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Abstract—We used a spiking neural network (SNN) to
decode neural data recorded from a 96-electrode array in
premotor/motor cortex while a rhesus monkey performed a
point-to-point reaching arm movement task. We mapped a
Kalman-filter neural prosthetic decode algorithm develope to
predict the arm’s velocity on to the SNN using the Neural
Engineering Framework and simulated it usingNengo, a freely
available software package. A 20,000-neuron network materd
the standard decoder’s prediction to within 0.03% (normalized
by maximum arm velocity). A 1,600-neuron version of this
network was within 0.27%, and run in real-time on a 3GHz
PC. These results demonstrate that a SNN can implement
a statistical signal processing algorithm widely used as th
decoder in high-performance neural prostheses (Kalman fikr),
and achieve similar results with just a few thousand neurons
Hardware SNN implementations—neuromorphic chips—may
offer power savings, essential for realizing fully-implanable
cortically controlled prostheses.

|. CORTICALLY-CONTROLLED MOTOR PROSTHESES

implant must dissipate less than 10mW [6]. Running the 96-
electrode to 2 degree-of-freedom Kalman-filter on a 3.06GHz
Core Duo Intel processor took 0.98%update, or 6,030
flops/update, which, at 66.3Mflops/watt, consumes 1.82mW
for 20 updates/sec. This lack of low-power circuits for raur
decoding is a major obstacle to the successful translafion o
this new class of motor prostheses.

We focus here on a new approach to implementing
the Kalman filter that is capable of meeting these power
constraints: thereuromorphicapproach. The neuromorphic
approach combines digital's and analog’s best features—
programmability and efficiency—offering potentially gtea
robustness than either [7], [8]. At 50nW per silicon neuron
[9], a neuromorphic chip with 1,600 spiking neurons would
consume 8W. To exploit this energy-efficient approach to
build a fully implantable and programmable decoder chip, th
first step is to explore the feasibility of implementing dixig

Neural prostheses aim to restore functions lost to neurolog€coder algorithms with spiking neural networks (SNN) in

ical disease and injury. Motor prostheses aim to help dishb| Software. We did this for the Kalman-filter based decoder
patients by translating neural signals from the brain int6tl-[4] using Nengq a freely available simulator [10].

control signals for prosthetic limbs or computer cursorg. W 1. KALMAN -FILTER DECODER

recently reported a closed-loop cortically-controlledtato  The concept behind the Kalman filter is to track the state
prosthesis capable of producing quick, accurate, and tobys 5 dynamical system throughout time using a model of its
computer cursor movements by decoding action potentialgnamics as well as noisy measurements. The model gives
from a 96-electrode array in rhesus macaque premotor/molgy, estimate of the system’s state at the next time step. This
cortex [1]-[4]. This design and previous high-performanc@stimate is then corrected using the measurements atrtfs ti
designs as well (e.g., [5]) employ versions of the Kalmagiep The relative weights for these two pieces of inforomati

filter, ubiquitous in statistical signal processing.

are given by thekalman gain K [11], [12].

While these recent advances are encouraging, true clini-For neural applications, the cursor’s kinematics define the

cal viability awaits fully-implanted systems which, in tyr

system’s state vectax; = [vef, vel , 1]; the constant 1 allows

impose severe power dissipation constraints. For exampigy j fixed offset compensation. The neural spike rate (spike

to avoid heating the brain by more thaiiCl which is
believed to be important for long term cell health, a &mn?

This work was supported in part by the Belgian American Etlana
Foundation (J. Dethier), NSF and NDSEG Graduate ReseadthwBhips
(V. Gilja), Stanford NIH Medical Scientist Training Progna(MSTP) and
Soros Fellowship (P. Nuyujukian), DARPA RevolutionizingoBthetics pro-
gram (N66001-06-C-8005, K. V. Shenoy), and two NIH Direstd®ioneer
Awards (DP1-OD006409, K. V. Shenoy; DPI-OD000965, K. Baghe

J. Dethier, S. A. Elassaad and K. Boahen are with the Depattwie
Bioengineering, Stanford University, Stanford, CA 943Q%SA (email:
[idethier, shauki, boahen]@stanford.edu).

V. Gilja is with the Department of Computer Science and Stahf
Institute for Neuro-Innovation and Translational Neuresce, Stanford
University, Stanford, CA 94305, USA (email: gilja@stardadu).

P. Nuyujukian is with the Department of Bioengineering an8T¥, Stan-
ford University, Stanford, CA 94305, USA (email: paul@spdnford.edu).

