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Abstract

T CHANNEL DYNAMICS IN A SILICON LGN

Kai Michael Hynnä

Supervisor: Kwabena Boahen

This dissertation describes my efforts, in silicon, to study the role of the low

threshold calcium channel in the processing of visual information in the lateral genic-

ulate nucleus. Historically, neuroscientists have considered the LGN as simply a relay

station for retinal transmission to the visual cortex. However, the LGN does not

function alone; rather, it exists within a complicated network of feedback from both

the reticular nucleus and the cortex.

The approach that I use to study geniculate function involves the design of silicon

circuits of increasing model complexity. I begin at the channel level, modelling the

low threshold calcium channel using a transistor analog of state transition rates for a

voltage gated channel. Following validation of this model, I integrate this channel into

a silicon cell and demonstrate how its state influences the cell’s response. The next

level of complexity involves the dynamics between a thalamocortical and an inhibitory

reticular cell, probing their response to inputs at both retinal and cortical synapses.

Finally, the system is extended to include many cells, in an effort to illuminate network

operation.

Using this approach, I demonstrate the role of the low threshold calcium current

in enhancing strong features within visual stimuli. In addition, through influence

of synapses to both thalamic and reticular layers, the cortical feedback acts as an
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attentional mechanism by which the response to weaker features can be markedly

enhanced, through both increased bursting and increased excitability.
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Chapter 1

Introduction

The lateral geniculate nucleus (LGN) is the primary visual division of the dorsal

thalamus, and is the first stop for visual information from the retina en route to

the cortex. Historically considered a relay station by neurobiologists, recent evidence

suggests its role may involve more than a simple, unfiltered transfer of ascending

sensory information.

Two properties of thalamic cells suggest a larger role for the thalamus in the

awake animal. First, thalamic cells possess a low-threshold calcium channel, the

state of which dramatically alters the response of the cell from individual spikes to a

high-frequency burst of spikes. Recordings from unanesthetized awake animals have

demonstrated bursts due to this channel, but the role of this channel in thalamic

processing is not yet understood. Second, thalamic cells form reciprocal connections

with two other areas of the brain: the reticular nucleus—a thin sheet of cells sur-

rounding the thalamus—and the cortex. Chapter 2 provides a brief background on

the thalamus, beginning with the visual response of thalamic cells and the influence
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of the low-threshold calcium channel on their dynamics. Following that, I discuss the

influence of those areas which form reciprocal connections with the thalamus, first

describing the visual response of the perigeniculate nucleus (the visual section of the

reticular nucleus) and its influence on thalamic cells, and then the influence of the

cortical feedback on the thalamo-reticular system.

I structure the rest of the dissertation based on increasing complexity of my sili-

con model. Chapter 3 begins at the level of the low threshold calcium channel (also

called the T channel). Before describing my silicon model, I begin by providing back-

ground on various models of the low threshold calcium channel. Many silicon models

of voltage-dependent channels are silicon analogs of empirical Hodgkin-Huxley com-

putational models. However, the models are incomplete: while capable of capturing

the steady-state dynamics of activation and inactivation, they lack the dependence

of the time constants on the membrane voltage. Taking inspiration from thermody-

namic models, my model captures this temporal dependence through modelling of

state transition rates. After presenting my approach and my model, I present data

from the silicon chip demonstrating its operation.

The next step is to incorporate the channel model into a silicon neuron, which is

the focus of Chapter 4. I begin by describing the complete neuron circuit, consisting

of the T channel, the cell and an excitatory synapse. This chapter studies the changes

in the TC cell response caused by the activation of the calcium channel, to compare

the operation of my silicon neuron to similar experiments on real neurons. Given

the voltage-dependence of the calcium channel, shifting the resting potential of the

cell changes the ‘mode’ of the cell, from burst (T channel active) to tonic (T channel

inactive). In the first set of experiments, I calculate the frequency response of my

silicon neuron to injected current for each mode, and compare its performance to
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results from biology.

The second set of experiments probes changes in the response of the cell by using

an adaptation of the Wiener series to calculate a set of kernels describing system

function. Rather than using Gaussian White Noise (as injected current), I use Poisson

Spike Trains at the input synapses to probe the response with the cell in both modes.

There are a couple of advantages to using spike trains over white noise for cells away

from the sensory organs. First, the computed kernels include synapse dynamics in

addition to the membrane and T channel dynamics. The other advantage of using

spike trains is that the higher-order kernels are easier to interpret visually than those

calculated using white noise, due to the discrete nature of spikes. I verify the ability

of the kernels to capture system dynamics in each mode by using them to generate a

spike train of the cell and comparing the generated output to the actual output of the

silicon cell. Including higher order kernels into the system improves the ability the

kernels to capture the output response, especially in burst mode given the nonlinear

nature of the T channel.

In Chapter 5, I introduce a reticular cell into the system, studying the influence of

the reticular cell on the response of the TC cell. Typically, in the awake state, thalamic

cells are sufficiently depolarized such that the T channel, by default, is inactivated.

Therefore, inhibition is necessary to deinactivate the T channel, placing importance

on the role of reticular activity in the presence of bursts within the thalamus. This

chapter demonstrates that the presence of bursts indicate the presence of strong,

salient signals within the retinal inputs.

In addition, I probe the effects of the cortical feedback on the dynamics within the

system. The cortical input, being weaker in nature, increases the background input

3



to both cells, increasing their excitability and reducing the threshold for the presence

of bursts. Thus, the cortex can increase the probability of bursting for stimuli that

would normally respond only in tonic mode in the retina-only scenario. This suggests

a role for the cortical feedback similar to an attention mechanism.

The final chapter extends the results of the two cell system to the network (pop-

ulation) level. The discussion in this chapter revolves around the visual response

properties of the reticular cells, since it is the inhibition from this layer that defines

the existence of bursts in the LGN. Experimental results from my silicon population

demonstrate how the number of bursts in the thalamic layer increases with stimulus

size, since the divergence of axons between the TC and RE layers means greater in-

hibition for deinactivation with greater population activity. I end the chapter with a

discussion of how this applies to processing within the visual system.
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Chapter 2

The Thalamo-Reticular System

The dorsal thalamus1 is an oval-shaped subcortical structure located in the center

of the brain (Figure 2.1), and—along with the ventral thalamus, epithalamus, and

hypothalamus—belongs to the embryonic division called the diencephalon[66]. It

consists of a number of nuclei (Figure 2.2), each dedicated to a different information

pathway to the neocortex. All sensory information, except olfactory, passes through

a nucleus en route to their respective cortical regions; for this reason, the thalamus

is often called the “gateway” to the cortex. These nuclei, however, are not limited to

servicing ascending sensory information paths: Many nuclei mediate corticocortical

connections.

Historically, neurobiologists have considered the thalamus as a simple relay station

for ascending information in the awake animal. However, a couple of observations

1The dorsal thalamus is often referred to as simply the thalamus when discussing thalamocortical
systems, since ventral thalamic cells do not project to the cortex. Since I will be focusing primarily
on the dorsal thalamus, I will adopt this naming convention and only add the qualifier ‘dorsal’ when
distinguishing it from the ventral thalamus.
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Figure 2.1: Dorsal Thalamus

Sagittal view of the brain, showing the location of the dorsal thalamus (blue).
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Figure 2.2: Subdivisions of the Dorsal Thalamus

Diagram of the subdivisions of the right dorsal thalamus. LD, Lateral Dorsal Nucleus; LP, Lateral

Posterior Nucleus; VPL, Ventroposterior Lateral Nucleus; VL, Ventrolateral Nucleus; VA, Ventral

Anterior Nucleus; VPM, Ventroposterior Medial Nucleus. From [97].
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about thalamic cells—also called relay neurons or thalamocortical (TC) cells—suggest

a more involved role in sensory processing. The first is of a low threshold calcium

channel within the membrane of the cell[64]. This channel can dramatically alter the

response of the relay neuron from a low-frequency tonic mode, where the output rate

is strongly dependent on the input, to a high-frequency burst mode where the output

rate is largely independent of the input. The state of this channel depends on sufficient

hyperpolarization of the membrane voltage. During sleep, the membrane voltage of

thalamic cells rests lower than when the animal is awake[52]. It is not surprising,

then, that the calcium channel—also called T channel—is involved in many of the

oscillations during sleep[93]. The higher membrane voltage during the awake state

has, historically, been considered sufficient to keep the T channel inactivated[133,

66]. Recent experiments, described below, demonstrate the presence of the channel

activity within thalamic cell responses of an awake animal. Its precise role, however,

remains unclear.

The second observation is of the complex circuitry within which TC cells exist (Fig-

ure 2.3). Each relay nucleus forms reciprocal connections with two other areas of the

brain. The first area is the reticular nucleus (TRN), a thin sheet of cells surrounding

the dorsal thalamus and belonging to the ventral thalamus. Reticular neurons receive

excitation from collaterals of the thalamocortical axons[1, 4] and project their inhi-

bition back into their associated relay nucleus[66], forming an excitatory-inhibitory

loop with relay neurons. The second area with which TC cells form reciprocal con-

nections is the cortical destination for the TC cell axons. Feedback axons from the

cortex, called corticothalamic axons, make up approximately 30% of the inputs into

the thalamus[31, 146], exciting relay cells through both ionotropic and metabotropic

glutamate receptors. And like thalamocortical axons, corticothalamic axons send col-

8



Figure 2.3: Thalamocortical Circuit

Primary afferents into the thalamic nuclei form excitatory synapses on relay cells. Relay cell axons

pass through the reticular nucleus (TRN) and project to layer 4 of the cortex. Layer 6 cells, from the

same cortical area, send axons back to the thalamus, also passing through the TRN. Reticular cells,

receiving both feedforward and feedback excitation, send inhibition back into the thalamic nucleus.

From [121].
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laterals into the reticular nucleus[3], influencing the feedback inhibition from reticular

cells. Thus, cortical influence on the thalamus can be both excitatory and inhibitory.

This chapter provides a brief background on the thalamo-reticulo-cortical system,

focusing on the visual pathways in the awake animal. The primary visual nucleus

within the thalamus is the lateral geniculate nucleus (LGN), and the visual section

of the reticular nucleus is called the perigeniculate nucleus (PGN)2. Cells within any

relay nucleus are referred to as thalamocortical (TC) cells or relay neurons, while

cells specifically in the LGN are called geniculate neurons. Since I am focusing on the

visual system, I use these three designations interchangeably, but will predominantly

use the term TC cell. Cells within the reticular nucleus are called reticular cells (RE)

cells, or perigeniculate (PGN) cells when referring specifically to vision. As in the

case of TC cells, I will use both terms for reticular cells interchangeably, but will

predominantly use the term RE cells.

The first section in this chapter describes response properties of cells within the

LGN, describing first visual responses followed by the influence of the low threshold

calcium channel on the cell output. The second section describes the visual response

properties of the inhibitory cells within the PGN, and their influence on LGN cells.

The final section discusses the observed influence of the cortical feedback on both

LGN and PGN cells.

2Though the perigeniculate nucleus is a separate area from the reticular nucleus, neurobiologists
often group them together given the similarity in both structure and connectivity[66]. For the
purposes of my thesis, the distinction is not important.
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2.1 Thalamocortical Cells

It is not surprising that neurobiologists considered the thalamus a simple relay station:

The low convergence of ganglion cell axons to geniculate cells (as low as one or

two[145, 89, 90]) results in many similarities in their visual responses. Geniculate

receptive fields, like those of ganglion cells, consist of an excitatory center with an

inhibitory surround[56, 114, 74]. Cells excited by light within their receptive field

center are called ON cells; by dark, OFF cells. In the cat, relay neurons, also like

retinal cells, are classified as either X or Y[14], depending on the linearity of their

response. Spatial input into X cells sum linearly, allowing for a “null” response where

the positive and negative spatial inputs cancel[30]. Y cells are nonlinear: They do not

possess a null response, and demonstrate “frequency-doubling” through responses on

both the rising and falling edge of a square stimulus. X cells have smaller receptive

fields (< 1◦, depending on the eccentricity) compared to Y cells (< 1.5◦) [54], and thus

respond better at higher spatial frequencies. Though X and Y cells in the thalamus

are typically identified through their visual responses, they can also be identified

through their morphology[34].

Within the thalamus itself, there is a further division of the response in the tem-

poral domain into lagged and nonlagged cells[88, 89]. The input to nonlagged cells

is mediated through fast glutamatergic receptors, presumably AMPA[45], replicating

the responses of their ganglion cell inputs to flashing spots: for an X-cell, a strong ini-

tial transient, followed by a sustained output for the duration of the stimulus. Lagged

cells, as the name implies, demonstrate a delay in their response in place of the strong

transient. After about 20-30ms[88], the lagged cell slowly increases to a sustained re-

sponse level. The initial delay is from a fast inhibition—possibly from local inhibitory
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Figure 2.4: TC Cell Response Modes

Thalamocortical cells can exhibit two distinct responses to similar inputs, depending on the state of

a low threshold calcium channel within the membrane. LEFT: From an initial hyperpolarized level

(which deinactivates the calcium channel), a step in the input results in a high-frequency burst,

ending when the channel has inactivated. RIGHT: From an initial more depolarized membrane

voltage, a similar step in the input current results in a steady train of output spikes. The channel,

in this case, has been inactivated due to the resting membrane voltage. From [64].

interneurons—while the slow excitation derives from NMDA receptors[46]. One role

for lagged and nonlagged cell types is the generation of direction selectivity within

cortical cells[118, 119].

The most interesting characteristic of relay neurons is the low threshold calcium

channel. This channel—often called a T channel—gives the cell the ability to demon-

strate two very different responses (Figure 2.4). Assuming the channel has been

deinactivated, depolarization of the membrane potential demonstrates two charac-

teristics of the channel dynamics (Figure 2.4(left)): a fast activation, which hastens
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the cell depolarization and causes the cell to elicit a burst of Na+ spikes, and a

slower inactivation, which closes the channel and ends the burst. Full inactivation

occurs after approximately 25-30ms, after which the cell needs to be hyperpolarized

for greater than 100ms to deinactivate the channel. By contrast, a cell that is initially

depolarized—such that the T channel is inactivated—responds to the same depolar-

ization with a steady train of single spikes (Figure 2.4(right)). In this situation, since

the channel is already inactivated, the frequency of the spikes depends on the level of

the injected current, while within a burst the frequency is predominantly defined by

the channel current.

The influence of this channel has dramatic effects on the response properties of

the cell. Figure 2.5(a) plots the output frequency of the cell to varying steps in

the input current under these two modes. The tonic mode (here called single spike)

of the cell has a linear response above its rheobase (current threshold). The burst

mode is non-linear: Once the input current is able to sufficiently depolarize the cell,

the output frequency jumps to over 300Hz, much greater than in the single spike

mode. Further increases in input current linearly increases the output frequency, but

negligibly compared to the influence of the channel.

The linear/non-linear nature is further demonstrated in Figure 2.5(b). The his-

tograms in the bottom row show the response of both modes to four cycles of a

drifting grating in the visual field. The linear tonic mode is able to faithfully re-

produce, through the histogram, the shape of the visual stimulus. The burst mode,

though able to respond during each cycle, provides no information on the finer de-

tails of the stimulus. Another interesting feature in Figure 2.5(b) is the difference in

the spontaneous activity of both modes. The hyperpolarization needed to deinacti-

vate the T current, presumably through a membrane leak, acts as a higher current

13



a) b)

Figure 2.5: Response Mode Properties

a) Output frequency versus input current for the relay cell in its two response modes. Single Spike

refers to tonic mode, where the initial membrane voltage is sufficiently high to inactivate the T

channel. For the burst response, the cell begins sufficiently hyperpolarized for channel deinactivation.

