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Abstract

A SILICON MODEL OF THE PRIMARY VISUAL CORTEX: REPRESENTING

FEATURES THROUGH STOCHASTIC VARIATIONS

Paul A. Merolla

Supervisor: Kwabena Boahen

In this project, we have presented the bump chip, a silicon model of the primary visual

cortex that accounts for the emergence of an orientation map. Two traits set our chip

apart from every other man-made system to date: 1) its functional architecture (orientation

selectivity) is not specifically engineered a priori, and 2) the scaffold for this architecture

is innate to the chip itself and exists as an indelible imprint. To achieve this feat, our chip

uses a simple feedback network to form patterns of neural activity; these patterns, which are

biased by random component mismatch, serve as the scaffold for the selectivity. Therefore,

our chip attains all of the benefits of a self-organizing learning system without having to go

through the tedious process of learning. We propose that cortical maps observed in biology

are built using a similar design principle. This idea is supported experimentally; orientation

maps in kittens are remarkably robust to experimental manipulations, and appear without

the need for visual experience.
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Chapter 1

Building a visual cortex in silicon

The patterns of light reflected off of objects offer a fantastic opportunity for biological

organisms to gain knowledge about their environment. To take advantage of this infor-

mational windfall, mammals have evolved highly specialized visual systems that are able

to recognize shapes, detect complex motion patterns, and analyze scenes. In humans, for

example, the culmination of vision processing is a visual percept, which represents the

skillful combination of relevant aspects of a scene across parallel visual streams while sup-

pressing superfluous details. Artificial vision systems built around traditional computing

architectures, on the other hand, have been less successful at recovering information about

the three-dimensional world in real-time; even rudimentary tasks such as shape recognition,

have proven to be difficult in non-ideal environments.

One promising approach to close the gap between biological and machine vision is to

morph the structure and function of neural wetware into silicon hardware — a methodol-

ogy coined neuromorphic engineering [1]. This strategy has proven to be successful for

neural structures that have relatively simple organizations. For example, transistor circuits
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that mimic ion channels, chemical–electrical connections, and neurons have been brought

together to model all five layers of the mammalian retina. The result is a silicon retina

that converts light into neural activity similar to its biological counterpart; in addition to

operating in real-time, the silicon retina is also power efficient using a mere 60 milliwatts

(1,000 times less power than a typical personal computer) [2].

Invigorated by the success of the silicon retina, we would like to morph neural areas that

are further downstream in the visual pathway. As we venture deeper into the brain, however,

the organization becomes increasingly complex; the primary visual cortex, for instance,

systematically maps features such as orientation, direction, color, and eye preference all in

the same network. How are we ever going to keep up with this burgeoning complexity?

One strategy, which we explore in this project, is to model at the level of development —

a methodology coined metamorphing [3]. Whereas morphing copies neural circuits into

silicon, metamorphing also copies the algorithms necessary to organize these circuits.

In this thesis, we present the bump chip, the first neuromorphic system that can self-

organize an orientation map. Consistent with the finding that orientation map development

is experience-independent, our design does not rely on learning mechanisms for organizing

its selectivity. Instead, our chip uses a simple feedback network to form patterns of neural

activity; these patterns, which are biased by random component mismatch, serve as the

scaffold for the selectivity. The painstaking task of wiring up orientation selective neurons

has been reduced to building an imprecise network that generates the necessary activity

patterns. We elaborate on this idea in the following chapters:

Chapter 2 reviews how the primary visual cortex initially becomes selective to orienta-

tion from biological and theoretical viewpoints. First, we describe the key experiments that

show orientation map establishment does not require vision, and its establishment is robust
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to adversity. Then, we offer a critical review of common models that can account for map

ontogenesis. We focus on an orientation-selective network that obtains its selectivity by

generating spot-like patterns of neural activity; our neuromorphic model is based on this

same pattern-formation principle.

Chapter 3 presents the bump chip, a large-scale model of the primary visual cortex that

is designed to automatically generate an orientation map.

Chapter 4 characterizes the responses of the bump chip to orientation. We show that

the chip responds selectivity to orientation, and this selectivity is repeatable; these results

verify that biases introduced during chip fabrication provide a sufficient scaffold for map

generation.

Chapter 5 introduces a novel analysis for characterizing the dynamics observed in the

bump chip. This analysis reduces chip activity to a collection of bumps, or particles, al-

lowing us to quantify dynamics using intuitive metrics, such as particle diffusion rates. We

also explore how activity deviates from our intuition by quantifying non-classical dynamics

(such as vanishing, regenerating, and teleporting particles).

Chapter 6 applies our particle-based analysis to determine how dynamics in different

network states relate to network computation.

Chapter 7 concludes the thesis with suggestions for experimentalists to evaluate whether

neural pattern formation is important for organizing cortical networks.
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Chapter 2

Development of orientation maps

2.1 Development of cortical maps

Nearly three and a half centuries ago, John Locke first proposed the idea that at birth, the

mind is a tabula rasa, or a “blank slate”, whose contents are ultimately determined by

experiences [4]. The debate that Locke’s proposition sparked, which is more commonly

known as the nature versus nurture debate, has been raging in religious, philosophical, and

legal circles over the centuries [5]. While it is unlikely that these abstract debates will

be resolved anytime soon, the literal implications of Locke’s tabula rasa hypothesis are

beginning to be addressed experimentally: that is, to what extent are cortical circuits and

their functions specified by innate factors (nature), and to what extent are they shaped by

their inputs (nurture)?

It is now known that the initial organization of the cortical structure is largely deter-

mined by innate factors. For example, individuals of the same species all have: 1) similarly
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parcellated cortical areas, 2) similar topographic connectivity between the areas, and 3)

similar basic neural circuits within the areas (interlaminar connectivity) [6]; in a sense,

this predetermined cortical structure can be thought of as Locke’s blank slate. The func-

tional architecture of the cortex, on the other hand, seemingly requires externally driven

events for its development (see Figure 2.1 for a brief review of the organization of V1).

For example, even though the qualitative features of orientation maps are largely similar

across individuals, the detailed layouts can be quite different (e.g., the specific locations of

orientation columns are ostensibly random across individuals). The question that we will

explore in this section is how a characteristic, yet individualized orientation map initially

becomes imprinted on the cortical slate.

2.1.1 Establishment and maintenance of orientation selectivity

We review the experimental evidence that demonstrates there are two distinct phases in the

development of orientation selectivity: an initial phase that establishes selectivity, and a

subsequent phase that maintains it [8]. The distinction between these two phases is not

arbitrary; the establishment phase, which occurs within the first week of eye opening, is

independent of visual experience, whereas the maintenance phase requires it. Surprisingly,

the notion that cortical development occurs in two phases is relatively recent, even though

the division was apparent in the very first experiments performed in the field (see [9] for a

historical account). Specifically, Hubel and Wiesel demonstrated in 1965 that orientation

responses were present in kittens near the time of eye opening, and selectivity degraded

over time when reared in abnormal conditions [10].

For our immediate discussion, we focus on the development of the cat visual system,

however, it is expected (or has been shown) that the visual systems in most highly visual

5



C
CI I

Figure 2.1: Columnar organization of V1
The primary visual cortex (area V1) is a two-dimensional neural sheet organized in six
layers, and is the first (and largest) cortical region in the visual pathway. Similar to the
neural regions that precede V1 (retina and LGN), visual space is mapped topographically
across the network ensuring that nearby cells respond to nearby locations in space. Unlike
it inputs, however, V1 also maps higher-order visual features such as orientation, eye, and
color preference. There are two organizational principles that the cortex follows: First, cells
that extend the thickness of the cortex at each retinotopic position have the same prefer-
ences, and form a functional column. And second, nearby columns have preferences that
change smoothly across the network (except at fractures), and these preferences repeat at
regular intervals. This columnar organization has led to the idea that V1 can be thought of
an array of functional modules (or hypercolumns) that represent all combinations of visual
features for a particular voxel in space. The highlighted cortical cube depicts one such
hypercolumn (this depiction is based on monkey V1). The shaded slab-like regions sepa-
rated by dark lines correspond to contra (C) and ipsi (I) -lateral eye preferences, spoke-like
patterns shown by white lines along the surface correspond to contours of orientation pref-
erence, and blob regions correspond to columns involved in color processing [7].
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mammals, including humans, monkeys, ferrets, and tree shrews, develop in a similar man-

ner. It is worth noting that the specific phases of development relative to birth can vary

across species and is dependent on the different gestation periods, although these phases

are roughly equivalent relative to eye opening. For example, cats have a 65 day gestation

period and open their eyes around the tenth postnatal day (P10), whereas ferrets have a

shorter gestation period (42 days) and open their eyes around P31.

2.1.1.1 Establishment phase

Following the 1965 experiments performed by Hubel and Wiesel, a number of groups have

confirmed that cells in V1 are selective to orientation at eye opening [11, 12, 13, 14].1

While there is a general consensus on the existence of orientation selective cells at eye

opening, there are conflicting accounts on how many such cells exist; for example, some

studies (Blakemore et al., and Fregnac et al.) find that about 25% of the cells are selective,

whereas other studies (Braastad and Heggelund, and Albus and Wolf) find that more than

78% of cells have reliable selectivity. Braastad and Heggelund articulate the difficulties

they encountered while recording from single units, which can potentially account for the

discrepancies across labs: In their experience, traditional ‘handplotting’ techniques with

static slits was not possible in the youngest kittens because the center of the discharge zone

was too variable (even with the optimal stimulus). However, they were able to measure

statistically significant tuning curves by presenting slowly moving, long slits, with 4–5s

pauses between presentations [14]. Using this procedure, they lost nearly half of their cells

during the rather tedious analysis. Therefore, although selectivity exists in single neurons, it

is clear that studying cortical development in more than a few cells at a time is a painstaking

1There have even been groups that have shown a few cells in V1 are selective to orientation (in ferret)
through closed eye lids (i.e., prior to eye opening) [15]. However, the firing rates of these cells are quite low
and the tuning curves are rather inconsistent.
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process [16].

In the ensuing week after eye opening (P11–P17), orientation selectivity in single units

mature to near adult levels. Somewhat unexpectedly, this initial maturation is independent

of visual experience [11, 17] — a result that has been the source of much confusion over

the past decades [9]. For example, a number of experiments have attempted to disrupt the

formation of orientation selectivity by manipulating visual inputs (e.g., dark rearing or lid

suturing) in the weeks following eye opening; however, these experiments were inadver-

tently exploring the maintenance of selectivity and not its initial formation since the ma-

nipulations extended past P18 [8]. The seemingly conflicting results of these experiments

can be resolved once the establishment phase is appropriately identified.

Around P14, intrinsic signals in V1 become reliable enough to measure prefered orien-

tation (PO) maps using optical imaging techniques; PO is calculated by taking each pixel’s

average activity for each stimulus orientation, and computing the angle of the vector sum.

Consistent with the electrophysiology data, the quality of the maps improve in an experi-

ence independent manner until P18 [18]. These early PO maps have traits that are strikingly

similar to adult maps, including spatially extended orientation domains that repeat at reg-

ular intervals, as well as fractures and pinwheels. We show an example of a map imaged

from a kitten near eye opening (Figure 2.2).

In summary, the evidence reviewed thus far demonstrates that the establishment of ori-

entation selectivity is an experience independent process. It seems that the cortical slate

does not start out blank after all, but is instead prewired to extract edges from the visual

world; next, we will explore what happens to the map when normal visual experience is

manipulated past the establishment phase. We note, however, that our main focus in this

project is on the establishment of orientation maps; we describe the maintenance phase for
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Figure 2.2: Innate orientation map
Orientation map at eye opening in a kitten imaged over a 1.9mm2 region of cortex [19].
The PO for each pixel is color coded based on the key to the right.

completeness.

2.1.1.2 Maintenance phase

Following the first week of eye opening, there is extensive evidence that shows orienta-

tion selectivity can be influenced by visual experience during a critical period (P18–43).

We review recent experiments that explore this influence, classified by the type of visual

manipulation:

Dark rearing

The animal is raised in complete darkness (until the experiment begins, of course).

Crair et al. has shown that prolonged deprivation of vision results in cells becoming

progressively less responsive to visual stimuli, as well as a degradation of orientation
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selectivity [19].

Lid suturing

The animal’s eye lids are surgically shut, thereby removing normal patterned vision;

lid suturing differs from dark rearing in that the closed lids allow diffuse light to enter

the eyes. Interestingly, this diffuse light causes selectivity to deteriorate at a rate that

is drastically faster than dark rearing [20]. These results support the idea that the lack

of visual input merely arrests development, whereas abnormal inputs cause cortical

circuits to be actively ‘miswired’ during the maintenance phase [16].

Stripe rearing

The animal is raised in an environment where only a single orientation is present.

Sengpiel et al. demonstrated that the overrepresented orientation occupies a larger

region of cortex; however, orientations not present in the environment still occupy

significant regions of the cortical territory, and all orientations have a similar sharp-

ness of tuning [21]. So although their results confirm that orientation selectivity is

largely determined at eye opening, they also suggest that activity can play an instruc-

tive rather than a permissive role during a critical period, since a portion of cells have

modified their preferred orientations based on their inputs. These findings are also

consistent with the observation that cardinal orientations, which are more common in

nature, are overrepresented in animals that have normal visual experience [22] (but

see [23], which suggests that the function of visual experience is to actually equalize

innate over-representations).
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It is apparent that after the establishment phase, visual inputs can abolish, and in certain

cases, modify orientation selectivity. These findings pose an interesting dilemma: Why

would the cortex go through all the trouble of creating selective cells, only to discard them

in certain situations? It seems like a more efficient strategy would be to create orientation

selective cells only after it was evident that such processing were useful (e.g., at least one

retina was functioning properly). Perhaps this dilemma is one of the reason why the field

has been so reluctant to acknowledge that development has a distinct establishment phase.

2.1.2 Map stability during development

One relevant issue is whether the layout of an orientation map remains constant throughout

development (i.e., the map is stable), or if it is constantly being rearranged. That is, should

we assign any significance to the initial locations of the preferred orientations, or is the

only germane point that a map exists. Naturally, this issue will have profound implications

for any model of cortical development.

In 1996, the Stryker lab pioneered a chronic optical imaging technique that allowed

them to measure orientation maps in the same ferret pups from eye opening through cortical

maturation [24]. The main advantage in choosing ferrets as the animal model is that they

are born at an earlier stage of cortical development compared to cat (day 42 as opposed to

65), and thus, they offer a more robust preparation at the time when orientation selectivity

first develops [25].

In their tour de force experiment, Chapman et al. demonstrated that the detailed struc-
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ture of an orientation map is largely constant during development. We reprint an example

of their main result (Figure 2.3), which shows both angle and polar maps side by side dur-

ing map maturation (P31–P42); in the angle map, the hue of each pixel is the preferred

orientation, whereas the polar maps include the strength of orientation tuning as the inten-

sity [26]. Even though the selectivities of the early maps (P33–P35) are quite weak (i.e., the

polar plots are dark), we can clearly see that the locations, shapes, and colors of the patches

in the early angle maps are remarkably similar to the mature map (P42). The map at P31,

which was imaged immediately after eye opening, is too noisy (i.e., the optical signal is too

weak) to make reliable inferences. However, it seems unlikely that these early maps are

substantially different from the mature maps based on supporting single cell measurements.

To quantify the similarity between nascent and mature angle maps, Chapman et al.

introduced a measure called the similarity index (SI), which we will use in various forms

throughout this dissertation. SI is computed in the following steps: First, the absolute

angle difference is computed for each pixel between two maps; because orientation ranges

from 0 to 180 degrees, the absolute angle difference is between 0 degrees (same preferred

orientation) and 90 degrees (orthogonal preferred orientations). Next, the mean difference

is taken over all pixels. Finally, SI is computed by subtracting this mean difference from

90, and normalizing the result to be between 0 and 1 (i.e., divide by 90). A SI that is near

0 indicates that the angle maps are anticorrelated, whereas a value near 1 indicates high

correlation; 0.5 signifies no correlation. In the example from Figure 2.3, the SI between an

early angle map (P33) and the mature map (P42) is near 0.7, and this value increases with

age (presumably due to the maps becoming less noisy).

The fact that an orientation map is relatively consistent is a remarkable result, espe-

cially when we consider the massive anatomical reorganization that transpires during the

first weeks after eye opening (see Figure 2.4 for a developmental timeline). For one, ocu-
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Figure 2.3: Map stability in developing ferret
Imaged orientation maps at different stages of development in the same ferret pup; angle
maps reveal map structure (left column), and polar plots include orientation tuning strength
as color intensity (right column) [24].
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Figure 2.4: Development timeline
Timeline of development in ferret: LGN events (yellow) and cortical events (blue) are in-
dicated; MD and ODC are abbreviations for monocular deprivation and ocular dominance
columns, respectively. Note that retinal waves can occur as early as P0 (not shown), and
thalamo-cortical activity has been observed (in the LGN) beginning at P24, but may be
present earlier.

lar dominance columns are consolidated in this period, with significant changes occurring

in the afferent projections to each column [27]; in particular, thalamic projections from

the ipsilateral eye segregate into eye specific domains. In addition, long-range horizontal

connections (intralaminar) are substantially refined during a similar time frame [20]. Con-

ventional wisdom suggests that the rewiring of feedforward inputs, and/or the refinement of

intracortical connections would reorganize the orientation map; it seems however that the

opposite case is true — the functional map seems to guide the anatomical reorganization.

2.1.3 Role of activity in map establishment

Although it is clear that visually driven activity does not affect the establishment of an ori-

entation map (Section 2.1.1), it has been proposed that internally generated activity patterns

might be involved [28]. For example, a genetically prescribed circuit can generate ‘training

patterns’ that instruct the development of target circuits. In this section, we show that such

patterns do in fact exist in the developing cortex, however, these patterns have not yet been
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Figure 2.5: Spontaneous LGN activity
A multielectrode array records activity in a developing ferret LGN prior to eye opening in
vivo (left). Ten successive trials are shown as time series plots (oriented vertically) for a
100 second epoch (middle); the eight columns within each series corresponds to activity at
the different electrodes. All pair-wise correlations between the layers are shown in a 8 × 8
matrix (top right), and summarized for eye and center-type correlations (bottom right) [30].

implicated in instructing map formation; thus, the role of activity is presently unclear.

Two lines of circumstantial evidence support the notion that map development is in-

structed by activity: First, the early visual pathway exhibits patterns of neural activity

around the time that orientation selectivity is thought to originate (one week prior to eye

opening) [29, 30]. In particular, both the retina and the thalamo-cortical loop generate spa-

tially and temporally correlated patterns in vivo (on their own, and in concert) [31, 30]; we

show observed temporal correlations between different LGN layers in a developing ferret

(Figure 2.5). Second, computational models have been able to self-organize orientation

maps when they are trained on patterns that have center-type (ON–OFF) correlations [32]

(we explore these models in Section 2.2.1). It is not yet known if such center-type corre-

lations exist spontaneously (since the retinotopic locations of the LGN layers are difficult

to map in experiments like [30]), but it seems possible that center-surround circuitry could

coordinate such correlations.
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If activity does in fact instruct the development of feature maps, as suggested by a num-

ber of groups, it should be possible to disrupt map formation by manipulating the patterns.

Weliky directly tested this possibility by artificially stimulating the optic nerve in develop-

ing ferrets during P27–P41 (beginning one week prior to eye opening) [30]. Remarkably,

neurons in layer IV were unaffected by the artificial correlations and exhibited normal ori-

entation domains and selectivity; neurons in the superficial and deep layers, however, had

markedly lower selectivities when compared to control animals. This result strongly sug-

gests that activity-dependent mechanisms do not play a significant role in establishing an

orientation map (in layer IV); ironically, this paper is often cited as evidence supporting

activity-instructed development of orientation maps because it was the first to demonstrate

that the LGN has eye-specific and center-type correlations.

One possibility is that the artificial stimulation in Weliky’s experiment was too inter-

mittent to affect map development in layer IV, since the cuff electrode surrounding the

optic nerve was active only 10% of the time. However, this situation is unlikely because

the stimulation was able to disrupt the development of superficial and deep layers (i.e., the

setup was clearly effective). Another possibility is that the formation of an orientation map

occurs prior to P27, and therefore the manipulation was too late to have an effect.

Other attempts to disrupt activity have been difficult to interpret. For example, infusion

of tetrodotoxin (TTX) in ferret cortex, which blocks all activity in V1, has been shown to

freeze the development of selectivity to an immature state (equivalent to P23) [25]; this

demonstrates that a certain level of activity must be present in the cortex for development

(permissive role), however, it remains unclear whether the specific activity patterns drive

development (instructive role). In a similar experiment, the activity of ON-center ganglion

cells in the retina was selectively blocked using 2-amino-4-phosphonobutyric acid (APB),

which also resulted in an immature orientation map [33]. This result has been cited as
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the “strongest evidence to date” that activity-instructed development plays a role in map

formation [32], however, this evidence is not very compelling: First, the experiment still

conflates permissive and instructive roles of activity because blocking ON responses may

simply reduce activity below a necessary threshold for map development. Second, infusion

of APB early in development has resulted in an unresponsive cortex (as opposed to a cor-

tex that only responds to OFF stimuli), which raises the possibility of nonspecific effects.

Compelling evidence would need to link the spatio-temporal activity patterns themselves

to a predicted (and controllable) change in map formation.

In summary, we have shown that if maps are learned from activity, the process is tightly

regulated and the critical period for map specification is early (before P27). However, the

lack of evidence for activity-instructed development leaves open the possibility that genetic

and molecular factors (which are independent of activity) may be solely responsible for

map formation. We describe how orientation maps can develop using activity-independent

mechanisms in Section 2.2.2. In fact, our chip model of V1 will obtain its selectivity

without the need for activity-instructed learning, verifying that activity is not necessary for

map establishment.

2.1.4 Origin of map structure

Despite a wealth of experimental data, we still do not know how an orientation map first be-

comes forged onto the cortical slate. One promising strategy, which has become quite pop-

ular in the past decade, is to explore the role of cellular and molecular mechanisms [8]. The

majority of such studies have focused on activity-dependent mechanisms, such as NMDA

receptors and neurotrophins — a reflection of the current dogma that map development is

instructed by activity. While this mechanism-oriented approach to studying development
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may eventually lead to profound insights, orientation maps are seemingly too complex to

be reduced to a handful of simple molecular interactions. In fact, recent evidence paints

a progressively complicated picture (see [6, 8] for reviews), and it is difficult to see how

individual molecular pathways might interact to ultimately determine map structure.

In this section, we take a step back from the low-level molecular mechanisms and ex-

plore the broader issue of whether map structure is explicitly encoded in the genes (genetic

prespecification), or somehow acquired through a self-organizing process (which is regu-

lated by genes). This issue, which closely parallels the nature–nurture debate, has been

repeatedly raised in the literature [18, 8, 32, 34, 35] and may provide insight about the

mechanisms that are involved in map formation.

Let us first explore the hypothetical case of genetic prespecification, where an explicit

blueprint of an orientation map exists in the genes. For example, consider that every neu-

ron expresses a specific molecular tag (encoded directly in the genes) which ‘specifies’

its orientation preference. We will argue here, however, that the actual implementation

of orientation selectivity (i.e., transforming each tag into a functionally selective neuron)

requires multiple well-coordinated events that are not explicitly encoded in the genes —

thus the precision of the prespecification is limited by other developmental processes. For

example, each neuron must have the following components to achieve selectivity: 1) affer-

ent inputs that maintain local topography (to probe neuron selectivity), 2) appropriate ion

channels that allow the neuron to spike (to measure neuron selectivity), and 3) mechanisms

that implement orientation selectivity, which would putatively line up thalamic afferents

or recurrent connections depending on the tag. Stochastic variations in any of these com-

ponents could cause deviations between the functional response and the prespecified tag.

Our conclusion is that even maps with an explicit genetic origin are in a sense ‘acquired’

since their expression may be stochastic (due to constraining developmental factors). More
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Figure 2.6: Phenotype diversity
Intrinsic noise (or stochastic variations) of green and red fluorescent protein (GFP) reporter
gene expression in a population of genetically identical Escherichia coli ; deviations from
equal gene expression are visible as red through yellow to green color variation [36].

fundamentally, recent experiments have shown that gene expression itself can be rather

stochastic (see Figure 2.6 for an example), suggesting that an explicit genetic encoding is

a straw-man idea.

However, we might imagine that we could still distinguish between genetic prespec-

ification and self-organization through an ‘identical twin’ experiment, where maps from

genetically identical individuals are compared [24]. In other words, if the observed maps

in the twins are statistically similar (i.e., on average, particular molecular tags result in

the same functional responses) we could conclude genetic prespecification was responsible

for map origin, otherwise if the maps are independent we could rule out genetic prespec-

ification altogether. We show in this section that the identical twin experiment can not

distinguish between these two scenarios; that is, comparing the two maps simply probes

how sensitive map formation is to stochastic variations, and not whether it has an explicit

genetic origin. The arguments that we present to debunk the identical twin experiment were

inspired by the thoughtful discussions from [32].