K. V. Shenoy is with the Departments of Electrical Enginegriand
Bioengineering, and Neurosciences Program, Stanfordesity, Stanford,
CA 94305, USA (email: shenoy@stanford.edu).

counts in each time step) of 96 channels of action-potential
threshold crossings defines the measurements veggtémd
the system’s dynamics are modeled by:

Xt AXt_1+ W, 1)
Yi Cxt + G, (2

whereA is the state matrixC is the observation matrix, and
w; and g; are additive, Gaussian noise sources with~
N(0,W) andg; ~ N(0,Q). The model parameter&(C, W
and Q) are fit with training data.

Assuming the system is stationary, we estimate the current
system state by combining the estimate at the previous time
step with the noisy measurements using the Kalman gain
K=(+wWCQ 1)t w C QL This yields:

X = (| —KC)A%_1+ Kyy.

®3)
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IIl. NEURAL ENGINEERING FRAMEWORK

Neural engineers have developed a formal methodolog & **%N\" ; S

for mapping control-theory algorithms onto a computationa @ oo g B3
fabric consisting of a highly heterogeneous population o E RS S2g
spiking neurons simply by programming the strengths o Eﬂ"o ‘ SR e
their connections [10]. These artificial neurons are char | | ¥ '
acterized by a nonlinear multi-dimensional-vector-tikep )
rate function—a;(x(t)) for the i" neuron—with parameters _ _ _ _
(preferred direction, gain, and threshold) crawn randomif, L %10 g cures of & popuiton of 50 leaky et are
from a wide distribution (standard deviatien mean). distributions with range 200Hz to 400Hz anel to +1, respectively.b.
The neural engineering approach to configuring SNNEhe neurons’ spike responses to a stimuus 0.5 (same color code).
to perform arbitrary computations involves representatio

transformation, and dynamics [10], [13]-[15]:
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assigning to the neuron a preferred directiaiff,, in the

« R tation is defined b li di f .
epresentationts defined by nhomtnear encocing o stimulus space and taking the dot-product:

x(t) as a spike rateg (x(t)), combined with weighted > _
linear decoding ofaj(x(t)) to recover an estimate of J(x() = ai (@ -x(t)) + =, (6)
X(1), Eit). :dz'ba* (x(®)q" Thteh decoding welgztsqqx, whereq; is a gain or conversion factor, aii#®s is a bias
_?_re Of amet_ y mm'T'ngd be mean slctquaret zrror.d current that accounts for background activity. For a 1D epac
+ ransiormation IS periormed by using afternate decod-gx s ajther 1 or—1 (drawn randomly). For a 2D space,

|ngtyve|ghtfi ;n (’;he (1|ec.o?|ntg; op(]::‘rauor; to mc;p trtansforgqx is uniformly distributed on the unit circle. The resulting
mations ofx(t) directly into transformations a (x(t)). tuning curvesand spike responses are illustrated in Fig. 1

Fotr eé?rXE)lf’y(t) iAX(t) ]ts.,repres;er}ted by trledsr(;llke for 1D. The information lost by decoding this nonlinear
ratesb;(AX(t)), where unitj's input is computed di- representation using simple linear weighting is not severe

rectly from _un|t|_’s output_usmgé\x(t) =JiaxU)Ag, and can be alleviated by increasing the population size [10]
an alternative linear weighting.

« Dynamics are realized by using the synapses’ spike V. KALMAN FILTER WITH SPIKING NEURONS
responseh(t), (aka, impulse response) to capture the To implement the Kalman filter with a SNN by applying
system’s dynamics. For example, foft) = te™¥/7,  the Neural Engineering Framework (NEF), we first convert
X = Ax(t) is realized by replacingh with A’=T1A+ (3) from discrete time (DT) to continuous time (CT), then
I. This so-calledneurally plausiblematrix yields an we replace the CT matrices with neurally plausible ones, and
equivalent dynamical system(t) = h(t) «A’x(t), where use them to specify the SNN’s weights (Fig. 2). This yields:
convolution replaces integration.

. . _ x(t) = h(t)«(AX()+B'Y(1)), ()
The nonlinear encoding process—from a multi-
dimensional stimulusx(t), to a one-dimensional soma Where .
current,J;, to a firing rate,a (x(t))—is specified as: A = MST+1 = E(MET— )41, (8)
ai(x(t)) = G(AH(X(1))). 4) B = MST= éw. ©)
Here G() is the neurons’ nonlinear current-to-spike-rateM?T = (I —KC)A andM)L,’T =K are the Kalman matrices,
function, which is given by At is the discrete time step (50ms), amdis the synaptic
B time constant.
G(J(x)) = {TrEf— TRCIn(l—Jth/Ji (x))} ’ (5) The j™ neuron’s input current (see (6)) is computed from

the system’s current state(t), which is computed from
for the leaky integrate-and-fire model (LIF). This model'sestimates of the system’s previous staté (= y;ai(t)¢)
subthreshold behavior is described by an RC circuit wittetimand current input(t) = ¥ bi(t)@!) using (7). This yields:

constantrRC. When the voltage reaches the threshwjgl,the 2 jbias

. . e - aj (@ - x(1)) +J]
neuron emits a spik&(t —t,). After this spike, the neuron is ~ e e bias
reset and rests forf seconds (absolute refractory period) = i (@ -h(t) = (A'X() + B'Y(1))) +J;

before it resumes integratindy, = Vin/R is the minimum -
input current that produces spiking. Ignoring the soma’s = i <€0f('h(t)* <A’Zai(t)ch+B’Zbk(t)qﬁ’>>+...
RC time-constant when specifying the SNN’'s dynamics is :
reasonable because the neurons cross threshold at a rtate tha bias
is proportional to their input current, which thus sets the — h(t) = <Z wjiai(t)+gwjkbk(t)> +Jj (10)
spike rate instantaneously, without any filtering [10]. . .

The conversion from a multi-dimensional stimulugt), where wji = a; <§01-"A/§qx> and wjy = a; <(Pj‘B'<A¥> are the
to a one-dimensional soma currerd, is performed by recurrent and feedforward weights, respectively.
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Fig. 3. Neural and kinematic measurements for one teallhe ninety-
six cortical recordings that were fed as input to the Kalmé#erfiand the
spiking neural network (spike counts in 50ms birs)Arm x- andy-velocity
measurements that were correlated with the neural dataamndbe Kalman
filter's matrices, which were also used to engineer the hewgtavork.

Fig. 2. Implementing a Kalman filter with spiking neurorss.Original
Kalman filter (top) and neurally plausible version (bottorffihe integrator
is replaced with the synapses’ spike resporge), and the matrices are
replaced withA’ = TA+1 and B’ = 1B to compensateb. Spiking neural
network implementation with populationky(t) and a;(t) representing
y(t) and x(t), respectively, and with feedforward and recurrent weights
determined byB’ and A’, respectively.
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An adult male rhesus macaque (monkey L) was traine O
to perform variants of a point-to-point arm movement tasl
in a 3D experimental apparatus for juice reward{#.96- 1
electrode silicon array (Blackrock Microsystems) was the ()
implanted in premotor/motor cortex. Array recordings %-4.

RMS threshold crossing applied to each electrode’s signe

yielded tuned activity for the direction and speed of arn

movements. As detailed in [1], a standard Kalman filter

model was fit by correlating the observed hand kinematidSg. 4. Spiking neural network architectures 3D integrator: A single pop-

with the simultaneously measured neural signals, while t)'g?“on. represents three scalar quantitiesandy-velocity and a constant.
. . . . . 1D integrators: A separate population represents eachrsgaantity—x

monkey was performing the point-to-point reaching task; y-velocity in this case.

(Fig. 3). The resulting model was used online to control an

on-screen cursor in real time. This model and 500 of these

trials (2010-03-08) serves as the standard against whigh th

SNN implementation’s performance is compared.

Starting with the matrices obtained by correlating thé&
observed hand kinematics with the simultaneously measurél
neural signals, we built a SNN using the NEF methodolog
and simulated it irNengousing the parameter values listed in
Table I. We ensured that the time constaits, 7/®f, andzSC¢
were smaller than the implementation’s time step (50ms).

V. RESULTS vel’
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We had the choice of two network architectures for the

i (t) units: a single 3D integrator or two 1D integrators (Fig.

b The latter were more stable, as reported previously, [14]
nd yielded better results given the available computer re-
ources. We also had the choice of representing the 96 neural
measurements with thia(t) units (see Fig. 2b) or simply
replacing these units’ spike rates with the measurements
(spike counts in 50ms bins). The latter was more straight
forward, avoided error in estimating the measurements, and
conserved computer resources. Repladip@d) with y(t)'s

k" component is equivalent to choosigj from a standard

1Animal protocols were approved by the Stanford IACUC.

TABLE | basis (i.e., a unit vector with 1 at thé" position and 0
MODEL PARAMETERS everywhere else), which is what we did.
The SNN performed better as we increased the number

Symbol Range Description of neurons (Fig. 5a,b). For 20,000 neurons, thand y-
max G(Jj(x))  200-400 Hz Maximum firing rate velocity decoded from its two 10,000-neuron populations
G(Jj(x))=0 -1to1l Normalizedx-axis intercept , .. L o
Jpies Satisfies first two ~ Bias current matched the stand_ard decode_rs pred|ct|o_n to within 0.03%
a; Satisfies first two ~ Gain factor (RMS error normalized by maximum velocit§)As reported
@ H@H =1 Preferred-direction vector in [10], the RMS error was roughly inversely proportional to
Re 20 ms RC time constant the square-root of the number of neurons (Fig. 5c,d). There
r{»’:f 1ms Refractory period
PsC 20 ms PSC time constant 2The SNN's estimates were smoothed with a filter identicah(t), but

with T set to 5ms instead of 20ms to avoid introducing significartayde
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Fig. 5. Comparing the andy-velocity estimates decoded from 96 recorded
cortical spike trains (10s of data) by the standard Kalmaerf{blue) and
the SNN (red).a,b. Networks with 2,000 and 20,000 spiking neurons.
Dependence of RMS error (between SNN and Kalman filter) owarét
size (note log scale)d. Product of RMS error and neuron count's (NC) [2]
square root is roughly constant (for N€ 200), implying that they are
inversely proportional.