Output frequency calculated using the initial interspike in response to a step to the new current level.

From [94]. b) Peri Stimulus Time Histogram of spontaneous activity (top row) and visual response

(bottom row) to drifting gratings for geniculate cells biased, using injected current, to either tonic

(left column) or burst modes (right). From [124].

threshold (also seen in Figure 2.5(a)), reducing the spontaneous activity within the

cell.

In these experiments, the state of the channel, and thus the response mode, is

biased through changes in the resting membrane potential by an injected current. This

is not wholly unrealistic, as TC cells possess a K+-leak within the membrane that can

perform this very function. In addition, the level of this leak can be adjusted through

either metabotropic receptors activated by cortical glutamatergic inputs[95, 39] or

through activation of ascending inputs from the parabrachial region[84]. This suggests
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that the response of the cell, through the state of the channel, can be modulated by

sources external to the thalamus, depending on the type of processing that is required.

These results have led to the hypothesis that bursts function as a “wake-up” call

to the cortex[121]. In this scenario, the absence of attention to a portion of the visual

scene—which, presumably, corresponds to a reduction of cortical feedback—increases

the membrane K+ leak for cells in that area. This high leak state has two functions in

addition to deinactivating the T channel: it keeps the spontaneous background ‘noise’

low while also acting as a higher threshold, causing the cell to respond only to strong

stimuli. Thus, since bursts are a strong signal to cortical cells[137, 144], bursting

is a powerful indicator of a strong stimulus within an unattended area of the visual

field. This strong burst signal activates the cortex, sending corticothalamic feedback

to the same retinotopic area. Through the action of metabotropic receptors[95, 39],

the resting potential of the TC cell rises, inactivating the T channel and switching

the response mode of the cell to tonic. The tonic mode, then, sends more detailed

information (Figure 2.5(b)) of the stimulus to the cortex.

There are a couple of problems with this idea. First, relay cells are depolarized

in the awake state[52], sufficiently so to keep the channel inactivated[133]. The burst

response in the wake-up hypothesis requires a resting membrane potential sufficiently

low to deinactivate the T channel, so that the absence of an input, or a shift in at-

tention, primes the burst response. However, for depolarized cell, this is not possible.

Another problem with the “wake-up” hypothesis deals with the use of cortical or

subcortical inputs to controls the depolarization level of the cell. There is no doubt

that these mechanisms exist[95, 39, 84], the question is whether they could function

as described. First, the time constant of both of these mechanisms are on the order of
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a second: for example, two spikes at 3-500Hz from the corticothalamic axons caused

a small depolarization for 3-4 seconds, while 10 spikes caused depolarizations greater

than 20 seconds[95]. Considering the eye makes saccades approximately three times

per second[47, 48], a slow depolarization of this duration would incapacitate areas of

the visual field that have been switched to tonic mode. Given the low frequency and

number of spikes needed to cause the depolarization, it seems more likely the cell is

already depolarized during the awake state.

In many of the studies that focussed on the burst response[41, 109, 78], it is not

clear how much the anesthesia, which increases the number of bursts[87], influenced

the results. Does this mean bursts do not exist in the awake state? Not necessarily:

bursts have been observed in the LGN of awake, unanesthetized monkeys[107] and

cats[42], in addition to the somatosensory thalamus of the rat[32]; but their precise

role is not clearly understood.

Many researchers also work under the assumption of two distinct responses; that

is, the cell either responds in burst or tonic mode. Part of this is the limitation of

detecting bursts: most studies use extracellular recordings and only are able to use the

spike train statistics[83], rather than recording either the membrane voltage or being

able to record T channel activation directly. Once fully deinactivated, the activation

of the T channel demonstrates an all-or-none response similar to the faster Na+

channel response within the action potential; as such, it has been described as a Ca++

spike[157]. But the size of the response is defined by the level of deinactivation[157],

suggesting that the T channel need not function in two distinct modes, but in a

continuum with the burst and tonic at the two extremes.

With the cell depolarized in the awake state, deinactivation of the T channel
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requires inhibition of sufficient strength and duration. A source of inhibitory action

onto TC cells, as mentioned previously, is the reticular nucleus. Thus, understanding

the response properties of the reticular cells could shed some light on the role of IT,

which is the focus of the next section.

2.2 Reticular/Perigeniculate Cells

Perigeniculate receptive fields are much larger than those of the geniculate cells,

approximately 5◦ in diameter[29], but can range from 3 − 10◦[35]. Since geniculate

cells are the only source of excitatory ascending input[1], there is a convergence from

multiple geniculate cells. Like the geniculate nucleus[117], the reticular nucleus is

retinotopic in organization[99].

Sudden changes in contrast within the receptive field of PGN cells, such as a spot

stimulus, elicits a transient response at both the on- and offset (Figure 2.6(a)), but

generates a negligible sustained response. Increasing the stimulus size increases the

size, and reduces the latency, of the transient[35], presumably through the activity

of a greater number of geniculate cells. PGN cells also demonstrate strong responses

to moving stimuli[29, 35]—stronger than to static stimuli (Figure 2.6(b))—through

the transient activity of the underlying geniculate cells within the receptive field[35].

Interestingly, the output spikes are not phase-locked to the edges of the drifting

grating; rather, the enhancement due to the motion tends to be a general increase in

the firing rate of the cell[35].

Inhibition from the PGN cell on the TC cell is mediated through both GABAA and

GABAB receptors. At low reticular frequencies, the inhibitory response in a TC cell
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(a)

(b)

Figure 2.6: PGN Cell Responses

a) Peri Stimulus Time Histogram (PSTH) and raster plot of a PGN cell response to a spot (5 degrees

in diameter). b) PSTH of a cell responding to alternating patterns of a stationary (stat) and moving

grating (mov). From [35].
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is dominated by fast, GABAA dynamics[70]. To activate the slow GABAB response,

a single PGN cell needs to fire at high frequencies for a prolonged period of time[70].

Regardless of the receptor type, inhibition from a single neuron—mediated through

both GABAA[141, 148] and GABAB[140] receptors—is capable of deinactivating the

low-threshold calcium channel in TC cells if the cell fires strongly for a sufficient

duration. However, a synchronous volley of inputs from a population of cells could

deinactivate the T channel under GABAA[28] and GABAB[116].

Figure 2.7 shows the response of an ON center geniculate Y-cell to a large 20◦x20◦

square flashed over its receptive field. The inhibitory dip immediately post-peak is

from perigeniculate inhibition[35]. The second peak immediately after the inhibition

is the rebound burst caused by deinactivation of the T channel by the PGN input,

since retinal inputs, whether X or Y, demonstrate only the initial peak[30]. Given

the increase in PGN response to stimulus size[35] and that a synchronous response

from RE cells could deinactivate the T channel[28, 116], it is possible the size of

the rebound burst correlates with the size of the stimulus. This agrees with the

observation that geniculate cells in awake cats demonstrate greater burst probability

for larger stimuli[152].

Reticular cells also possess a low threshold calcium channel, similar to that within

the TC cell but slower in dynamics[59]. Interactions between the burst response of

TC and RE cells are responsible for spindle oscillations seen during sleep[93]. In the

awake state, RE cells, like TC cells, are depolarized[134]. Compared to TC cells,

RE cells require greater inhibition for T channel deinactivation[28], suggesting RE

bursts are less likely to appear than TC cell bursts. Though there are suggestions

that reticular bursts may represent different processing states in the awake rat[44],

the reticular cells, in the context of this document, are considered to remain in tonic
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Figure 2.7: Geniculate Response to a Large Stimulus

Response of an ON center Y-cell to a 20◦x20◦ square presented within 500ms after a saccade. Note

that the histogram is generated relative to the onset of the flash stimulus, rather than the saccade.

The flash onset relative to the saccade varies from 0-500ms. From [77].
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mode.

2.3 Role of the Cortical Feedback

Corticothalamic axons make up approximately 30% of the synapses onto relay neurons[31,

146]. Like thalamocortical axons, they also send collaterals in the reticular nucleus

as they pass through[65, 135], providing both excitatory and inhibitory influences to

thalamic cells. Also like the relay and the reticular nuclei, the corticothalamic axons

preserve the topography of the retinal space[142, 102].

Corticothalamic axons that feed back to the LGN derive from cells in layer VI

of the visual cortex. These cells are strongly direction selective[126], and as such,

many studies have focussed on changes in the geniculate response to moving bars.

These studies suggest a cortical enhancement of the inhibitory surround of geniculate

cells by cortical activity[101, 17], affecting such properties as length-tuning[101], and

sensitivity to discontinuities in orientation[125].

This feedback can also influence the burst response of geniculate cells. As already

discussed previously, corticothalamic axons activate metabotropic receptors on TC

cells[95, 39], reducing a membrane leak in the cell causing depolarization, and thus

inactivating the T channel. But changes in the layer VI activity can also increase the

number of bursts[149]. Applying GABAB receptor antagonists to layer VI cells of the

visual cortex enhances the gain of the visual response of these cells without adjusting

their spontaneous rate. This increased gain in layer VI caused 68% of geniculate cells

to change their ratio of burst to tonic firing, with 63% of those showing less bursting

and the remaining cells showing more.
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These examples provide direct evidence that the cortical feedback influences the

response of individual geniculate cells to visual input. In a larger context of brain

function, evidence suggests that attentional mechanisms can influence activity as

early as the LGN[103], in the form of enhanced responses to attended stimuli versus

attenuated responses to unattended stimuli, and increased baseline activity in the

absence of visual stimulus. Many theories focus on the role of the reticular nucleus

in attention (reviewed in [91]), which is not so surprising given that corticoreticular

synapses are stronger than corticothalamic synapses[40]. Lesions of the reticular

nucleus eliminate the attentional advantages of a visual cue preceding a target in

reaction time tasks in rats[151]. In addition, the reticular nucleus in rats demonstrated

higher levels of activity in those areas used during active exploration[98].

2.4 Summary

This chapter provides some background into the influence of both the low threshold

calcium channel and the cortical feedback on the response properties of relay neu-

rons. The results presented here are by no means exhaustive; rather, they are meant

to provide a basis from which to proceed. It should be clear, however, that the tha-

lamus acts more than a simple relay for information en route to the cortex, given

the influence of the various components described here. The rest of this document

explores the role of the T channel in the context of the network interactions between

the reticular cells and the cortical feedback, using silicon as the medium of study.
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Chapter 3

Silicon Model

In the previous chapter, I provided some background on the thalamo-reticular system,

discussing the influence of the T channel and the reticular and cortical feedback on

the TC cell response. The next two chapters describe the design and verification of

my silicon model of the system, beginning with my approach to designing a silicon

analog of the low threshold calcium channel.

The first section begins with a description of existing computational models of the

T channel, which provides a background on the dynamics of the channel but also a

framework from which I will model the T channel. Following that, I provide a succinct

description of the transistor, the building block of neuromorphic models, and proceed

to describe existing neuromorphic models of voltage-dependent channels.

I then proceed to describe the motivation for my design, demonstrating how it can

be implemented in silicon. Following an analysis of my circuit, I present experimental

data from a silicon chip that verifies the behavior of my design.
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3.1 T Channel Models

Numerous models of ion channels exist[24], each possessing a different degree of com-

plexity, accuracy and biological basis. In an ideal world, most researchers would

choose the most accurate model available; however, in practice, most people choose

their model based on their available computational resources, as greater accuracy

usually translates to greater complexity and a need for more resources. This section

explores two different models of the T channel: empirical and thermodynamic models.

3.1.1 Empirical Models

Over 50 years ago, Hodgkin and Huxley[53] introduced a framework through which to

study the dynamics of an excitable membrane. Their approach describes conductance

changes of an ion channel with respect to changes in the membrane potential of a cell.

Though they focussed only on the Na+ and K+ channels involved in action potential

generation, their technique was easily adaptable to the myriad of ion channels that

exist in the nervous system. For this reason, their approach provides the basis for

many modern computational models.

In their model, each ion channel consists of a series of independent “gating par-

ticles”, whose binary state—open or closed—determines the channel permeability. A

Hodgkin-Huxley (HH) variable represents the probability of a particle being in the

open state, or, with respect to the channel population, the fraction of gating particles

that are in the open state. The dynamics of the HH variable can be described by
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u

α (V)

β (V)

(1 − u) , (3.1)

where u is the HH variable and represents the fraction of open states, (1 − u) rep-

resents the fraction of closed states, and α (V) and β (V) are the transition rates

(dependent on the membrane voltage V) for opening and closing respectively. Based

on this two-state model, the kinetics of the HH variable are represented by

du

dt
= α (V) (1 − u) − β (V) u. (3.2)

Typically, Equation 3.2 is expressed in the following form:

du

dt
= − 1

τu (V)
(u − u∞ (V)) (3.3)

where u∞ and τu represent the steady-state level and time-constant functions for u

respectively, and are defined as

u∞ (V) =
α (V)

α (V) + β (V)
(3.4)

τu (V) =
1

α (V) + β (V)
. (3.5)
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A channel model consists of multiple HH variables, the product of which represents

the probability of a channel being open. The channel current, Ich, is defined as

Ich =

(
n∏

i=1

ui

)
g (V − Erev), (3.6)

where ui is one of n HH variables for this channel, g is the maximum channel con-

ductance, V is the membrane voltage, and Erev is the reversal potential for the ion.

The equations u∞ (V) and τu (V) are determined empirically, by fitting exponential

functions to experimental data.

For some channels, however, it is not accurate to model the channel dynamics

as changes in the channel conductance. This is true for calcium channels, to which

belongs the thalamic low-threshold calcium current. The large imbalance between

extracellular and intracellular concentrations of calcium cause a nonlinear current-

voltage relationship[51]. In these situations, rather than modulate a conductance,

the HH variables modulate a maximum permeability. Thus, many modelling studies

of the low threshold calcium current (e.g. [58, 27, 157]) use the following form:

IT = m2h PCa G(V,Cao,Cai) (3.7)

where PCa is the maximum permeability of the T channel, m and h are the HH

variables (for activation and inactivation respectively), and G(V,Cao,Cai) is the

Goldman-Hodgkin-Katz current equation, which captures the nonlinear dependence
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Eqn. Activation (m) Inactivation (h)

u∞ (V )
1

1 + exp
[
−V +56

6.2

] 1

1 + exp
[

V +80
4

]

τu (V ) 0.204 +
0.333

e
[

V +15.8
18.2

]
+ e

[
−V +131

16.7

] 9.32 + 0.333 e

[
−V + 21

10.5

]
;V ≥ −81

0.333 e

[
V + 466

66.6

]
;V < −81

Table 3.1: Steady State and Time Constant Equations for Relay Cell Model

This table displays the equations used for activation and inactivation in the Hodgkin-Huxley

model of IT. All voltages are in millivolts. These equations are plotted in Figure 3.1. From [23].

of IT on both the membrane voltage and internal and external calcium concentrations.

T channel dynamics are best represented with two independent gating particles for

activation (m2) and one for inactivation (h). Table 3.1 presents, and Figure 3.1 plots,

the steady-state and time-constant functions for the HH variables of IT for relay

cells[58].