The fallacy of the identical twin experiment is apparent when we consider that a map

may be acquired (or self-organized), and yet its final structure can still be tightly con-
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strained (or ‘prespecified’). For example, consider the case where a map’s structure is

largely determined by geometric boundary conditions (such as the size and shape of V1) —

here, identical twins could have similar orientation maps simply because their skulls have

similar shapes and grow at similar rates! In this case, measuring the similarity between

these maps simply probes how sensitive map development is to stochastic variations; that

is, how different do the boundary conditions (V1 geometries) have to be before the maps

are appreciably different, and what are the nature of bifurcations if they occur? This dis-

cussion should make it clear that a positive result of the identical twin experiment can not

distinguish between genetic prespecification and a tightly-regulated self-organizing pro-

cess, whereas a negative result would demonstrate that map structure is entirely influenced

by stochastic variations. Therefore, it is not possible to know at what level genes specify

an orientation map through an identical twin experiment.

It should now be clear that the debate surrounding the role of genes in map formation

is somewhat futile (even though the literature has a peculiar obsession with this debate).

Cortical development is a complex dynamic system whose flow is influenced by many

interrelated genetic and environmental factors at each stage. Pondering the genetic origin

of orientation selectivity is akin to pondering how a list of ingredients determines the taste

of a pastry: the individual ingredients are necessary, but how they are brought together

ultimately decides its qualities. To help sort through the complexity of development, we

will explore a number of computational models in the following section. We pay particular

attention to the factors that constrain each model, and question whether these constraints

are likely to be present in biology.
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2.2 Models of orientation map establishment

Computational models can be useful tools for exploring how cortical networks develop.

Because a model is in essence a mathematical description, all of the unstated assumptions

must be made explicit for the model to work. This transparency allows each model to be

evaluated in an objective manner, and provides an arena where different theories can be

tested and refined, which can ultimately lead to new insights. We consider three criteria

when judging a model’s merit:

1. Reproducibility

First and foremost, the model should be able to reproduce known experimental re-

sults. Models that are more abstract will only be able to capture qualitative aspects

of orientation maps (e.g., general map structure), whereas more detailed models are

further burdened to reproduce quantitative aspects.

2. Verisimilitude

In the context of modeling, verisimilitude describes the extent to which a model

captures (or reflects) reality. Verisimilitude goes beyond the notion of simply re-

producing known results, and requires that the model’s behavior parallels real-world

behaviors under similar constraints. Because the factors that constrain development

are typically unknown, it is common to instead explore the inherent constraints of

the model, and probe whether these constraints are plausible. For example, if map

structure is primarily determined by the network’s geometric shape, this prediction

can be tested experimentally in V1.
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3. Elegance

There is a popular sentiment that elegant models are more likely to be correct. While

there is no fundamental reason why this sentiment must be true, models shrouded in

superfluous detail are often difficult to evaluate since they can be as confusing as the

process that is being studied.

In this section, we describe different models that can explain the establishment of an

orientation map. The majority of models that have been proposed are based on the dogma

that map structure emerges from activity-instructed learning; these models are often re-

ferred to as correlation-based models (CBMs) because typically, the learning is driven by

correlations between pre- and post-synaptic activity [32]. CBMs have evolved over the

years, keeping pace with the latest experimental results, but their basic traits have remained

relatively unchanged. In Section 2.2.1, we provide an overview of CBMs and describe

some of their more recent incarnations.

Despite the overwhelming popularity of CBMs, it has been proposed that perhaps learn-

ing does not play an important role in the establishment of orientation maps; this notion

is worth considering because the initial appearance of a map remains surprisingly resilient

to experimental manipulations. In Section 2.2.2, we describe alternative models of map

development that do not require synaptic plasticity. Our main focus is on one particular

model that is able to generate an orientation map using a recurrent network with a noisy

connection profile.
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One trend that should become apparent in this section is that many different models

can reproduce realistic orientation maps. So how do we decide which model best reflects

cortical development? Choosing an appropriate model is crucial for this project: we are

not only interested in the esoteric questions about development, but like the cortex, our

primary goal is to construct a large-scale network that obtains it functional architecture

in a robust manner. Toward this end, we consider the verisimilitude and elegance of the

different models in Section 2.2.3; specifically, we explore their inherent constraints, and

how these constraints relate to cortical ones.

2.2.1 Correlation-based models

In 1973, von der Malsburg was the first to demonstrate that an orientation map can self-

organize from a few simple ingredients [37]. His model, which was simulated on a 1MHz

UNIVAC, is modest by today’s standards, but nonetheless the basic ideas are still quite

relevant. The network consisted of 169 computational units arranged in a 2D sheet, where

each unit represented a column of neurons with similar response properties. Each column

received afferent inputs from all points in visual space (i.e., there was no retinotopy), in

addition to short-range excitatory and long-range inhibitory inputs from lateral columns.

During a training period, the weights of the afferent inputs were modified via a Hebbian

learning rule, and the total weight to each column was kept constant through divisive nor-

malization (thus implementing synaptic competition).

Despite the model’s simplicity, the network was able to self-organize an orientation map

when trained with patterns of oriented bars (Figure 2.7). After training, individual columns

were selective to particular orientations, and this selectivity varied smoothly across the net-

work in spoke-like patterns. Astoundingly, the structure of this learned map was strikingly
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Figure 2.7: Self-organizing orientation map
The different orientation patterns used to train von der Malsburg’s network (left), and the
resulting orientation preferences after training (right); dots represent cells that do not re-
spond [37].

similar to ones imaged in V1 — 13 years before optical imaging techniques revealed the

detailed structure of orientation maps.2

The relative ease with which von der Malsburg’s model was able to organize a corti-

cal network sparked significant interest in activity-instructed learning. Dozens of similar

CBMs have since been proposed (see [34] for a comprehensive review). Miller et al. has

noted that practically all of these models share three basic elements [32]:

Synaptic modification

CBMs are all based on some type of Hebbian learning rule [39] where correlations

between pre- and post-synaptic activity lead to synaptic modification. The biologi-

cal mechanisms that are thought to mediate this rule include long-term potentiation

(LTP), long-term depression (LTD), and neurotrophic factors (see [8] for an overview

of possible mechanisms). Most models ignore the specific details of these mecha-

2Prior to optical imaging, Braitenberg and Braintenberg suggested in 1979 that orientation map structure
had either a radial or concentric layout based on single unit track recordings [38]. However, their results were
far from conclusive, and turned out to be only partially correct.
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nisms, and instead use a weight update equation that is computationally efficient.

Competition

Unconstrained synaptic modification can lead to network instabilities in certain situ-

ations because the weights can become unbounded. To avoid these unrealistic situ-

ations, models typically implement some form of weight normalization (divisive or

subtractive) ensuring that synapses compete for efficacy.

Spatial interactions

The hallmark of an orientation map is its smoothly changing selectivity. To repro-

duce this characteristic structure, CBMs require that nearby cell responses cooperate,

and distal cell responses compete (up to a certain distance); these spatial interactions

are typically implemented with isotropic short-range excitatory and longer-range in-

hibitory connections, consistent with connectivity profiles measured in cortical net-

works [40].

One issue for CBMs is understanding how different training patterns affect map devel-

opment. For example, is it necessary that the training patterns have well defined edges,

similar to the ones that von der Malsburg used, or will other patterns work as well? And

perhaps more importantly, what types of patterns can we expect in V1 at the time an orien-

tation map first develops? For one, we already know that the establishment of an orientation

map does not require visual experience (see Section 2.1.1.1). This implies that for CBMs

to be correct, activity generated within the early visual system must be sufficient (e.g., reti-
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nal waves and thalamocortical oscillations). In the following section, we describe a CBM

that suggests the specific training patterns themselves are unimportant; instead, the only

relevant detail is their time-averaged correlations. This model makes specific predictions

about the types of correlations that should exist in the developing visual pathway.

2.2.1.1 Correlation-based learning

In 1986, Linsker first proposed the idea that orientation selectivity can develop based en-

tirely of the time-averaged correlation structure of training patterns [41]. Because the de-

tails of Linsker’s model are quite complex (his model includes seven layers of cells), we

describe a more recent version that has been proposed by Miller [42]. In addition to being

more concise, Miller’s model also adds biological realism by explicitly including ON–OFF

-center inputs and eye-specific inputs.

The key idea of Miller’s model is that synaptic weight changes are slow compared to

the rate at which training patterns are presented; therefore, the time-averaged correlations

of the patterns determine the weight changes. Based on this idea, he demonstrated that

correlations between units of the same center-type (ON–ON and OFF–OFF inputs) at short

retinotopic separations and of opposite center-type (ON–OFF inputs) at moderate retinotopic

separations lead to cells with oriented receptive fields (see Figure 2.8).3 To ensure that

nearby cells have similar orientation preferences, this model also included fixed lateral

interactions similar to the ones used by von der Malsburg.

Despite being able to generate an orientation map using only center-type correlations, a

few of the predictions of Miller’s model are inconsistent with biological data. For one, the

3Moreover, including binocular correlations can lead to matched orientation maps between the two eyes
in addition to ocular dominance columns. In this project, however, we only consider monocular orientation
maps.
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Figure 2.8: Center-type correlations for orientation selectivity
The model proposed by Miller learns an oriented receptive field (right) when the same
center-type inputs are coactive with adjacent inputs of the opposite center-type (top left).
These statistical correlations are summarized as a function of retinotopic separation (bot-
tom) [32].

power spectra of orientation maps generated by the model are low-pass (i.e., the power is

concentrated at the origin), whereas animal maps are distinctly band-pass [34]. Although

this difference is difficult to pick out when comparing the maps by eye, it is a rather serious

inconsistency: it stems from the fact that orientation domains do not repeat at periodic inter-

vals — suggesting that the model is lacking some crucial element. Another inconsistency

is that the subtractive normalization used to constrain synapses in the model is biologically

unrealistic because it often leads to saturated synaptic weights [35].

In summary, we have shown that CBMs can indeed account for the emergence of orien-

tation maps using only a few simple ingredients. One key prediction of these models is that

characteristic correlations between center-type inputs are required for map development.

However, it has not been possible to measure whether these detailed correlation functions

are present during cortical development due to experimental limitations.
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2.2.2 Alternative models

Throughout this chapter, we have repeatedly suggested that the current dogma in the field,

which suggests orientation maps are learned from internally generated activity patterns,

might be incorrect. Our discontent with this mainstream view stems from the fact that map

establishment remains stubbornly resilient to experimental manipulation. In this section,

we explore models that can account for map establishment without resorting to Hebbian

mechanisms.

The first model that we explore demonstrates that random sampling of the retinal mo-

saic can provide the initial orientation bias in V1 (Section 2.2.2.1). We contend that this

“haphazard wiring” model is more elegant than CBMs because it can achieve the same

result without activity-instructed learning. Next, we explore the possibility that reaction–

diffusion interactions can generate periodic patterns, which could serve as a chemical (or

molecular) scaffold for a developing orientation map (Section 2.2.2.2). Although pattern

formation is an elegant way to organize a system, it is currently not clear how chemical

patterns might determine the functional properties of neurons. The final model that we

describe is based on this same pattern forming principle, except now, the patterns are gen-

erated on the fly in a recurrent network and are represented as electrical (as opposed to

chemical) activity (Section 2.2.2.3). This model will serve as the inspiration for the re-

mainder of this thesis.

2.2.2.1 Haphazard wiring

Consider training a CBM many times starting from different random initial conditions, and

cataloging all of the afferent weights that lead to an orientation map (after training is com-
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plete). We can then ask the following question: What qualities do ‘trained’ afferents have

that others lack? It would quickly become clear that the only difference is that trained ones

ensure that nearby cells have similar profiles; the specific afferent weights themselves, how-

ever, would be entirely determined by the initial conditions (i.e., they would be stochastic).

So in essence, the process of learning can be thought of as randomly assigning cells with

selectivity preferences, and then training the network so nearby cells have similar random

assignments.

A model proposed by Ringach suggests that we can circumvent this tedious learning

process altogether. The basic idea behind his model is that simple cell receptive fields ob-

tain their selectivity by randomly sampling a noisy retinal mosaic (Figure 2.9a); this sam-

pling is akin to randomly assigning cells a particular orientation selectivity. Furthermore,

orientation selectivity tends to change smoothly across space (Figure 2.9b) because nearby

neurons sample nearby regions of the mosaic (via spatially decaying Gaussian functions

that model both the probability of making a connection and a connection’s efficacy). In

other words, this model replaces the complex process of learning with the simple process

of sampling a haphazard arrangement of afferent inputs — a clever and effective shortcut.

Ringach’s model offers an elegant strategy for creating an orientation map, however,

a number of the model’s details are currently inconsistent with data from animal maps.

First of all, the orientation domains in his model do not repeat at periodic intervals, which

is already apparent in Figure 2.9b; perhaps adding lateral connections would address this

issue. Second, this model can only account for the development of an orientation map for

one of the eyes (because each retina would have its own unique mosaic). Ringach proposes

that the contralateral eye sets the initial map (since these afferents are the first to arrive in

the cortex), and the ipsilateral afferents “just go for the ride” (through activity-dependent

learning). However, this explanation is inconsistent with reverse-suture experiments where
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Figure 2.9: Haphazard model of orientation selectivity
(a) Noisy retinal mosaics of ON and OFF center-type ganglion cells project to a layer of LGN
cells; RFs are modeled as isotropic two-dimensional Gaussian (shown as blue and red
disks). LGN cells connect to cortical targets with a Gaussian probability based on their
center locations, and the strength of each connection is also modeled as a Gaussian. The
resulting kernel of the cortical RF has distinct subregions and is elongated. (b) The pref-
ered orientation map for the cortical network reveals that selectivity changes smoothly[43].

the two eyes never receive simultaneous inputs and their maps are still in register [44].

Finally, his model suggests that smoothly changing orientation maps should be ubiquitous

in visual mammals (i.e., simply from sampling the retinal mosaic). However, it is known

that squirrels, rats, and mice, which all rely heavily on their visual sense, do not have

smoothly changing orientation maps.

2.2.2.2 Pattern formation using morphogens

Alan Turing first proposed in 1952 that simple reaction–diffusion models can create com-

plex patterns that bear resemblance to ones found in biology [45]. The equations that he

developed have been used to replicate the spots on a leopard’s coat, the stripes on a zebra’s

hide [46], and can even account for how these patterns change as an animal ages [47]. Ac-
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Figure 2.10: Chemical pattern formation
Reaction–diffusion equations can lead to (a) striped patterns that closely resemble ocular
dominance columns (originally discovered by Meinhardt [49]), and (b) spot patterns that
resemble a preference map to a particular orientation [46].

cording to Turing, these elaborate patterns are the result of interacting chemicals, which he

called morphogens. For example, one type of morphogen could result in the darkening of

hair (called an activator), whereas another type could bleach it (called an inhibitor); as these

morphogens diffuse across the animal’s coat, typically at different rates, their reactions with

each other can create intricate pigmentation patterns.

One intriguing possibility, which has surfaced in the literature in recent years, is that the

functional architecture of the cortex could be specified through a similar reaction–diffusion

process [30, 48]. For example, the patterns in Figure 2.10a show a striking resemblance to

ocular dominance stripes. A similar idea is that the spot-like patterns in Figure 2.10b could

lead to an orientation map; that is, one configuration of spots could correspond to a par-

ticular orientation preference, and shifted spot patterns could correspond to different pref-

erences. This idea would explain 1) why orientation maps are smooth (because the spots

have spatial extent), and 2) why orientation domains repeat at regular intervals (because the

spots pattern is periodic) — both features being natural consequences of reaction–diffusion

interactions.

The notion that a reaction–diffusion process creates a scaffold during cortical develop-
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ment is a rather compelling idea: For one, it taps into an extremely efficient design strategy;

all that is required to create the scaffold is the production of particular chemicals at the ap-

propriate developmental stages. Second, these chemical patterns (or their imprints) can

provide an immutable scaffold on which other features are organized, which could account

for the remarkable resilience of orientation maps to manipulations. Finally, the reaction–

diffusion process can unfold in the presence of many environmental constraints (different

size and shape V1 regions), and is therefore robust. Computer scientists, for example, have

recently used reaction–diffusion models to add texture to complex meshes without resort-

ing to sophisticated algorithms [46]. It is possible that evolution has been using this same

strategy to ‘texture’ the crumpled cortical sheet for a similar reason.

Despite the aforementioned benefits of using a reaction–diffusion process, there has

been no experimental evidence to date that suggests morphogens play a role in cortical

development — in fact, the mere existence of morphogens during development is still con-

troversial (although some evidence has recently emerged [50]). In addition, it is not clear

how morphogens might determine the functional properties of a neuron. One possibility is

that certain morphogens influence cell adhesion such that LGN afferents preferentially con-

nect along a particular axis. Another possibility is that NMDA receptors (or neurotrophic

factors) are influenced by morphogen concentrations, ultimately leading to functional dif-

ferences among neurons; this scenario would make it extremely difficult to untangle the

individual contributions of activity-independent and dependent mechanisms. Currently,

these ideas are speculative and would require experimental evidence to gain credibility.
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2.2.2.3 Pattern formation using neural activity

Thus far, we have shown that simple reaction–diffusion models can generate two-dimensional

patterns that look remarkably similar to V1 selectivity maps (eye and orientation preference

maps). This similarity, however, is deceptive: the patterns from reaction–diffusion models

correspond to chemical concentrations, whereas V1 maps correspond to neuron selectivi-

ties. And while it is certainly possible that chemical concentrations could be transformed

into functional selectivities (see the previous section for possibilities), there is currently

no experimental evidence to support this idea. What if we could cut out this middleman

entirely (the chemicals) and generate the patterns directly using neural activity?

In 2001, Ernst et al. proposed a model of V1 that cleverly bridged the gap between pat-

tern formation and orientation selectivity without using chemical interactions [51].4 Their

model substituted activator–inhibitor chemicals with excitatory–inhibitory synaptic con-

nections, and implemented spatial interactions (loosely analogous to chemical diffusion)

using Mexican-hat connectivity (local excitatory and distal inhibitory connections imple-

mented as a summed analog connection) (Figure 2.11a). The result is a two-dimensional

one-layer recurrent network that can form patches (or bumps) of neural activity when the

feedback is sufficiently strong (Figure 2.11b); not surprisingly, these bumps closely resem-

ble the spot-like patterns generated by a simple reaction–diffusion model (Figure 2.10b).

Similar to the other V1 models described in this section, the units in this network represent

cortical columns, and receive retinotopic afferent inputs (this model only considers a single

luminance channel). The inputs in this model, however, are rotationally symmetric and

remain fixed throughout the simulation (i.e., there is no feedforward orientation bias).

4We note that Ernst et al. did not frame their model in the context of reaction–diffusion models and
chemicals; however, we feel that their ideas are best understood as an extension of Turing’s original proposal.
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Figure 2.11: Connection profile and activity pattern
Recurrent network proposed by Ernst et al. (a) Normalized connection strength between
columns as a function of inter-columnar distance; green, red, and black correspond to
excitatory, inhibitory, and summed strengths, respectively. (b) Patterns of neural activity
form that resemble the spot-like patterns of reaction–diffusion equations [51].

Now that we can generate spot-like patterns directly using neural activity, the question

that remains is how do these patterns determine preferred orientation maps? Consider that

there are two requirements to achieve orientation selectivity from spot-like patterns: First,

different oriented inputs must elicit different configurations of spots. And second, repeated

presentations of the same inputs must yield roughly the same configurations (regardless

of the initial state of the network). From the point of view of a single column, these two

requirements ensure that its tuning curve is not flat (i.e., different inputs elicit different

responses), and its shape is statistically significant (i.e., the tuning curve shape is repeatable

for independent trials).

Suppose for the moment that the recurrent network is built to perfection; that is, the

properties of each cortical column are exactly matched (thresholds, time constants, and

synaptic strengths), and the connections between the columns are also identical as well

as symmetric. In other words, there is not even the slightest preexisting bias for activity

patterns to favor one location over another. For spot patterns to form (even transiently),

34



there must be winners (regions of spots) and losers (inhibited regions); in this egalitarian

network, however, no region is willing to concede defeat, which leads to the trivial result

that no patterns can form. This scenario where no spatial patterns form is quite fragile

— even the slightest favoritism will break the symmetry and cause the entire network to

choose regions of winners and losers.

Probing the responses of this ‘perfect’ network to oriented inputs reveals that columns

have non-flat tuning curves for individual trials. Before each trial, we impose favoritism by

starting the network off with a randomly chosen set of initial conditions; it quickly evolves

into a random pattern of bumps. These non-flat tuning curves are simply the consequence

of bumps interacting with the oriented inputs, preferentially activating particular regions.

However, the shapes of these curves will not be consistent from trial to trial. Two factors

contribute to the inconsistency: First, the preliminary configuration of bumps is entirely

determined by the random initial conditions. Second, the movements of individual bumps

are unbiased (i.e., they have an equal likelihood of moving in any direction); this results in

the uninteresting case where columns are not really ‘selective’, but become active simply

by chance occurrences.5 Both of these factors are a direct consequence of the fact that there

are no innate biases within the network due to its immaculate perfection.

How can we achieve robust selectivity so that columns respond in a somewhat consis-

tent manner? One possibility is that the intracortical connections could provide an innate

bias which constrains network activity. For example, bumps could be ‘tethered’ thereby

confining them to certain regions regardless of the initial conditions; in addition, these

pinned bumps might prefer to move in particular directions, resulting in consistent inter-

5Note that we are not suggesting bumps are unconstrained and simply follow their inputs. On the contrary,
bumps motion is tightly constrained due to interactions with neighboring bumps (assuming the recurrent
feedback is strong enough); these interactions, however, will not have any inherent bias that is anything but
stochastic.
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actions with different orientations. Resisting the temptation to bestow these biases via

learning synapses (or systematic anisotropies as in [52]), Ernst et al. shrewdly added ran-

dom jitter to the strengths of the recurrent connections. And why not — it seems rather

foolish to suppose that these connection strengths will be matched in practice.

To test their idea that imperfections can lead to repeatable preferred orientation maps,

Ersnt et al. simulated a 128 × 128 recurrent network with noisy Mexican hat connections.

They presented sixteen sinusoidal gratings to the network, each with a different direction

(spanning the full circle), and computed the network responses to the eight different ori-

entations by averaging the responses to opposite directions (Figure 2.12a). And voila, dif-

ferent oriented inputs led to unique configurations of spot-like patterns and these patterns

were repeatable (not shown); the resulting preferred orientation map is shown in Figure

2.12b. Similar to animal maps, this map has smoothly changing orientation selectivity,

and selectivities repeat at regular intervals; as we described earlier in Section 2.2.2.2, these

characteristics are a direct result of the spot-like patterns.

2.2.3 Physical constraints

The models that we have described in this section demonstrate that it is quite easy to gen-

erate an orientation map — at least in the context of software simulations. Map structure

can arise from: 1) activity-instructed learning using Hebbian synapses, 2) haphazard sam-

pling of a noisy retinal mosaic, or 3) chemical/electrical pattern formation. But which of

these scenarios is best suited for physical implementation? To help answer this question,

we explore some of the factors that may constrain orientation map establishment in the

developing cortex; our focus is on component variability, which we believe is likely to be

an important constraint. Based on our discussion, we conclude that CBMs would not fare
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Figure 2.12: Orientation selectivity using neural pattern formation
(a) A network with noisy recurrent connections generates unique patterns based on the
eight different input orientations. (b) The corresponding angle map of prefered orienta-
tions [51].

well in a large-scale physical system and rule them out for our chip model. Models that

embrace component variability, on the other hand, seem like more plausible candidates.

Orientation map development unfolds in the presence of constraints. Certain factors in

the cortex may only slightly constrain map development, whereas others may be highly in-

fluential. The extent to which different factors affect development are currently unknown,

however, we believe that they hold the key to understanding how and why the cortex de-

velops the way it does. And more practically, these constraints can be used to evaluate the

verisimilitude of different cortical models. Although difficult to quantify, we suggest that

variability is likely to be a crucial constraint throughout the developmental process.

The cortex likely faces similar design challenges as silicon chips, although synaptic

density is currently a factor of 100 higher than transistor density (i.e., there are a 100

million synapses per cubic millimeter of cortex compared to 1 million transistors per square

millimeter of silicon). One of the biggest challenges facing modern day chip designers is
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component variability [53]. As more transistors are crammed into smaller spaces, device

characteristics become extremely difficult to control. However, whereas chip designers use

abstraction to hide component variability, it is evident at many different scales in biology:

At the most basic level, gene expression is itself stochastic (see Figure 2.6). Furthermore,

this stochastic scaffold serves as the basis for more complex structures, which ultimately

leads to fully organized cortical networks. Even though it is currently unknown the extent

that this variability affects development at different stages, it is incontrovertibly pervasive.

The question that we pose for CBMs is whether realistic sources of variability would

‘swamp out’ the delicate process of learning?6 Because software models exist in a rather

artificial world, their ‘virtual’ components typically have identical properties. What if:

1) inputs are randomly drawn from a noisy retinal mosaic (as suggested by Ringach), 2)

neurons have spontaneous firing rates that vary by a few orders of magnitude, and 3) the

Hebbian mechanisms themselves are variable across neurons? We suggest that in these

situations, CBMs would essentially learn these inherent biases, and map structure would

not be instructed by the training patterns. If this is the case, it would seem rather superfluous

for the cortex to resort to Hebbian learning when simpler mechanisms can achieve a better

outcome.