(1]

[3]
is a tradeoff between accuracy and computational time. For
real-time operation—on a 3GHz PC with a 1ms simulation
time-step—the network size is limited to 1,600 neurons.
Encouragingly, this small network’s error was only 0.27%. [4

VI. CONCLUSIONS ANDFUTURE WORK [5]

The Nengosimulations reported here demonstrate offline
output that is virtually ident ical to that produced by a 6]
standard Kalman filter implementation. A 1,600-neuron net-
work’s output is within 0.3% of the standard implemen-
tation, andNengo can simulate this network in real-time. [7]
Which means we can now proceed to testing our new SN
on-line. This more challenging setting will enable us to
further advance the SNN implementation by incorporating
recently proposed variants of the Kalman filter that have[g]
been demonstrated to further increase performance and ro-
bustness during closed-loop, real-time operation [2]. [3&10]
As such a filter and its variants have demonstrated the
highest levels of brain-machine interface performance in
both human [5] and monkey users [2], these simulatiori$l]
provide confidence that similar levels of performance can
be attained with a neuromorphic architecture. Having refing12]
the SNN architecture, we will proceed to our final validation
step: implementing the network oNeurogrid a hardware [13]
platform with sixteen programmable neuromorphic chips tha
can simulate a million spiking neurons in real-time [8].  [14]

The ultimate goal of this work is to build a fully im-
plantable and programmable decoder chip using the neulos]
morphic approach. Variability among the silicon neurongd an

the large number of synaptic connections required present
challenges. A distribution of spike-rates with a CV of 15%
(sigma/mean) is typical, due to pronounced transistor mis-
match in the subthreshold region where these nanopower
circuits operate [9]. We have shown, however, that the NEF
can effectively exploit even higher degrees of variahility
Thus, the only real remaining challenge is achieving a
high degree of connectivity. This one can be addressed by
adopting a columnar organization, whereby nearby neurons
share the same inputs, just like they do in the cortex—and
in Neurogrid This solution requires extending the NEF to a
columnar architecture, a subject of ongoing research.
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Abstract— This corrigendum applies to our paper tilted where the factor 100 is introduced to convert the normalized

“Spiking Neural Network Decoder for Brain-Machine Inter- RMS error into a percentage. The maximum velodikyx
faces”, which was presented at the 5th International IEEE ; ; .
EMBS Conference on Neural Engineering in April 2011 is computed in the following way-

(NER’11). Only the RMS error computations, and therefore > 2
the error normalized by maximum arm velocity, are affected,; Viex = Mmax; ((VxS|K) 4 <VSIK) ) ,
we rederived our results and corrected Fig. 5(c,d) accordingly. ' y

wheremax; takes the maximum values of the argument over
Analytical Treatment all N time steps.

In the paper presented at the 5th International IEEE EMBS With the corrected values, a 20,000-neuron network
Conference on Neural Engineering in April 2011 (NER’11)matched the standard decoder’'s prediction to within 3%
we miscalculated the RMS error because we did not take tiieormalized by maximum arm velocity) and a 1,600-neuron
square root of the mean square value. This yielded erroneotersion was within 9%; the latter run in real-time on a 3GHz
measures of 0.03% and 0.27% for the 20,000-neuron and tRE.
1,600-neuron networks, respectively. The correct values a
3% and 9%, respectively.

In this corrected version, we use the following formula for
the RMS error computations:

RMSE  — \/;l ii ((vxﬁuN _vxﬁ<)2+ (V. —VﬁK)Z),

where VN and VN are thex- and y-velocity estimates
at each time step decoded from the 96 neural recordings
with the spiking neural networkyX and VX are thex-
and y-velocity estimates at each time stépﬂecoded from
the same 96 recordings with the standard Kalman filter, and
N is the number of time steps. The correct version of the
original paper’s Fig. 5(c,d) is given in Fig. 1(c,d).
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Fig. 1. Comparing the andy-velocity estimates decoded from 96 recorded
cortical spike trains (10s of data) by the standard Kalmaerfiéind the
SNN. c. Dependence of RMS error (between SNN and Kalman filter) on
network sized. Product of RMS error and neuron count’s (NC) square root
is roughly constant, implying that they are inversely projpoal.

The RMS error normalized by maximum arm velocity was
computed as before:

RMSEy = R\tﬂjloq

max