How do these variables interact to shape IT? Figure 3.2(a) plots the time course

of the gating variable product m2h to depolarizing step changes in the membrane

voltage of a simulated TC cell. The cell begins in a hyperpolarized state (−90mV)

with IT deinactivated. Once the step size is sufficiently large, the gating variable

product begins to demonstrate a response: a fast rise due to the activation variable

(m) followed by a slow decay due to the inactivation variable (h). Further increasing

the step size results in an increase in the rate and magnitude of response. Eventually,
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Figure 3.1: Activation/Inactivation Parameters for TC cells

These four figures plot the equations from Table 3.1, showing the steady state and time constant

dependence on membrane potential for the Hodgkin-Huxley variables of the relay neuron. The left

column plots activation equations and the right inactivation; the top row shows the steady state

levels for each variable and the bottom the time constant.

a characteristic shape forms as the variable functions asymptote at higher membrane

voltages (Figure 3.1).

Figure 3.2(b) plots another simulation, this time demonstrating the dependence of

the response on the level of channel deinactivation. An inactivated T channel requires

sufficient hyperpolarization—both in time and in magnitude—to conduct again. The

experiment varies the total time the cell is hyperpolarized, from an initial inactivated

state, before being depolarized again. As shown in Figure 3.2(b), progressively longer
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Figure 3.2: Channel activation

These two plots demonstrate the time course of the IT variable pair m2h for a model TC cell to two

simulated ‘voltage clamp’ experiments. (a) The cell begins hyperpolarized (at −90mV) so that the T

channels begin deinactivated. At t = 0s, the membrane potential is stepped to different depolarized

levels (from −80mV to −10mV), demonstrating the time course of activation and inactivation at the

different membrane voltage levels. (b) This figure shows the deinactivation of the variable product.

The cell is initially depolarized (at −10mV) and the channel inactivated. At t = 0s, the voltage is

stepped down to −90mV for increasing time intervals and then re-depolarized. The deinactivation

is demonstrated by the increase in the peak response. The inactivation variable h is plotted in red.

periods of hyperpolarization result in larger responses upon depolarization. This

effect is due to the increased deinactivation of h (plotted in red).

Unfortunately, voltage clamp experiments—like the simulations in Figure 3.2—

provide only a glimpse into the channel dynamics; in reality, the membrane voltage is

rarely fixed. However, the two simulated experiments in Figure 3.2 do provide clues

to the roles the two variables may play in the dynamics of the channel. Activation

of the T channel has a positive feedback effect: the current IT depolarizes the cell,
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a) b)

Figure 3.3: Variable Influences on IT

a) Current clamp experiments demonstrating the influence of the activation variable. The membrane

voltage begins hyperpolarized, deinactivating IT; steps in the input current level adjust the response

of the membrane voltage. At lower step size, there is insufficient activation for the burst to occur.

Once the level of activation is sufficient for IT to overcome any passive membrane leaks, IT quickly

depolarizes the cell, generating a Ca++ spike. b) Changing the initial membrane voltage changes

the size of the Ca++ spike. From [157].

opening more channels. This generates a Ca++ spike (Figure 3.3(a)), an ‘all-or-none’

event like its (faster) Na+ channel counterpart, the action potential. The activation

variable defines the point at which IT overcomes the ohmic response of the membrane.

As demonstrated in Figure 3.2(a), small initial depolarizations result in a slow, small

activation, and thus a longer latency for the Ca++ spike (if generated at all). Larger

depolarizations will result in a faster initial activation, and thus a smaller latency.

While the activation plays a role in the temporal position of the IT response, the

inactivation variable controls the shape and size of the response. Both the dura-

tion (Figure 3.2(b)) and level (Figure 3.3(b)) of the hyperpolarization influences the

deinactivation of IT, which then affects the size of the Ca++ spike[157, 158] and the
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number of Na+ spikes in the burst[158].

This suggests that the dynamics of the inactivation variable are more important

to the function of the T channel than the dynamics of activation. In fact, many of

the frequency response properties of the TC cell in burst mode can be captured using

a simple, threshold model for the T channel[130], which includes only the temporal

dynamics of inactivation (activation occurs instantaneously). In addition, this simple

model highlights the importance of the increase in the inactivation time constant

during channel deinactivation (compared to inactivation), demonstrating the necessity

of this feature in any model of IT to correctly capture the channel dynamics.

3.1.2 Thermodynamic Models

Since empirical models are fits to experimental data, their form have no basis on the

physical structure of ion channels. Thermodynamic models attempt to explain the

state changes of a gating particle through conformational changes of the ion channel

protein[50, 23, 24].

Figure 3.4 shows a diagram of the free energy between two states (G0 and G1) and

an intermediate, activated (transitional) state (G∗). The rate of transition between

two states (say, from G0 to G1) depends exponentially on the free energy barrier ∆G0

[51]. Thus, for a two-state variable (Equation 3.1), the reaction rates are defined as

α (V ) = α0 e−∆G0(V )/RT (3.8)

β (V ) = β0 e−∆G1(V )/R T, (3.9)

31



G*(V)

G0(V)

G1(V)

∆G1(V)

∆G0(V)

∆G(V)Fr
ee

 E
ne

rg
y

State

0 1Activated

Figure 3.4: Free Energy Reaction Diagram

The transition rates between two states is dependent on the height of the free energy barriers (∆G0

and ∆G1), which involves the difference in free energy between the activated state (G∗) and the

initial state (G0 or G1). The steady-state level of the reaction depends on the relative difference in

free energy between the states (∆G), while the time constants of reaction depends on the height of

the free energy barrier.

where α (V ) is the voltage-dependent transition rate from G0 to G1, β(V ) is the

reverse transition rate (from G1 to G0), α0 and β0 are constants representing base

transition rates, ∆G0 (V ) and ∆G1 (V ) are the voltage-dependent free energy barriers

(the difference between the free energy of the activated state and the initial state), R

is the gas constant and T is the temperature in Kelvin.

The steady-state of the reaction is based on the relative values of the free energy

between the two states. In other words, at equilibrium, the ratio of open versus closed

states depends on the free energy between them: u/ (1 − u) = exp [−∆G/RT]. The

time course of the reaction depends on the size of the free energy barrier. Larger

32



barriers have slower dynamics, since fewer molecules within a state have the necessary

energy to overcome the barrier.

The voltage dependence of the free energy for each state (initial, final and acti-

vated) depends on the effect of the electric field on the ion channel protein. This

nonlinear voltage dependence can be approximated using a Taylor expansion:

Gi (V ) = Ai + Bi V + Ci V
2 + . . . (3.10)

where Gi (V ) is the free energy of conformational state i, and Ai, Bi, Ci, . . . are

constants defining the dependence of the free energy for this state to changes in the

electric field. Ai represents any free energy that is independent of the electric field.

The linear term (Bi) and nonlinear terms (Ci, Di, . . . ) corresponds to such effects as

the interaction of isolated charges and dipoles with the electric field[50, 136], or the

mechanical constraints in the movement of charges[50, 23] due to the structure of the

ion channel protein.

It follows, then, that the free energy barrier can also be represented as a Taylor

series, being difference in free energy of the activated and the initial states. Thus,

the reaction rates (Equations 3.8 and 3.9) become

α (V ) = α0 e−(a1+b1 V +c1 V 2+...)/RT (3.11)

β (V ) = β0 e−(a2+b2 V+c2 V 2+...)/R T (3.12)
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where a1, a2, . . . represent the difference between the coefficients of the Taylor series

for the initial and activated states.

For linear thermodynamic models, the nonlinear voltage terms are discarded, and

the variables rearranged to achieve the following form:

α (V ) = A e−b1 (V−VH)/RT (3.13)

β (V ) = A e−b2 (V−VH)/RT (3.14)

where VH is the half-activation voltage, b1 and b2 are the linear terms of the transition

rates on the membrane voltage, and A is the half-activation rate. Figure 3.5 shows

the fit of the linear model to voltage clamp data. While the steady-state data is

easily captured, the model is unable to fit both the steady-state and time constant

equations simultaneously. This is due to the relationship between the slopes of the

steady-state sigmoid and the slopes of the time constant curve on either side of the

peak. As a result, the time constants drops more rapidly at hyperpolarized voltages.

The biggest problem with these linear models, however, involves the decay of the

time constant to very small values at voltages distant from the location of the peak.

At these voltages, the exponential within the transition-rate equations reach very

high values, thus bringing the time constant close to zero. However, this problem

with can be resolved by either saturating the transition rate[153] or by using a three-

state model[24], where the transition rates between two of the states are fixed and

effectively set the minimum time constant.
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Including higher-order terms in the free energy barrier equation improves the fit

of the model. For a cubic expansion[23]:

α (V ) = A e−(b1(V−VH)+c1(V−VH)2+d1(V−VH)3)/RT (3.15)

β (V ) = A e−(b2(V−VH)+c2(V−VH)2+d2(V−VH)3)/RT (3.16)

where the additional constants (compared to the linear case) are for the higher order

voltage dependencies (as described above).

The cubic expansion improves on the ability of the model to fit the voltage-clamp

data, coming very close to matching the empirical equations from Section 3.1.1. The

higher-order terms counter the increasing exponential within the linear expansion to

set a minimum time constant within the voltage range of operation. Thus, these

nonlinear thermodynamic techniques provide a more biologically plausible way to

model the dynamics of the T channel over the empirical ones.

3.2 Silicon Background

Before choosing a model from which to base my own, it is useful to provide a brief

background on the transistor, the fundamental building block of VLSI chips. Follow-

ing that, I proceed to detail some of the previous models designed by other neuro-

morphic engineers to model neural circuits. Finally, in this section, I describe the

basis for my own model.
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Figure 3.5: Empirical and Thermodynamic HH Equations

Steady-state and time constant equations for activation and inactivation HH variables versus ex-

perimental data from cells. The equations in Table 3.1 and Figure 3.1 have been adjusted for

temperature compared with the data and equations plotted here. From [24].
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Figure 3.6: CMOS Transistor

(a) Cross-sectional diagram of an n-type MOS transistor. (b) Schematic Representation of the two

transistor types: the nFET (left) and the pFET (right). The transistor has four terminals: source

(S), drain (D), gate (G) and bulk (B), or sometimes referred to as the back-gate. The transistor

is a symmetric device, and thus the direction of the channel current—by convention the flow of

positive charges—defines the drain and the source. In an nFET, current flows from drain to source

as indicated by the arrow. Conversely, current in the pFET flows from source to drain.

3.2.1 Transistor Basics

The basic building block of neuromorphic models—and much of the computer industry—

is the MOS transistor. Short for Metal Oxide Semiconductor, the MOS transistor is

named for its structure: a metallic gate1 atop a thin oxide insulator which sepa-

rates the gate from a semiconductor channel. The channel, part of the body or

substrate of the transistor, lies between two heavily doped regions called the source

and the drain (Figure 3.6(a)), between which current flows. There are two types of

MOS transistors: n-type and p-type Field Effect Transistors (nFETs and pFETs re-

spectively). The nFET possesses a drain and a source that are heavily doped n-type

1Nowadays, a polysilicon gate.
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regions within a p-type substrate2. A pFET consists of a p-type source and drain

within an n-type well.

In the subthreshold regime, current flows within the channel by diffusion from the

higher charge density at the source end to the lower charge density at the drain end.

In the nFET, the charge carrier is negative and thus electrons flow from the lower

potential at the source—typically ground—to the drain. In the pFET, the carriers

are positively charged holes, and diffusion occurs from the higher potential at the

source to the lower potential at the drain. However, by convention, current is always

represented as the flow of positive charge, regardless of the transistor type (Figure

3.6(b)).

The density of charge carriers at each end of the channel depends exponentially

on the size of energy barrier (in Figure 3.7, φS for the source and φD for the drain).

The transistor is fabricated with an initial energy barrier between the souce/drain

and the channel; the size of the barrier is modulated by the voltage difference be-

tween the channel and the source/drain. For an nFET, increasing the voltage at the

source/drain linearly increases the size of the barrier. Since VD > VS during transis-

tor operation, φS < φD; thus, the density of the charge carrier is greater at the source.

Increasing the gate voltage (e.g., from VG to VG1 in Figure 3.7) lowers the barrier at

both ends, since the gate voltage influences the surface potential of the channel.

The current in the transistor is proportional to the density gradient along the

channel, from source to drain. Since the density of carriers is exponentially related to

the energy barrier and the energy barrier is linearly related to the terminal voltages3,

2An n-type region is an area of doped silicon where the primary charge carrier is negatively
charged electrons. Conversely, the primary charge carriers in a p-type region are positively charged
holes.

3For a more detailed description of transistor physics, see [96].
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Figure 3.7: Energy Diagram of a Transistor

This diagram shows the energy of the negative charge carrier (electrons) within an nFET. The ver-

tical axis represents energy, while the horizontal axis (not shown) represents the location within the

transistor. φS and φD represent the energy barrier for electons at the source and drain respectively.

The voltages are the terminal voltages, designated by their subscripts. During transistor operation,

VD > VS, and thus φS < φD. VG1 represents another scenario with a higher gate voltage. Adapted

from [96].

the relationship between the channel current and its terminal voltages for an nFET

is defined by

Ids = Ids0 e
κ

VGB
UT

(
e
−VSB

UT − e
−VDB

UT

)
, (3.17)

where κ describes the relationship between the gate voltage and the channel surface

potential, UT is called the thermal voltage4, typically 25.4mV at room temperature,

4NOTE: For clarity, all transistor voltages from hereon are assumed to be in units of UT.
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and Ids0 is the base diffusion current down the concentration gradient at the junction

between the source (drain) and body. This relationship also applies for pFETs, except

the signs of all the terminal voltages are reversed, due to the opposite sign in the

charge carriers.

The channel current can be divided into two components: a source (forward)

current and a drain (reverse) current. For large differences between the drain and

source voltages (i.e., > 4 UT), the reverse current is considered negligible, and the

transistor is said to be in saturation. In this regime, the channel current depends only

on the gate and the source. For drain voltages less than 4 UT from the source, the

reverse current is no longer negligible: It decreases the channel current. In this regime

(called ohmic), the transistor acts like a nonlinear conductor: The gate voltage defines

the conductance and the channel current is proportional to the difference between

two terminal quantities—in this case a nonlinear function of the terminal voltages (as

opposed to the voltages themselves). If the drain and source voltages are equal, then

the channel current is zero.

All the terminal voltages—VGB, VSB and VDB—are referenced to the bulk of the

transistor (indicated by the subscript ‘B’). More often than not, the bulk terminal

is connected to one of the rails (Gnd and Vdd for nFETs and pFETs, respectively).

However, the bulk can also be used as a separate means to control the channel current;

for this reason, it is often called the back gate. I isolate the dependence of the channel

current on the bulk by changing the reference of all the voltages in Equation 3.17 to

Gnd (the actual reference voltage is arbitrary).
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Ids = Ids0 eκVGB
(
e−VSB − e−VDB

)

= Ids0 eκ(VG−VB)
(
e−(VS−VB) − e−(VD−VB)

)

= Ids0 eκVG
(
e−VS − e−VD

)
e(1−κ)VB (3.18)

Since κ is typically closer to unity than to zero, the back gate provides a weaker

means to control the transistor current.

Appendix A introduces a few circuits commonly used in analog transistor design.

These circuits form various components in my model, which is described later in this

chapter.

3.2.2 Neuromorphic Models

Many previous neuromorphic models focus on mimicking the synaptic wiring within

neural circuits, concentrating on the functional role of a network while ignoring many

of the rich dynamics due to voltage dependent conductances within a cell[62, 43, 55,

80]. In their designs, neuromorphic engineers must choose between complexity of

their neuron model versus the size of the population: for a fixed area of silicon die,

larger circuits—which require more area—translate to fewer instances of the circuit.

With a focus on network dynamics, the importance leans heavily towards the number

of cells versus the complexity of the neuron.