From our perspective, its seems as if CBMs have conveniently left out a number of

likely constraints that might exist in the developing cortex. While these constraints could be

a bane for map formation, we argue that they could be a boon by providing a deterministic

prepattern for the final map — thereby rendering activity-instructed learning unnecessary.

In our opinion, this prepattern would severely compromise the idea that map structure is

specified from genetically prespecified training patterns.

6To our knowledge, such tests have not yet been performed.
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The models proposed by Ringach and Ernst et al., on the other hand, are unique in that

they embrace component variability. Unlike CBMs, which can endow a perfectly matched

network with functional properties, these models utilize the innate network biases as their

scaffold. They boldly raise the question: Why waste important resources to learn a map

that is already present?
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Chapter 3

Neuromorphic bump model

3.1 Pattern formation in V1

Our goal is to construct a neuromorphic model of V1 that can account for the ontogenesis

of an orientation map. But which of the models surveyed from the last chapter should we

base our chip design on? In our opinion, the most convincing model to date is the one

proposed by Ernst et al. from Section 2.2.2.3 (pattern formation using neural activity): not

only is it able to reproduce realistic looking orientation maps using nothing more than a

noisy recurrent network, but it is also ripe for implementation. We refer to this model (and

its derivatives) as the ‘bump model’.

We focus on the bump model for two reasons: First, it does not rely on learning mech-

anisms for map establishment, which can explain why orientation selectivity remains re-

markably resilient throughout development.1 And second, the bump model utilizes innate

1Ringach’s model also does not require learning to establish a map — but only for a single eye. To align
the map between the two eyes in his model, learning is required.
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variability to determine map structure; this opportunism is relevant for us since component

variability is pervasive in silicon chips. In contrast, other developmental models fight an

uphill battle to endow cells with selectivities: they must either tolerate, or work against the

innate biases of the physical system [54].

Despite the admirable qualities of the bump model, the parallels between this model and

the primary visual cortex are still unconvincing. For one, the bump model is built around a

one-layer recurrent network that collapses excitatory–inhibitory connections into a single

analog interaction (for computational simplicity); this simplification, however, is biolog-

ically unrealistic because excitatory–inhibitory interactions require distinct neuron types.

This detail is more than academic: we will show in Chapter 6 that a two-layer excitatory–

inhibitory recurrent network leads to complex and counterintuitive dynamics that are not

predicted by the simpler one-layer network — and these differences significantly affect

map formation. Another issue is that neural dynamics of a column are reduced to rate-

based equations (again for computational simplicity). But this simplification ignores the

rich temporal dynamics of spiking neurons, which can affect pattern formation in a recur-

rent network; for example, Laing and Chow demonstrated that a bump of neural activity

can lose stability when activity becomes partially synchronized [55].

The primary criticism of the bump model is that the input consists of luminance chan-

nel signals — it is not obvious how to replace them with ON and OFF rectified channels.

For example, consider for the moment that ON and OFF afferent pathways terminate in

distinct sublayers in V1, each within their own recurrent network. In this case, the two

networks would have their own innate (noise) connection profiles and the bump patterns

would form at independent locations (for the same input orientation). Consequently, there

is no guarantee that ON-driven maps would line up with OFF-driven maps, which could

result in conflicting orientation signals at the same retinotopic locations (Figure 3.1); these
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Figure 3.1: Hypothetical ON–OFF segregation
Responses of two recurrent networks to the same oriented input, where each network has
its own noisy connection profile (shown to the right of each network). Each network is
driven by either ON or OFF afferents (green or red, respectively) that terminate in different
cortical layers at the same retinotopic positions. Because bump patterns form at inde-
pendent locations, the responses of the networks do not match when they are overlayed.
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Figure 3.2: Two layer recurrent network
Analog interactions from the Ernst et al. model are replaced by separate EXC (excitatory)
and INH (inhibitory) layers: circles represent neurons, curved lines represent axon arbors
that end in excitatory synapses (v shape) or inhibitory synapses (open circles). In this two
layer network, EXC–INH cells make reciprocal connections, and EXC cells are recurrently
connected (left). Connections between neighboring cells (divergence) are also shown to
the right. In this example, bumps form (highlighted cells) in regions when the input lumi-
nance is high.

conflicting orientation signals would be inconsistent with the basic principle of columnar

organization. Our hypothetical example illustrates the complications that crop up when

including realistic inputs to the bump model; it is important to note, however, that ON and

OFF pathways do not segregate into separate cortical lamina.

We make three modifications to the bump model to address these aforementioned is-

sues. The first two modifications are straightforward and are achieved by: 1) expanding the

one-layer recurrent network into separate excitatory and inhibitory layers (Figure 3.2); and

2) replacing the rate-based equations with integrate-and-fire (spiking) neurons (described

in Section 3.2). Our third modification, which is more complicated, is to replace the lu-

minance channel with ON and OFF rectified channels; we explain this innovation in the

following section.
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3.1.1 Complex cells solve a complex problem

To our knowledge, orientation maps observed in the cortex are sign-independent; that is,

their layout does not change depending on whether light (ON-center) or dark (OFF-center)

bars are used as stimuli. In fact, if orientation selectivity did shift based on input sign, the

idea of a cortical columnar architecture would be severely compromised. The question that

we explore here is how do we incorporate ON and OFF channels in the bump model (which

currently has a single luminance channel) to create a sign-independent orientation map? As

we described in our previous example, using two parallel recurrent networks will not work

because these networks will have their own distinct maps due to their unique connection

profiles (see Figure 3.1).

To help us with our task, recall that the orientation map is seeded by innate network

biases. In other words, the neural patterns (bumps) interact with stimuli the same way each

time because they experience the same innate biases. Based on this insight, we can also

ensure that neural patterns interact with the ON and OFF channels the same way each time by

subjecting each channel to the same innate biases. We accomplish this by computing both

ON and OFF -driven maps in a single recurrent network. With our modification, each EXC

cell is driven by both ON and OFF channels at each retinotopic locations (shown in the top

half of Figure 3.3a). The result is that bumps interact with stimuli in a repeatable manner,

regardless if the stimuli is made up of light or dark bars. Consequently, the orientation

map generated by this network will be sign-independent, consistent with orientation maps

observed in V1.

The key to generating a sign-independent orientation map in the bump model is treating

both channels the same way. However, combining ON–OFF inputs throws away information

about contrast sign. For example, the response of an EXC cell to an oriented bar would not
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reveal whether the bar was light or dark. We recover the sign by creating two parallel

read-out networks, one for ON cells and one for OFF cells (shown in the bottom half of

Figure 3.3a); it is important to note that these networks do not affect pattern formation

in the EXC–INH recurrent network. These read-out cells derive their responses from two

separate signals: an orientation-selective signal from the EXC–INH network that indicates

the presence of a bump (independent of sign), and an ON–OFF selection signal that chooses

the appropriate response sign. The flow of computation is depicted in Figure 3.3b.

The astute reader may have noticed that the different cells we use in our bump model

(sign-dependent and sign-independent) bear a resemblance to the simple and complex cell

classifications first described by Hubel and Wiesel. In particular, Hubel and Wiesel classi-

fied cells with well-defined ON–OFF subregions as simple (similar to our ON–OFF cells that

receive push-pull input), whereas cells with no identifiable subregions were classified as

complex (similar to our EXC–INH cells that are excited by both channels). The terms ‘sim-

ple’ and ‘complex’ reflect a feedforward model of visual processing — stemming from

the idea that simple cells first obtain their selectivity from aligned thalamic cells, and the

outputs of simple cells combine to create complex cells [56]. In this feedforward view,

complex cells are higher in the hierarchy of visual processing because their computation

(i.e., being selective to an oriented bar independent of the bar’s details) is ostensibly more

complex. In our model, however, ‘complex’ cells have an entirely different role: their pur-

pose is to ensure orientation maps are sign-independent (i.e., patterns that form are subject

to the same noise profile regardless of sign). The purpose of ‘simple’ cells in our model is

to recover the sign information that is lost in the orientation computation.
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Figure 3.3: Microcircuit
(a) The connections for the modified bump model with sign-independent cells (EXC–
INH), and sign-dependent cells (ON–OFF). (b) A sinusoidal input causes bumps to form
(highlighted cells) in regions where the luminance is both light and dark. These sign-
independent bumps seed bumps in the ON–OFF read-out layers; bumps that match the
sign of the input survive, whereas other bumps are extinguished (faded cells) via push-pull
inhibition.

3.2 Neuromorphic models

Exploring a detailed large-scale recurrent network is a computationally daunting task that is

poorly suited for software modeling. Previous attempts to model such networks in software

have sacrificed low-level details that are known to affect neural dynamics (e.g., they sim-

plify spiking with rate-based equations) [55], and have explored only a handful of network

states [51, 57]. For these reasons, we have chosen to build our network in silicon using

a neuromorphic implementation [1]. This approach has the advantage of: 1) operating

in real-time; 2) retaining important low-level details (i.e., current flowing through MOS

transistors are analogous to ionic currents in a biological membrane); and 3) supporting

large-scale networks (≈ 10, 000 neurons).
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Figure 3.4: Circuit blocks
Transistor implementations for a diffuser, synapse, and neuron are shown along with their
input–output interactions.

3.2.1 Neuromorphic building blocks

We build our neuromorphic bump model using three canonical transistor circuits, which are

designed to capture the behavior of common neural components (Figure 3.4). The circuits

that we describe have been used before in previous neuromorphic systems; the novelty is

how we will bring them together in Section 3.2.2 to build our unique microcircuit.

These circuits perform the following functions:

• A diffuser, which models axonal arbors, spreads synaptic current to local regions in

space with exponential decay [58]. Analogous to resistive divider networks, diffusers

are able to efficiently distribute currents to multiple targets. Each diffuser node con-

nects to its six neighbors (although only four connections are shown for simplicity)

through transistors that have a pseudo-conductance set by sr, and to its target site

through a pseudo-conductance set by sg; the space-constant of the synaptic decay is

set by relative levels of sr and sg.

• A synapse converts spikes into postsynaptic currents with biologically realistic tem-

poral dynamics. Our synapse achieves this by cascading a current-mirror integrator
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circuit [59] with a log-domain low-pass filter. The current-mirror integrator has an

impulse response that is inversely proportional to time (the decay rate is set by the

voltage tc). This time-extended current pulse is then fed into a log-domain low-pass

filter (equivalent to a current-domain resistor-capacitor circuit), which adds a rise

time and exponential decay set by the circuit’s time constant determined by te.

• A neuron integrates excitatory and inhibitory currents on its membrane capacitor

and generates a spike (brief voltage pulse) after reaching threshold. Diffusers either

inject current (excitatory), or siphon off current (inhibitory) through a current-mirror.

Spikes are generated by an inverter with positive feedback (modified from [60]), and

the membrane is subsequently reset by the spike signal.

3.2.2 Neuromorphic microcircuit

Based on the diffuser, synapse, and neuron circuit blocks presented in the previous section,

we are now able to piece together the bump model’s microcircuit (Figure 3.3). For visual

clarity, we divide the microcircuit into three sections and label the connections between

them: the first section is for the input stage (top panel), the second is for the recurrent

network (middle panel), and the third is for the sign read-out network (bottom panel). Each

panel depicts two adjacent nodes along with their neighboring connections.

One way to implement EXC–EXC recurrent connections is to tap off of the EXC–INH

diffuser network (the E+ signal), and feed it back directly into EXC cells; note that the

feedback signal (E+) has a controllable gain factor indicated by the × bubble. It turns

out, however, that this solution is problematic. The crux of the problem is an autapse (self-

connection) is introduced that is weighted by the peak of the exponential. In practice, this
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autapse resulted in extreme positive feedback and limited the network’s operational range.

An alternative solution is to re-route EXC spikes sent off chip back into the chip as synaptic

events, targeted to neighboring neurons; we describe this digital fanout in more detail in

Section 4.1.1. Direct self-excitation is still present through the input diffusers, but the

strength of the autapse is reduced. In this case the gain factor is set to 0 thereby eliminating

on-chip recurrent feedback.

One unintentional consequence of implementing feedback through off-chip connections

is that the rerouted EXC spikes must enter the chip via the ON–OFF afferent pathway. This

afferent pathway, however, is prewired to implement a push-pull interaction between ON

and OFF channels, which essentially causes the recurrent EXC spikes to cancel themselves

out in the read-out network. The result is that these cells are mostly inactive, rendering the

read-out network somewhat unusable. For these reasons, we do not explore the responses

of the read-out network in any detail in this project. Although unfortunate, eliminating

the read-out network is tolerable because it does not affect the pattern formation in the

recurrent network in any way.

3.3 Bump chip implementation

We fabricated our bump model in silicon using the TSMC (Taiwan Semiconductor Manu-

facturing Company) 0.25µm 5-metal layer CMOS process. The final chip, which we call

the bump chip, consists of a two-dimensional core of 48 × 48 pixels (microcircuits) and

is surrounded by asynchronous digital circuitry that transmits and receives spikes in real-

time; we describe the off-chip communication links in Section 4.1.1. Our design packs

nearly 460,000 transistors in 10 mm2 of silicon area and has 9,216 neurons — the largest
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Figure 3.5: Silicon microcircuit
Bump microcircuit built from diffuser, synapse, and neuron circuits; we also use two bubble
operators which invert the sign of the current (−1) or multiply it by a gain factor (×). Circuit
parameters for each circuit block (defined in Figure 3.4) are referred to as typepar , where
type is shown in the right of the network block, and par is labeled in the circuits (e.g.,
the inhibitory cell synapse parameter A is referenced as IA). The network parameters (in
volts) that we use throughout this project (except where noted) are: for INH, Isr = 1.844,
Isg = 1.897, Ite = 2.374, IA = 1.45, Itc = 0.061; for EXC, Esr = 2.046, Esg = 2.045, Ete = 2.4,
EA = 1.855, Etc = 0.052; for their interaction, E2Isr = 2.051, E2Isg = 2.098, E2Ite = 2.387,
E2IA = 1.602, E2Itc = 0.05, and Vdd = 2.5.
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Figure 3.6: Bump chip layout

number of mixed analog–digital neural circuits fabricated to date.

We transformed our transistor circuits into a full-blown chip in two steps: First, we

used a CAD program to draw physical transistors and their connections based on the cir-

cuit schematics (a process called ‘layout’). In our case, we transcribed the microcircuit

from Figure 3.5 since this circuit represented the smallest repeatable unit (or pixel) in our

network. The layout for our pixel, along with its dimensions, is shown as an inset in Figure

3.6.

The second step was to compile the chip, which involves 1) tiling the pixel into a two-

dimensional core, and 2) building transceiver circuitry around the core to handle off-chip

spike communication. Luckily, this step was automated using custom place-and-route soft-

ware called ChipGen (currently maintained by our lab) [61]. The layout for the fully com-

piled bump chip, along with pads, is shown in Figure 3.6. Notice that the chip has more

than a 2:1 aspect ratio; this non-standard shape was chosen so all 23 analog biases would

fit along the top edge, thereby eliminating the need for pads on the bottom. Without these

bottom pads, we were able to increase the size of our core by nearly 30%!
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Chapter 4

Orientation maps in silico

In this chapter, we present results from our chip model of V1.

We begin with an overview of our custom hardware–software setup; this setup allows us

to simultaneously present stimulus patterns to our chip while recording the network activity,

all in real-time (Section 4.1). Next, we show that the chip responds selectivity to oriented

gratings, and this selectivity is repeatable for a majority of the cells; this result confirms that

innate transistor mismatch can sufficiently constrain network activity so interactions with

different orientations are consistent across trials (Section 4.2). Finally, we quantify the

selectivity employing two different metrics: normalized vector magnitude and information

(Section 4.3).
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4.1 Chip testing

Our interest in the establishment of cortical maps has led to the creation of the bump chip

— a large-scale model of V1 implemented in silicon. Before we explore how the bump

chip responds to different input patterns, which is the focus of the rest of this chapter, we

first describe our experimental setup. In our experience, the setup is just as important as

the chip model itself: a well-designed setup can provide the flexibility of a software model

in a real-time setting.

Past neuromorphic setups were built in a rather ad hoc manner, often using sophisticated

(and expensive) equipment originally intended for debugging microprocessors and not for

studying neural systems. While these setups suffice for small-scale neuron chips, they do

not perform well for larger systems. This is certainly the case for us: For one, the bump chip

is the largest collection of mixed-analog–digital neural circuits that has been fabricated to

date, and accordingly, it has significant bandwidth requirements. Moreover, to explore the

bump chip’s large parameter space, we need to visualize network activity (e.g., selectivity

maps, spike rasters, etc.) while interactively changing the parameters; features not offered

by past setups. In this section, we present our particular experimental setup that was built

to meet our requirements.

4.1.1 Setup

Our setup must perform the following tasks: 1) stimulate the chip’s synapses with ar-

bitrary patterns, 2) record the chip’s activity (at multiple time resolutions), 3) visualize

network activity (both processed and unprocessed), and 4) implement recurrent excitatory

connections (fanout). Here, we describe how we implement these features. We start at the
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lowest-level, describing how spikes are transferred to and from our chip. Then we move to

the board-level, where spike events are processed and routed to their appropriate locations;

this board-level spike processing is handled by an off-the-shelf reconfigurable chip (pro-

grammable logic). Finally, we present the back-end of the system, built around a graphical

user interface (GUI) that can run on most modern PCs; the GUI communicates with our

board through a standard USB2.0 interface.

4.1.1.1 Chip communication

Our chip has two independent links: a transmitter link that implements axonal projections

from our neurons, and a receiver link that implements projections to the neurons’ synapses.

The links use an address-event representation (AER) [62], which specifies the source–

destination of each projection with a unique row and column address.1 Signaling an axon

event (i.e., a spike) takes an address-event link 40 nanoseconds, which corresponds to a

max rate of 25 million events/sec; therefore, an AER link can faithfully model hundreds of

thousands of axons in real-time — ensuring that events will reach their destination within

1ms (the timing precision of a biological axon).

4.1.1.2 Board-level spike processing

At the board-level, the transmitter and receiver AER links of the bump chip connect to a

field programmable gate array (FPGA) chip, which in our case is programmed to process

spike events (Figure 4.1); an FPGA is a large collection (hundreds of thousands) of pro-

grammable devices that can be configured offline to implement arbitrary logic functions.

1The specific protocol of AER has evolved significantly since its original conception; the bump chip, for
example, can send a burst of events that originate within the same row using a word-serial protocol. For
specifics on the latest standards, please refer to [63, 64].
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14 cm

Figure 4.1: PCB test setup
Image of our populated printed-circuit board that was designed to test the bump chip (Crtx).
The heart of the board is a programmable logic chip (FPGA), which coordinates digital com-
munication between the transmitter and receiver of the bump chip, a memory chip (RAM),
and a USB2.0 link (handled by a second board, which is not shown). The parameters of
the bump chip are set by two rows of adjustable voltage sources (Biases).

We have chosen to design our board around an FPGA, instead of using a traditional micro-

controller, because the FPGA’s hardware can be customized to process spikes; a microcon-

troller’s hardware, on the other hand, is designed for general computing and the additional

overhead severely limits real-time spike processing.

We present an overview of the functions of our board:

1. Communicate with PC via USB2.0

Our board provides bidirectional communication between the bump chip and a PC

using a USB2.0 link (via a second USB board, which we do not describe here). In

brief, we stream address-events to and from a USB chip (Cypress FX2), which stores

them in a pair of buffers (4x256x16 bit FIFOs), one pair for each direction. When a
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buffer fills, it is transferred to–from a PC at a high-rate (we achieve 7 million spike

events/sec); while one buffer is being transfered, the other buffer stores the incoming

events, resulting in near seamless transfers. For a more comprehensive description

of how address-events are sent over USB2.0, please consult [65].

2. Inject timing events

We inject timing events into the transmitter’s event stream once every 50 microsec-

onds. These timing events serve two functions: First, they are used for plotting (spike

rasters, etc.), and for analyzing the data offline; without them, we can only determine

the relative order of spikes and not their precise times. Second, the timing events

set the lower bound on the frame rate of our GUI (described in Section 4.1.1.3). For

example, the GUI can only update when it receives a buffer from the USB chip —

however when activity is sparse (e.g., the chip is barely firing), the buffers might take

a long time to fill up. By injecting timing events at regular intervals, we are able to

ensure that the buffers will fill at minimum rate.

3. Deliver synaptic events on time

The PC can send blocks of data (buffers) to our board (via USB), but the timing

of these buffers is not consistent. As a result, the PC can not be used directly to

stimulate our synapses. For example, consider the case where we wish to stimulate a

patch of neurons staggered by exactly 50ms: if each epoch exactly fills a buffer, we

have no control when these buffers will arrive; in fact, the PC sends them as fast as it

can as determined by the operating system, and the jitter is typically on the order of
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milliseconds (but it can be indefinite if the operating system is busy). Our solution

is to send both the locations and the times of the synaptic events from the PC — the

FPGA is then responsible for ensuring the events are delivered at their appropriate

times. Returning to our previous example, we would send a patch of neurons along

with their times. As long as the PC sends these buffers fast enough so that there

are always events in the queue (an easy constraint to meet), the delivery times can be

near perfect (at the resolution of 50 nanoseconds, which is determined by the FPGA’s

clock frequency).

4. Implement fanout with AER

The final function of our board is to implement recurrent excitatory connections

(EXC to EXC) using address-events. In our system, an off-chip random-access mem-

ory (RAM) stores the addresses of up to 64 postsynaptic cells associated with each

presynaptic cell (2,304 of them). Each table of 64 comprises either the addresses of

the postsynaptic cells (stored consecutively starting at 1), or a reserved address (stop

event), which indicates that there are no more connections; the location of each table

in the RAM is indexed by its associated presynaptic cell (e.g., the postsynaptic targets

of neuron 4 are stored in the 4th table, etc.). To achieve a fanout, each presynaptic

EXC event initiates a read sequence that copies the appropriate postsynaptic events

from external RAM memory to local memory located on the FPGA. The entries that

are not stop events are sent to cortex chip’s receiver, where they are merged with the

incoming synaptic events en route from the PC.

Our fanout implementation is the first of its kind that allows each presynaptic cell

to connect to an arbitrary number of postsynaptic cells (as long as the total number

of connections per cell is less than 64); past implementations required that synaptic
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spread was constant. Initially, we wanted the flexibility to reduce (or increase) the

amount of recurrent feedback each cell receives — possibly limiting the feedback of

overactive cells. We ultimately abandoned this idea because it was not clear how to

choose the number of connections each neuron should receive, without making rather

arbitrary assumptions. Therefore, our board only implements six nearest-neighbor

connections for each cell.

4.1.1.3 GUI

With our custom board, we now have the ability to stream spike events in real-time between

our chip and a software application (programmed in Microsoft Visual C++); this GUI han-

dles the high-level functions of our setup, allowing us to visualize chip activity (e.g., pro-

cessing and plotting incoming spikes in real-time), saving raw and processed spikes, and

coordinating the experiments (e.g., presenting sequences of oriented gratings). These high-

level functions have the potential to hold up board-level communication — if the buffers

fill up faster than the GUI can perform its tasks (e.g., updating the screen). Therefore, we

use a commercial USB driver from Thesycon, which provides us with the ability to probe

the status of the USB chip’s buffers (both input and output) without holding up our GUI.

With this driver, our GUI is free for the majority of the time to process, plot, and save spike

data — occasionally being held up to copy filled buffers to–from memory.

To run a typical experiment, our GUI follows the sequence specified within a table,

which is defined within our source-code. The table includes: 1) the locations of the stim-

ulus files (which contain synaptic events and times), 2) the sequence of the stimulus pre-

sentations, 3) the desired timing resolution for the saved data, 4) the locations of the output

files, and 5) the desired visualization of the data (spike rasters, activity maps, selectivity
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Chip activity Spike rasters

Activity for 4 oriented gratings Preferred orientation map

500ms

Figure 4.2: GUI
Screen shot of the real-time GUI during a typical experiment.

maps, etc.). A screenshot of one such experiment (Figure 4.2) shows the activity of the

chip across space, saved activity for four different oriented gratings, spike rasters for one

column of neurons, and the resulting preferred orientation map. These GUI components

are shown here to demonstrate our real-time setup; we describe their use in more detail in

the following chapters.

4.1.2 Experimental procedure

To explore the orientation selectivity (OS) of our network, we present full-field gratings

to the chip and record the resulting responses, following a procedure similar to imaging

experiments in V1. Of particular interest are the trial-to-trial network responses, and their

averages, which are traditionally referred to as single condition maps (where each condition

corresponds to a different orientation).

