfies first two Gain factor

φ̃x
j

∥

∥

∥
φ̃x

j

∥

∥

∥
= 1 Preferred-direction vector

τRC
j 20 ms RC time constant

τ ref
j 1 ms Refractory period

τPSC
j 20 ms PSC time constant
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Fig. 3. Neural and kinematic measurements for one trial.a. The ninety-
six cortical recordings that were fed as input to the Kalman filter and the
spiking neural network (spike counts in 50ms bins).b. Arm x- andy-velocity
measurements that were correlated with the neural data to obtain the Kalman
filter’s matrices, which were also used to engineer the neural network.
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Fig. 4. Spiking neural network architectures.a. 3D integrator: A single pop-
ulation represents three scalar quantities—x and y-velocity and a constant.
b. 1D integrators: A separate population represents each scalar quantity—x
or y-velocity in this case.

We had the choice of two network architectures for the
a j(t) units: a single 3D integrator or two 1D integrators (Fig.
4). The latter were more stable, as reported previously [14],
and yielded better results given the available computer re-
sources. We also had the choice of representing the 96 neural
measurements with thebk(t) units (see Fig. 2b) or simply
replacing these units’ spike rates with the measurements
(spike counts in 50ms bins). The latter was more straight
forward, avoided error in estimating the measurements, and
conserved computer resources. Replacingbk(t) with y(t)’s
kth component is equivalent to choosingφy

k from a standard
basis (i.e., a unit vector with 1 at thekth position and 0
everywhere else), which is what we did.

The SNN performed better as we increased the number
of neurons (Fig. 5a,b). For 20,000 neurons, thex and y-
velocity decoded from its two 10,000-neuron populations
matched the standard decoder’s prediction to within 0.03%
(RMS error normalized by maximum velocity).2 As reported
in [10], the RMS error was roughly inversely proportional to
the square-root of the number of neurons (Fig. 5c,d). There

2The SNN’s estimates were smoothed with a filter identical toh(t), but
with τ set to 5ms instead of 20ms to avoid introducing significant delay.
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Fig. 5. Comparing thex andy-velocity estimates decoded from 96 recorded
cortical spike trains (10s of data) by the standard Kalman filter (blue) and
the SNN (red).a,b. Networks with 2,000 and 20,000 spiking neurons.c.
Dependence of RMS error (between SNN and Kalman filter) on network
size (note log scale).d. Product of RMS error and neuron count’s (NC)
square root is roughly constant (for NC> 200), implying that they are
inversely proportional.

is a tradeoff between accuracy and computational time. For
real-time operation—on a 3GHz PC with a 1ms simulation
time-step—the network size is limited to 1,600 neurons.
Encouragingly, this small network’s error was only 0.27%.

VI. CONCLUSIONS ANDFUTURE WORK

The Nengosimulations reported here demonstrate offline
output that is virtually ident ical to that produced by a
standard Kalman filter implementation. A 1,600-neuron net-
work’s output is within 0.3% of the standard implemen-
tation, andNengo can simulate this network in real-time.
Which means we can now proceed to testing our new SNN
on-line. This more challenging setting will enable us to
further advance the SNN implementation by incorporating
recently proposed variants of the Kalman filter that have
been demonstrated to further increase performance and ro-
bustness during closed-loop, real-time operation [2], [3].
As such a filter and its variants have demonstrated the
highest levels of brain-machine interface performance in
both human [5] and monkey users [2], these simulations
provide confidence that similar levels of performance can
be attained with a neuromorphic architecture. Having refined
the SNN architecture, we will proceed to our final validation
step: implementing the network onNeurogrid, a hardware
platform with sixteen programmable neuromorphic chips that
can simulate a million spiking neurons in real-time [8].

The ultimate goal of this work is to build a fully im-
plantable and programmable decoder chip using the neuro-
morphic approach. Variability among the silicon neurons and

the large number of synaptic connections required present
challenges. A distribution of spike-rates with a CV of 15%
(sigma/mean) is typical, due to pronounced transistor mis-
match in the subthreshold region where these nanopower
circuits operate [9]. We have shown, however, that the NEF
can effectively exploit even higher degrees of variability.
Thus, the only real remaining challenge is achieving a
high degree of connectivity. This one can be addressed by
adopting a columnar organization, whereby nearby neurons
share the same inputs, just like they do in the cortex—and
in Neurogrid. This solution requires extending the NEF to a
columnar architecture, a subject of ongoing research.
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Corrections to “Spiking Neural Network Decoder for Brain-Ma chine
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Abstract— This corrigendum applies to our paper tilted
“Spiking Neural Network Decoder for Brain-Machine Inter-
faces”, which was presented at the 5th International IEEE
EMBS Conference on Neural Engineering in April 2011
(NER’11). Only the RMS error computations, and therefore
the error normalized by maximum arm velocity, are affected;
we rederived our results and corrected Fig. 5(c,d) accordingly.

Analytical Treatment

In the paper presented at the 5th International IEEE EMBS
Conference on Neural Engineering in April 2011 (NER’11),
we miscalculated the RMS error because we did not take the
square root of the mean square value. This yielded erroneous
measures of 0.03% and 0.27% for the 20,000-neuron and the
1,600-neuron networks, respectively. The correct values are
3% and 9%, respectively.

In this corrected version, we use the following formula for
the RMS error computations:

RMSE =

√

1
N

N

∑
i=1

(

(

V SNN
x,i −V SK

x,i

)2
+

(

V SNN
y,i −V SK

y,i

)2
)

,

whereV SNN
x,i and V SNN

x,i are thex- and y-velocity estimates
at each time stepi decoded from the 96 neural recordings
with the spiking neural network,V SK

x,i and V SK
x,i are thex-

and y-velocity estimates at each time stepi decoded from
the same 96 recordings with the standard Kalman filter, and
N is the number of time steps. The correct version of the
original paper’s Fig. 5(c,d) is given in Fig. 1(c,d).
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Fig. 1. Comparing thex andy-velocity estimates decoded from 96 recorded
cortical spike trains (10s of data) by the standard Kalman filter and the
SNN. c. Dependence of RMS error (between SNN and Kalman filter) on
network size.d. Product of RMS error and neuron count’s (NC) square root
is roughly constant, implying that they are inversely proportional.

The RMS error normalized by maximum arm velocity was
computed as before:

RMSEN =
RMSE
Vmax

100,

where the factor 100 is introduced to convert the normalized
RMS error into a percentage. The maximum velocityVmax

is computed in the following way:

Vmax = maxi

(
√

(

(

V SK
x,i

)2
+

(

V SK
y,i

)2
)

)

,

wheremaxi takes the maximum values of the argument over
all N time steps.

With the corrected values, a 20,000-neuron network
matched the standard decoder’s prediction to within 3%
(normalized by maximum arm velocity) and a 1,600-neuron
version was within 9%; the latter run in real-time on a 3GHz
PC.