For essential voltage-dependent channels, such as those involved in action poten-

tial generation, the engineer uses an abstraction of the channel, implementing the
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important functional consequences of the channel as opposed to the precise dynamics

of activation and inactivation. For Na+ spikes, once the membrane voltage crosses a

threshold, positive feedback—either current from an inverter circuit[155, 18, 63] or by

capacitive-coupling to a digital signal[96, 10, 62, 61, 80]—generates the rising phase

of the action potential. Shortly thereafter, a K+-like current resets the membrane

voltage to subthreshold levels, ending the spike. Often, the spiking mechanism of

the neuron is the interface between the analog circuits within the cell and the digital

circuits that send the action potentials out of the chip[10, 11].

One channel frequently found within neuromorphic models is the Ca++-dependent

K+ channel[10, 61, 55, 80], due to its simplicity in implementation. The output of

the channel depends on a representation of internal calcium levels. As such, as few as

three transistors—one for channel current, one for calcium uptake and one for calcium

entry into the cell—and a capacitor are sufficient for its implementation[61].

Like many computational models, neuromorphic models that do implement voltage-

dependent channels use the empirical form of the Hodgkin-Huxley models; that is,

the silicon circuit explicitly models the steady-state and time constant equations for

HH variables (see Section 3.1.1). One of the first silicon neuron models was of a single

cell, complete with a number of common neuron conductances [85]: the Na+ and the

delayed-rectifier K+ channels involved in action potential generation, a subthreshold-

activated K+ channel (IA), and a Ca++-dependent K+ channel (IAHP). The first three

channels are voltage-dependent, and rather than simplify the dynamics (as described

for the action potential channels above), Mahowald and Douglas implemented the

dynamics of activation and inactivation for each through the use of HH variables.

Since both the Na+ and the low-threshold K+ channel had activation and inacti-

vation components, they used the same circuit for both, but adjusted the channel
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operation—to match biological time scales and voltage dependence of each variable—

through voltage biases. In doing so, they demonstrated they could represent a wide

range of voltage-dependent channels (both with and without inactivation) through

modular design. However, their design possessed a number of areas of improvement.

First, the implementation of the HH variable was incorrect. A low-pass filter of

the membrane potential introduced the temporal dynamics of the variable, the output

of which passed through a differential pair, a circuit that outputs a sigmoid in current

with respect to an input voltage. This, however, is the reverse of the Hodgkin-Huxley

implementation, where a sigmoid function is the input to a low-pass filter (Equation

3.3). The resulting dynamics of their circuit to step changes in the membrane voltage

follow more of a sigmoidal path, as opposed to exponential. It could be argued,

however, that the sigmoidal path represented the delay typically associated with (for

example) multiple independent activation variables.

Second, inactivation of a channel is achieved through current subtraction from

the activation component. This is an inefficient use of energy: the maximum power

occurs when the channel is inactivated. A product of variables—as opposed to a

subtraction—would reach the maximum power only during channel conduction, a

situation that would occur much less often given the channel is open only during

activation and before inactivation. Additionally, using current subtraction makes the

design more susceptible to problems with mismatch5. Current subtraction requires

the inactivation current to be at least as large as the activation current; any variance

in the currents may result in a membrane current that does not fully inactivate.

Finally, their model does not account for the membrane voltage dependence of

5Mismatch is another term for the variance in current between identically-sized transistors on a
single chip.
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the time constant for any of the gating particles; rather, the time constant is fixed

over all membrane voltages. This can be a problem for some HH variables like the

inactivation variable of IT, the dynamics of which (deinactivation versus inactivation)

depend strongly on the changing time constant. Control of their time constants is

through a voltage bias; thus, it is technically possible to implement this dependence

through additional circuitry that modulates this voltage appropriately.

Recently, Simoni et al.[128] sought to improve on these conductance models and

addressed many of these very issues. Like the previous model, they used the empirical

Hodgkin-Huxley models as the basis for their circuits, and used circuit modules that

implemented the temporal dynamics and the steady-state function independently.

Unlike the model of Mahowald and Douglas, however, the membrane voltage first

passed through a sigmoid circuit for the steady-state equation, and then a low-pass

filter for the temporal dynamics of the variable. This is more in line with the Hodgkin-

Huxley model (Equation 3.3). As another improvement, the channel model consisted

of the product of gating particles, rather than a subtraction.

One area where their design did not improve upon the model from Mahowald

and Douglas is the membrane voltage dependence of the time constant for the HH

variables. Simoni’s model also controls the time constant through a voltage bias, and

thus it is possible to add additional circuitry to implement this dependence. However,

like all neuromorphic engineers, they chose to limit the size of their circuits, and thus

keep the complexity down[128]. Presumably, they would include this dependence if

the model deems it necessary, but at the expense of circuit size.
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3.2.3 Choosing a Model

Like previous circuit designers, I am faced with the decision between model accuracy

(complexity) and number of neurons on the chip. The most important feature of the

T channel is the deinactivation that occurs much slower than inactivation (Figure

3.1).

One of the simplest models presented of the T channel reduces the dynamics of

IT around a defined threshold (Vh) [130]. Activation does not possess any temporal

dynamics; instead, a Heaviside function at Vh defines its operation. Inactivation

is also nonlinear around this threshold, with deinactivation (i.e., the inactivation

variable h → 1) occuring below Vh at a time constant of 100ms, while inactivation

(i.e., h → 0) occurring at a time constant of 20ms. This simple model reproduces the

temporal frequency response of geniculate cells in the burst and tonic modes[130, 100].

However, there are a number of concerns that eliminate its use in my design. First,

without the activation dynamics, the possibility of burst delay is eliminated (see

Figure 3.3(a), [157]). Second, the use of a Heaviside for the inactivation allows for only

a continuous deinactivation through time, but not in the level of hyperpolarization

(Figure 3.3(b)). Finally, using the same threshold for activation and inactivation (i.e.

Vh) eliminates the possibility of inactivation of the channel before activation[130].

The neuromorphic models discussed in the previous subsection implement the em-

pirical form of the HH variable, like many computational models. Their approaches

are very similar: they both use circuit building blocks to implement the various com-

ponents of each variable (i.e. the steady-state function and the temporal dynamics).

However, this modular construction increases the size the circuit. A more efficient

approach is to integrate the implementation of both functions into a single circuit.
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The inspiration for the design is the linear thermodynamic models discussed pre-

viously (Section 3.1.2). There is a similarity between the state transition rates of the

thermodynamic model and the channel current within a transistor: they both rely

on particles overcoming an energy barrier. As such, the exponential dependence of

the transition rate on the free energy barrier is easy to model in silicon given the

exponential dependence of the transistor current on the gate voltage (Equation 3.17).

The analogy is not perfect: The transistor itself cannot represent state transitions in

both directions. Thus, multiple transistors are necessary. However, because of this

similarity, a more efficient design can be created by modelling these transition rates.

Now, rather than implementing the steady-state and time constant functions directly,

these functions are implemented indirectly through modelling of the transition rates.

Though the linear model was not a good match for the data (as compared to the

nonlinear models) (Figure 3.5), the model was able to capture the membrane voltage

dependence of both the steady-state and the time constant. One issue with the linear

model was the time constant that approached zero at depolarized membrane voltages.

This is easily accounted for by the inclusion of a saturation for the transition rate at

the depolarized voltages[153]. This is the starting point for the neuromorphic model.

3.3 HH Variable Circuit Design

The neuromorphic model of a HH variable begins with the integration of current on

a capacitor Cu to obtain a voltage uV. That is,

Cu
duV

dt
= Iin (Vm) (3.19)
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I define the HH variable u = eauV−b, where a and b, for the moment, are constants,

and uV is the capacitor voltage corresponding to u. This form should be obvious

for the HH variable—at least for those familiar with neuromorphic methods—since

all the terminal voltages of the transistor affect the current exponentially. This also

means the voltage across the capacitor is a log-domain representation of the Hodgkin-

Huxley variable. The constant a (in units of V −1) defines the exponential relationship

between u and uV. The constant b is used as a normalization factor. To simplify

the following derivation, I initially assume it is not needed (i.e., b = 0). Rewriting

Equation 3.19 in terms of u:

du

dt
=

1

Qu
u Iin (Vm) , (3.20)

where Qu = Cu UT/a is the amount of charge required to e-fold the variable u. To

realize the form of Equation 3.3, I define the input current as

Iin (Vm) =
1

u
IA (Vm) −

(
IA (Vm) + IB (Vm)

)
. (3.21)

Substituting into Equation 3.20:
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du

dt
=

1

Qu

(
IA (Vm) − u

(
IA (Vm) + IB (Vm)

) )

=
IA (Vm)

Qu
(1 − u) − IB (Vm)

Qu
u (3.22)

In this form, it is clear from Equation 3.2 that α (Vm) = IA (Vm)/Qu and β (Vm) =

IB (Vm)/Qu. Rearranging

du

dt
= −IA (Vm) + IB (Vm)

Qu

(
u − IA (Vm)

IA (Vm) + IB (Vm)

)

= − 1

τu (Vm)
(u − u∞ (Vm)) .

The problem has now been reduced to designing the functions of IA (Vm) and IB (Vm)

such that τu (Vm) and u∞ (Vm) match those of the HH variable being modelled.

3.4 Silicon T Channel Model

Figure 3.8 shows a block diagram of my T channel model. In the following sections,

I use the variable IT to represent the output current in transistor P2, not necessarily

the channel current. This distinction is important: in my design IT represents the

product of the HH variables with either the maximum channel conductance (Equation

3.3), maximum channel permeability (Equation 3.7) or even the maximum channel

current. Which maximum parameter IT represents depends largely on the neuron
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Figure 3.8: T Channel Model

The current from transistor N1 represents the activation of the output current IT: Im = mκ IT.

The bulk of transistor P1 implements the inactivation variable h by reducing the gain in the mirror.

See text for details.

model; for this chapter, the representation does not matter.

Transistor N1 acts as IT activation: upon membrane depolarization the transistor

‘activates’, passing current through a current mirror (see Appendix A.1) and into the

neuron. The voltage hV at the bulk node of transistor P1 controls the level of channel

inactivation. When hV = hblk (the bulk voltage on transistor P2), the mirror acts with

unity gain. Lowering hV with respect to hblk reduces the gate voltage V necessary for

the diode-connected transistor P1 to source the activation current. This effectively

reduces the gain of the mirror from unity; by further lowering hV, the output current

can be fully inactivated.
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To derive an expression for IT, I begin with Equation A.1—which describes the

gain of a current mirror due to differences in bulk voltages—and expand the terms

into mV and hV:

IT = Im e−(1−κ )(hblk−hV)

= Ids0 eκ mV−mC e−(1−κ )(hblk−hV)

By defining the activation variable m = emV−mH and the inactivation variable h =

e−(1−κ )(hblk−hV), the above expression becomes

IT = mκ h IT, (3.23)

where IT = Ids0 eκ mH−mC . In this form, the activation and inactivation variables

generate IT through the modulation of a maximum IT current (IT).

What should immediately stand out from Equation 3.23 is the exponent on the

activation variable. Computational models of IT (see Section 3.1.1) typically use an

exponent of two for m, a representation in the HH model of two gating particles.

However, for my silicon implementation, to simplify the circuit, I have chosen to use

an exponent slightly less than one (κ ≈ 0.8). This difference impacts the dynamics of

activation and deactivation—not to be confused with deinactivation—of the channel.

First, an exponent greater than one on the HH variable introduces a delay in the
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activation (in the case of IT) of a variable; that is, there is a sigmoid-like rise in the

activation of the variable, as opposed to an exponential rise. So while I ignore this

delay (by implementing an exponent less than one), I can slow down my activation

to account for this.

Also, any exponent on a HH variable other than one introduces an asymmetry in

the perceived time constants6 of a rising versus a falling variable. In the two variable

case (i.e., an exponent of two), the perceived time constant for activation is larger

than for deactivation. The reason is quite simple: for variables less than one, which is

true for all HH variables, applying an exponent greater than one moves the variable

away from unity. This accounts for the perception of a slower rise but a faster decay.

For exponents less than one, the converse is true: the perceived time constant during

activation is faster than during deactivation (a good example of this is seen Figure

2-16 in [51]).

Thus, depending on the circuit parameters, the dynamics of activation for my

model will either open too fast (if I try to match the deactivation), close too slow (if I

match the activation) or both (if I try to minimize the error). I do not expect this sim-

plification to handicap the model, as the slower deactivation is largely overshadowed

by the even slower deinactivation. Previous studies[130, 12] have completely ignored

activation dynamics by using a Heaviside function as an activation threshold, and

were still able to reproduce some responses of real cells[130]. Higher order Hodgkin-

Huxley variables are possible in transistor design, but the decision often comes down

to complexity versus area on a chip. In this case, the simpler design seemed more

appropriate as the important dynamics of IT seem to rely more on the inactivation

6The perceived time constant can be thought of as the time constant calculated by a fit of the
rising or falling product (e.g., m2) to a single exponential.
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Figure 3.9: V−
m vs. Vm

(a) Circuit for V−
m generation. (b) Chip data showing V−

m versus Vm. The red line shows the fit

using Equation 3.25, with extracted parameters of nvm = 0.405V, κ = 0.806.

variable.

3.4.1 Vm vs. V−
m

I introduce an inverse membrane voltage V−
m to facilitate the modeling of dynamics at

hyperpolarized levels. The transistor is a monotonic transconductance: The output

current increases exponentially with the gate voltage. This, then, captures channel

dynamics at depolarized membrane voltages. However, for hyperpolarization dynam-

ics, such as deinactivation, I need a current that increases as the membrane voltage

decreases. This is easily accomplished by generating a voltage that decreases with

increasing Vm (Figure 3.9(a)). The relationship between Vm and V−
m can be described

by
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V−
m = UT log

[
1 + exp

[
κ

UT

(
nvm − κ

κ + 1
Vm

)]]
(3.24)

where κ and UT are transistor parameters (see Section 3.2.1) and nvm is an external

voltage bias. At small Vm, V−
m approaches the gate voltage nvm. As Vm increases,

the current output of the mirror subsequently increases, decreasing V−
m.

The equation above is complicated by the fact that at higher Vm, the mirror

output transistor begins to move out of saturation as the drain (V−
m) approaches the

source. However, I can simplify this equation by assuming all transistors stay in

saturation, at least for the relevant range of operation:

V−
m = κ

(
nvm − κ

κ + 1
Vm

)
(3.25)

Thus V−
m is a linear decreasing function of Vm. Figure 3.9(b) plots data from a silicon

chip and the fit to Equation 3.25. I chose the slope for this relationship to account

for the asymmetry in the slopes around the peak of the inactivation time constant

(Figure 3.1). The time constant of a HH variable is generated by the inverse of a

current (Section 3.3); a slope less than unity ensures the current will increase slower

as the voltage decreases from the peak (and thus the time constant will decrease

slower) than when the voltage increases.

Of note, Vm = V−
m when
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Figure 3.10: Activation Variable m Circuit

The voltage mV is the log-domain representation of the activation variable m. V−
m is inversely related

to Vm (Equation 3.25). mH, mL, and mPK are adjustable voltage parameters. See text for details.

Vm =
κ + 1

1 + κ + κ 2
κ nvm (3.26)

3.4.2 Activation Variable m

Figure 3.10 shows the circuit for the activation variable m. The circuit uses the

source of the input transistor N2 to obtain a log-domain representation of m with

mV. Assuming transistor N1 remains in saturation, the sum of the currents integrating

on the capacitor Cm is
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Cm
dmV

dt
= I23

(
e−mV − e−mH

)
− I−m e−mL

Substituting m = emV−mH ,

Qm
1

m

dm

dt
= I23

(
1

m
e−mH − e−mH

)
− I−m e−mL

dm

dt
= I23

e−mH

Qm
(1 − m)− I−m

e−mL

Qm
m

=
Im Ipk

Im + Ipk

e−mH

Qm
(1 − m)− I−m

e−mL

Qm
m

where I23 =
Im Ipk

Im+Ipk
is the current through the two series nFETs (see Equation A.3).