We perform our experiment in the following steps:
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1. Create drifting gratings

First, we create two-dimensional drifting sinusoids (S) that are defined for positions

{yi, xi} and time t by:

Si(t) = cos
(xicos(θk) + yisin(θk) + ωt

λ

)
, (4.1)

where θk is orientation, λ is the period, and ω is the speed. Next, we separate S into

positive (S+) and negative (S−) channels:

S
+

i (t) = max(Si(t), 0) (4.2)

S
−
i (t) = |min(Si(t), 0)|. (4.3)

Note that each channel is defined to be strictly positive (luminance). For one set

of experiments, we will use these half-wave rectified sinusoids as the input to our

network (after they are transformed into spikes). The majority of our experiments,

however, use square-wave gratings (G), which are created by applying the following

non-linear transformations:

{G+
i (t), G−

i (t)} =





1 if {S+
i (t), S−

i (t)} > c,

0 if {S+
i (t), S−

i (t)} ≤ c,

(4.4)

where c sets the inter-bar distance. We will show later on that both square-wave and

sinusoidal gratings lead to similar results — the square-wave gratings are preferred
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because they drive the bumps more effectively (shown in Section 4.2.2).

2. Generate afferent spike trains

The next step is to transform the grating stimuli into afferent spikes trains that can

drive our cortical network. We accomplish this by generating ON and OFF spike

events using Poisson event generators (simple neuron model) that are modulated by

grating waveforms; the resulting events project retinotopically to the ON and OFF

synapse circuits on our chip.

The probability that a spikes occurs in a given time interval is:

{pON
i (t), pOFF

i (t)} = {G+
i (t), G−

i (t)}Fdt, (4.5)

where F is the peak event rate, and dt is the length of the interval. We determine

an event occurred by drawing numbers with equal probability from the interval [0, 1],

denoted by ui(t), and assigning spikes to the subset locations where ui(t) ≥ 1−pi(t).

This procedure approximates a Poisson point process when p is small.

We use the following parameters for gratings: λ = 16 pixels, ω = 32π pixels/s

(1Hz temporal frequency), c = 0.8, and θk = πk/8 − π for k = 0, . . . , 16 (-180 to

180 degrees); and for spike generation: F = 117Hz for sinusoids, F = 183Hz for

square-waves, and dt = 0.5ms. The value of F is chosen so that events are generated

at a mean rate of 75Hz; this choice results in the cortical cells receiving synaptic

events at a mean rate of 75Hz (recall that cortical neurons are driven by both ON and

OFF events). These spike-events are computed off-line and the results are saved into
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files that specify the locations and times of the events.

3. Stimulate and record

The final step in our experimental procedure is to drive our chip with the precom-

puted afferent spike trains (step 2), while recording its responses (for a review on

the detailed real-time setup, please refer to Section 4.1.1). For each experiment, we

choose a trial duration D (i.e., how many grating cycles are presented in sequence),

the number of repetitions R, and the set of stimuli k (i.e., which grating directions

are used). Then, during each stimulus presentation (direction θk and repetition r), we

record the number of spikes that cell i elicits to cycle t, and denote these spike counts

as fi,k(t, r).

We obtain single condition maps (SCMs) by averaging the network activity over

each trial to a particular stimulus condition. Formally, we compute:

Ti,k(r) =
1

D − 2

D∑

t=3

fi,k(t, r). (4.6)

Note that we disregard the first two cycles of each trial, giving the network 2s to form

bumps. Often, we refer to 〈Tio,k〉 (averaged across repetitions) for a particular cell io

as its tuning curve; from this point of view, our SCMs are the collection of tuning

curves for all the cells in the network, and we use these two terms (SCMs and tuning

curves) interchangeably. In this regard, our terminology is different from the imaging

literature; each pixel of their SCMs represents the collective activity of hundreds of

neurons.
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4.2 Innate selectivity

In this section, we explore how the bumps in our heterogeneous network interact with ori-

ented stimuli. Our starting point is to examine the SCMs directly (Section 4.2.1). After

verifying that our SCMs are in fact selective (and reliably so), we then explore how ori-

entation preferences are distributed across space by plotting them as a color-coded map

(Section 4.2.2).

4.2.1 Orientation selectivity

Before applying traditional techniques to characterize the chip’s selectivity (Sections 4.2.2

and 4.3), which involve collapsing the SCMs into smaller (more manageable) datasets, we

first characterize the SCMs directly. Our intention is to get a feel for the raw SCMs (i.e.,

the tuning curves), since they are the basis for the more traditional measures that we use

later on.

Our first order of business is to simply visualize the SCMs so that we can get a rough

estimate of the chip’s selectivity (Section 4.2.1.1). After verifying that different stimuli

do in fact lead to noticeably different maps, we then characterize the reliability of the

responses to the same stimulus (Section 4.2.1.2), and to different stimuli (Section 4.2.1.3)

for independent trials; in this analysis, we consider all the pairwise combinations between

the different SCMs. After confirming that a subset of our cells have non-flat (statistically

significant) tuning curves, we finally explore the average trend of the tuning curves (Section

4.2.1.4). Specifically, we test that the differences in cell responses are modulated by the

differences in orientations for each stimuli pair; a smooth mapping between responses and

orientation difference is observed in biological tuning curves.
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Figure 4.3: Single condition maps
SCM elicited from a horizontal (a) and vertical (b) grating. Cell responses from (a) shown
as a histogram with logarithmic scale (c).

4.2.1.1 Visualizing SCMs

In this section, we check that our network is selective to orientation by visually inspecting

the SCMs (Ti,k). For instance, we plot 〈Ti,k(r)〉 for two orthogonal orientations, k = 0

(Figure 4.3a) and k = 4 (Figure 4.3b), which correspond to -180 and -90 degree gratings

(square-wave), respectively. For this experiment (and the rest of the experiments in this

section), the trial duration (D) is 100 cycles, and the number of trial repetitions (R) is 50;

that is, the tuning curve of each cell is an 8 × 50 table where the eight rows represent the

different orientations and the 50 columns represent the different trials, where each trial is

the mean rate over 98 cycles (D − 2).

These two SCMs in Figure 4.3 look almost identical, suggesting that our network is

not very selective. However, before we throw in the towel, we should also examine the

distribution of the underlying responses across cells (Figure 4.3c). This histogram reveals

that cell-to-cell firing rates vary by almost 2.9 orders of magnitude, with a small percent-

age of cells reaching rates up to 800Hz. On the other hand, the stimulus-to-stimulus rate

changes for each cell vary by only 1.8 orders of magnitude (1 to 70Hz, data not shown). In
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other words, the intensities of our SCM plots are determined by the cell-to-cell variations

across the network, and not across stimuli. One solution is to simply plot the difference of

these maps; this method, however, requires Q2−2Q
2

difference maps for all unique pair-wise

stimulus combinations (24 in our case) — not a parsimonious representation.

Our method to eliminate the cell-to-cell variability is to normalize their tuning curves;

this normalization will allow us to compare the cells using the same intensity scale. Our

normalization is computed as:

Ri,k(r) =
Ti,k(r) − min(Ti,k(r))k

max(Ti,k(r))k − min(Ti,k(r))k
, (4.7)

where the max and min functions are computed across stimuli (indicated by the subscript

k). In essence, Ri,k(r) scales a cell’s tuning curve to be between 0 (min response) and 1

(max response) without changing its relative shape; the notion of an absolute reference for

all cells has been lost, but this is exactly our intention. We refer to these normalized single

condition maps (Ri,k) as NSCMs; it is important to note that NSCMs are only used for

visualization, and all other analyses use the raw data directly.

We plot 〈Ri,k(r)〉 for eight orientations (k = 0, . . . , 7), ranging from -180 to -22.5

degrees (Figure 4.4). Unlike our previous plots, NSCMs reveal periodic blob-like regions

that are visibly distinct for different stimuli, characteristic of orientation selectivity. In

essence, these eight plots show the tuning curves for all of the cells on our chip (with their

values normalized between 0 and 1).

Although we are off to a good start, since the chip’s NSCMs are similar in appearance

to the ones imaged in V1, the results still seem unsatisfactory. Specifically, we do not

have a good handle on the repeatability of the underlying responses that make up Ri,k . We
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address this issue in the following section.

4.2.1.2 Repeated stimulus reliability

Here, we quantify the reliability of Ti,k, and in particular, we check that cell responses are

repeatable across trials when stimulus orientation is the same. For example, if bump posi-

tions are influenced by initial conditions instead of oriented gratings, then we would expect

the SCMs to vary considerably for independent trials under identical stimulus conditions

(since the initial conditions are random for each trial). Reliability is relevant for our model,

since ours is the first of its kind to use spikes, instead of rates, to obtain orientation selec-

tivity; in particular, spikes can add response variability (in coupled systems) due to their

discrete nature [55].

Three related techniques are explored to gauge response repeatability. First we use

a split-half reliability test to determine if cell responses in independent trials are corre-

lated [66]. Then, we introduce a handy metric, called the selectivity index, that quantifies

the relative change (or dispersion) in a cell’s response; this metric is used to identify cells

that change their rates even when the stimulus is the same (i.e., their responses are unre-

liable). Finally, we employ a standard statistical test to determine if the trial-to-trial rate

deviations of cells can be accounted for by sampling errors.

1. Split-half reliability test

To perform a split-half reliability test, we split Ti,k into two groups, T 1
i,k and T 2

i,k

such that each group consists of D
2

different trials; then we compare the mean re-

sponse of each cell in the two groups when the stimulus orientations are identical.
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Figure 4.4: Normalized single condition maps
Chip activity (normalized) for eight directions. The intensity scale is from 0 (white) to 1
(dark).
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Figure 4.5: Split-half reliability test
Comparison of cell firing rates for independent trials when stimulus orientations are the
same (−180◦) (a) and orthogonal (−180◦ and −90◦) (b).

For an example, we plot 〈T 1
i,0(r)〉 against 〈T 2

i,0(r)〉, where the 0 indicates the stim-

ulus was a −180◦ grating (Figure 4.5a); note that we only show firing rates up to

200Hz, since only 3.6% of our cells fall in the 200–800Hz range. As expected for

reliable data, the cell responses from the independent groups have a near perfect lin-

ear relationship with a slope of 1. For comparison, we also plot 〈Ti,4(r)〉 against

〈Ti,0(r)〉 (Figure 4.5b), which reflects the case where the two groups have orthogonal

stimuli; this case is explored in detail in Section 4.2.1.3.

2. Selectivity index

To quantify the dispersion of a cell’s response (i.e., the deviation from the straight line

in Figure 4.5a), we introduce a selectivity index [67] (also known as the Rayleigh-

Michelson ratio); this measure allows us to identify (and eliminate) a class of unreli-

able cells right off the bat. Specifically, we compute:
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z(a, b) =
|a − b|
a + b

, (4.8)

where a and b represent firing rates of a cell in two conditions. The useful property

of z is that it measures the proportion between a and b, regardless of their underlying

values. For example, if z = 1/4, this implies that a is 40% larger than b (or visa-

versa, depending on whether a or b is larger); this percentage is calculated by 1 −
1−z
1+z

. Since here, we are interested in the repeatability of our responses, a and b are

measured in independent trials for stimuli with the same orientation — our hope is

that the selectivity is low (or, repeatability is high).

We compute z(T 1
i,0, T

2
i,0) for each cell and plot them against their mean firing rate

〈Ti,0〉 (Figure 4.6a). The selectivity index reveals that a portion of cells, skewed to-

wards low firing rates, do in fact change their rates by a significant proportion, which

we interpret as being unreliable. We would like to eliminate these unreliable cells

from our analysis, however, we must consider that an unreliable cell for this particu-

lar orientation might be reliable for a different orientation. Our solution is to classify

cells that do not fire more than a mean rate of 2Hz to any orientation as unresponsive,

marked by blue points. This classification was chosen since cells that fire more than

2Hz rarely have z values greater than 0.15.

3. Statistical test

After eliminating the unresponsive cells (8.3% of the population), we now charac-

terize the reliability of the remaining cells using a standard statistical test. Specif-

ically, we employ a z-test (p < 0.05) where our null hypothesis, denoted by H0,
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is: 〈T 1
i,k(r) − T 2

i,k(r)〉 = 0 (i.e., the difference in a cell’s firing rate for independent

trials is zero when the stimulus orientation is the same); this test is repeated for all

cells, for each of the eight stimuli (k = {0, . . . , 7}). If we can not reject H0, we are

inclined to believe that the observed response deviations can be explained by chance

occurrences (i.e., the rates are statistically equivalent). We summarize our results

by recording each instance where H0 is accepted, referred to as rk, and count these

instances for each orientation (Figure 4.6b). In this plot, a count of eight indicates

a cell’s mean rate was reliable in the split-half trials for all of the orientation, while

lower counts signify that there were unreliable trials; we mark the unresponsive cells

in black. As can be clearly seen from the plot, H0 is accepted in the majority of

trials, and 62% of cells respond reliably for all eight stimuli. To verify that a z-

test is appropriate, we also used a bootstrap procedure (500 bootstrap samples of

〈T 1
i,k(r) − T 2

i,k(r)〉 using p < 0.05); the two procedures agree on 98.4% of the cells.

4.2.1.3 Inter-stimuli reliability

Our aim in this section is to test whether different orientations change a cell’s rate more than

chance. For example, consider the relationship between 〈Ti,0〉 and 〈Ti,4〉, which correspond

to −180◦ and −90◦ orientations, respectively (Figure 4.5b); note that here, we no longer

split the trials into two groups. This plot reveals another positive correlation, although this

correlation is noticeably more disperse than the one in Figure 4.5a.

The fact that a cell’s response is correlated with itself, even when the stimuli are dif-

ferent, is perhaps not too surprising. In the cortex, for instance, cells with spontaneous

firing rates will typically have a baseline response even for non-optimal stimuli, and often

the baseline will increase for all stimuli [68]. On the chip, cells are correlated across dif-
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Figure 4.6: Selectivity index and repeatability
(a) Cell selectivity indexes (z) for independent trials when the stimulus is −180◦, plotted
against the their average firing rates (over these trials); blue markers signify cells that have
a mean firing rate less than 2Hz to any orientation (unresponsive) whereas red markers
are all other cells (responsive). (b) The number of instances where a cell’s response is
statistically equivalent in independent trials over all orientations.

ferent stimuli for a simple reason: if they participate in a bump for one orientation, there

is a higher chance that they will participate in a bump for other orientations. In both of

these examples, the correlations are caused by factors that are stimulus-independent (and

putatively cell, or network dependent).

To determine if the deviations observed in Figure 4.5b are significant, we again use

a z-test — except now we are interested in cells that reject H0 (the null hypothesis), or

accept the alternative hypothesis (H1) that states the observed rate deviations are beyond

chance level. Formally, we define H1 as: 〈Ti,k1(r) − Ti,k2(r)〉 6= 0, where k1 = 0, . . . , 7

and k2 = 0, . . . , 7 when k1 6= k2 (again only considering responsive cells). Then, for each

{k1, k2} stimulus pair, we record the cells that are selective, or H1 is accepted when the

stimuli are different (denoted by rd
k1 ,k2

), and their responses to the individual stimuli were

consistent, or H0 was accepted for the same stimuli (ensuring that the rate change is not
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due to the cell being unreliable for one or both orientations); the conjuction of these events

is denoted by rd
k1 ,k2

∩ rk1 ∩ rk2 . We report the results (as the proportion out of the total

population) in the symmetric 8× 8 matrix (Figure 4.7a), where each entry corresponds to a

particular row–column stimulus pair; note that the diagonal entries are set to black. Again,

for verification, we used a bootstrap procedure (500 samples with p < 0.05), which was

consistent with our z-test on 99.3% of the dataset.

Figure 4.7a reveals that similar orientations have a smaller proportion of selective cells

(the strip of blue straddling the diagonal), whereas orthogonal orientations result in larger

proportions; however, the differences in these proportions are relatively small, and the

majority of cells are able to discriminate between any orientation pair.

4.2.1.4 Smooth mapping

This preceding analysis confirms that a subset of our cells are in fact selective to orienta-

tion, and this selectivity is consistent in independent trials. It does not, however, reveal the

shape, or magnitude, of the selectivity. To uncover the amount our tuning curves change for

different orientation pairs, we enlist the previously described selectivity index (z). Specif-

ically, we compute the average z for each of the selective cells from Figure 4.7a for each

stimuli pair. This result is again shown as an 8 × 8 matrix (Figure 4.7b). Here, we see

that the smooth mapping does exist: similar orientations result in ≈ 19% rate changes

(z = 0.11), whereas orthogonal orientations result in ≈ 25% rate changes (z = 0.14).

These differences are not dramatic, but they exist nonetheless. It is important to note that

the trend in Figure 4.7b is not simply due to the trend in Figure 4.7a, since the number of

selective cells should not affect their magnitudes (although the two trends may be caused

by the same underlying factors).
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Figure 4.7: Summary of cell reliability across stimuli pairs
(a) The proportion of cells that change their firing rates more than chance for each unique
stimuli pair; the diagonal entries (self comparisons) are set to black. (b) The average
selectivity index for all the cells reported in (a).

4.2.2 Prefered orientation maps

In this section, we collapse the SCMs into one map by computing each cell’s prefered orien-

tation (PO). The resulting PO map then allows us to visualize how orientation preferences

are distributed across our network, using only a single plot.

The PO of a cell should summarize its tuning curve. A popular method is to use a vector

sum, which is computed as:

Θi = (1/2)arg
( Q∑

k=0

Ti,ke
(2jθk)

)
, (4.9)

where Q is the number of stimuli, j =
√
−1, and the arg() function returns the phase

angle of the summed vector. The factor of two in the exponent scales θk so that orthogonal

orientations point in opposite directions (i.e., their vectors subtract).
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There are two issues that crop up when plotting PO maps. First, we are not able to

directly map orientation to intensity since orientation is periodic, and intensity is not. One

solution to this dilemma, originally introduced by Blasdel and Salama in 1986, is to assign

a color to each pixel based on its PO using complementary colors (e.g., red and blue) to

represent orthogonal orientations [69].

After adopting the PO–color mapping strategy, a second plotting issue arises: every

pixel will be mapped to a color regardless of the underlying responses. In other words,

weak responses (noise) cannot be differentiated from strong responses (signal). Therefore,

it is common practice to use color intensity to differentiate between signal and noise. In

our case, we have decided to set the intensity of each color based on the repeatability

of our PO signal. Specifically, we measure the similarity index (SI) (see Section 2.1.2

for a description) to compare cells’ POs in independent trials; the underlying idea is that

reliable cells will report the same orientation in different trials (SI=1), whereas unreliable

cells, mostly influenced by noise, will report random orientations (SI=0.5). Finally, we

determine the intensity of each cell as: 〈SIi〉−0.5
0.5

, where 〈SIi〉 is the mean SI taken over all

trial repetitions for cell i.

We plot our chip’s PO map (Figure 4.8) employing the techniques described in this

section. This map was computed by presenting 16 square-wave gratings that span the full

circle (-180 to 157.5 degrees) and averaging the resulting SCMs with opposite directions, or

Ti,k = 0.5(Ti,k + Ti,k+8) for k = 0, . . . , 7; the experiment parameters are: the trial duration

(D) is 100 cycles, and the number of trial repetitions (R) is 25. Figure 4.8 reveals that, like

the cortex, nearby cells on our chip tend to have similar POs, and these preferences repeat

at regular intervals. Moreover, the regions of smoothly changing POs are interspersed by

regions of rapid change (fractures) that converge at either a line or a point.
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Figure 4.8: Orientation selectivity of the bump chip
Spatial distribution of preferred orientations to square-wave grating inputs. Activity for op-
posite directions was averaged before computing the angle map.
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It is important to note a key difference when comparing our PO map with the ones im-

aged in cortex: a pixel in our map is derived from the exact tuning curve of a cell, whereas

in an imaged map, it reflects the average tuning over a population of cells (> 100). This

difference comes into play when orientation signals change rapidly (e.g., near fractures).

Specifically, optical signals in these regions will be noisy because of co-localized conflict-

ing orientation signals, and as a result, it is not clear whether the noise can be attributed

to the individual cells, or the imaging procedure. In our chip experiments, however, noisy

signals are always the result of the individual cell responses.

Although we are primarily interested in orientation selectivity in this project, we also

plot the preferred direction (PD) map (Figure 4.9) for completeness. The PD map, unlike

the PO map, considers all 16 directions; specifically, it assigns opposite colors to the same

orientations with opposite directions. We observe that nearby cells have similar direction

preferences, which again repeat at regular intervals. The spatial extent of these direction

columns are about half the size of the orientation columns, consistent with maps observed

in the cortex. Note that because direction selectivity is markedly lower than orientation

selectivity (data not shown), we plot the PD map with the intensity set to one.

Finally, we determine if our maps are selective to spatio-temporal correlations in the

inputs (i.e., drifting oriented inputs), or to the precise spatial patterns of the inputs (e.g.,

square-wave versus sinusoid gratings). To accomplish this, we compare the PO map created

with square-wave gratings (Figure 4.10a) with one created with sinusoid gratings (Figure

4.10b). At a glance, the structure and colors of the two maps look very similar. To quantify

their similarity, we compute the SI (described previously) for each cell (Figure 4.10c).

Although there are a few regions where the maps report different POs, the majority of cells

have nearly identical POs: the average SI is 0.77. This result confirms that our cells are in

fact selective to orientation, and not a particular grating type.
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Figure 4.9: Direction selectivity of the bump chip
Spatial distribution of preferred directions.

One noticeable difference between the two maps, however, is that the one created from

sinusoids is darker in certain regions (typically regions where the two maps diverge). This

observation is not too surprising: in the case of half-wave rectified sinusoids, cells are

always being stimulated regardless of orientation (except at the zero crossings) since each

cell receives both ON and OFF inputs. Square-wave gratings, on the other hand, concentrate

their stimulation in space along the axis of orientation and in time near the 0 (ON) and

180 (OFF) degree phases. In other words, the edges of the square-wave gratings are more

effective at driving bumps and the resulting maps are less noisy; in light of this result, we

no longer consider sinusoid gratings as inputs. However, we expect that the qualitative

aspects of our results would be similar if we used sinusoid gratings, but we would require

more trials to obtain the same reliability.
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Figure 4.10: Map comparison for square and sine -wave inputs
PO maps created from square-wave (a) and sinusoid (b) gratings; the two maps are com-
pared using the similarity index (c).

4.3 Quantifying selectivity

In addition to estimating a cell’s PO, we are also interested in quantifying its selectivity

(with a single number). The conventional method for measuring selectivity is to charac-

terize how tight a cell’s tuning curve is around its PO. Note that our previous selectivity

measure (Section 4.2.1.2) is inappropriate here since it considers all unique stimulus pairs

(i.e., many numbers). Common metrics that fit this bill include bandwidth, which approx-

imates the width of the tuning curve near its PO [70], and normalized vector magnitude

(NVM), which measures how well the PO captures the entire tuning curve (described in

detail in Section 4.3.1). For our analysis, we focus on NVM since it is a robust measure of

selectivity in the presence of noise [68].

Implicit in these conventional measures of selectivity (bandwidth and NVM) are two

assumptions. The first assumption is that each cell’s tuning curve has a single mode near

its PO. While this preconceived notion is perhaps justified in mature cortex, we do not wish

to make any unwarranted assumptions in our chip (or developing cortex). Therefore, we

78



entertain the possibility that each cell can encode information about multiple orientations

(e.g., the possibility that multiple PO maps exist simultaneously). Examples include cells

that are selective to crosses (i.e., they respond to cardinal orientations but not oblique ones),

or wedges (i.e., they responds to all orientations except one). Such cells have in fact been

observed in single unit recordings in immature cortex (recording through closed eye lids in

ferret), although, they were not described using this description [15].

The second assumption is that a cell’s tuning curve accurately reflects its response dis-

tribution fi,k; recall that fi,k represents the number of spikes a cell elicits for one cycle at

orientation k. A prevailing view in neuroscience is that the distribution of spike counts in

a sufficiently long time window (such as 1s) can be captured with a few parameters (typi-

cally a Poisson or Gaussian distribution). The cells in our network do not necessarily fall

into this category — for instance, we sometimes observe bimodal distributions of spike

counts. We attribute these two modes to shifting bumps: one mode, characterized by a cell

firing at a low rate, occurs when a cell is not participating in a bump; the second mode,

characterized by a high firing rate, occurs when a cell is part of a bump (i.e., the bump has

shifted). It should be noted that bimodal response distributions have also been observed in

the cortex; in fact, it has been shown that up to 60% of complex cells in cat visual cortex

exhibit bimodal membrane-potential distributions (termed two-state fluctuations) [71].

How should we characterize the selectivity of a cell that does not follow one, or both of

these assumptions? One possibility is to take a case-by-case approach — first checking if

a cell’s response can be parameterized, then testing the number of encoded POs. However,

this solution seems tedious. A more elegant approach, which we explore in Section 4.3.2,

is to compute how much information a cell can convey about its stimulus. Unlike NVM,

information is independent of any particular coding strategy, and is computed directly from

the underlying response distributions, instead of just the tuning curve.
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4.3.1 Normalized vector magnitude

Normalized vector magnitude (NVM) quantifies the degree that a cell’s PO is consistent

with its tuning curve. It is computed by dividing the vector sum of the averaged responses

by the magnitude sum, or formally:

Mi =
|
∑

k Ti,ke
j2θk |∑

k Ti,k
(4.10)

where j =
√
−1, and θ is expressed in radians. A cell that is poorly tuned and responds in

equal parts to orthogonal orientations (Figure 4.11a) will have a low NVM (≈ 0), whereas

a cell that is exceptionally tuned and only responds to similar orientations (Figure 4.11b)

will have a high NVM (≈ 1). We note that our measure of NVM is related to a measure

found in the literature called circular variance (cv), where cvi = 1 − Mi [68].