From here it is easy to see the rate constants between the open and closed states

(Equation 3.2). Thus, to calculate the steady-state and time constant equations:

m∞ (Vm) =
α (Vm)

α (Vm) + β (Vm)

=

Im Ipk

Im+Ipk
e−mH

Im Ipk

Im+Ipk
e−mH + I−m e−mL

=
1

1 + (e−κ mPK + e−κ Vm) eκ V−
m emH−mL

(3.27)

In computational models, m∞ (Vm) is a sigmoid with a center voltage Vmid
m . I can

realize this form with the above equation by restricting κ mPK > (mH − mL + 4UT),
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or, in simpler terms, by stating that by the time the exponential term with mPK

becomes significant (with respect to exp [−κVm]), the sigmoid already has reached

its maximum. Thus, assuming this restriction and substituting Equation 3.25 for V−
m,

the above equation reduces as follows:

m∞ (Vm) =
1

1 + ( e−κ mPK + e−κ Vm ) eκ V−
m+mH−mL

=
1

1 + exp
[
−κ Vm − κ 3

κ +1
Vm + κ 2 nvm + mH − mL

]

=
1

1 + exp
[
−κ

(
κ 2+κ +1

κ +1

)
Vm + (κ2 nvm + mH −mL)

]

=
1

1 + exp
[
−Vm−Vmid

m

V∗
m

] (3.28)

where

Vmid
m =

1

κ

κ + 1

κ 2 + κ + 1

(
κ 2 nvm + mH − mL

)

V∗
m =

1

κ

κ + 1

κ 2 + κ + 1
UT.

Like nvm (Section 3.4.1), mH and mL are both external voltage biases. The first

term in Vmid
m is the point where Vm = V−

m (Equation 3.26); the midpoint is shifted

from this point through the difference (mH − mL). For the time constant:
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τm (Vm) =
1

α (Vm) + β (Vm)

=
Qm

Im Ipk

Im+Ipk
e−mH + I−m e−mL

=
1

eκ Vm

eκ Vm+eκ mPK
+ eκ V−

m emH−mL−κ mPK

Qm emH

Ipk

=
1

eκ Vm

eκ Vm+eκ mPK
+ eκ V−

m emH−mL−κ mPK

τmsat

where Qm = CmUT, and τmsat = Qm emH/Ipk represents the minimum time constant at

depolarized membrane potentials. To simplify τm, I first rewrite the above expression

as three separate terms:

τm (Vm)

τmsat
=

eκ Vm + eκ mPK

eκ Vm + ( eκ(Vm−mPK) + 1 ) eκV−
m+mH−mL

= 1 +
eκ mPK −

(
eκ (Vm−mPK) + 1

)
eκ V−

m+mH−mL

eκ Vm + ( eκ (Vm−mPK) + 1 ) eκ V−
m+mH−mL

= 1 +
eκ mPK

eκ Vm + ( eκ (Vm−mPK) + 1 ) eκ V−
m+mH−mL

−
(

eκ(Vm−mPK) + 1
)

eκ V−
m+mH−mL

eκ Vm + ( eκ(Vm−mPK) + 1 ) eκ V−
m+mH−mL

The first term dominates at depolarized membrane voltages, as the other two terms

become negligible due to the exponential eκ Vm in the denominators. Thus, as Vm

increases, τm → τmsat. The last term becomes significant only at hyperpolarized

levels, approaching one as the Vm drops and effectively reducing the time constant to

zero. The second term, with a constant numerator, dominates in the middle voltage
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ranges, when the denominator—a sum of two exponentials, one of Vm and the other

of V−
m—is minimized.

I reduce the equation with two simplifications. First, I ignore the last term, simply

because the expression does not influence the important aspects of the activation time

constant, such as the peak or the time constant at depolarized levels. Without this

term, the time constant will reduce to τmsat as Vm drops, as opposed to zero. Second,

I use the same assumption as m∞ (mPK � Vm) to simplify the second term. This

eliminates the expression
(

eκ(Vm−mPK) + 1
)

from the denominator. This term only

becomes significant at high Vm, but by then the denominator will have reduced the

term to zero. Therefore, Equation 3.25 becomes

τm (Vm)

τmsat
≈ 1 +

eκ mPK

eκ Vm + e
−κ

(
κ 2

κ +1

)
Vmeκ 2nvm+mH−mL

τm ≈ τmsat

(
1 +

1

eκ (Vm−mPK) + e
−κ

(
κ 2

κ +1

)
Vmeκ 2nvm+mH−mLe−κ mPK

)

= τmsat


1 +

1

exp
(

Vm−V1m

V∗
1m

)
+ exp

(
−Vm−V2m

V∗
2m

)


 (3.29)

where

V1m = mPK

V∗
1m = UT/κ

V2m =
κ + 1

κ 3

(
κ 2nvm + mH − mL − κ mPK

)

V∗
2m =

κ + 1

κ 3
UT
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mPK is also an external voltage bias, in addition to those mentioned previously.

As designed, Equations 3.28 and 3.29 are similar in form to their computational

counterparts (Table 3.1). The external adjustable biases are present in the parameters

that either scale the time constant (e.g., τmsat) and/or those that shift the voltage

dependence of activation (e.g., Vmid
m , V1m, V2m). However, not all of the parameters

are externally controllable. These parameters—namely the voltage constants V∗
m,V∗

1m

and V∗
2m—rely on the product of thermal voltage UT and a polynomial function

of κ , both physical parameters of the transistor. Since external biases only affect

the current in a transistor exponentially, I am limited in my ability to modify the

voltage constant in any exponential except by designing circuits that achieve a desired

polynomial function of κ . However, once the chip has been fabricated, I can shift or

scale the functions but cannot change the basic shape. This, of course, is a drawback

with my technique, and requires careful consideration in the design of these circuits.

Intuitively, the circuit function is quite simple. At steady state, the current in all

three transistors is equal (I23 = I1). Since mV is the source voltage for I23, mV adjusts

I23 to match I1. As the cell hyperpolarizes and I1 increases (due to V−
m), mV drops

to increase I23. Conversely, if the cell depolarizes, I1 decreases and thus mV rises. At

some point, transistor N3 moves out of saturation and the reverse current (due to the

drain voltage mH) is no longer negligible. In this case, as I1 proceeds to drop, mV

slows down in its rate of increase, as it no longer reduces I23 through the gate-source

voltage of N3 but through the reverse current. Eventually, once I1 is off, mV ≈ mH,

and m ≈ 1 (since I have defined m = emV−mH).

I1 and the reverse component of I23 define the shape of the membrane voltage

dependence of the activation time constant. Since I1 is active at hyperpolarized

voltages and the reverse component of I23 at depolarized levels, the inverse of their
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Figure 3.11: Transistor Implementation of Inactivation Variable

The voltage hV on the capacitor is the log-domain representation of the variable h. As shown in

Figure 3.8, hV uses the bulk node of a pFET to implement inactivation of IT. See text for details.

sum achieves a bell shape (see Figure 3.1). The gate of transistor N2, mPK, sets the

time constant τmsat at depolarized levels by saturating the reverse current. Without

N2, τm would decrease to zero as Vm increased. With N2, the reverse current becomes

proportional to eκ mPK−mH when Vm � mPK.
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3.4.3 Inactivation Variable h

Figure 3.11 shows the circuit for the inactivation variable h. Similar to the activation

variable, the voltage hV is a log-domain representation of the variable h, achieved

using the bulk node of the pFET. The dynamics of hV are described by

Ch
dhV

dt
= IP1 + IP5

IP1 is simply the sum of two currents, Im +I−m. IP5 is the output of three series current

mirrors. The last two are unity gain mirrors, and so IP5 is completely defined by the

output of the first mirror (transistors P2-3). From Equation A.1,

IP5 = I−m e−(1−κ )(hV−hblk)

=
1

h
I−m

where h = e(1−κ )(hV−hblk). Therefore, the total input current on the capacitor Ch is

Ch
dhV

dt
= −1

h
I−m +

(
I−m + Im

)

Qh
1

h

dh

dt
= −

(
1

h
− 1

)
I−m + Im

dh

dt
= − I−m

Qh
( 1 − h ) +

Im
Qh

h

61



where Qh = ChUT/(1 − κ ). Recalling Equation 3.22, I solve for h∞:

h∞ (Vm) =
I−m

Im + I−m
(3.30)

=

eκ V−
m

eκ V−
m+eκ hT

eκ V−
m

eκ V
−
m+eκ hT

+ eκ Vm

eκ Vm+eκ hT

=
1

1 + 1+e
κ (hT−V−

m)

1+eκ (hT−Vm)

Expanding the expression into two terms:

h∞ (Vm) =
1

1 + 1+e
κ (hT−V−

m)

1+eκ (hT−Vm)

=
1

2 + eκ (hT−Vm) + eκ (hT−V−
m)

+
eκ (hT−Vm)

2 + eκ (hT−Vm) + eκ (hT−V−
m)

=
1

2 + eκ (hT−Vm) + eκ (hT−V−
m)

+
1

1 + 2 e−κ (hT−Vm) + eκ (Vm−V−
m)

The first term becomes negligible if I restrict hT such that hT > (Vm + 4UT)

when Vm = V−
m, ensuring that one of the two exponential terms is always greater

than 2. In addition, with this restriction, the middle term in the denominator of the

second fraction becomes useless as the last term in the denominator will always be

more significant. Thus,
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h∞ (Vm) =
1

1 + eκ (Vm−V−
m)

=
1

1 + e
κ

(
1+κ +κ 2

κ +1
Vm−κ nvm

)

=
1

1 + exp
[

Vm−Vmid
h

V∗
h

] (3.31)

where

Vmid
h =

κ + 1

κ (κ 2 + κ + 1)
κ 2 nvm

V∗
h =

κ + 1

κ (1 + κ + κ 2)
UT

Note that the midpoint of the sigmoid Vmid
h occurs where Vm = V−

m (Equation 3.26).

For the time constant,

τh (Vm) =
Qh

Im + I−m

=
1

eκ V−
m

eκ V−
m+eκ hT

+ eκ Vm

eκ Vm+eκ hT

Qh

Ids0 eκ hT e−hTG

=
1

eκ V−
m

eκ V
−
m+eκ hT

+ eκ Vm

eκ Vm+eκ hT

τhsat

where τhsat = Qh ehTG/Iht represents the base inactivation time constant. Rearranging

the expression into the form (1 + f(Vm)),
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τh (Vm)

τhsat
=

eκ (Vm+V−
m) + eκ hT

(
eκ Vm + eκ V−

m

)
+ e2κ hT

2eκ (Vm+V−
m) + eκ hT

(
eκ Vm + eκ V−

m

)

= 1 +
e2κ hT − eκ (Vm+V−

m)

2eκ (Vm+V−
m) + eκ hT

(
eκ Vm + eκ V−

m
)

= 1 +
e2κ hT

2eκ (Vm+V−
m) + eκ hT

(
eκ Vm + eκ V−

m
)

− eκ (Vm+V−
m)

2eκ (Vm+V−
m) + eκ hT

(
eκ Vm + eκ V−

m
)

= 1 +
e2κ hT

2eκ (Vm+V−
m) + eκ hT

(
eκ Vm + eκ V−

m
) −

1

2 + eκ hT

(
e−κ Vm + e−κ V−

m
)

By applying the same assumptions as for h∞, I can eliminate the third term from

the above expression as eκ hT

(
e−κ Vm + e−κ V−

m

)
� 2 over all Vm. I can also ig-

nore the first term in the denominator of the first fraction as—also due to the same

assumptions—eκ (Vm+V−
m) � eκ hT

(
eκ Vm + eκ V−

m

)
. Thus,

τh (Vm)

τhsat
≈ 1 +

e2κ hT

eκ hT

(
eκ Vm + eκ V−

m
)

= 1 +
1

eκ (Vm−hT) + eκ (V−
m−hT)

= 1 +
1

eκ (Vm−hT) + e
κ

(
κ nvm− κ 2

κ +1
Vm−hT

)

∴ τh (Vm) ≈ τhsat


1 +

1

exp
(

Vm−V1h

V∗
1h

)
+ exp

(
−Vm−V2h

V∗
2h

)

 (3.32)
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where

V1h = hT

V∗
1h = UT/κ

V2h =
κ + 1

κ 2
(κ nvm − hT)

V∗
2h =

κ + 1

κ 3
UT

hT and hTG are external voltage biases for inactivation. The HH equations governing

h are almost identical in form to those for the activation variable m (Equations 3.28

and 3.29), so much so the parameters listed above seem only to differ in the external

bias names. Most of the similarities derive from the fact that both circuits share

V−
m (see Section 3.4.1). There are a couple of key distinctions, however. The first

difference exists between the terms Vmid
h and Vmid

m . Vmid
m contains an additional term

(mH − mL), used to separate the activation and inactivation steady state curves.

The second difference exists in the time constants τmsat and τhsat, more specifically

the factor 1/(1 − κ ). According to Figure 3.1, the time constant for inactivation is

roughly 25-50 times larger than that of activation. The simplest solution, increasing

the inactivation capacitance Ch, is unreasonable since silicon models are constrained

by die area. Another solution involves reducing the magnitude of the current involved

in generating the time constant. However, leakage currents within a transistor—an

issue that is becoming increasingly problematic with smaller processes—set a floor

on how small a current can be generated. My solution involves the use of the back

gate of the transistor (Equation 3.18), which, as described in Section 3.2.1, provides a

weaker mechanism for affecting the output current. This means the bulk voltage has

to change by κ /(1 − κ ) more than a gate voltage to affect the current equivalently.
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Assuming κ ≈ 0.8, this is equivalent to a capacitance that is approximately five-fold

greater.

As in the case of the activation variable, the steady state level of h is controlled by

the balance of current on the capacitor. That is, hV continues to transition until the

current through transistor P5 (IP5) matches IP1. Full deinactivation (h = 1) occurs

when IP5 = IP1 = I−m, or when the cell is sufficiently hyperpolarized such that Im is

negligible. As Vm begins to rise, IP1 begins to increase and h must drop sufficiently

so that at steady state IP5 = IP1. h = 0.5 occurs when IP1 = 2 I−m, or in other words

when Vm = V−
m. Further increases in Vm will continue to drop h, thus inactivating

IT.

Like its activation counterpart, the membrane voltage dependence of the inacti-

vation time constant (τh) asymptotes at extreme voltages and peaks in the middle.

The components of IP1 have been designed such that they each saturate at opposite

extremes but never sum to greater than the saturation level, otherwise a trough would

exist in place of the peak. Since the gate voltage hT provides the limit on the current

level for each component of IP1, the time constant at hyperpolarized and depolarized

levels is proportional to e−(κ hT−hTG). At the peak in the inactivation time constant

curve, if hT is sufficiently large, IP1 depends only on Vm and V−
m.

3.5 Results

The results presented here were taken from a chip fabricated with TSMC’s 0.25µm

process. I tested my design using voltage clamp experiments similar to those used

in biology. However, in silicon, I have the advantage of studying the dynamics of
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Figure 3.12: Voltage clamp experiments in silicon

For both sets of experiments, the opposite variable is kept fixed (and open) so that IT reflects the

dynamics of the variable under study. The membrane voltage begins in an initial state with the

dependent variable closed (i.e., equal to zero) and then stepped to a new voltage (in the direction of

variable opening). The time constant is extracted by fitting a rising exponential to the recorded IT

data. The membrane voltage dependencies of the time constant is calculated by sweeping the step

size and re-fitting the data. (a) Activation experiments for calculating τm (Vm). The cell begins in

a state with IT deactivated, and the membrane voltage is stepped to more depolarized levels. (b)

Inactivation experiments for calculating τh (Vm). The cell begins in a state with IT inactivated, and

the membrane voltage is stepped down to more hyperpolarized levels.

activation and inactivation independently by fixing one and measuring the other, as

IT becomes directly proportional to the independent variable (Equation 3.23).

Figure 3.12 plots some of the IT responses due to activation (Figure 3.12(a)) and

inactivation (Figure 3.12(b)) to steps in the membrane voltage. These responses are

used to calculate the membrane voltage dependence of the time constant for each HH

variable. The membrane voltage dependence of the steady-state levels is calculated
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Figure 3.13: HH Variable Functions

Top and bottom rows show the steady state level and time constant curves respectively for activation

(left) and inactivation (right). The steady state data is captured by slowly sweeping the membrane

voltage and recording IT directly. The time constant is measured through steps in the membrane

voltage (Figure 3.12). The red curve in each plot are the fits of Equations 3.28 and 3.29 (for

activation) and Equations 3.31 and 3.32 (for inactivation) to the measured data.
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directly by sweeping Vm continuously and recording IT. Figure 3.13 plots all of these

curves for activation and inactivation. The red curve in each plot is the fit of my

analytical solutions—Equations 3.28 and 3.29 for activation and Equations 3.31 and

3.32 for inactivation—to the collected data. The analytical solutions fit very nicely

with the actual performance of my circuit. This is not surprising, but the question

remains: how does my model compare with the computational models?

The most obvious difference is the scale of the time constants. One of the issues in

subthreshold transistor design is the existence of leakage currents that set a floor on

the level of circuit currents. For proper dynamics, current levels within a transistor

must be significantly larger than any intrinsic leakage current. Though I am unable to

measure the leakage currents explicitly, I can see their effects through whether or not

my circuits are operating correctly. Thus, the range of operation can be determined

by scaling the current levels within my transistors.

For the inactivation variable, the current levels are scaled using the bias hTG. This

bias is the source for all of the transistors (N1, N3 and N5 in Figure 3.11) involved in

generating h. The effect of varying hTG—and thus the magnitude of all the currents—

is demonstrated in Figure 3.14. For sufficiently low hTG (i.e., large currents within

the circuit), the behavior of the circuit is normal: There is an exponential approach

of the inactivation variable to the steady state level. However, as hTG rises—reducing

current levels—there is a dramatic change in both the shape of the deinactivation

and the steady state level. At its most extreme, the currents in the rest of the circuit

are negligible compared to the leak, and the circuit malfunctions. Figure 3.14(b)

shows a numerical solution to the inactivation circuit with a ‘leak transistor’ parallel

to transistor P5 (Figure 3.11). The solutions are similar to the measured data in

Figure 3.14(a), suggesting the leak acts through transistor P5, but could be due to
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Figure 3.14: Leakage effects on the Inactivation Dynamics

(a) Measured deinactivation of IT to a step in the membrane voltage for different current levels set

by hTG. (b) Numerical solution to the inactivation circuit that assumes the leak acts as a transistor

current source parallel to transistor P5. Three conditions are plotted: 1) current levels are larger

than the leakage current (black); 2) current levels are roughly of the same magnitude as leakage

current (red); 3) current levels are low compared to the leakage current (green).

the leakage in any one of the transistors in the series of current mirrors. During the

leakage dominated case in Figure 3.14, h rises exponentially as the voltage hV now

changes at a constant rate proportional to the leak through IP5, rather than 1/h I−m

during proper function. At steady state, h rests at levels larger than one because now

hV settles at a voltage that balances the current in IP1 and the leakage current. Since

the leak is larger than IP1, hV must rise sufficiently to move the ‘leak transistor’ out

of saturation and into the ohmic region, which causes h > 1.

To ensure proper function, it is important that hTG is set sufficiently low such

that the leak current remains sufficiently small in comparison to the other currents.

As a result, due to the higher currents, I am required to run my chip in hypertime: in

other words, faster than biology. Thus, it is necessary to scale all the time constants,
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Figure 3.15: Time constant comparison between silicon and empirical models

Empirical (black) versus silicon (red) time constant equations for (a) activation and (b) inactivation.

The mappings from the silicon membrane voltages to biological membrane voltages for each of the

variables are calculated using their respective steady state curves. The silicon curves are scaled to

match the depolarized inactivation time constants.

both within the IT circuit and within all other circuits (e.g., synaptic).

To look at the performance of my silicon model, I compare the results of my

voltage clamp experiments to the empirical equations from Figure 3.1. While the

empirical equations are part of another model (Hodgkin-Huxley), they fit well all of

the voltage-clamp data from real cells (Figure 3.5), providing the general shape of

each function. However, in making the comparison, I only discuss obvious qualitative

differences, as opposed to precise quantitative differences.

Figure 3.15 plots the time constant equations for the silicon and empirical models

for activation (Figure 3.15(a)) and inactivation (Figure 3.15(b)). Since the membrane

voltages for the silicon neuron span a different range than real cells, I use the steady-

state sigmoids to define a mapping from one voltage space to another, allowing a

71



direct comparison of the curves. In addition, the silicon curves have been scaled such

that the inactivation time constant for both the silicon and empirical curves match

at depolarized levels.

For the activation variable, the obvious difference is the position of the activation

peak, which occurs at more depolarized voltages in my silicon model than in the em-

pirical model. This means there is a substantial difference in the activation variable

time constants at hyperpolarized membrane voltages, where the channel deactivates.

Thus, my silicon IT will deactivate much quicker than in real cells. However, this

is unlikely to cause any problems, as after the cell activates, it typically only re-

polarizes once the channel has inactivated, which gives the channel the all-or-none

response property[157]. This detail makes the time course of deactivation at these

voltages unimportant as the channel dynamics depends on the much slower dynamics

of deinactivation.

For the inactivation variable, the silicon design captures well the change in the

time constant, from the slow deinactivation time course at more hyperpolarized levels

(around the peak) to the faster inactivation dynamics at more depolarized levels. One

concern, however, is the steeper slope at voltage levels lower than the peak: Cells

receiving strong inhibition could deinactivate much quicker. However, I can counter

this by limiting the level of hyperpolarization—through limits on the inhibition—

within the cell.

72



3.6 Discussion

In this chapter I described my silicon implementation of the thalamic T channel cur-

rent. I morphed the Hodgkin-Huxley variables involved in IT—one for activation and

one for inactivation—using a log-domain representation in voltage. I demonstrated

that through my approach, I was able to capture both the sigmoidal steady-state

properties of HH variables in addition to a dependence of the time constant on the

membrane voltage.

A back gate approach was use to take into account the difference in degrees of

magnitude in time constants between the m and h variables. Rather than increasing

the size of the capacitor, I used the back gate to artifically increase the capacitance

by ≈ 5 times (assuming κ ≈ 0.8). Though that was the intent, other factors, such

as leak currents in the design, limited the maximum time constant to levels faster

than biology. To compensate in the following chapters, I am required to scale all

time constants within the system accordingly. The limitations due to leakage can be

decreased through transistor sizing (using longer transistors) in the layout stage of

chip design.

Another problem, possibly more serious, is mismatch within the series mirrors

(transistors P2-P5 and N7-N8 in Figure 3.11). Though a mirror may be designed

with unity gain, the output of the mirror, in reality, is scaled by a random variable

because of mismatch. Thus, each successive mirror increases the variance of this gain.

How does this affect the inactivation circuit? From Equation 3.30, the inactivation

variable h = I−m/(I−m + Im). The current in the numerator is the output of the series

mirrors, and the mismatch gain appears as a random variable multiplying h. Thus,

rather than h approaching unity as the cell hyperpolarizes, h will approach this gain.

73



Like the leakage currents, mismatch can be reduced through transistor sizing. While

leakage goes down with transistor length, mismatch is inversely proportional to the

square root of the transistor area[105].

Overall, though, the circuits worked well in capturing the temporal and steady-

state dynamics of each HH variable, though not without flaws. For activation, the

peak of the time constant curve was sufficiently shifted to more depolarized voltages

such that at deactivation voltages, ≈ 80mV, the temporal dynamics of activation in

the the silicon model would be much quicker. This, however, is unlikely to affect

the results from the silicon model, since at these voltages the slow deinactivation

makes the much faster deactivation dynamics unimportant. The main concern for

the inactivation variable was the steeper slope in the time constant at voltages more

negative to the peak. However, any effect here can be limited by controlling the level

of hyperpolarization that deinactivates IT.

How does this model improve on previous designs? The most obvious improvement

is the incorporation of a membrane voltage dependent time constant for each of the

gating particles. This opens the door to capturing some of the richer dynamics seen

in neuron models. The other improvement within my model is in the efficiency of

the design, which I measure in terms of total number of transistors7. To capture

the activation and inactivation dynamics of the T channel, I used 23 transistors: 13

for inactivation, 3 for activation, 3 for the channel output and 4 for generating V−
m.

The model used by Simoni et al.[128] has 44 transistors: 16 each for activation and

inactivation and 12 for the output. This is a considerable difference in size, largely

due to the modular nature of their model. In addition, the time constants for both of

7I am ignoring capacitors as all models use two capacitors—one for activation and one for
inactivation—within their circuits
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their variables are fixed, so including more circuitry to model the membrane voltage

dependence would make their designs even larger.

A T current model using the same principles as in [85] would consist of 20 transis-

tors, 8 each for activation and inactivation and 4 additional transistors for the output.

This is slightly smaller in size than my circuit. However, in addition to the concerns

with this circuit mentioned in Section 3.2.2, the circuit also implements a fixed time

constant for both activation and inactivation. Adding additional transistors to include

this would then increase the size of their circuit.

Overall, my design captures the temporal dynamics of the T channel, while keeping

the design smaller in size than existing models. My model was not perfect; in addition

to the minor flaws described above, there is also room for other improvements, such

as duplicate HH variables. While these issues are not important for my model, they

may be more important in models of other membrane conductances. Fortunately,

with the lower number of transistors in my design, these modifications can be made

while still keeping circuit size down.
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Chapter 4

Relay Neuron Model

In the previous chapter, I introduced my silicon model for the low threshold calcium

channel. The next step is to merge this model with a silicon neuron and study how

IT affects the response properties of the cell. This is the focus of the current chapter.

First, I present the silicon neuron, consisting of a cell body (with the T channel)

and a synapse. Following that, I use two techniques to characterize the response

of the cell to investigate changes in the response of the neuron due to IT. The first

technique is the frequency response of the cell using input currents. This technique has

been applied to real neurons, allowing me to validate the performance of my silicon

cell. The second technique uses nonlinear analysis methods to extract the system

function using the properties of the output response to a random input stimulus.

These nonlinear methods are often useful in situations where knowledge of the system

is either limited, or too complex to solve analytically. The result is a set of kernels,

which capture synaptic, membrane and IT dynamics.
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Figure 4.1: Neuron Circuit

The neuron circuit is composed of two modules: a capacitor Cm that models sub-threshold neuron

dynamics and a spike generator that is active only when Vm is sufficiently high. Transistor N1 acts

as a passive membrane conductance that, absent any input, pulls the membrane voltage to nRST.

Transistor N2 is a membrane leak that adjusts the resting membrane potential down from nRST.

See text for details.

4.1 Neuron Circuit

The complete neuron circuit incorporates both the cell and the synaptic circuits. The

synapse circuit presented here is the foundation for all synapses: slow, fast, excitatory

and/or inhibitory. The details of the synaptic interactions between cells within each

chapter will be discussed within the respective chapter.
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4.1.1 Cell Circuit

The T channel circuit from the previous chapter is not constrained to a specific neuron

model. The output of the model is a current, but this is because of the model medium:

The transistor current can be used to represent either the channel conductance or

the channel current. The actual representation depends on the choice of the neuron.

Many neuromorphic models have used the simple (non-leaky) integrate and fire

(IF) circuit as the basis of their neural processing. Inputs into the neuron—whether

from a synapse or a membrane channel—are currents, rather than conductances.

Spike generation is abstracted to a voltage threshold crossing, followed by a reset

to Gnd, rather than the complex dynamics of activation and inactivation of Na+

channels and the delayed rectifier K+ channels. Without membrane conductances,

the membrane voltage rises linearly, from reset to threshold, in response to a constant

input current. Thus, above its rheobase1, the response frequency of the cell is linear

with input current. This makes the IF neuron a suitable model for the spiking relay

neuron (i.e., for input currents above the rheobase), which exhibit a linear frequency-

input current response (see Figure 2.5(a)). Subthreshold dynamics, however, require

something akin to a membrane leak to vary the membrane voltage with the input

current. This is important as the membrane voltage trajectory affects the dynamics

of voltage-dependent membrane channels, like the T channel.

Taking these issues into account, Figure 4.1 shows the circuit for my silicon relay

neuron. The spike generator is an IF neuron: Output spikes are generated at a rate

proportional to the input current into the membrane, represented by the voltage Vn.

The IF circuit, by itself, is not suitable for voltage-dependent membrane channels,

1The rheobase is the smallest stimulus magnitude that elicits an action potential from a neuron.
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mainly because after spike generation, Vn is reset all the way to Gnd. If we use

the same membrane voltage mapping as in Figure 3.15(b) (i.e., from silicon to real

voltage space), this repolarization in the silicon neuron would be equivalent to a real

neuron repolarizing to < −100mV. This would dramatically alter the activation and

inactivation dynamics of the T channel during a burst, as the channel would begin to

deactivate and deinactivate. Real thalamic cells, however, repolarize to much higher

membrane voltages (Figure 2.4), minimizing the influence of spikes on IT.

One solution to this problem is to modify the IF circuit to reduce the voltage

range of Vn. This is not simple: The current levels involved in spike generation and

reset are orders of magnitude greater than synaptic and membrane currents, due to

its role as the interface between the analog membrane circuits and the digital off-chip

communication. Thus, any modification would need to be resilient to large current

spikes. A simpler solution is to isolate the subthreshold dynamics from the spike

generator, and activate the latter only when the cell depolarizes. That is the role

of the diode (transistor P1 in Figure 4.1): the membrane voltage Vm at the source

terminal of the diode needs to be sufficiently high (i.e., depolarized) for current to

enter the spike generator. After the IF circuit generates a spike, the reset current

rapidly lowers Vn. Since Vn and Vm are the gate and source voltages (respectively) of

transistor P1, lowering Vn increases the current in P1, which decreases Vm. However,

the rate at which Vm decreases is much slower than Vn for a couple of reasons: 1) the

current level through P1 is much smaller than the reset current due to the smaller

gate-source voltage difference; 2) the total capacitance at the node for Vm is larger

than the capacitance at the node for Vn (by design). As a result, Vm resets only

a small amount after each spike (Figure 4.2), while Vn resets to Gnd. The current

through transistor N3 keeps Vn below Vm.
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Figure 4.2: Silicon Response Modes

The two figures plot Vm for the two response modes of the relay cell: a) Burst; b) Tonic. The

initial voltage level controls the initial state of IT, and thus the response mode. For bursts, the

cell begins in a hyperpolarized state (≈ 200mV) to deinactivate IT, while for a tonic response, Vm

begins depolarized (≈ 500mV) to inactivate IT.