We compute the NVMs (Mi) for the population of responsive cells (recall that respon-

sive cells are characterized by an average firing rate of more than 2Hz to at least one orienta-

tion), using the same dataset as in Section 4.2.1.1 (square-wave gratings). The distribution

of NVMs across the network is shown (Figure 4.12a). Here, we set the values of cells that

are unresponsive (but not inactive) to 0; typically, these unresponsive cells can have artifi-

cially high NVM because their tuning curves resemble a delta function. We also plot the

NVMs in a histogram, only considering responsive cells (Figure 4.12b); this distribution

has a mean of 0.084.
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Figure 4.11: Computing normalized vector magnitude
Vector responses for a selective cell (left) and an unselective cell (right), and (bottom)
calculation of NVM using vector components (blue and red) and sum (black).

4.3.2 Information

Cells with relatively low values of NVM can represent one of two scenarios: One possibil-

ity is that these cells are unselective to orientation. Or, another possibility is that these cells

use a non-conventional encoding, which NVM is ill-equipped to measure. To distinguish

between these possibilities, we use information theory, which provides us with a measure

of selectivity that does not assume a particular coding strategy.

4.3.2.1 General background

Information theory, originally developed by Shannon in 1948, offers a mathematical frame-

work for quantifying information transmission over a communication channel [72]. We
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Figure 4.12: Bump chip selectivity
NVM distribution (Mi) across space (a), and in a histogram (b).

offer a brief review: Consider encoding symbols sk (k = 1, . . . ,Q) over a noisy channel

such that the probabilities of observing the responses rc (c = 1, . . . ,W) to each symbol

are exactly known; we often refer to rc as the code words. The number of bits (i.e., the

number of yes–no questions) that it takes to specify the entire response distribution can be

calculated by its entropy, or

Hr = −
∑

c

p(rc)log2 p(rc), (4.11)

where p(rc) is the probability of observing rc; the negative sign ensures that entropy is

strictly positive since p(rc) ≤ 1 and hence log2 p(rc) ≤ 0 for all c. Hr represents the

maximum amount of information that could be encoded. In a similar manner, we can also

calculate the entropy of the response given the stimulus, or

Hr|s = −
∑

k

p(sk)
∑

c

p(rc|sk)log2 p(rc|sk), (4.12)
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where p(rc|sk) is the conditional probability of observing rc given sk , and p(sk) is the

probability of observing sk (in a controlled experiment, p(sk) typically equals 1/Q). Hr|s

is often referred to as response noise, since it measures the uncertainty remaining in the

response when the stimulus conditions are known [73].

Shannon cleverly realized that information is the response entropy (Hr) less the noise

entropy (Hr|s). In other words, by removing the variability of the response that is indepen-

dent of the stimulus (i.e., noise), we are left with the stimulus dependent variability (i.e.,

information). Formally, we write

Ir,s = Hr − Hr|s, (4.13)

where Ir,s is termed the mutual information. In the case that the responses are unrelated

to the stimuli, or p(rc|sk) = p(rc), we observe that Ir,s = 0 since Hr|s = Hr. In the other

extreme where the response is unique for each stimulus and the stimuli are equally likely,

we observe that Ir,s = log2Q since Hr|s = 0.

Extending the ideas of information theory into the realm of neuroscience seem natu-

ral; after all, a neuron is simply a biological communication channel that encodes sensory

events (either directly, or through downstream neurons) using spike times. In practice,

however, one quickly runs into difficulty when directly applying Shannon’s theory to the

neural code. For example, since we do not know the nature of the neural code, the safest

approach is to consider all the possible spike configurations within a biologically relevant

time window as potential code words. Following an example from [74], where the time

window of interest is 300ms, a neuron’s average firing rate is 30Hz, and spikes are seg-
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mented into 5ms bins, we estimate that there are nearly 1011 possible spike trains! Thus,

with limited data (such as the lifetime of a cell), any attempt to measure the probabilities

of these different code words will be severely biased.

Despite major challenges, researchers have successfully used information theory to

quantify neural communication for certain niche problems in neuroscience. One applica-

tion has been to pit rate codes against timing codes, attempting to address the heated ques-

tion: do the precise times of spikes encode additional information about stimuli? Another

application has been geared towards uncovering a neuron’s capacity (or max information

rate), without regard to which aspects of the stimulus are being encoded. Our requirements

of information theory (which are described next in Section 4.3.2.2) are not as sophisticated

as these more common applications; specifically, we are able to reduce the number code

words by neglecting timing information, which simplifies our analysis significantly. For

this reason, we do not expound upon information theory and timing codes any further; the

interested reader should consult [74, 73] for overviews.

4.3.2.2 Estimating mutual information

We use information theory to quantify how well the neurons from our chip can encode

their inputs. Two simplifications make this problem tractable: First, we restrict our inputs

to drifting gratings that vary only in their orientations. Second, we consider the output of

a neuron to be its spike count during one stimulus presentation (i.e., one grating cycle).

This simplification is rooted in the idea that, because OS is a network phenomena (bumps

interacting with gratings), each neuron should have a chance to sample at least one full

cycle before its response is considered. Furthermore, by only considering spike counts, we

are assuming that a neuron’s OS is determined by the total amount of time it participates in
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a bump, rather than the precise times of participation.

With these simplifications in hand, we compute the information of our cells by follow-

ing Shannon’s recipe — first estimating the probabilities, then computing their entropies.

Our detailed procedure is described in the following steps:

1. Estimating p(rc), p(rc|sk)

The first step is to estimate p(rc) and p(rc|sk) from the observed spike count dis-

tribution fi,k for a particular neuron i = n. This deceptively simple task brings to

light an important dilemma: how should we choose the code words (rc) for this neu-

ron? One approach is to subdivide fn,k into W equal sized bins, such that each bin

is a different code word. However, using equal sized bins is inefficient when fn,k has

a wide range of values that are not evenly distributed (e.g., a bimodal distribution);

the inefficiency arises because a large number of bins are needed to capture the local

changes (e.g., the regions near the two modes), yet the majority of the bins remain

unoccupied.

A more elegant solution is to adopt a variable binning technique that equalizes

the number of samples in each bin. The basic approach is to stretch each bin until

it contains 1
W

of the samples from fn (recall that dropping the subscript k refers to

all stimuli). For example, if W = 2, then each bin (rc) will contain half of the

data points, and the two bins are split by fn’s median. Using this approach, we

immediately see that p(rc) = 1
W

for all c (by definition).

To estimate the conditional probabilities, we count the number of instances where

fn,k ∈ rc (i.e., how many samples of fn,k fall within each bin), denoted by yn,k(c),

and divide the results by the total number of samples for that trial (N
Q

); formally, we
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write that p(rc|sk) = (Q
N
)yn,k(c). The number of bins (W) is left as a parameter;

we note that when W is too small, our information estimate will be low (since our

choice of code words will neglect relevant details), and when it is too large, there is

a sampling bias (described next).

2. Estimating entropy

To estimate the entropies Hr and Hr|s, we simply plug in our estimates p(rc) and

p(rc|sk) into Equations 4.11 and 4.12. We immediately notice that Hr = log2W

since p(rc) = 1
W

; this calculation reveals that equalizing the number of samples in

each bin is equivalent to normalizing their entropies (i.e., the size of each bin has

been chosen such that its entropy is exactly 1
W

log2W bits).

Because p(rc) and p(rc|sk) are estimated from a finite number of observations,

their naive entropy estimates are downwardly biased. This bias can be approximated

as:

B =
1

ln 2

wo − 1

2u
, (4.14)

where wo is the number of bins (code words), and u is the number of samples

(see [75] for a detailed derivation); note that this bias is inversely proportional to

the average number of samples in each bin (for large u). The debiased entropy is

then calculated as H = HB + B, where HB is the naive entropy estimate. This

correction can be applied directly to Hr using wo = W and u = N. In the case of

Hr|s, we first calculate the entropy bias to each stimulus using u = N
Q

(i.e., the num-

ber of samples for each unique stimulus presentation); one caveat is that wo should
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represent the number of bins that might be occupied — thus, it is not clear how to

treat empty bins (if they happen to occur). Heeding the advice from [75], we again

use wo = W. The justification for this choice is that when the number of trials is

sufficiently large, such that each bin has a reasonable chance of being occupied (i.e,

N
Q
×p(rc) � 1), then using all of the code words is a fair (and conservative) estimate.

Then, to compute Hr|s, we multiply the debiased entropies for each stimulus by p(sk)

and sum the results (following Equation 4.12). where wo is the number of bins (code

words), and u is the number of samples (see [75] for a detailed derivation); note that

this bias is inversely proportional to the average number of samples in each bin (for

large u). The debiased entropy is then calculated as H = HB + B, where HB is the

naive entropy estimate. This correction can be applied directly to Hr using wo = W

and u = N. In the case of Hr|s, we first calculate the entropy bias to each stimulus

using u = N
Q

(i.e., the number of samples for each unique stimulus presentation); one

caveat is that wo should represent the number of bins that might be occupied — thus,

it is not clear how to treat empty bins (if they happen to occur). Heeding the advice

from [75], we again use wo = W. The justification for this choice is that when the

number of trials is sufficiently large, such that each bin has a reasonable chance of

being occupied (i.e, N
Q
× p(rc) � 1), then using all of the code words is a fair (and

conservative) estimate. Then, to compute Hr|s, we multiply the debiased entropies

for each stimulus by p(sk) and sum the results (following Equation 4.12).

3. Computing mutual information

To compute mutual information, we plug in our debiased entropy estimates into

Equation 4.13. For instance, consider a cell that responds to a single cycle of an ori-

ented grating with known probabilities (Figure 4.13a); in this example, the number of

total presentations (N) is 2000, the number of orientations (Q) is 4, and the number of
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bins (W) is 11. Since the conditional probabilities (p(rc|sk)) are clearly distinct for

the different stimulus conditions, this cell conveys non-zero information about ori-

entation in its responses; specifically, the response entropy (Hr) is 3.4527 + 0.0036

bits (naive + bias), the conditional entropy (Hr|s) is 3.3220 + 0.0144 bits, and the

mutual information is 0.1307 − 0.0108 bits (out a maximum of 2 bits). Note that the

downward entropy biases result in an upward information bias.

We then vary the number bins (i.e., treat W as our parameter wo) to discover

the maximum amount of information (debiased) that this cell can transmit. The idea

behind this strategy is straightforward: Consider adding a code word to a cell’s re-

sponse repertoire (i.e., increasing wo by 1), and comparing how this additional code

word affects the naive information estimate (IB
r,s(wo)) and the bias (B(wo)). In the

case that naive information increases more than the bias, then we can deduce that

the current value of wo underestimates the number of code words that this cell can

signal; if naive information increases the same as the bias, then wo is a reasonable

estimate of the cell’s code word resolution; and finally, if naive information increases

less than the bias, then wo overestimates the number of code words for this cell.

Using the same cell from our previous example, we plot its naive information

(IB
r,s(wo)), debiased information (Ir,s(wo)), and bias (B(wo)) for values of wo ranging

from 2 to 175 (Figure 4.13b). We observe that Ir,s(wo) first increases (wo between 2

and 7), plateaus (wo between 8 and 30), and then decreases (wo greater than 30) —

the relationship that we expected. Therefore, we estimate the information of this cell

as the peak in Ir,s(wo), which in this case is near 0.12 bits.
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Figure 4.13: PDFs and mutual information for a single cell
(a) Conditional PDFs of a random cell for 4 unique orientations where the number of code
words considered is 11 (W); note that the bin edges, which are marked by points, vary in
size. (b) Max information as a function of W for the same cell.

4.3.2.3 Results

We apply the procedure developed in Section 4.3.2.2 to compute how much information

each cell in our network carries about orientation. In these experiments, we consider four

directions from -180 to -45 degrees, where the trial duration (D) is 3 cycles, and the num-

ber of trial repetitions (R) is 500; following our standard protocol, we only consider the

population of responsive cells. The spatial distribution of information is shown (Figure

4.14a) where again, the unresponsive cells are set to 0. We can see that cell’s with similar

information values tend to cluster in space, which suggests that information may be related

to NVM, and preferred bump locations; this prospect is explored in the following section.

We also show the results in a histogram, considering only responsive cells (Figure 4.14b);

this distribution has a mean of 0.034 bits, and a median of 0.027 bits.

89



0

0.1

0.2

0 0.1 0.2
0

241

bits

C
ou

nt

a b

Figure 4.14: Information map of bump chip
Information distribution across space (a), and as a histogram (b).

4.3.3 Comparing NVM and information

Now that we have measured the information and NVM for each cell, we can now explore

their underlying relationship. To uncover how each measure varies across the network, we

rank each cell’s information and NVM values (independently), and compute the informa-

tion rank minus the NVM rank (Figure 4.15a); the normalized difference varies from -1

to 1. In this plot, regions of red indicate cells whose information ranks higher than NVM,

where regions of blue indicate the opposite; the color saturation is set by the magnitude of

the difference (black signifies unresponsive cells). This analysis has uncovered continuous

regions (patches) where either information or NVM dominate, interspersed by patches of

equal rank (white). Blue patches typically surround unresponsive cells, consistent with the

notion that cell’s with low firing rates have high NVMs.

We examine the underlying responses for two cells, one that has high information and

low NVM (marked by X1 in Figure 4.15a) in the second row of the figure, and one that has
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low information and high NVM (marked by X2) in the third row; Figure 4.15(c) and (e)

show the tuning curves, where (e) and (f) show the conditional probabilities of the trial-to-

trial responses (using 11 bins). The tuning curve of cell X1 shows that, even though the cell

is selective for orientation, it responds with similar rates for orthogonal orientations (−180

and −90◦). Thus, the NVM is low even though cell is selective. In contrast, the tuning

curve of cell X2 reveals that this cell has a single well-defined PO near −10◦. However,

its information is relatively low since the conditional probabilities (Figure 4.15(f)) have

significant overlap. In fact, the majority of its time is spent not firing for all orientations.

We also observe that the mean rate of cell X1 is higher than cell X2, which suggests

that the information–NVM relation could also depend on how much a cell participates in

bumps. To test this possibility, we have plotted information against NVM, and use color to

indicate the mean firing rate (Figure 4.15b); here, the colors are set by their firing rate rank

(i.e., the proportion of cells that have lower rates). From this plot, we observe a striking

relationship that clearly shows cells with low NVM typically have higher rates (putatively,

closer to the center of the bumps), whereas high NVM corresponds to low mean rates;

this NVM–firing relationship has been observed in adult macaque V1 [68]. It would be

interesting to see if the information–mean rate relationship that we observe also exists in

the cortex.
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Figure 4.15: NVM vs. Information
(a) Spatial distribution of rank differences between NVM (blue) and information (red); black
indicates unresponsive cells. (b) Comparison of NVM, information, and mean rate (indi-
cated by color). Example tuning curve and conditional probabilities for cell X1 (c) and (e),
and cell X2 (d) and (f); cells are marked in (a).
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Chapter 5

Characterizing Network Dynamics

In this chapter, we develop techniques for characterizing the complex spatio-temporal dy-

namics that we observe in our chip model of V1. We will use these techniques in the

following chapter to explore how dynamics affect the formation of PO maps.

5.1 Dynamic activity patterns

The neural activity patterns that emerge in our heterogenous recurrent network exhibit com-

plex dynamic behavior: over time, the patterns can change shape, coalesce with neighbors,

disappear, or diffuse. These dynamics are qualitatively different when the network is tuned

to different parameter regimes. For instance, if we look at two frames of activity 50ms apart

when the network has different levels of recurrent feedback (Figure 5.1(a) and (b)), the dy-

namics are visibly different: in Figure 5.1a, the patterns of activity are mostly immobile

except for occasional shifts, while in Figure 5.1b the patterns are more fluid. In this section,
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a b

Figure 5.1: Network dynamics
Contour plots of chip activity 50ms apart (green and red contours represent the earlier
and later time intervals, respectively) for low recurrent inhibition and excitation (a) and high
recurrent inhibition and excitation (b). The contours represent cells that have fired at least
1 spike in a 10ms frame.

we move beyond these informal descriptions, and introduce a method for quantifying how

these dynamics are different.

5.1.1 Experimental setup

In previous experiments, we were primarily concerned with how vigorously cells responded

to a particular stimulus — the precise timing of the responses did not affect our results.

However, since we are now interested in characterizing dynamics, this timing information

is also important. Accordingly, we have modified our experimental setup.

The first modification is to replace the previous stimuli (drifting gratings), with spa-

tially and temporally uncorrelated spike trains (Poisson statistics). In contrast to drifting

gratings, these Poisson spike trains are able to jump start activity in our network without
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inducing stimulus-related correlations; such correlations could potentially swamp out the

innate network dynamics. The rate of our new stimulus is chosen to be 75Hz, which drives

the network with the same mean rate as the gratings. The second modification is that during

post-processing, we now keep track of when network activity occurred with a 10ms tim-

ing resolution. With this modified setup, a typical 20s experiment produces a 2,000 frame

movie of network activity (at 100fps), denoted by Ai(t) where i references a cell’s location

and t is a frame index representing 10ms time increments. In the subsequent analysis, ac-

tivity within each frame is capped at five spikes, limiting the instantaneous firing to 500Hz.

The network state that we use throughout this section is indicated in Figure 3.5. This state

does not have any special significance — it was chosen simply because it exhibits moderate

dynamics.

5.1.2 Extracting temporal structure

Our goal is to classify the complex spatio-temporal dynamics that we observe in our net-

work. Here, we outline our general strategy for extracting the temporal structure of quan-

tifiable aspects of network dynamics, and provide a simple example to illustrate the method.

1. Chose a dynamic quantity

The first step is to identify a quantity of interest, derived from network activity, that

captures an essential feature of the dynamics. For our present example, we track cell

activity within a frame as our quantity, or Ai(t).

2. Track quantity changes

The next step is to construct a difference distribution, which represents the amount

our chosen quantity can change over a given time interval. For this example, we
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compute the total absolute difference of cell activity between frames separated by the

interval to. We notate this distribution by
∑

i |∆|ai(to); here, ai(to) represents all the

instances of Ai(t) that are separated by interval to (denoted by a lowercase naming

convention), ∆ is the traditional difference operator, and the sum is computed across

cells. To illustrate how activity between frames changes over a 10ms time interval,

we plot the
∑

i |∆|ai(10ms) distribution (Figure 5.2a).

3. Extract temporal structure

Next, we characterize how the difference distribution depends on the time interval

to. Our intuitive notion is that in a well-behaved system, most quantities remain

relatively constant over short time intervals, and drift apart monotonically as time

increases. We explore this relationship by plotting the mean of the difference distri-

bution for different times, or in our example, 〈
∑

i |∆|ai(t)〉 (Figure 5.2b).

4. Fit time dependence

The final step is to fit the empirically discovered temporal structure for our quantity

using a simple functional form. In our example, we use a piece-wise linear function

with two pieces: the first piece extends from 0 to 70ms and has a slope of xx spks/s

(red line, Figure 5.2b), and the second piece extends from 80 to 150ms and has a con-

stant value of yy spks/s (fit not shown). The values of these fits can be subsequently

used for classifying the dynamics.

5.1.3 Interpreting 〈
∑

i |∆|ai(t)〉

In our previous example, we demonstrated that the expected absolute difference of cell

activity between frames, or 〈
∑

i |∆|ai(t)〉, has underlying temporal structure. We would
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Figure 5.2: Temporal structure of frame activity
(a) The difference distribution of total absolute activity for frames separated by 10ms. (b)
The mean of these distributions for different time intervals.

like to relate this temporal structure to how the individual patterns (bumps) in the network

move over time, since these component motions are the basis for the complex dynamics

that we observe. We show in this subsection that although tracking cell activity provides

insight into global network dynamics, it does not have a straightforward interpretation for

individual bump motion.

To understand how 〈
∑

i |∆|ai(t)〉 relates to network activity, we can think of it as es-

timating the global activity change between any two frames. From this perspective, the

temporal structure of 〈
∑

i |∆|ai(t)〉 has the following interpretation: activity within frames

will become progressively different over 70ms, at which point their differences will reach

a plateau (Figure 5.2b). In other words, we can predict the time difference between two

randomly chosen frames simply by measuring the global change in their patterns; however,

if the frames occurred more than 70ms apart, we are unable to predict the additional time

difference (i.e., 90ms is indistinguishable from 90s).
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The interpretation of 〈
∑

i |∆|ai(t)〉 in terms of dynamic global activity patterns is clear,

however, the relation between this global activity and individually moving bumps is am-

biguous. For example, 〈
∑

i |∆|ai(t)〉 is insensitive to one bump transporting a large dis-

tance or many bumps diffusing a small distance between any two frames; both cases would

result in similar 〈|∆|ai(t)〉i distributions. Since there is no a priori constraint on how

bumps should behave, and in fact, non-diffusive behavior is often evident (Figure 5.1b), we

are unable to attribute the temporal structure to physically-rooted motion.

To shift our focus from the dynamics of global activity to the motion of individual

bumps, we need to track bump-derived quantities explicitly. In the following section, we

develop techniques to extract the temporal structure of relevant bump quantities. Specifi-

cally, we measure the rate at which bumps diffuse in our network, using a modified version

of the procedure outlined in Section 5.1.2. This brings us one step closer to understanding

how bumps move in our heterogeneous recurrent network.

5.2 Dynamic bumps

As we demonstrated in the previous section, the activity patterns in our network have under-

lying temporal structure, however, a straightforward interpretation of this temporal struc-

ture in terms of moving bumps was not possible. To uncover the temporal structure of

bumps, we need to explicitly identify bumps within frames and track their motion between

frames. Identifying bumps within a frame is tractable; tracking bumps between frames is

more difficult. Instead of developing a sophisticated motion detection algorithm, we em-

ploy a clever technique that can estimate consistent bump motion. This technique enables

us to draw parallels between bump motion and particle motion from ideal matter states, and
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perhaps more important, how these parallels diverge.

5.2.1 Identifying bumps

The process of identifying bumps can be relatively easy if the appropriate assumptions are

made. The first step is to find a relevant time frame for identifying bumps that is long

enough to resolve a bump’s shape yet short enough so that a bump’s motion is not smeared:

we use a 10ms frame, as mentioned in Section 5.1.1, which was determined by trial and er-

ror (ultimately a subjective decision). Second, the concept of a bump needs to be explicitly

defined: we consider activity to be part of a bump if at least half of its neighbors are simul-

taneously active within a frame. The final step is to develop an algorithm that is capable of

identifying bumps: we implement a space-filling algorithm that labels contiguous regions

of activity which meet our bump definition; the set of cells that fall within this contiguous

region are denoted by p(j), where j is the bump label.1 Then, each bump is defined as

Bi,j(t) =





Ai(t) if i ∈ p(j),

0 otherwise.

(5.1)

Finally, we decompose each frame of activity (Figure 5.3a) into

Adi(t) =

N(t)∑

j=1

Bij(t) (5.2)

(Figure 5.3b) where N(t) is the total number of identified bumps in frame t. Note that the

1Notice that our bump labeling procedure routinely discards activity that does not have active neighbors,
which is different from the traditional 4-connected and 8-connected algorithms; these standard algorithms
maintain a one-to-one mapping with activity.
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Figure 5.3: Bump identification
A typical frame of cell activity (a) and its corresponding identified bumps (b), where each
bump is marked by its unique integer label.

number of bumps identified for each frame can vary.

Of course, our bump identification process has some drawbacks. One issue is that

when two nearby regions of contiguous activity are connected for brief periods of time

(through thin activity bridges), our algorithm will classify this pattern as one bump instead

of two distinct bumps. It could be argued that this configuration should be classified as

one bump — it boils down to semantics. Even with this issue, we believe that our method

for identifying bumps is superior to conventional dimension reduction algorithms, such

as PCA, and ICA. In particular, the results from these algorithms (basis vectors) are not

constrained to have a one-to-one mapping with bumps.

As a check to ensure that bumps, as we have defined them, are in fact the primary mech-

anism for creating PO maps, we have re-analyzed data from a previous PO map experiment

(Figure 4.8) in the following way: First we recast our data into high-temporal resolution

format. Next we filter the data by identifying bumps as described in this section. Finally,
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Figure 5.4: Affect of bump identification on PO
PO map computed from raw data (a) and identified bumps (b), and their corresponding SI
(c).

we recompute the PO map only considering the bump data (Figure 5.4a), and compare the

similarity between this map and the original PO map (Figure 5.4b). The similarity be-

tween these two maps (Figure 5.4c) is comforting, not only because it validates that our

bump identification algorithm does not discard important information, but also because it

justifies our assumption that bumps capture the quintessential network behavior.

5.2.2 Emergent features

Bump identification allows us to characterize regions of contiguous network activity as if

they were their own unique objects. From these objects emerge a wide array of quantifiable

features — some of which can be used measure bump motion. Here, we describe the

quantities that we keep track of; our strategy is to capture enough first-order information

about each bump so that if we wanted to, we could reconstruct a crude representation of

network activity. From this perspective, our procedure is essentially a dimension reducing

technique. However, unlike other dimension reduction algorithms, our method is purely

descriptive and is not constrained to represent the original data set optimally.
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We derive the following quantities from bumps2:

1. Centroid

The centroid for bump j is defined by the pair of points:

R{y,x}j
(t) = (

Nc∑

i=1

Bij(t))
−1

Nc∑

i=1

{y, x}i × Bij(t), (5.3)

where {y, x}i are the y and x coordinates for cell i, and Nc are the number of cells

in the network. Note that the magnitude of activity within each bump influences the

calculation (i.e., we are effectively computing the center-of-mass), but at most by

a factor of 5 since activity is capped at 500Hz. We use the centroid extensively in

subsequent analysis since it can be used to track how far bumps move in a given time

interval (e.g., diffusion rates).

2. Area

The area for bump j is simply calculated as:

Sj(t) =
Nc∑

i=1

min(Bij(t), 1), (5.4)

where we use the min function to transform Bij to a binary representation; this trans-

formation ensures that each cell contributes equally to the area, since we are only

interested in the bump’s shape, and not its density.

3. Orientation

Each bump, if not circularly symmetric, will have an axis of orientation when fit by

2In practice, all of these quantities are computed using the built-in routines from the matlab image pro-
cessing toolbox.
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an ellipse. In our analysis we keep track of the orientation of the ellipse’s major axis

with respect to the cardinal axis.

4. Eccentricity

Eccentricity is a measure of how much a bump deviates from a circular approxima-

tion that varies from 0 (perfect circle) to 1 (line). The eccentricity is computed as the

ratio of the distance between the foci of the ellipse and its major axis length (both of

which are fit parameters). Currently, we do not use eccentricity in any of our sub-

sequent analyses; we make a point to include it, however, because it is required to

‘reconstruct’ network activity from our derived bump quantities.

Therefore, a frame is represented by N groups of these four quantities (one for each

bump). This can result in a significant data reduction since 48 × 48 points are now repre-

sented by N × 4 quantities per frame.

5.2.3 Estimating consistent motion

Identifying bump quantities within a frame is relatively easy — tracking them between

frames to estimate motion, however, is more difficult. The main difficultly is that the more

bumps change, the less certain we are about which bump is which. This problem is exac-

erbated when bumps behave less like billiard balls and more like quantum particles. For

example, if a bump disappears or transports — or if two (or more) bumps coalesce or an-

nihilate — it is not clear how to measure bump motion since a bump in one frame may

not have a direct counterpart in subsequent frames. We solve this difficult bump tracking

problem by only considering dynamics that are consistent, inspired by a strategy used in

physics experiments.
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Physicists have developed a technique that is capable of estimating the mean-squared

displacement of particles3 over time without tracking individual particle motion explicitly.

Their brute-force strategy is to compute all of the pair-wise distances between particles

separated by a given time interval; the distances that occur most often (region around the

peak of the distribution) corresponds to the correct displacement. In other words, if parti-

cles consistently travel a certain distance over a given time interval, then these consistent

displacements (signal) will out number the inconsistent displacements (noise). Of course,

if the distances between neighboring particles are also correlated, multiple peaks will exist.

This same technique can also be used to estimate bump motion — as long as the mo-

tion type (quantum or classical) contributes to an identifiable peak in the pair-wise distance

distribution. For example, if the quantum-like behavior is spurious, it will be automatically

segregated away from this peak; however, if the quantum-like behavior results in consis-

tent bump motion, then it will contribute to either the main peak or an ancillary peak. It is

worthwhile to point out, however, that these quantum behaviors can also potentially com-

plicate our analysis; we explore these complications in detail in Section 5.3. Regardless

of this caveat, the strategy that we have described provides a simple method for measur-

ing bump motion, without the need for explicitly tracking bumps. In the next section, we

employ this method to measure the temporal structure of local bump displacement.

5.2.4 Extracting local displacements

Now that we are capable of identifying bumps (Section 5.2.1) and estimating their motion

(Section 5.2.3), our current goal is to extract the temporal structure of an emergent bump

3The particles in these physics experiments are large enough such that quantum effects can be ignored
(they are typically beads in a viscous liquid). Accordingly, all further descriptions of particles refer to classical
motion unless noted otherwise.
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feature. Taking our cue from the physicists, we have decided to estimate the mean-squared

displacement of bumps with the intention of ultimately drawing parallels between moving

bumps and moving particles — and highlighting where the parallels diverge.

To measure the temporal structure of the mean-squared displacement of bumps, we

follow the procedure from Section 5.1.2.

1. Compute bump centroids

The first step is to identify bumps within frames (Section 5.2.1) and compute their

centroids (Section 5.2.2), denoted by R{y,x}j
.

2. Track centroid changes

Next, we calculate the pair-wise distances of all the centroids separated by time

to. For this calculation, we construct the ∆2rP(t0)) distribution, where rP(t0) rep-

resents all of the possible pair-wise combinations of centroids separated by time

to (the superscript P refers to pair-wise); accordingly, this distribution consists of
∏

N(t)N(t + to) samples (recall that N(t) is the number of bumps within a frame).

To illustrate a typical distribution, we plot |∆|rP(10ms) (Figure 5.5a). For our sub-

sequent analysis, we only consider the first peak of this distribution (lighter region).

By only considering this initial region, we are in essence grouping pairs of bumps to-

gether based on the condition that the bumps exist near each other at different times.

A more detailed interpretation of |∆|rP(10ms)’s interesting shape is discussed in

Section 5.2.5.

3. Extract local displacements

The next step is to characterize how the mean-squared displacement depends on the

time interval, or 〈∆2rT(t)〉 (Figure 5.5b). Here, rT(t) corresponds to the subset of

bump pairs that are ≤ T pixels from each other, where the value of T is chosen to
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Figure 5.5: Temporal structure of bump displacements
(a) Pairwise displacements between all bumps in frames separated by 10ms (|∆|rP(10ms));
we plot the absolute difference (|∆|) because it is easier to visualize. Bump displacements
≤ T (lighter region) correspond to bumps from rT(t). (b) The mean-squared displace-
ment for different time intervals (〈∆2rT(t)〉); the linear region corresponds to the diffusion
constant.

contain the initial peak up to its trough (4 pixels). The implication of restricting our

analysis this initial region is described in detail in the following sections.

4. Fit local motion

Finally, we explore the structure of 〈∆2rT(t)〉 by fitting it with a two-piece linear

function: the first piece extends from 0 to 70ms and has a slope of xx spks/s, and the

second piece extends from 80 to 150ms and has a constant value of yy spks/s (fits are

shown in Figure 5.5b).
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5.2.5 Confined bump motion

To interpret the temporal structure of 〈∆2rT(t)〉, we again look to physics for insight. Our

strategy is to draw parallels between moving particles in matter to moving bumps in our

network. For example, the mean-squared displacement of particles in gaseous, liquid, and

solid states of matter have characteristic shapes (Figure 5.6) that reflect different types of

particle interactions. Specifically, in a gaseous state 〈∆2r(t)〉 has a quadratic time depen-

dence, characteristic of non-interacting particles; in a liquid state 〈∆2r(t)〉 has a linear time

dependence (the slope is proportional to the well-known diffusion constant of the liquid),

characteristic of moderate particle interactions; and in a solid state 〈∆2r(t)〉 has a linear

time dependence that saturates, characteristic of confined particle motion (i.e., strong par-

ticle interactions).

The temporal structure of 〈∆2rT(t)〉 for bumps (Figure 5.5b) resembles that of a solid,

suggesting that the motion of bumps are similar to particles tethered by springs. From this

perspective, the initial linear region (10 to 60ms) represents the mean squared distance a

bump will travel, which is proportional to how long we wait (up until ≈ 60ms); the slope

of this linear region (D) is the well-known diffusion constant. For longer time intervals

(> 90ms), the expected distance tapers off (near a value of S). This saturating behavior

is indicative of a confined bump; it will never travel beyond a certain distance regardless

of how long we wait. However, we must consider the possibility that 〈∆2rT(t)〉 saturates

because we only use the initial part of the distribution (lighter region of Figure 5.5a) to

compute the mean; that is, by ignoring all bump displacements greater than 16 pixels2, we

are artificially inducing the saturation. We rule out this possibility because S has a value

that is significantly smaller than the 16 pixel2 cutoff.

The multiple humps observed in the |∆|rP(t)) distribution (Figure 5.5a) offer further
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evidence that, in this network state, bumps diffuse in a confined area. The initial peak is

the result of bumps moving a small distance (or not moving at all), whereas the nearby

trough represents distances where bumps are unlikely to travel. The k subsequent peaks

correspond (at least in part) to the mean distance between k-th nearest neighbors; these

peaks exist because on average, neighboring bumps are consistently the same distance from

each other.4 It becomes clear now why we must restrict ourselves to only the initial region

when using this physics-inspired technique — otherwise the mean calculation would be

corrupted with neighboring bump correlations.

At this point, we might be tempted to draw a strong analogy between bump dynamics

and particles vibrating in a crystalline lattice — but we must be careful when invoking such

a parallel. One caveat is that the mechanism of bump diffusion could be fundamentally dif-

ferent from confined particle motion, even though both bumps and confined particles have

similar 〈∆2r(t)〉 shapes. For example, bumps could be popping in to and out of existence

and the appearance of confined motion is simply a consequence of this non-diffusive behav-

ior. Alternatively (or simultaneously), bumps could be expanding and contracting (unlike

particles), which could also account for some of the observed diffusion. A second caveat

is that by only considering the initial region of the ∆2rP(t) distribution, we could be ig-

noring important dynamics that happen to fall outside of this initial region. For example,

bumps that disappear and reappear a distance greater than T (e.g., they teleport), could be

completely ignored in our 〈∆2rT(t)〉 calculation. In the following section, we attempt to

characterize these higher-order bump behaviors, building on the techniques that we devel-

oped in this section. By characterizing how bump motion is different from particle motion,

we can develop a better understanding of how bumps move in our network.

4We verified that these subsequent peaks occur at locations similar to the |∆|rP(0) distribution (data not
shown).
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Figure 5.6: 〈∆2r(t)〉 for ideal matter states

5.3 Non-classical bump motion

Our concern that bump motion is fundamentally different from particle motion arises from

two observations. The first observation is that the number of bumps, N(t), varies consid-

erably from frame to frame (Figure 5.7a) due to bumps vanishing, coalescing, and splitting

(we refer to these behaviors collectively as being non-diffusive). The second observation

is that the size of these bumps, Sj(t) also varies considerably (Figure 5.7b). Since both of

these behaviors deviate from the traditional notion of classical particle behavior, we refer

to them as non-classical. In the following sections, we characterize these non-classical

behaviors so that we can ultimately determine their role in bump dynamics.

Our plan of attack is threefold: First, we verify that non-classical behaviors are relevant

on the same time scale as bump diffusion (Section 5.3.1). This analysis confirms that both

N(t) (the number of bumps per frame) and Sj(t) (the size of bumps) do in fact vary on a

150ms time scale, and justifies further analysis on them. Second, we explore how these

behaviors relate to confined bump movements, or our 〈∆2rT(t)〉 result (Section 5.3.2).
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Figure 5.7: Evidence of non-classical behaviors
(a) Measured distribution of the number of bumps per frame and its fit to a normal dist
(mean=15.0, std=3.0). (b) Measured distribution of bump areas and its log-normal fit
(mean=11.7, std=12.6).

This is accomplished by directly examining the sets of bumps used to calculate diffusion

(i.e., the rT(t) distributions), and classifying their non-classical characteristics. Finally, we

explore the possibility that there is a class of bump motion that is ignored in our current

〈∆2rT(t)〉 result, since the only signature of this motion lies beyond the T cutoff (Section

5.3.3). We dubb this yet uncharacterized motion type as staccato, since it reflects sudden

and disjointed bump movements, and present a method to quantify its extent.

5.3.1 Time course of non-classical behaviors

In this section, we show that both N(t) (the number of bumps per frame) and Sj(t) (the size

of bumps), change on a 150ms time scale — our concern is that if these variables changed

at a slow pace, they may not play a significant role in bump dynamics. Our analysis is not

meant to be exhaustive, but instead provides a cursory look at the relevant time course of
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these behaviors.

5.3.1.1 Time course of N(t)

Here, we gauge the pace at which N(t) changes using two simple techniques. The first

technique is to plot N(t) along with its normalized autocorrelation (top and bottom plots

of Figure 5.8a, respectively). These results indicate that the number of bumps within each

frame does indeed vary over the first 100ms, and that N(t) has a characteristic temporal

structure. However, we find it difficult to gauge the serial structure of N(t) from these

two plots. Our second technique is to construct a 2D histogram of the joint distribution

n(t, t + to) for two values of to.5

To help interpret n(t, t + to), consider the scenario where vanishing (or regenerating)

bumps is rare and the number of bumps between frames remains relatively constant. In

this case, the majority of points in the 2D histogram will lie near the diagonal, since the

number of bumps in one frame corresponds to a similar number of bumps in later frames.

Now consider the case where changes in N(t) occur often (or equivalently, the time be-

tween frames is long enough so that the rare non-diffusive behaviors aggregate). Here,

we expect that the 2D histogram will be circularly distributed, since the number of bumps

in one frame will only be loosely correlated with the count in later frames. In our net-

work, both types of distributions are observed, depending on the interval between frames.

For a 10ms time interval (Figure 5.8a) the distribution is elongated, indicative of small to

moderate non-diffusive behavior; for a 40ms time interval (Figure 5.8b) the distribution is

circular, indicative of more pronounced non-diffusive behavior. This latter result clearly

shows that non-diffusive behaviors are not only present on a short time scale, but perhaps

5We use the same lowercase notation as before (i.e., n(to) represents all the instances of N (t) separated
by the interval to), except now, we index these instances by t.
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Figure 5.8: Time course of N(t)
(a) A 500ms snippet of the N(t) time series (top) and the normalized autocorrelation of
N(t) (bottom) computed from 20s of data. Joint distribution of n(t, t+to) where to is 10ms
(b) and 40ms (c).

even dominant.

5.3.1.2 Time course of Sj(t)

Determining if Sj(t) changes on a 150ms time scale is a more difficult task (since we

do not know which bumps in one frame correspond to which bumps in a later frame).

One possibility is to apply the procedure that we outlined in Section 5.2.4 and look for

consistent size changes in the sp
j (t) distribution. It turns out, however, that this approach

is not suitable for bump sizes; specifically |∆|sp
j (t) does not have an identifiable peak (see

Figure 5.9). In other words, it is not possible to clearly identify which bump corresponds

to which bump based solely on changes in area. In the following section, we will explore

a technique that allows us to circumvent this problem; the basic idea is that we can use the

subset of bumps previously determined from Figure 5.5b, and probe how the area of this

subset changes over time.
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Figure 5.9: Distribution of absolute area changes
The lack of an identifiable peak suggests that changes in bump area are not consistent
between frames.

5.3.2 Quantifying non-classical behaviors

Thus far, we have shown that non-classical behaviors exist (Figure 5.7), and that they are

relevant over short time intervals (Figures 5.8 and 5.9), thereby confirming that bump mo-

tion is fundamentally different from confined particle motion. In this section, we extract

the temporal structure of these behaviors, and quantify their role in bump motion, using a

simple yet powerful strategy. Instead of starting our analysis from scratch, which would

entail searching for temporal structure with no a priori information (a hard if not impos-

sible task, as shown in Figure 5.9a), our strategy is to simply use the previously identified

bump pairings from our bump diffusion calculations (i.e., the bump pairs from the rT(t)

distributions). Using these pairings, we are then able to directly quantify the non-classical

behaviors. In particular, we calculate the likelihood that 0, 1, or more than 1 bump exists

near an original at different time lags (i.e., do bumps tend to disappear, remain the same,

or split) (Section 5.3.2.1), and the expected amount a bump will change in size over time

(Section 5.3.2.2). This strategy is not only practical, since we have already calculated all of
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the necessary bump pairings, but it also allows us to uncover their behaviors with minimal

assumptions about which bumps are the ‘same’ across frames.

Before diving into our analysis, we recap how bumps in different frames are paired

together based on their geometry (a review of Section 5.2.4). The algorithm can be un-

derstood in the following steps: First, a circle is drawn around the center of each bump

(called an original bump) such that the circle’s radius is determined by the cutoff T from

the 〈∆2rT(t)〉 distribution. By choosing T to contain the initial region up until the second

peak (Figure 5.5a), we are in essence allowing the circle to be as large as possible without

encompassing neighboring bumps. Next, we keep track of the bumps that subsequently

fall within this circle, pairing them together (i.e., the original and each subsequent bump)

based on their time lag. We refer to this distribution as rT
j (t), where j references the original

bump, and T indicates that only bumps that fall within bump j’s circle are considered; note

that rT
j (t) also keeps track of the instances when no bumps fall within the circle. Based

on these bump pairings, we are then able to classify their non-classical behaviors (i.e., do

bumps vanish, change in size, etc.).

5.3.2.1 Isolating non-diffusive and diffusive behaviors

Here, we segregate non-diffusive and diffusive behaviors of moving bumps by calculating

the likelihood that 0, 1, or more than 1 bump exists near an original bump at different

time lags: Non-diffusive behavior is identified by keeping track of when bumps vanish and

reappear near an original bump, whereas diffusive behavior is identified by tracking bumps

that exist sequentially in time near an original bump.

To compute the likelihoods, we construct the space W (t, j) = Γ(rT
j (t)), where Γ speci-
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fies a counting operator that returns the number of bumps that are within T pixels of bump

j; the argument j is omitted if all bumps are to be considered in this space. W (t) is then used

to calculate the probability that bumps tend to vanish, P (W (t) = 0), remain P (W (t) = 1),

or split, P (W (t) > 1), for different time lags. We also explore the probability that a bump

existed sequentially, Pseq(t), or was regenerated, Preg(t). After segregating each bump into

its appropriate space, we are then able to characterize the mean-squared displacement of

the different behaviors separately. Specifically, we calculate 〈∆2rT
qb(t)〉, where qb indexes

the subset of the bump pairs that exhibit a specific type of behavior (e.g., if qb is Pseq, then

only bumps that existed sequentially are considered in the mean calculation).

The first probability that we calculate, P (W (t) > 1), is practically nil (data not shown).

This perhaps surprising result suggests that bumps rarely split, or if they do split, the frag-

mented pieces do not fall within the original bump’s circle. Taking this into account, we

instead compute P (W (t) ≥ 1) (black dots in Figure 5.10a), which automatically implies

P (W (t) = 0) since P (W (t) ≥ 1) = 1 − P (W (t) = 0).

The temporal structure of P (W (t) ≥ 1) decreases from 0.88 to 0.44 over the first

100ms, which suggests that bumps tend to disappear over this time interval (i.e., P(W(t) =

0) increases from 0.22 to 0.66); notably, this trend reverses direction after the 100ms mark.

This reversal highlights the fact that P (W (t) ≥ 1) encompasses both bumps disappear-

ing and reappearing (degenerative and regenerative processes, respectively). To tease apart

these different processes, we explore the probability that at least one bump existed within

bump j’s circle in the last t frames (i.e., bumps exist sequentially), which is calculated as:

Pseq(t) = P (W (10ms, j) ≥ 1 & . . . & W (t, j) ≥ 1) (5.5)
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Figure 5.10: Temporal structure of behavior types
(a) The probability that at least one bump exists near an original (black points), bumps exist
sequentially (red points), and bumps are regenerated (blue points) for different time lags.
(b) Mean-squared displacement segregated by the corresponding behavior types (qb).

(red dots in Figure 5.10a). A simple Markov process M(t) = Pseq(10ms)t/0.01 (red line in

Figure 5.10a) fits Pseq fairly well (mean-squared error is 0.003), indicating that the proba-

bility a bump exists in a given frame is mostly determined by the likelihood that it existed

in the previous frame. We also explore the likelihood that a bump vanished at least once

extending back an interval of t (i.e., the bump is regenerated), which is calculated as:

Preg(t) = P (W (10ms, j) = 0 | . . . | W (t, j) = 0) (5.6)

(blue dots in Figure 5.10a); a linear fit for Preg(t) is also shown, which is in good agreement.

Note that P (W (t) ≥ 1) = Preg(t)+Pseq(t), since every bump has either been regenerated,

or has existed sequentially.

At this point, we have successfully classified the different behavior types, and are now

in a position to uncover their relation to our previous diffusion results. First, we explore
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the mean-squared displacement of bumps that behave like classical particles (i.e., bumps

that exist sequentially), denoted by 〈∆2rT
Pseq

(t)〉 (red points in Figure 5.10b). For com-

parison, we also plot 〈∆2rT(t)〉 (black points in Figure 5.10b), which also corresponds to

〈∆2rT
P(W(t)≥1)(t)〉. The shape of 〈∆2rT

Pseq
(t)〉 is similar to 〈∆2rT(t)〉 — both consist of

a linear time dependence that saturates, matching the stereotyped shape of confined mo-

tion. One difference, however, is that 〈∆2rT(t)〉 has a small but distinct positive slope past

70ms, whereas 〈∆2rT
Pseq

(t)〉 fully saturates. The origin of this excessive diffusion becomes

apparent when we observe that the mean-squared displacement of regenerated bumps, or

〈∆2rT
Preg

(t)〉 (blue points in Figure 5.10b) is constant. This constant displacement, com-

bined with the fact that the probability of observing a regenerated bump increases linearly

with time (blue points in Figure 5.10a), accounts for the linear increase of 〈∆2rT(t)〉; that

is,

〈∆2rT(t)〉 =
Pseq(t)

P (W (t) ≥ 1)
〈∆2rT

Pseq
(t)〉 +

Preg(t)

P (W (t) ≥ 1)
〈∆2rT

Preg
(t)〉. (5.7)

Another interesting feature uncovered by this analysis is that the displacements of re-

generated bumps are larger than that of sequential bumps (saturation of 4 pix compared to

2.9 pix). This is characteristic of attractive–repulsive dynamics: bumps, initially attracted

to a fixed site, feed this attraction throughout their existence — but once extinguished,

newly formed bumps experience a repulsion from this previously occupied site.
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5.3.2.2 Bump area

Here, we characterize how bumps change in area over time. To explore these area changes,

we first construct the space U(t, j) = Λ(rT
j (t)), where Λ returns the area of the bump that

falls within an original bump’s circle (contingent on its existence); essentially, the operation

that Λ performs is to find the subset of bumps that meet certain criteria (e.g., bumps that ex-

ist in rT
j (t)) and lookup their areas in Sj(t). Next, we compute 〈U(t)〉 (black dots in Figure

5.11a). The shape of 〈U(t)〉 reveals that bump area does in fact exhibit temporal structure;

however, the observation that Sj(t) is log-normally distributed suggests that 〈U(t)〉 may not

accurately reflect the underlying distribution of bump sizes (i.e., bumps of different sizes

may not have the same characteristic temporal structure shape). Accordingly, we have also

calculated 〈U(t, rng)〉, where rng indexes original bumps that fall within a range of areas;

the range considered here is from 1 to 60 pixels2 in increments of 10 (solid lines in Figure

5.11a). The widths of the lines in this figure are determined by the log of the number of

bumps for each range; note that we have excluded bumps that have an area greater than 60

pixels2, since their sample space is too small to estimate their dynamics.

These results paint an interesting picture of how the network reacts to bumps of dif-

ferent sizes: Large bumps (greater than 14 pix2) initially decrease in area, whereas small

bumps (less than 10 pix2) initially increase in area, both tending towards a size of 12 pix2.

Furthermore, during the first 40ms, the rate at which these bumps change in area is roughly

proportional to how far away they are from their final size. The fact that there is ringing

(i.e., bump sizes overshoot their final value) suggests that an active feedback mechanism

influences bump size.

We also explore how the initial size of a bump relates to bump diffusion (Figure 5.11b).