The subthreshold circuit consists of the capacitor Cm and a passive membrane

current (transistor N1). Absent any other input current, transistor N1 pulls Vm to-

ward the resting potential nRST. When the total input current is negative (i.e., largely

inhibitory), Vm, acting as the source terminal, drops until the current in transistor N1

matches the input. An additional leak transistor (transistor N2) provides the means

to adjust the resting potential through a separate synapse, similar to the metabotropic

synapses found in thalamic cells (Section 2.1). The leak functions like an inhibitory

input: Increasing nLK lowers the resting membrane potential from nRST. For positive

input currents, Vm becomes the drain terminal for N1. The rheobase of the cell is

actually the sum of the currents through transistors N1-3; once the input surpasses

this threshold, Vm—along with Vn—rises towards threshold and the cell spikes.

Figure 4.2 plots Vm for the silicon cell illustrating its two response modes. From
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an initial hyperpolarized membrane voltage (Figure 4.2(a)), a step increase in the

input current causes the cell to burst. Once IT inactivates, the cell stops spiking and

Vm settles at a depolarized level. If the initial membrane voltage is sufficiently high

(Figure 4.2(b)), IT begins inactivated and the same step in the input results in a tonic

response. Vm rises linearly to threshold from reset, and so the firing rate of the cell

is proportional to the magnitude of the input current.

4.1.2 Synapse Model

The synapse circuit (Figure 4.3), designed by John Arthur in Kwabena Boahen’s lab,

is a transistor representation of a simple kinetic synapse model that relates to bio-

physical mechanisms of transmitter release and binding to receptors[26]. The circuit

can be divided into two subcomponents: Figure 4.3(a) represents the transmitter

release and uptake in the synaptic cleft while Figure 4.3(b) models the dynamics of

transmitter binding.

4.1.2.1 Synaptic Cleft

Following the arrival of a presynaptic spike at an axon terminal, neurotransmitter

is released into the synaptic cleft by the fusion of transmitter-filled vesicles to the

terminal membrane. The transmitter remains in the cleft while it binds to receptors on

the postsynaptic site, only to be removed through various processes, such as reuptake

by the axon terminal or diffusion out of the cleft.

In the transistor model, a pre-synaptic spike arrives at the source of transistor P1,

dumping a quanta of charge (transmitter) onto the ‘cleft’ capacitor CT. The voltage
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Figure 4.3: Synapse Circuit

The synaptic model represents transmitter release, uptake and channel dynamics. a) This circuit

represents the neurotransmitter processes within the synaptic cleft. Transistor P1 controls the quan-

tity of transmitter released into the cleft, which integrates onto the capacitor. The total transmitter

within the cleft is represented by the current through transistor N2. Transistor N1 leaks charge

from the capacitor, representing the uptake of transmitter. Transistor N3 represents the number of

binding sites. b) Transistors P2-5 act as a low-pass filter, which models the ion channel dynamics of

opening and closing, the time constant of which is controlled by transistor P4. The source voltage

VG controls the gain on the input current Icft.
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Tq at the gate of transistor P1 controls the amount of transmitter released after each

input spike. Once transmitter enters the cleft, current (Icft) begins to pass through

the two series output nFETs (Appendix A.2), described by

Icft =
ITmtr Isat

ITmtr + Isat
. (4.1)

Isat represents the total number of receptor binding sites, and thus sets the maximum

level of Icft. ITmtr is the current within transistor N2 set by the voltage TV. In typical

mode of operation, following the arrival of a presynaptic spike, ITmtr � Isat and thus

Icft ≈ Isat. Uptake (or diffusion) of transmitter is set by the leak transistor N1, which

draws charge at a constant rate off of CT, causing ITmtr to decay exponentially towards

zero. Once ITmtr < Isat, the output Icft decays exponentially with ITmtr. Functionally,

the output of the synaptic cleft circuit is a pulse of height Isat whose width, ∆, is

controlled by the leak transistor N1.

4.1.2.2 Channel Dynamics

The receptor binding—or channel opening—is modelled using a current low-pass filter

(Figure 4.3(b)). The dynamics are described by

τ
dIsyn

dt
+ Isyn = γ Iin (4.2)
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Figure 4.4: Synapse Output

Depiction of the synapse circuit output. Black curve represents the transmitter current Icft. The

red curve shows the output current, as it rises during the pulse and afterwards decays. Time axis

is relative to the time constant of the synapse, and assumes a pulse duration of τ . The current has

been normalized to peak cleft current Isat. The gain γ is assumed to be one.

where τ = CT UT/Ilk and γ is a gain introduced through the source bias VG. Thus,

after the arrival of a presynaptic spike and release of transmitter into the cleft, the

input pulse from the cleft circuit into the low-pass results in the following synaptic

current,

Isyn (t) = γ Isat

(
1 − e−

t
τ

)
. (4.3)

After the pulse ends, assuming an ideal pulse,
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Figure 4.5: Frequency Response

Frequency response of the cell for different firing states: burst (black), tonic (blue) and two burst-

tonic (red and green). The mean response (a) and phase (b) are extracted through the Fourier

transform of the output peri-stimulus time histogram (PSTH), each trial corresponding to a single

cycle[130]. The response mode of the cell is adjusted through the mean current level of the input

sinusoid.

Isyn (t) = γ Isat

(
1 − e−

∆
τ

)
e−

t
τ

= Ipk e−
t
τ , (4.4)

where Ipk is the largest current reached at the end of the transmitter binding satura-

tion period (the pulse). The dynamics are demonstrated in Figure 4.4.
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4.2 Frequency Response

Figure 4.5 shows the frequency response of the silicon cell using input current. Real

thalamic cells express a change in their mean response from bandpass in burst mode

to all-pass in tonic mode (Figure 4.6); Figure 4.5(a) shows a similar evolution for the

silicon cell. In a pure burst mode (black), any response in this state is dependent

on IT as input current is insufficient to overcome the rheobase of the cell. Thus, the

dynamics of inactivation define the level of the response. At high frequencies, the

cell spends insufficient time at hyperpolarized levels for IT to deinactivate. At low

frequencies, the rise in Vm is too slow and IT inactivates before it can activate. The

peak response occurs at about 15Hz, approximately five times larger than for a real

cell (Figure 4.6(a)), due to the five-fold drop in the inactivation time constant for the

silicon model (Figure 3.12).

In a pure tonic mode (blue), the mean input current is raised such that the T

channel is always inactive, and so the response, which is all-pass, is dependent solely

on the input current. At low frequencies, the cell responds with multiple spikes on

top of the sinusoid peak. As the frequency increases, the number of spikes within each

cycle decreases. At frequencies greater than the mean response, the cell no longer is

capable of generating spikes at every cycle, but responds subharmonically.

In between the two extreme states (plotted in red and green), the cell transitions

between the two states, demonstrating properties from both modes. At low frequen-

cies, there is a gradual increase in the tonic response with the mean input current,

as the number of tonic spikes at the peak of the sinusoid increases. At the mid-

dle frequencies, where the T channel dynamics were predominant in the burst mode

(≈ 5 − 30Hz), the burst response diminishes with increasing mean input current as
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there is less deinactivation of IT, due to the higher membrane voltages in the troughs

of the sinusoid. The higher frequencies do not demonstrate any response, not even

a tonic response as seen at the lower frequencies. The current levels in these two

intermediate states are too low to integrate to threshold during the input peak, even

subharmonically.

Figure 4.5(b) plots the response phase. At the higher frequencies, the burst re-

sponse lags the input but quickly switches to leading the input as the frequency

decreases. The phase asymptotes to about +0.2 cycles, as the frequency decreases

further. This response is easily understood: Once the input surpasses the rheobase,

there is a latency to the IT burst, due to membrane integration and to IT activation.

For low frequencies, this latency is negligible compared to the input period, and so

as the frequency drops, the phase asymptotes to the position in the phase where

the input sinusoid overcomes the rheobase. As the frequency increases, the latency

becomes more and more significant, moving the burst towards the peak of the input

and eventually past it.

The tonic response always lags, since its dynamics are solely input dependent.

Only at low frequencies, where there is approximately equal response before and after

the input peak, does the tonic phase approach zero. However, like the burst case,

there is an initial integration that introduces a response latency. At low frequencies,

it is negligible, but as the period shortens, the latency becomes significant, causing a

greater phase lag.

The phase of the two intermediate states follow the phase of whichever state

(burst or tonic) is dominant. At the low frequencies, where the tonic response is the

strongest, the phase of both intermediate states meet the tonic phase curve. As the
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Figure 4.6: Frequency Response of Real Cells

The top row plots the frequency response of a thalamic cell in (a) burst and (b) tonic modes. Both

plots show the mean (F0, open circles) and the fundamental component (F1, filled circles) of the

response. The bottom row plots the phase for (c) burst and (d) tonic modes. From [130].
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input frequency increases, the phases diverge from the tonic curve and meet the burst

phase curve where the T channel dominates the activity.

For real cells (Figure 4.6(c,d)), the phase response in burst mode is similar:

leading—and asymptoting—in phase at low frequencies, but shifting towards a phase

lag at higher frequencies. In tonic mode, rather than starting at zero phase for low

frequencies as in my response (Figure 4.5(b)), real cells begin with a phase lead and

shift towards a phase lag as the frequency increases. The discrepancy is explained

through a slight frequency adaptation existing in real neurons, which results in a

stronger initial response—and thus a phase lead—at the low input frequencies.

4.3 Nonlinear Analysis

For nonlinear systems, methods have been developed to characterize the system op-

eration where linear techniques break down. This section first provides a background

on some of those techniques, and then applies them to my neuron circuit under con-

ditions with and without the T channel.

4.3.1 Volterra Series

A single input system can be represented mathematically by the expression

y (t) = H [ x (t) ] .
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The system operator H [ x (t) ] defines a mapping from a time-varying input x (t) to a

continuous time-varying output y (t). In this form, no information is given about the

operation itself. This is often the case: the internal mechanisms are either ignored,

due to complexity, or simply not known. The goal is to quantify what the system is

doing.

Under certain conditions2, the operation H [ . . . ] can be expanded into a power

series:

y (t) =
∞∑

n=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
hn (σ1, · · · , σn) x (t− σ1) · · ·x (t − σn) dσ1 · · ·dσn.(4.5)

This is the Volterra series, the functional analog of the Taylor series expansion of

a function. The operator hn (σ1, . . . , σn) is called the nth order Volterra kernel, and

the highest kernel order defines the order of the system.

These kernels are the system processing elements; that is, these kernels define

how the input is mapped into different elements of the output. What do these kernels

represent? Imagine a pure first order system:

y (t) =

∫ ∞

−∞
h1 (σ) x (t− σ) dσ (4.6)

This is easily recognizable as the convolution integral, or a linear system with memory.

2Time invariance and finite memory
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The output y (t) is a linear combination of the past history of x (t), defined by the

kernel h1 (σ). That is, h1 (σ) ‘weighs’ how sections of x (t) affect y (t). What about

the higher order kernels? Looking at a pure second order system:3

y (t) =

∫∫ ∞

−∞
h2 (σ1, σ2) x (t − σ1) x (t − σ2) dσ1 dσ2. (4.7)

Here, h2 (σ1, σ2) defines how two different sections of the stimulus—separated in time

by (σ2 − σ1)—interact and contribute to the output y (t). Thus, extending to higher

orders, the nth order kernel hn defines the interaction and contribution of n different

sections of the stimulus.

Given knowledge of all the system kernels, the exact output for any given stimulus

can be computed, using Equation 4.5. However, calculating the kernels is often the

crux. The difficulty in the task lies in separating the contributions from each kernel

to the output.

4.3.2 Wiener Series

The Wiener series is an attempt to address this problem. Like the Volterra series in

Equation 4.5, the Wiener series is a sum of functionals (called Wiener G-functionals)

of increasing order:

3For notational simplification, the range of integration of some integrals has been omitted. All
integrations, unless noted, are over the range (−∞,∞).
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y (t) =
∞∑

n=0

Gn [ kn, x(t) ] .

However, for gaussian white noise at the input, the G-functionals are constrained by

the condition

E [ Gn [ kn, x(t) ] Gm [ km, x(t− σ) ] ] = 0, (4.8)

for all σ, and m 6= n. E [ . . . ] is the expectation, or the average, over time. Equation

4.8 enforces orthogonality between functionals of a different order through the sta-

tistical properties of the random input. Thus, this condition defines4 the form of the

functional as

Gn [ kn, x(t) ] =

∫∫ ∞

−∞
kn (σ1, . . . , σn) x (t− σ1) . . . x (t − σn) dσ1 . . .dσn,

where kn is called the nth order Wiener kernel. Each kernel provides the best estimate

for interactions to that degree. Thus, a Wiener series provides essentially the ‘best

fit’ to nonlinearities up to the highest degree of the series, and each additional kernel

that is included in the representation improves on the accuracy of the result.

4See appendix A.3 in [112] for a quick overview of the kernel orthogonalization process.
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How are the individual kernels extracted? The input stimulus x (t) can itself be

represented as a first order functional, with a Wiener kernel of δ (σ). Thus, taking

the expectation of the output-input product:

φyx (σ) = E [ y (t)x (t − σ) ]

= E

[ (
∞∑

n=0

Gn [ kn, x(t) ]

)
x (t− σ)

]

=
∞∑

n=0

E [ Gn [ kn, x(t) ] x (t − σ) ] .

Using Equation 4.8 and the fact that x(t) ≡ G1 [ δ (t) , x(t) ], all but one of the

terms in the summation can be eliminated. Thus,

φyx (σ) = E [ G1 [ k1, x(t) ] x (t − σ) ]

= E

[ (∫ ∞

−∞
k1 (σ2) x (t− σ2) dσ2

)
x (t− σ)

]

=

∫ ∞

−∞
k1 (σ2) E [ x (t− σ2) x (t− σ) ] dσ2

=

∫ ∞

−∞
k1 (σ2) P δ (σ2 − σ) dσ2

= P k1 (σ)

∴ k1 (σ) =
1

P
φyx (σ) ,

where P is the power of the white noise input. The same procedure can be applied

for nth order kernels simply by taking the cross-correlation of the output and n input
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Figure 4.7: Neuron Kernel Model

A typical model applied in the analysis of neuron response. The system is a cascade of modules: an

initial linear kernel (L) representing linear dynamics of membrane integration; a static nonlinearity

(SNL) to capture any nonlinearities from the membrane dynamics and/or from spike generation;

and a Poisson process (Pn) that generates spikes (y(t)) from the rate function (the output of the

static nonlinearity).

functions, each shifted independently.

White noise analysis has been applied extensively over the past few decades to

many sensory systems, especially visual (for a brief review, see [115]). The advantage

of a technique like this, in addition to being simple (procedurally) to perform, is that

it bypasses many of the details of the transduction process (e.g., of light to current

for vision) and results in a set of kernels that are intuitive—at least in the first order

case—to the researcher. In addition, the extension of the single-input model above

to multiple inputs allows the vision researcher to expand the white noise stimulus

spatially to study the spatiotemporal response: the “receptive field” of the cell.

But some neurons tend to function nonlinearly, and simple linear analysis may be

insufficient to capture all the properties of the cell response. However, calculation of

higher order kernels, though in theory quite simple, is often difficult in practice given

the large amount of data required. One common solution is to cascade a linear kernel
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with a static nonlinearity (Figure 4.7). Computation of the static nonlinearity is quite

straightforward: for a given input, the output of the linear kernel (calculated using

Equation 4.8) is compared to the actual output to view where the response moves

away from linearity. This technique is useful for capturing complex nonlinearities

such as rectification or saturation.