This classification reveals that larger bumps move faster and further than smaller bumps,
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Figure 5.11: Temporal structure of bump areas
(a) The expected area of a bump at a certain time lag, where each trace represents a
different bump size. The width of each line represents the log of the number of bumps in
each sample size (149255 and 1463 samples for bump sizes ranging from 1-10 and 51-
60, respectively. (b) Mean-squared displacement segregated by the corresponding area
divisions.

uncovering another difference between physical particles and bumps: if bump size was

equivalent to mass, then we would expect that larger bumps would diffuse at a slower

pace. We have the opposite case, which suggests that bump size may reflect energy in-

stead. This non-physical behavior may also reflect that the centers of bumps are more

difficult to measure at larger sizes. However, since the number of large bumps is mini-

mal and their influence on the mean diffusion is small (black points), we do not explore

their properties any further. One interesting outcome of this analysis is that the character-

istic shape of 〈∆2rT
j (t)〉 (linear region followed by saturation) seems to be independent of

bump size, which suggests that bump sizes are not related to the mechanism underlying

confined motion.
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5.3.3 Staccato motion

To complete our analysis of bump motion, we must also consider the possibility that our

current technique for estimating diffusion ignores an entire class of bump movements. For

example, we currently classify two bumps in different frames as being potentially the same

object when they are less than T pixels from each other (i.e., the rT(t) distribution). By

default, all other bump pairings, denoted by rT(t), are classified as distinct objects (i.e.,

all other permutations of neighboring bumps). In this section, we show that the previously

ignored rT(t) distribution can itself be segregated into two classes: one class that unques-

tionably corresponds to separate objects, and a second class where this distinction between

the same and separate objects is ambiguous. We refer to this second class as staccato-like

motion, since it can be characterized by sudden and disjointed bump movements. Whether

the bumps involved in staccato motion should be considered as the same (e.g., bumps that

teleport) or separate (e.g., neighboring bumps that are temporally correlated) object(s) is

open for debate. Regardless of the interpretation, the extent at which staccato motion is

present in our network must be quantified, since it may reflect important dynamics.

We define staccato motion as two bumps, separated in time, that do not have a coun-

terpart (i.e., a nearby bump less than T pixels away) in each other’s frame. Therefore, our

strategy to uncover staccato motion is to search for bump pairs from the rT(t) distribution

that could in fact be considered as the same objects. We identify these bumps in two steps:

The first step is to eliminate all of the bump pairs from rT(t) that clearly correspond

to separate objects — a potentially difficult task since we do not know which bump cor-

responds to which bump in different frames. Our solution to this problem is to simply

find the closest bump near each original bump in an earlier frame; we denote the distribu-

tion that contains all of these closest bump pairings in frames separated by to as rC(to).
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By considering only the closest bumps, we are ensuring that each bump has exactly one

counterpart (in contrast, rP(to) considers all possible bump pairs). For an example, we

show |∆|rC(40ms) (Figure 5.12a) alongside |∆|rP(40ms) (Figure 5.12b) for comparison.

We can think of each value in |∆|rC(to) as representing the smallest sized circle, centered

around an original bump, required before encountering a bump in a later frame. Circle radii

larger than T (darker region of Figure 5.12a) represent the subset of bump pairs that were

previously considered separate objects, but may in fact correspond to staccato motion.

The second step is to determine which of these remaining bump pairs (i.e., the instances

of rC(to) that are > T pixels apart) that may have teleported. Our strategy is to examine

each closest bump (from the later frame) and decide whether it has a counterpart less than

T pixels away (in the original bump frame). If the closest bump does have an counterpart

in an earlier frame, then this closest bump clearly corresponds to a neighboring bump that

has diffused; in other words, this bump has not teleported. However, if the closest bump

does not have an counterpart in an earlier frame, the bump has essentially teleported. For

an example, we show the bump pairs in |∆|rC(40ms) that reflect staccato motion (red bars

in Figure 5.12c), and those that do not (dark blue bars in Figure 5.12c).

To quantify staccato motion, we calculate the proportion of the bump pairs that qualify

as staccato out of the potential staccato bump pairs (area of the red region divided by area

of the red and dark blue regions in Figure 5.12c). In the example where to is 40ms, this

staccato index is 0.4. We also compute the staccato index for different time lags (Figure

5.12d), which has a shape that is similar to the mean-squared displacement of bumps.
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Figure 5.12: Uncovering staccato motion
Distribution of absolute displacement between closest bumps (a), and all pairwise bumps
(b) for frames separated by 40ms. (c) The subset of bumps from (a) that are classified as
staccato motion (red bars), and neighbors (dark blue bars). (d) The staccato index, which
is computed as the ratio of the area of red bars in (c) over the dark blue bars in (a), for
different time lags.
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Chapter 6

Maps from motion

In this chapter, we explore how selectivity maps emerge from dynamic bumps.

We begin by characterizing the different types of dynamics that are possible in our net-

work (Section 6.1); this analysis applies the techniques that we developed in Chapter 5.

Next, we explore how these different dynamics relate to network computations (Section

6.2); in particular, we look at the speed at which orientation maps converge, and the se-

lectivity of the maps (using measures of information and NVM). Finally, we uncover the

neural mechanisms that allow bumps to move in the presence of heterogeneity, and examine

how these mechanisms relate to computation (Section 6.3).

6.1 Motion regimes

Previously, we introduced a novel strategy for characterizing the dynamics in our recurrent

network. Our approach was to first classify bumps (or contiguous regions of activity) within
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frames, and then estimate their movements between frames — capitalizing on the idea that

the bumps themselves are the underlying objects that drive network activity. Using this

approach, we developed a number of techniques in Chapter 5 that quantified how bump

motion was similar to, and different from particle motion.

In this chapter, we use these techniques to determine how bump motion relates to ori-

entation selectivity. Intuitively, we know that a relation must exist; for example, if oriented

gratings are unable to dislodge bumps from their preferred positions (i.e., the bumps are

immobile), neurons can not be selective. We hypothesize that to achieve selectivity, bumps

must be mobile enough so that different oriented stimuli can shift them, but also stable

enough so that their interactions with the stimuli are consistent.

Before we can tease apart the relationship between bump motion and selectivity, we

must first characterize the types of dynamics that are possible in our network. We tackle

this problem in two steps: First, we provide an overview of the specific quantities that we

employ to track bump motion (Section 6.1.1). Then, we systematically explore how these

quantities change when the network parameters are varied (Section 6.1.2).

6.1.1 Overview of dynamic quantities

Here, we explicitly define the quantities that we will use to characterize dynamics — all of

which are derived from Chapter 5. Because there are quite a few quantities, our analysis can

quickly become overwhelming if not properly organized. To avoid confusion, we arrange

them in a table, and adopt a simplified naming convention; in addition, we also provide a

description of each quantity (including a brief derivation) in the following text.

The quantities that we track are divided into three classes, as indicated by the different
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colored bullets in Table 6.1:

1. Diffusive motion (•)

We characterize diffusive motion by extracting the diffusion rate (Dseq) and the value

where diffusion saturates (Sseq) of the bumps that exist sequentially (see Section

5.3.2.1 for a review). By only considering sequential bumps, we ensure that non-

diffusive behaviors (e.g., bumps vanishing and reappearing) do not influence our

estimates; for example, Figure 5.10b clearly demonstrates that regenerated bumps

inflate 〈∆2rT
P(W(t)≥1)(t)〉, especially when t is greater than 50ms. Formally, we com-

pute Dseq as the slope of 〈∆2rT
Pseq

(t)〉 for t = 10 to 50ms, and Sseq as the average

value of 〈∆2rT
Pseq

(t)〉 for t = 90 to 150ms.1

2. Non-diffusive motion (•)

We characterize non-diffusive motion by tracking the mean displacement of regen-

erated bumps (Sreg) and the amount that this displacement is beyond the saturation

(Sjmp). Formally, we compute Sreg as the mean of 〈∆2rT
Preg

(t)〉 for t = 20 to 150ms,

and Sjmp as Sreg − Sseq.

3. General network characteristics (•)

In addition to measuring bump displacements and rates, we also track some gen-

eral characteristics of our network. In particular, we consider: the probability that

a bump exists after 10ms (Pseq); the probability a bump has been regenerated af-

ter 150ms (Pseq); and the staccato index (Pstc), which quantifies the proportion of

bumps that have teleported (i.e., bumps that have vanished and reappeared more than

T pixels away). We also measure the average area of bumps (Aavg) and the average

number of bumps (Navg) in each frame; while Aavg and Navg are not technically dy-

1Our derivations in this section use the notation from Chapter 5; their specific definitions can be located
via the section references in Table 6.1.
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Table 6.1: Dynamic quantities

Parameter Name Quant Section Ref Description

• Diffusion rate Dseq Section 5.3.2.1 diffusion rate of sequential bumps (10-50ms)
• Saturation Sseq Section 5.3.2.1 displacement of saturation (90-150ms)
• Displacement regenerated Sreg Section 5.3.2.1 displacement of regenerated bumps
• Displacement jump Sjmp Section 5.3.2.1 displacement of regenerated bump beyond Sseq

• Probability sequential Pseq Section 5.3.2.1 prob. bump will exist after 10ms
• Probability regeneration Pseq Section 5.3.2.1 prob. bump has been regenerated in 150ms
• Proportion staccato Pstc Section 5.3.3 proport. of bumps that are staccato (90-150ms)
• Bump area Aavg Section 5.3 average bump area
• Bump count Navg Section 5.3 average number of bumps

namic quantities, they provide insight about the state of the network. Formally, we

compute Pseq as Pseq(10ms), Preg as Preg(150ms), and Pstc as the average value of

the staccato index for t = 90 to 150ms. Note that both Pseq and Preg sample just a

single value of the measured relationships, under the assumption is that these sam-

ples reflect the entire relationship. Aavg and Navg are simply the means of Sj(t) and

N(t), respectively.

6.1.2 Dependence on network parameters

As we noted earlier (Section 5.1), the bump dynamics in our network change qualitatively

when we vary the parameters. Our goal in this section is to systematically map out these

dynamics using the quantities from Table 6.1. Because the parameter space is astronomic,

we must constrain our search. Our strategy is to first find a suitable network operating

point that exhibits interesting bump dynamics, and then determine a subset of parameters

that samples a wide-range of dynamics.
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6.1.2.1 Reducing the parameter space

To simplify our search in the high-dimensional parameter space, we first find a suitable

network operating point: Individual parameters are initially set to reasonable values based

on an analysis of the underlying circuits (and previous circuit simulations). Then, we adjust

each parameter until we observe bumps with interesting dynamics (defined subjectively at

this point); this process occurs interactively with our real-time setup. For example, if INH

cells are not participating in the network, we can increase the parameter E2I until they

become active. This procedure is more of an art than a science, due to the fact that the

physical circuits can deviate significantly from their simulations; moreover, the relation

between the parameters and network behavior is often counterintuitive, as we will shortly

see (Section 6.1.2.2). The final values that define our network operating point are indicated

in Figure 3.5 (from Chapter 3).

After settling on an operating point, we now constrain our analysis to the post-synaptic

current amplitudes (EA and IA). These two parameters were selected because they sample

a wide-range of different dynamics from visual inspection; moreover, postsynaptic current

amplitudes are likely candidates for adjustment in a cortical network through synaptic plas-

ticity.2 Because, two parameters still constitute a large space, we further reduce their range

by cutting out regions where: 1) bumps do not self-sustain for more than 10s in response to

an impulse (low hysteresis); 2) bumps do not pack the entire network (few bump interac-

tions); and 3) more than 28 neurons have an average firing-rate above 1,000Hz (unstable).

The borders of the three regions were uncovered using the real-time GUI; for instance,

when the network becomes unstable as we are sweeping through the parameter space, a

2There is also evidence that intralayer connectivity patterns in V1 are modified during development, and
in particular, long-range connections have been implicated in map consolidation [20]. It is unclear whether
these connections could play a role in dynamics.
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red box flashes in the GUI. We demarcate the borders of regions 1 (low hysteresis) and 3

(unstable) with x’s (Figure 6.1). It is important to note that these regions are empirically

defined and do not imply underlying bifurcations.

6.1.2.2 Observed diffusion rates

Having carved out a region in the two-dimensional parameter space {EA,IA}, we com-

pute Dseq for points in that range (Figure 6.1); we initially focus on bump diffusion rates

simply because this quantity has an intuitive physical correlate (i.e., Dseq measures the ex-

pected distance bumps move in a given time interval). We observe in this figure that Dseq

is mapped smoothly across the region: the lowest rate (14.5 pix2/s) occurs when both post-

synaptic amplitudes are low (state 1), and the highest rate (41.5 pix2/s) occurs when both

amplitudes are high (state 29); recall that decreasing the voltages EA and IA result in an

increase in postsynaptic amplitudes since they connect to pmos transistors. We also note

that even though diffusion is correlated with both excitatory and inhibitory amplitudes, the

relationship with excitation is noticeably greater.

Our result that increased postsynaptic amplitudes (feedback) corresponds to higher

bump diffusion is somewhat surprising; intuition suggests that strong feedback would serve

to pin the bumps to their preferred locations — resulting in decreased diffusion. This logic

suffices for a one-layer recurrent network that collapses excitatory and inhibitory connec-

tions into a single analog interaction (such as the original bump model from [51]). How-

ever, because our network consists of two-layers, the resulting dynamics can become sig-

nificantly more complex, and often leads to counterintuitive behaviors. In our network, for

example, increasing feedback will cause activity to ping-pong between the excitatory and

inhibitory layers, effectively dislodging bumps from their preferred locations. We present
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Figure 6.1: Map of diffusion rates
Bump diffusion rates (numbered) are shown for different voltages IA and EA.

a characterization of these dynamics later in this chapter (Section 6.3.1).

6.1.2.3 Observed network dynamics

Because Dseq does not capture the full spectrum of dynamics in our network, we also

compute the remaining quantities from Table 6.1 for each network state (Figure 6.2). In

these figures, we plot a subset of the quantities (y-axes) against the diffusion rate (x-axes),

where each marker corresponds to a unique state from Figure 6.1. We have chosen to

compare each quantity directly with diffusion (Dseq) for simplicity; that is, Dseq is used

as a reference for the parameters since it maps smoothly across the parameter space. As

we will see shortly, Dseq turns out to be useful in its own right for deciphering these other
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dynamic quantities.

In Figure 6.2a, we observe that the saturation displacement (Sseq) and regeneration dis-

placement (Sreg) both have near linear relationships with Dseq. This relationship between

Sseq and Dseq is not too surprising: faster bump diffusion (greater slope between 10 and

50ms) will naturally lead to a greater saturation displacement (average value between 90

and 150ms). It follows that if bumps move a greater distance in a given interval, then the

distance at which bumps regenerate (Sreg) will also increase because of attractive-repulsive

dynamics (i.e., when a bump regenerates, it initially experiences a repulsive force from the

location of the previous bump). It is interesting to note that Sjmp is nearly constant across

network states, which indicates that the repulsion displacement is independent of diffusion

rate.

Next, in Figure 6.2b, we track the probability that a bump exists after 10ms (Pseq), and

that a bump has been regenerated after 150ms (Preg). We observe an inverse relationship

between Pseq and Dseq, indicating that bumps vanish less when bump diffusion is low. Sur-

prisingly, the relationship between Preg and Dseq is concave down and peaks near medium

diffusion rates (≈ 30 pix2/s). We suggest that the reason Preg decreases at high diffusion

rates is a consequence of network oscillations; these oscillations can suppress bumps from

being regenerated on the timescale that we are looking at (150ms). If we looked farther out

in time, however, we would expect to see more regenerated bumps. We present evidence

to support this idea in Section 6.3.1, when we explore the mechanisms underlying bump

diffusion.

Next, we track the relationship between the staccato index (Pstc) with diffusion (Figure

6.2c). This figure shows that the percentage of bumps that can be considered staccato in-

creases linearly with diffusion. This relationship is consistent with our previous result that
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Figure 6.2: Network traits
Relationships between quantities from Table 6.1 and diffusion rates for each state. Bold
markers represent states whose computational properties are explored in detail.

131



high diffusion suppresses bump regeneration for sometime in a local region; this suppres-

sion would putatively promote bump regeneration at adjacent locations, thereby setting up

the right conditions for bumps to ‘teleport’.

Finally, we track the average area (Aavg) and number of bumps (Navg) for each state

(Figure 6.2d). Unlike the other quantities that we have measured, Aavg and Navg do not

measure bump dynamics directly, however, they still provide useful information about the

network’s state. We observe that Aavg is concave up and has a minimum when diffusion

rates are medium. On the other hand, Navg decreases approximately linearly with increas-

ing diffusion. From these parameters, we can estimate that the packing density is largest

when diffusion is low (i.e., Navg × Aavg is large).

6.2 Dynamic computation

The preceding analysis demonstrates that our network can exhibit a wide-range of bump

dynamics. Our goal in this section is to characterize how these dynamics affect computation

— ultimately uncovering which types of bump motion lead to the best maps. To distinguish

the quality of the orientation maps, we measure the speed at which they converge (Section

6.2.1), and their selectivity (Section 6.2.2).

6.2.1 PO convergence

Here, we explore the relationship between bump motion, and the speed at which orientation

maps form. Our expectation is that fast moving bumps will give cells more opportunities to

respond (or not respond) to oriented stimuli, whereas slow moving bumps will require more
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stimuli presentations for the same opportunities. To test this expectation, we introduce a

simple analysis that estimates how quickly an orientation map approaches its converged

state. Then, we use this analysis to measure the convergence rates for three network states

with slow, medium, and fast dynamics.

Consider that we have access to the exact response distributions of a cell to single cycle

oriented gratings (i.e., one distribution for each orientation). In this case, we can compute

the true PO of the cell by taking the vector sum of the mean response to each orientation

(see Equation 4.9). The question that we are interested in here is: how many independent

samples from these distributions are required before the sampled PO approaches the true

PO of the cell? To answer this question (through measurement), we define the convergence

of cell i, denoted by Ci(s), as the distance between the sampled PO (computed from s

samples) and its true PO.3 Furthermore, the convergence rate is simply the derivative of

Ci(s); because each sample corresponds to a presentation of a single grating cycle (1 sec),

the convergence rate is measured in degrees/sec.

To measure Ci(s) for the cells in our network, we make the following choices: First,

we approximate the exact probability distributions of cell responses with empirical ones,

using data from a long experiment; in particular, we present 4 orientations, each for 1,000

cycles. Second, to compute the distance between the sampled PO (considering parts of the

trial) and the true PO (considering the entire trial), we employ the similarity index (SI), as

defined in [24]; recall that SI measures the difference between two angles on a circular axis.

In our calculation, we do not normalize SI but instead keep the measure in units of degrees,

where 90 degrees represents opposite, and 0 degrees represents identical POs. Finally, to

estimate Ci(s) for each cell, we take 20 independent samples of size s for each cell, and

3We note that to determine if the sampled PO falls within a particular confidence interval, we can not
assume that the sampling errors will be distributed normally (since orientation is a circular variable). Refer
to [76] for a review on estimating sampling errors in this situation.
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Figure 6.3: PO map convergence
(a) Comparison of PO map convergence (〈Ci(s)〉) for three network states with shown fits
(solid and dashed lines). (b) Comparison of convergence rates computed from fit parame-
ters.

compute the mean SI for each cell taken over the samples; the average SI across all cells

(〈Ci(s)〉) is then reported for each map.

We compute 〈Ci(s)〉 for three different network states where s ranges from 2 to 200s

(Figure 6.3). These three states, which are shown by bold markers in Figure 6.2, were

chosen because they sample unique combinations of dynamics. In particular, states 4, 15,

and 29 reflect low, medium, and high diffusion rates, respectively. Figure 6.3a shows that

the cells in state 29 approach their long-term POs at a faster pace than the other states,

thereby confirming our original expectation that fast diffusion leads to a fast converging

map (a 12 degree difference after 200s). Surprisingly, the map obtained from the medium

diffusion rate does not follow expected trend: the average cell in state 15 is nearly 20

degrees away from its final PO after 200s, whereas state 4 is 16 degrees away. This result

indicates that relationship between diffusion and map convergence is not as simple as we

originally anticipated.
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Table 6.2: Fits for 〈Ci(s)〉

State a, [CI] b, [CI] c, [CI] d, [CI]

29 18.1,[17.5, 18.6] −0.098,[−0.104,−0.092] 20.1,[19.8, 20.4] −0.0032,[−0.0034,−0.0038]
15 14.1,[13.6, 14.7] −0.094,[−0.101,−0.087] 26,[25.8, 26.4] −0.0026,[−0.0027,−0.0025]
4 14.8,[14.0, 15.6] −0.093,[−0.103,−0.083] 22.2,[21.8, 22.7] −0.0026,[−0.0028,−0.0025]

To quantify the convergence of each state, we parameterize 〈Ci(s)〉 using a sum of two

exponentials:

aeb·s + ced·s, (6.1)

where {a, b, c, d} are the parameters. The fits, which are shown in Figure 6.3a, use solid

lines to represent the sum of both exponentials, and dashed lines to represent the slower of

the two exponentials. The particular values of the fit are indicated in Table 6.2, along with

confidence intervals.

Using the parameters from Table 6.2, we estimate the convergence rates of the maps in

the three different states analytically (Figure 6.3b). These curves reveals that state 29 does

in fact converge at a faster rate than the other two states. In addition, we can also observe

that state 4 and 15 have nearly identical rates even though PO map from state 4 comes

closer to its final state compared to state 15.

It is also worthwhile to note that the percentage of responsive cells (map coverage)

in the three network states change in a consistent manner with bump diffusion rates. In

particular, states 4, 15, and 29 have 42%, 71%, and 88% of cells responding, respectively.

This relationship is not too surprising: we expect that diffusive bumps would cover a larger

distance, subsequently allowing more cells in the network to participate. To illustrate this

point, we plot the three PO maps for these states and set non-responsive cells to black
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Figure 6.4: PO map comparisons
Orientation maps for network states with high (a), medium (b), and low (c) bump diffusion
rates.

(Figure 6.4).

6.2.2 Selectivity

We have demonstrated that higher bump mobility leads to superior maps. For instance,

cells in state 29 ‘know’ their PO in fewer trials on average (Figure 6.3). In addition, the

percentage of cells that participate in the maps is also greater at this high diffusion rate

(Figure 6.4). Our aim in this section is to determine whether these superior map qualities

come at the expense of selectivity.

Following the techniques described in Chapter 4 for quantifying selectivity, we compute

the information (Figure 6.5a) and NVM (Figure 6.5b) for each cell when the network is

tuned in the three different states, and plot the results in cumulative distributions; note

that each distribution only considers responsive cells (i.e., the non-black cells in Figure

6.4). Two trends are evident: First, we observe that there is a crossover between state 4

and state 29 near the medians (more noticeable in Figure 6.5b). This suggests that low
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Figure 6.5: Comparison of selectivity
Cumulative distribution of information (a), and NVM (b) for responsive cells in the network
for three states. Note that we only plot the distributions up to 0.2 bits for information, and
0.6 for NVM, to increase the visibility in the lower regions.

diffusion (state 4) favors extremes (either low or high selectivities), whereas high diffusion

(state 29) is more evenly distributed. The second observation is that the medium diffusive

state (15) consistently trails behind both information and NVM measures relative to the

other two states. This is consistent with our result from Section 6.2.1 that shows state 15

also lags behind in convergence; that is, we expect that more trials would be required to

determine a cell’s PO when selectivity is low. So unfortunately, the relationship between

bump diffusion and network computation (information and NVM) is not straightforward

(i.e., it is non-monotonic).

However, the differences in selectivity between the states are not overly dramatic (with

these current results, not much can really be determined beside the aforementioned trends).

The result that we wish to emphasize is that the high diffusive state does not sacrifice

selectivity for its superior convergence rate and coverage factor.
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6.3 Mechanistic origins of motion and selectivity

Although we have made significant progress in characterizing the behavior of the bump

chip, our current analysis has not been able to uncover the fundamental mechanisms that are

responsible for map formation. This is problematic: we need to have a firm understanding

of the these mechanisms if we are to judge the viability of our model (e.g., to make testable

predictions that can be validated in biology). In a sense, our project up to this point has

done little more than transformed an unexplained phenomena in the cortex (i.e, the initial

appearance of PO maps) into an unexplained phenomena in a silicon chip (albeit in a more

controlled setting).

Our findings, however, have not left us completely in the dark. For example, we discov-

ered in this chapter that innate bump motion (measured when the network is driven with

uncorrelated inputs) is linked to the formation of PO maps: this result suggests that un-

earthing the mechanisms responsible for innate bump movements may provide clues about

selectivity. Following this lead, we explore how bumps are able to move in the presence

of heterogeneity by directly observing the patterns of activity in EXC and INH cells for

different levels of feedback (Section 6.3.1).

Another promising possibility is to use our bump-based analysis to explore how moving

bumps interact with gratings. For example, this analysis will allow us to compute the

likelihood that a bump will form in its ‘correct’ location (according to the converged PO

map), based on the bump’s features (e.g., its area or shape). Furthermore, we can also

track how these likelihoods evolve over time; that is, do bumps with particular features

diffuse to their correct locations, and if so, on what time scale? As one can quickly see,

the possibilities are extensive. In our case, we have chosen to explore how bumps orient

themselves (i.e., their major-axis of orientation when fit by an ellipse) when driven by
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oriented stimuli (Section 6.3.2).

The insights that we obtain in this section will be used to piece together a coherent story

for how the bumps in our network obtain their orientation selectivity; this story will serve

as the basis for the testable predictions that we will make in the final chapter (Chapter 7).

6.3.1 Dislodging confined bumps

Here, we explore the surprising result that the bumps in our network become more mobile

as the postsynaptic amplitudes are increased (as shown in Figure 6.1). Our hope is that

by understanding the spike patterns that promote innate bump motion, we will gain insight

into the relationship between bump dynamics and map formation.

Our first approach is to simply view the spikes of coupled EXC–INH cells over a small

snippet of time; in this example, we consider ten cells of each type that are in the same

column. We observe that in state 29, which corresponds to a high diffusion rate (Figure

6.6a), activity alternates between the two layers — first EXC responses build for about

80ms (green rasters), which then recruits massive activity in INH cells (black rasters). State

15 exhibits a similar spike pattern (Figure 6.6b), except here, the interlayer interactions

occur on a slower time scale (EXC responses build for nearly 200ms). In contrast, state 4

has no discernable global oscillations over the shown timescale (Figure 6.6c).

To check if these observed spike patterns are in fact characteristic for our network, we

have also computed the autocorrelation (AC) for a 10 × 10 grid of EXC cells, considering

50s of data. We summarize our findings by first normalizing the AC for each cell so that

its amplitude at lag 0 is unity, and then computing the average AC across all cells (Figure

6.6d). The average ACs for states 29 and 15 indicate that the oscillations observed in the
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Figure 6.6: Spike dynamics
(a)–(c) Rasters for ten EXC (green, top) and INH (black, bottom) neurons in different states.
(d) The average autocorrelation, which is calculated by considering EXC spike over a 50s
interval at 0.1ms bin resolution. The autocorrelation is normalized for each neuron indi-
vidually and averaged over 100 neurons.

140



rasters are stereotypical responses; both states 29 and 15 decay rapidly over the first 100ms,

and then tail off (or slightly rebound) some time later. The average AC of state 4, on the

other hand, decays monotonically (resembling a power law).

These observed oscillations shed light on a number of puzzling results that we have en-

countered in this chapter. For one, it helps explain why increased recurrent feedback spurs

bump mobility (recall that increased feedback serves to pin bumps to their preferred loca-

tions in a single-layer network). We can now clearly see increased feedback in a two-layer

network causes a ping-pong of activity between the layers; furthermore, these oscillations

become shorter and more focused as the coupling between EXC and INH cells is increased.

We propose that these focused bursts of inhibitory and excitatory activity are able to dis-

lodge bumps from their preferred locations.

Another puzzling result that we encountered was that bump regeneration (Preg) de-

creased at high diffusion rates (see Figure 6.2b). Again, the oscillations explain why this

is the case: When a bump vanishes (the end of an excitatory epoch in the Figure 6.6a), the

inhibitory epoch is near its peak. This inhibition, which lasts for an additional 100-200ms,

effectively suppresses bump regeneration on the time scale that we are looking over. At

lower diffusion rates, however, the inhibitory oscillation is more diffuse, allowing bumps

to regenerate at earlier times.

In conclusion, we have shown that our two-layer network exhibits diverse dynamic be-

haviors due to excitatory–inhibitory oscillations. In a sense, these oscillations seem to have

evened the playing field: neurons that are inherently overactive (causing pinned bumps)

can now be actively dislodged through coordinated inhibitory activity; this allows less for-

tunate neurons an opportunity to participate — an opportunity not offered in the states with

no oscillations.
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6.3.2 Bump motion with oriented inputs

Up to this point, our bump analysis has been used to quantify innate bump dynamics (when

the network is driven with uncorrelated inputs). One exciting prospect is that this same

analysis can be used to measure how bumps interact with oriented gratings, potentially

elucidating the mechanisms that underly selectivity. Our excitement is justified: as we will

show shortly, this analysis is capable of exposing non-obvious relationships between bumps

and PO maps that would otherwise be difficult to pick out. Specifically, we report results

that uncover a surprising relationship between the way bumps orient themselves relative to

the stimulus, and the final selectivity map. Before we present these results, we first upgrade

our modified experimental procedure and bump tracking techniques to handle gratings.

6.3.2.1 Modified experimental procedure and analysis

The goal of our current set of experiments is to characterize bump dynamics while the net-

work is being stimulated with gratings. We perform these experiments by following the pro-

cedure described in Section 5.1.1, except here, we replace the Poisson inputs with square-

wave gratings. Specifically, we present four square-wave gratings to our network with

orientations that range between −180 and −45 degrees; each trial, which corresponds to a

different stimulus, lasts for 75s. The resulting activity is then binned at a 10ms resolution,

which corresponds to four movies with 7,500 frames; we denote these movies by Ai,k(t)

where i indexes a cell’s location, k indexes the orientation of the stimulus (k = 0 . . . 3),

and t is the frame index. As before, the number of spikes in each frame is capped at five,

limiting the instantaneous rate of overactive cells to 500Hz.

Next, we characterize the dynamics of Ai,k(t) using the techniques developed in Chap-
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ter 5; this analysis is performed for each trial independently. Specifically, we identify

bumps in each frame, and extract their features (Sections 5.2.1 and 5.2.2). For our current

analysis, we track each bump’s centroid, area, and major axis of orientation when fit by an

ellipse; we refer to the bump’s ellipsoid orientation as BEO. In addition to these standard

features, we also record where the center of each bump lands in relation to the converged

PO map and NVM maps (which were computed in a separate experiment following the

procedure in Section 4.1.2); we refer to the PO of the cell that the bump’s center lands on

as a bump’s PO, or BPO. After reducing activity to a collection of bumps, we can then

construct a difference distribution, rT(t), for each trial. These distributions will allow us to

estimate the temporal structure of bump features between frames following the examples

in Section 5.2.4.

The final point to note is that in addition to measuring BEOs and BPOs, we also record

their values relative to the orientation of the stimulus (as opposed to being measured relative

to the cardinal axis of the array). That is, we compute the absolute angular difference

on a circular axis (in orientation space) between the measured values and the stimulus

orientation; we refer to these stimulus relative measures as RBEO and RBPO (where the

R is an abbreviation for relative). For example, if a bump has a BEO of −10 degrees, we

would record a RBEO of 55 degrees when the stimulus is a −135 degree grating, since

55 is the difference between −135 and −10 on a circular axis in orientation space. As

we will see, measuring these orientations relative to the stimulus simplifies our analysis,

since we are primarily interested in how these quantities change in relation to the stimulus;

one notational benefit is that for these relative measures, we do not have to keep track of

four separate rT(t) distributions, but can instead simply concatenate them into a single

distribution.
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6.3.2.2 Tracking bump orientations

Here, we explore the possibility that the way in which bumps contort to oriented inputs

is somehow related to the formation of PO maps. The inspiration behind this idea comes

from the observation that bumps are not perfect circles, but are actually quite malleable.

Therefore, it seems likely that driving the network with drifting oriented inputs could result

in stimulus-induced biases in bump shapes.

To test this possibility, we have performed the experiment outlined in Section 6.3.2.1 for

network states 29, 15, and 4. The resulting distributions of BEOs are shown for each state

(Figure 6.7a–c). We note that 1) only bumps with areas larger than 10 pix2 are considered,

which effectively removes spurious contributions from smaller bumps,4 and 2) the common

modes of BEOs (Figure 6.7d) have been subtracted out to remove any systematic biases.5

For states 29 and 15, the majority of bumps orient themselves parallel to their stimulus

orientation. This observation is perhaps expected — if we are driving the network along a

particular axis, it seems logical that neural activity will take the shape of the inputs. But

can these observed bump elongations account for OS? For example, we might hypothe-

size that OS is the combination of bumps being forced to match the shape of their inputs,

while simultaneously being constrained by their preferred locations. Although this would

be a welcomed conclusion, the evidence that we have amassed so far does not support

4This simplification was made because many of the smaller bumps report orientations that fall along the
cardinal axes simply because they are symmetric. The likelihood observing large bumps that are symmetric,
however, is greatly reduced.

5The bumps in state 4 have an overwhelming preference for −135 degrees, regardless of the stimulus.
For example, nearly 7,000 bumps in this state were oriented along a −135 degree axis; however, once the
common mode is removed, there are less than 200 bumps that prefer −135. This indicates that although a
bias exists, it is not stimulus specific (otherwise, we would have a problem obtaining PO maps). We would
like to emphasize that this bias is not introduced by our analysis, but is instead a chip-related effect. We have
not explored the source of this bias in any extent; the potential culprit is likely a supply gradient, which is
exacerbated in state 4 because the neurons are firing at higher rates (i.e., the circuits are drawing more current,
which can cause an IR drop across length of the chip).
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Figure 6.7: Distributions of BEOs
Ellipsoid orientations of bumps (greater than 10 pix2) when the network is driven (a–c).
The common orientations for each state (d) are subtracted out of the individual histograms.
Note that state 4 has an overwhelming bias at −135 degrees; however, the bias is common
to all stimuli.
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it. For starters, we would predict that states 29 and 15 would be highly selective, in par

with the dramatic bump elongations. As we have consistently found, however, selectivity

across multiple measures is moderate to low (considering the selectivity index, NVM, and

information). Other opposing evidence is that the distributions of BEOs for state 4 is quite

noisy, yet this state outperforms state 15 in both terms of selectivity and convergence rates.

Clearly, there must be other factors involved in map formation.

Because the relationship between BEOs and selectivity is still unclear, we employ a

more direct analysis that tracks how close bumps land to their ‘correct’ locations based on

their shapes (i.e., the BPOs). For example, consider the hypothetical scenario where bumps

that are parallel to their inputs (i.e., their RBEOs are close to 0) are in fact responsible

for OS, as suggested earlier, whereas RBEOs much larger than 0 do not contribute. One

method of exposing this relationship is to first group bumps based on their RBEOs (e.g.,

bumps that are parallel, nearly parallel, etc. to the stimulus), and then track the RBPOs

for each group (i.e., where the bumps in each group form according to the final PO map

relative to the stimulus). Continuing with our hypothetical example, the group with low

RBEOs (parallel to the stimulus) would have low RBPOs, since they would land in regions

that are near their correct POs, whereas the other groups (not parallel to the stimulus) have

random RBPOs, since they would land in arbitrary locations.

We performed an experiment based on the above example to see if the way in which

bumps orient themselves to a grating (RBEO) predicts if they form in the correct locations

(RBPO). Specifically, we first separated bumps into four groups based on how they orient

themselves to the grating: parallel (RBEO ∈ 0–22.5), nearly parallel (RBEO ∈ 22.5–45),

nearly perpendicular (RBEO ∈ 45–67.5), and perpendicular (RBEO ∈ 67.5–90). Then,

based on these different groups, we tracked if bumps form in near correct locations (RBPO

is relatively small), or random locations (RBPO is 45). The results are shown in Figure 6.8
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Figure 6.8: Relationship between RBPO and RBEO
Bumps that orient themselves perpendicular to the input grating (RBEO > 45 degrees)
tend to form in ‘correct’ locations (their RBPOs are lower); By contrast, bumps that orient
themselves parallel to the input tend to form in incorrect locations. This trend is visible in
all three dynamic states.

for all three states.

These plots show a surprising trend that is consistent for all the states: bumps that are

perpendicular to the stimulus (RBEOs that are greater than 67.5 degrees) tend to form

closer to their correct locations, whereas bumps that form parallel to the stimulus (RBEOs

that are less than 22.5 degrees) land in either random — or even incorrect locations (RBPOs

are greater than 45 degrees). But how could bumps that form perpendicular to the stimulus

be better off? For one, it would explain why selectivity has consistently been low: the

number of parallel bumps far outnumber the perpendicular bumps (see Figure 6.7).

After significant reflection, this idea may not be so radical. Perhaps the selectivity in our

network occurs when bumps are ‘dragged’ along with the grating; that is, maybe bumps are

selective to spatio-temporal energy rather than just elongated inputs. Another interesting

possibility is that selectivity may be determined entirely by the recurrence, and not by direct

stimulation; in fact, our results suggest that cells directly driven by the grating are actually

less selective. Before we become preoccupied with speculations, we first confirm that this
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exciting result it not simply an artefact of our analysis.

6.3.2.3 Verification

In this section we verify our result that large RBEOs tend to form in the correct locations.

Our strategy is based on the following idea: If the subset of bumps that have large RBEOs

are in fact responsible for OS, then a PO map created from this subset should closely

resemble the final PO map (considering all activity); on the other hand, PO maps created

from bumps with small RBEOs should bear little resemblance to the final map.

Based on this premise, we decompose Ai,k(t) into four separate channels, where each

channel only considers a range of RBEOs (e.g., parallel, nearly parallel, etc.). In practice,

this decomposition is achieved by first identifying bumps within each frame, and then seg-

regating the activity of each bump into its appropriate channel based on its RBEO. The

result is four decomposed activity movies, each of which have four dimensions (one for

each stimulus orientation).

Next, we compute the PO map for each of the four channels. These maps are shown for

states 29, 15, and 4 in Figures 6.9, 6.10, and 6.11 (b, d, f, and h), respectively; we also show

for comparison the original PO map (without separating the channels) in the central plots

(e). To quantify the similarity between the decomposed PO maps and the final map, we

compute their similarity indexes (a, c, g, and i). From these plots, we see that as proposed,

bumps with large RBEOs result in PO maps that resemble the final map (i), whereas bumps

with low RBEOs bear little resemblance (a); this trend persists in all states. One deviation

from our predictions, however, is that moderate RBEOs (bumps with nearly perpendicular

and parallel orientations) are more similar to the final map than the one with high RBEOs.
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We hypothesize why this might be the case later in Chapter 7.

To gauge the relationship between the deconstructed PO maps, we also compute the

mean SI taken across cells for each state, and plot them in a 4 × 4 matrix (Figure 6.12); in

these plots, the main diagonal compares each deconstructed PO maps with the final map

(instead of trivially reporting self-map comparisons). These intermap comparisons reveal

that PO maps made from perpendicular and nearly perpendicular bumps are quite similar

(reddish box in the bottom right of the matrix); however the similarity between nearly

perpendicular and nearly parallel maps is close to random (0.5).

In Figure 6.9b and h, we observe a peculiar characteristic along the edges of the array:

in Figure 6.9b, horizontal bumps dominate along the top and bottom edges (horizontal

streaks of red), whereas vertical bumps dominate along the left and right edges (vertical

streaks of green–blue); the opposite can be observed in Figure 6.9h (vertical streaks of red

and horizontal streaks of green–blue). This brings up the prospect that the square geometry

of our array may introduce an orientation bias. We are confident that this peculiarity is

simply an artefact of the deconstruction procedure: specifically, it is the trivial result that

vertical bumps can not form along a horizontal edge, and visa-versa. To support this idea,

we run a control experiment where the gratings are masked by a circular aperture, which

removes any edge-related bias (Figure 6.13a); the region of stimulation is indicated by the

bright circle. As expected, this PO map is nearly identical to the PO map obtained when the

entire array is stimulated (Figure 6.13b), dispelling any concern about edge-induced biases.

One perhaps meaningful observation is that the similarity between these PO maps (Figure

6.13c) is similar in regions outside the circle of stimulation. This evidence supports our

idea that the recurrence is driving selectivity, and not direct stimulation from the gratings.
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Figure 6.9: Deconstructed PO maps for state 29
(b,d,f,h) PO maps created from subsets of bumps based on how they orient themselves to
an input grating (indicated by their RBEO labels). (e) PO map created from entire set of
bumps. (a,c,g,i) Comparisons of PO maps created from subset and the entire set using
the similarity index (SI). Notice that the PO map created from parallel (par) oriented bumps
does not correlate well with the PO map created from the entire set, whereas all other
RBEOs (perp, near perp, and near par) do correlate well. Boundary effects can be seen
in (b) and (h); this is an artefact, and is simply a result of parallel bumps not being able to
form at a perpendicular edge, and visa-versa.
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Figure 6.10: Deconstructed PO maps for state 15
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Figure 6.11: Deconstructed PO maps for state 4
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Figure 6.12: Summary of SI between deconstructed PO maps
Pairwise comparisons (average SI) between PO maps created from RBEO subsets for the
states 29 (a), 15 (b) and 4, (c). The diagonal entries represent the comparison with the PO
map created from the entire set of bumps.
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Figure 6.13: Removing edge effects
(a) PO map obtained by presenting gratings masked with a circular aperture. This map is
compared with a PO map obtained when the entire array is stimulated (b); the comparison
is shown in (c). This clearly indicates that the square edges of the array do not influence
the layout of the map.
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Chapter 7

Conclusion

“As machines become more and more efficient and perfect, so it will become

clear that imperfection is the greatness of man.”

—Ernst Fischer

In this project, we have presented the bump chip, a silicon model of the primary visual

cortex that accounts for the emergence of an orientation map. Two traits set our chip

apart from every other man-made system to date: 1) its functional architecture (orientation

selectivity) is not specifically engineered a priori, and 2) the scaffold for this architecture

is innate to the chip itself and exists as an indelible imprint. In other words, our chip attains

all of the benefits of a self-organizing learning system without having to go through the

tedious process of learning. We propose that cortical maps observed in biology are built

using a similar design principle. This idea is supported experimentally; orientation maps in

kittens are remarkably robust to experimental manipulations, and appear without the need

for visual experience.

154



Our design is based on the simple but powerful idea of opportunism. Building on the

work from Ernst et al., our chip uses a recurrent network with local excitatory and distal

inhibitory connections to generate periodic patterns of neural activity (bumps). The bumps

in our network are pinned to particular locations, determined by transistor mismatch in-

troduced during chip fabrication. Because these pinned bumps respond selectively when

driven with different orientations, different groups of neurons are preferentially activated

for each stimulus. The resulting map produced by the bump chip reveals that preferences

change smoothly across space (due to the spatial extent of bumps), and these preferences

repeat at regular intervals (due to bump periodicity) — capturing the essential characteris-

tics of animal maps. The seemingly complicated task of assigning similar selectivities to

nearby neurons is cleverly achieved by simply building an imprecise, recurrent network.

Our implementation improved on the previous software model [51] in two respects:

First, we added biologically realistic inputs by including separate ON and OFF pathways;

the previous model only considered a single luminance channel. To ensure that both ON-

driven and OFF-driven orientation maps were aligned, we built our network out of sign-

independent cells that are excited by both pathways; this design choice guarantees that

bumps interact with both light and dark stimuli in a repeatable manner since both pathways

are subjected to the same unique connectivity profile. We made an analogy between our

sign-independent cells and ‘complex’ cells originally described by Hubel and Wiesel based

on the observation that neither have identifiable ON–OFF subregions. However, unlike the

traditional notion of complex cells that derive their selectivity from orientation-selective

simple cells, our sign-independent cells determine their own selectivity through recurrent

interactions.

The second improvement was to use a two-layer excitatory–inhibitory recurrent net-

work as the backbone for our design; the model used by Ernst et al. only considered a
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one-layer network with a single analog interaction. Although incorporating a distinct in-

hibitory layer was expensive in terms of silicon area, including this detail payed off in terms

of network behaviors: when recurrent feedback was strong, activity was able to ping-pong

between the layers dislodging stuck bumps and promoting dynamics — the end result be-

ing faster converging orientation maps. In a single-layer network, on the other hand, strong

feedback pins bumps harder to their prefered locations, thereby damping dynamics.

The bump chip, like its software predecessor, was able to generate an orientation map

from an imprecise recurrent network. However, it was still unclear how orientation selec-

tivity emerges: Do patterns interact in an orderly fashion with inputs, or do the interactions

exhibit complex dynamics? In the next section, we discuss an analytical technique for

characterizing spatio-temporal activity, which we developed to gain insight into dynamic

pattern formation. Then, using results obtained from our analysis, we are able make predic-

tions about how activity in the developing cortex should behave if neural pattern formation

plays a role in development. Finally, we conclude this thesis by describing recent ex-

perimental evidence that suggests stochastic phenotype expression might be an important

computational motif used throughout ontogenesis.

7.1 Bump-based analysis for describing dynamics

We developed a novel technique for characterizing the dynamics in our chip. Our strategy

was to capitalize on the idea that the bumps themselves are the quintessential elements of

dynamics (and ultimately of orientation selectivity). Based on this insight, we first reduced

neural activity within frames to a collection of elliptical particles, and then estimated how

these particles changed between frames. Our method contrasts with standard dimension
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reduction techniques (principle component analysis and non-negative matrix factorization)

that are often used to quantify dynamics; in particular, the basis vectors in these meth-

ods are not constrained to have a physical relationship with the underlying neural activity

(bumps). As a consequence, these standard techniques are unable to capture non-obvious

relationships about dynamics; a prime example is probing whether bumps behave differ-

ently depending on where they form in the network (a result that we discovered in Chapter

6).

Using our bump-based analysis, we estimated the diffusion rates of bumps by comput-

ing the mean-squared displacements of their centroids for different time intervals. Similar

to atoms vibrating in a crystalline lattice, the mean-squared displacement of bumps had

two distinct relationships with time: an initial linear relation corresponding to a random

walk, and a later saturation revealing confinement. We also noticed that unlike physical

particles, bumps are able to vanish, coalesce, and change shape over time. To quantify

these ‘non-classical’ dynamics, we computed the likelihood a bump vanishes–appears in a

predefined area. This analysis revealed that regenerating bumps (i.e., they vanish and then

reappear) are repelled from the previously occupied site, suggesting attractive–repulsive

interactions across time. Finally, we also showed that bumps teleport (one bump will van-

ish, and a second will reappear outside of the confinement region); we called this type of

motion staccato, reflecting coordinated disjointed movements. Our results confirmed that

even though bumps do behave like particles vibrating in a lattice, they can also display

diverse non-classical behaviors.
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7.2 Testable predictions for biological maps

The model that we have proposed is able to reproduce the characteristic features of biolog-

ical orientation maps. Furthermore, the bump model’s basic algorithm is both simple and

robust; the mere fact that this model works at all in silicon attests to its robustness. But

does the bump model accurately reflect the process of cortical development, or should we

heed the words of the ever cynical H.L. Mencken: “For every complex problem there is an

answer that is clear, simple, and wrong.”?

We highlight three general predictions that our model makes about the establishment

of an orientation map (up until a week after eye-opening), all of which can be explored

using modern day voltage-sensitive dye (or calcium) imaging techniques and–or single-

cell recordings.

The most obvious prediction of the bump model is that recurrent interactions are re-

sponsible for orientation selectivity in the developing cortex. Simply put: Do neural ac-

tivity patterns in V1 act like bumps (in single-condition maps), and if so, are these bumps

in any way related to orientation-selective responses? To answer the first question, we

can analyze single-frame images of cortical activity (single-condition maps) and test if ‘re-

generated’ bumps experience a repulsive force (as described in Chapter 5), for instance.

Repulsive–attractive interactions between self-sustaining regions of neural activity would

suggest recurrent interactions are at play.

To answer the second question, consider imaging the cortex while simultaneously record-

ing from a single cell. The bump model predicts that every time the cell responds selectively

to a stimulus, a ‘bump’ from the imaging data should also be crossing its path. If, how-

ever, the cell is selective when a bump is not nearby, we can conclude that something other
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than bump interactions determine this cell’s selectivity (as predicted by simple feedforward

models).

A second prediction of the bump model is that network oscillations are related to bump

diffusion, as oscillations provide a mechanism to dislodge stuck bumps, an inevitable con-

sequence of heterogeneity.. This relationship could be directly tested by comparing bump

diffusion rates in awake and sleeping animals, which correspond to fast and slow oscilla-

tions, respectively.

The final prediction that we highlight, which in our opinion is the most exciting result

of this project, is that the way a bump orients itself in relation to the stimulus determines

whether that bump contributes to a robust orientation signal (Chapter 6). For example,

bumps that orient themselves perpendicular to the stimulus tend to activate cells that are

preferentially selective to that stimulus (these bumps tend to land in the ‘correct’ locations);

by contrast, bumps that orient themselves parallel to the stimulus activate cells without

any preference (these bumps tend to land at random network locations). If confirmed,

this relationship would strongly suggest that the bump model is in fact credible, since no

competing model (to our knowledge) relies on a similar mechanism.

7.3 Does biology really use noise?

In the past few years, there has been a growing body of evidence that demonstrates phe-

notype diversity can be influenced by stochastic variations [77]. In other words, certain

attributes of an organism are ‘noisy’ since they are not solely determined by intrinsic fac-

tors (genes and molecules). Ostensibly, this noise is undesirable and runs contrary to the

law of natural selection since favorable attributes can not be reliably passed along through

159



the generations; that is, unless random phenotype expression itself offers some advantage

to the organism. A recent study suggests that this indeed may be the case.

A group from Berkeley has demonstrated for the first time that stochastic expression

contributes to the robustness of a viral infection. The most significant obstacle in eradicat-

ing the human immunodeficiency virus type 1 (HIV-1) from patients is long-lived latently

infected host cells that do not show any appreciable sign of infection. To the dismay of

researchers, neither genetic or cellular factors have been able to account for the observed

diversity of latency durations. The Berkeley group discovered why in 2005: stochastic vari-

ations in a positive feedback loop drive the phenotype diversity; in contrast, control viruses

that lacked this feedback loop exhibited deterministic latencies [77]. It is often cited in

evolutionary biology that “chance favors the prepared genome” [78]; in light of this new

evidence, perhaps we can also say that “a prepared genome favors chance”.

Taking a step back, we can ponder whether this viral example is an isolated case, or if

perhaps stochastic phenotype expression is an important computational motif throughout

ontogenesis. Neural feedback loops, for example, might also take advantage of random

variations. In this project, we have proposed that cortical feature maps, which are putatively

the seat for higher cognition in humans, emerge from this same basic principle.
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