But how are neuron responses modelled since the Wiener series requires a contin-

uous output signal while the output of a neuron is discrete spikes? The assumption in

these models, which has been observed in cortical cells[132], is that the neuron acts as

an inhomogeneous poison process. The probability of a spike is based on a continuous

rate function, which becomes the continuous output signal being modelled. Typically,

a representation of the rate function can be achieved by generating a peri-stimulus

time histogram from multiple trials of the same input. However, due to the random

nature of the spike generation, repeated trials are not necessary: The kernels can be

calculated using spike data from a (sufficiently long) single run.

A slight variation on this approach is to model a membrane variable, such as mem-

brane voltage [156] or membrane current[67], rather than the neuron rate. In these

cases, the linear kernel is calculated in a similar fashion (i.e., input-output correla-

tions), with the difference being that the output variable is directly measured (e.g.,

membrane voltage) rather than calculated by making assumptions on the properties

of spike generation.

This model has been used successfully to study temporal contrast adaptation in

both salamander ganglion[67, 13] and bipolar cells[111], to study contrast sensitivities

in ON and OFF ganglion cell pathways[156] as well as in the study of Na+ inactivation

(input variance adaptation) in the salamander retinal ganglion cell[68] and to study
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the speed of contrast adaptation[7].

4.3.3 Poisson Series

Nonlinear analysis is not limited to gaussian white noise as input, rather orthogonal-

ity of the system kernels can be achieved with any random stimulus. Using gaussian

white noise, however, has a number of advantages. First, the independent nature of

the statistics of white noise simplifies the kernel computation process (see [112] for a

detailed explanation). Most importantly, gaussian white noise is a decent representa-

tion of the stimuli for the system, as it possesses equal power at all input frequencies

and theoretically can represent all possible inputs. However, the kernels calculated

with one stimulus pattern will not be the same as the kernels calculated using an-

other, as they vary with the statistics of the probing stimulus. Thus, for systems

that use stimuli that differ dramatically—in terms of statistics—from gaussian white

noise, a more ‘natural’ stimulus—natural in terms of the system context—may be

more useful.

For isolated neural systems, away from sensory inputs, trains of action potentials

can potentially be more useful than gaussian white noise[73]. Using input spikes to

probe the response of the cell lumps the synaptic processing into the membrane and

provides a system response from input spike train to cell output.

The spike train equivalent to gaussian noise is a zero-mean input poisson spike

train xp (t) =
∑

i δ (t− ti)−λ, where λ is the poisson rate. The system representation

is similar to the Wiener series:
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y (t) = z0 +

∫
z1 (σ) xp (t− σ) dσ

+

∫∫

σ1 6=σ2

z2 (σ1, σ2) xp (t − σ1) xp (t − σ2) dσ1 dσ2 + . . . . (4.9)

The kernels are also calculated using input-output cross-corretions:

z0 = E [ y (t) ]

z1 (σ) =
1

λ
E [ y (t) xp (t− σ) ]

z2 (σ1, σ2) =
1

2

1

λ2
E [ y (t) xp (t− σ1) xp (t − σ2) ]

Neural spike trains, however, possess a positive, non-zero mean, due to the fact

that a spike train is a series of events, with zero input otherwise. Thus, to calculate

the kernels above correctly, the cross-correlations above need to be re-organized to

represent the actual spike train x (t) =
∑

i δ (t − ti) = xp (t) + λ. Thus, substituting

xp (t) = x (t) − λ:

z0 = E [ y (t) ]

z1 (σ) =
1

λ
E [ y (t)x (t− σ) ] − z0

z2 (σ1, σ2) =
1

2

(
1

λ2
E [ y (t)x (t− σ1)x (t − σ2) ]− z1 (σ1) − z1 (σ2) − z0

)

97



The kernels zn, however, are only useful for the system defined in Equation 4.9, where

the input spike train has a zero mean. It is desirable to reach a final form of

y (t) = g0 +

∫
g1 (σ) x (t− σ) dσ

+

∫∫

σ1 6=σ2

g2 (σ1, σ2) x (t− σ1) x (t− σ2) dσ1 dσ2 + . . . (4.10)

where the kernels gn are specific to the non-zero mean input. These kernels can be

calculated by substituting xp (t) = x (t)− λ into Equation 4.9 and grouping terms of

the same order together. For the first order term:

∫
z1 (σ) xp (t − σ) dσ =

∫
z1 (σ) [x (t− σ) − λ] dσ

=

∫
z1 (σ) x (t − σ) dσ − λ

∫
z1 (σ) dσ

Two terms are apparent: a linear term and a constant term. Continuing with the

second order (Note: x (t, σ1) ≡ x (t − σ1) ):

∫∫
z2 (σ1, σ2) xp (t, σ1) xp (t, σ2) dσ1dσ2 =

∫∫
z2 (σ1, σ2) x (t, σ1) x (t, σ2) dσ1dσ2

−2λ

∫ [∫
z2 (σ1, σ2) dσ2

]
x (t, σ1) dσ1

+λ2

∫∫
z2 (σ1, σ2) dσ1dσ2
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The expansion of the second order kernel leads to a constant term, a linear term

and a second order term. Thus, if we group the expressions above into their respective

orders:

g0 = z0 −λ
∫

z1 (σ1) dσ1 +λ2
∫∫

z2 (σ1, σ2) dσ1 dσ2

g1 (σ1) = z1 (σ1) −2λ
∫

z2 (σ1, σ2) dσ2

g2 (σ1, σ2) = z2 (σ1, σ2)

For each additional order included into the system, the lower order kernels are

modified by removing some of these order effects. Thus, a first order system will

best try to match the output in the linear kernel. Adding a second order kernel

then removes any second order effects that may have been captured in the first order

‘best-fit’. Each additional order modifies the response of all the lower order terms.

Kernel interpretation for a spike train stimulus, given its discrete nature, is much

more intuitive than for gaussian white noise. The linear kernel is the response of the

system to each individual input spike. The second order kernel, which is not very

intuitive in the continuous input case, demonstrates the response of the cell to two

spikes on top of the sum of the individual linear kernels (Figure 4.8). Explained

another way: the second order kernel is the response of the system to the interspike

interval of input spikes. Extending to higher orders, the nth order kernel represents

the effect on the output of the system from all combinations of n spikes.
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Figure 4.8: Second Order Kernel Interpretation

a) A sample 2nd order kernel (arbitrary output units). The interspike interval σ2 − σ1 between

pairs of input spikes defines the second order effect (shown in red). b) A sample output response to

two input spikes (red arrows). In a linear system, the output would be the sum of the response of

individual linear kernels (black solid line, shaded white). The interspike-interval defines the second

order effects, and mainfests itself as an addition to the linear response (shaded in cyan).

4.3.4 The Model

Figure 4.9 shows the abstract system model of the silicon relay neuron. The input

and the output of the system are spikes, part of the motivation for using spike trains

instead of Gaussian white noise for kernel calculation. H [ . . . ] represents the synaptic,

membrane, and T channel dynamics, the output of which feeds into an IF neuron.

The nonlinear techniques described above assume a continuous output signal.

When these techniques have been applied before on neurons (Figure 4.7), there is an

implicit assumption the neuron functions as a Poisson spike generator; that is, the

probability of a spike in a small window of time is proportional to the output rate.

This random nature of the spikes eventually—over the whole stimulus interval—
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Figure 4.9: Model of the Silicon Neural System

H [ . . . ] represents the synaptic, channel and membrane dynamics of the silicon relay neuron. The

output of this operation is a current that feeds into a simple integrate and fire (IF) neuron. The

input and outputs of the system are spike trains.

captures the relationship between the input signal and the output rate, which is then

captured by the kernels.

Unfortunately, this assumption is not valid for my system. The output of my

silicon cell is very deterministic: The same input will produce identical spike trains5.

Since a continuous rate curve cannot be modelled through the binning of the output

spikes, or through repeated trials, then a rate function must be generated from the

actual output data (Figure 4.10).

The premise of the procedure in Figure 4.10 is that the output rate is a reflection

of the input current into the IF neuron (I(t) in Figure 4.9). The output spike train

is converted into a series of pulses, with the area of each pulse equal to one. The

width of the pulse is not simply the interspike interval between output spikes, rather

it is between each response spike and the closer of: 1) previous response spike or

2) previous stimulus spike at least some minimum interval away. Using only the

5There may be some inherent noise in our silicon chip, but hardly sufficient amounts to induce
randomness
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Figure 4.10: Rate Function Generation

Converting the output spike train to a spike rate. Each qualified interspike interval is replaced with

a pulse (green) whose integral over the ISI is one. A qualified interspike interval is defined as the

time between a response spike and the closest previous spike, either a stimulus of minimum distance

(red) or another response (black). Within bins where the spike occurs, the ‘rate’ becomes a weighted

combination of the pre- and post-spike rates, with the weight dependent on the position of the spike

within the bin.

output interspike interval is not accurate, as the input current is averaged over the

whole interspike interval rather than where it actually appears. For example, the

contribution of an input spike to a single output spike, preceded by a long interspike

interval, would be averaged out over the entire interspike interval. This technique

that I adopt accounts for this situation. However, given the random nature of the

input Poisson spikes, it is necessary to include a restriction on the minimum interval

between acceptable stimulus-response pairs to prevent narrow ‘rate’ pulses with large

heights. The minimum interval is chosen as the smallest output interspike interval

within the whole data set. This is effectively saying that the largest synaptic current

due to a single spike cannot occur immediately after the spike due to a synaptic rise

time (Appendix 4.1.2.2).

Once the kernels have been calculated, the model performance can be tested by

generating a spike train and comparing it to the actual output of the silicon chip.
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The kernels have units of rate, as in firing rate of the cell, and thus the convolution of

the kernels with a sample spike train (according to Equation 4.10) produces a time-

varying rate function. To generate the output spike train, I integrate the model rate

function (recall that the rate function is a representation of the input current into

the IF neuron) until a threshold (one) is surpassed. The unit threshold corresponds

to the use of unit area pulses in the generation of the rate function from the actual

spike train (Figure 4.10). Thus, if the rate function reaches a predicted rate of over

1000Hz, then a spike is guaranteed within a bin for binsizes greater than 1ms.

4.3.5 Results

The synaptic parameters for the excitatory inputs were set to values based on biologi-

cal observations. The time constant matches observed decay time constants of AMPA

receptors, approximately 5ms for cortical synapses[49, 22, 25]. Assuming 100% over-

lap of retinal and geniculate receptive fields, the efficacy of retinogeniculate synapses

is approximately 30%[145], where efficacy represents the percentage of retinal spikes

that cause a geniculate spike.

The data in this chapter, so far, has been presented in real-time; that is, the

data is presented as it has been recorded, with the time constants that are faster

than biology (see Chapter 3). For the remainder of this chapter and the following

chapters, I will scale all my results with a hypertime factor of 10, so that the results

are plotted on a timescale similar to biology. Note that I am using a different silicon

chip—with different transistor and capacitor sizes—than from the previous chapter,

where the hypertime factor was only 5.
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Figure 4.11: Poisson Kernels

Poisson Kernels for 10Hz input Poisson stimulus. The top and bottom rows show the tonic and

burst kernels, respectively, for the TC cell. The left column shows K1 for 1st (black), 2nd (red) and

3rd (blue) order models. The inset in (d) shows the post-peak negative trough. The middle and

right columns show K2 of a third order model, in the form of density and 3D plots respectively. In

the tonic density plot (b), the grayscale value (0–1) is linear from 0–200Hz, and values outside this

range are cut-off. In the burst density plot, the same grayscale range maps to -200–200Hz. Note the

different axes ranges between the tonic and burst kernels. The units on the z-axis of the 3D plots

are rate (Hz).
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Figure 4.11 shows the first (K1) and second (K2) order kernels of both burst and

tonic modes for a 10Hz Poisson stimulus. In tonic mode (Figure 4.11(a-c)), the only

dynamics present in the system H [ . . . ] are synaptic and membrane. This is easily

seen in K1 of a first order model (black curve in Figure 4.11(a)): the average post-

spike response is a rise to a peak followed by a decay to zero, mimicking synaptic

dynamics (Figure 4.4(a)).

When the order of the model is increased to two or three, K1 disappears:6 The

output becomes much more dependent on the interaction between multiple input

spikes. This is not surprising, since I chose the synaptic weights to necessitate multiple

input spikes for output activity. K2, then, reflects this interaction (Figure 4.11(b,c)).

For two, almost synchronous, input spikes, there exists a tall peak, indicating the

occurrence of two output spikes. As the interspike interval of the inputs grows,

the peak disappears as the cell now responds with one spike. Eventually, as the

interspike interval becomes too large (> 15ms apart), there is no longer any significant

interaction between the input pair.

Lowering the resting potential of the membrane voltage increases the likelihood

of IT deinactivation, resulting in substantial changes in the kernels (Figure 4.11(d-

f)). K1 shows two dramatic changes: a much taller, tighter peak followed by a

negative trough. The larger peak is the result of the burst nature of the cell: the

firing rate during bursts is substantially higher than during regular tonic mode. The

negative trough represents the channel inactivation and the time necessary for IT to

6It is not clear why K1, for higher order models, shows a negative bump followed by a positive
one. I suspect the reason lies within the generation of the higher order kernels, where the interspike
interval is always rounded down to the start of a bin. This causes a slight phase lead in K2 of a higher
order model relative to K1 of a first order model. Thus, when generating K1 for the higher order
model (Appendix 4.3.3), this phase difference would show up as an initial negative bump followed
by a positive one. Decreasing the bin size should reduce this effect, which appeared to be the case
(data not shown).
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deinactivate. After a burst, it is very unlikely a burst will follow within approximately

100ms.

Increasing the model order does not eliminate K1, as in the tonic case; rather, there

is an enhancement of the burst peak. K2, like its tonic counterpart, also demonstrates

a peak at small ISIs, but in this mode it likely represents both synaptic and T channel

effects. However, as the ISI increases, the peak quickly changes into a deep trough,

extending out to approximately 100ms. The width of this trough, and position in

time, match the peak in K1.

Thus, the kernels interact in the following manner: The response to each input

spike (K1) is, by default, a burst, but the strength of the burst is adjusted by K2,

which captures the dynamics of channel inactivation. This helps explain the change

in the peak of K1 as the model order increases. For a first order model, K1, being

the average response after each spike, includes both burst and non-burst events. In

the higher order models, the non-burst events are captured through the modulation

of K1 by the higher order kernels.

How do the kernels change with the input Poisson rate? The tonic kernels for an

input rate of 20Hz (Figure 4.12(a-c)) do not show a substantial change from Figure

4.11(a-c). K1 retains the same shape, only scaled accordingly to account for the

higher output rate. For K2, the most significant changes occur at higher ISIs where,

in Figure 4.11(c), the response was negligible. These minor changes are most likely

higher order system kernels polluting the response, due to the increased likelihood in

the input of multiple, short ISIs. However, the fact that K2 does not show dramatic

changes is an indication that the second order model captures well the tonic response.

106



Tonic

a)
20 40 60 80 100

Time HmsL

-20
0

20
40
60
80

100
120

R
a
te
Hs
-

1
L

b)
0 10 20 30 40 50

ISI HmsL
0

10

20

30

40

50

T
im

e
Hm

sL

c)

0.
10.

20.
30.

40.

50.

ISI HmsL

0.
10.

20.
30.

40.

50.

Time HmsL

0

200

400

0.
10.

20.
30.

40.
ISI Hms

Burst

d)
10 20 30 40 50 60 70

Time HmsL

0

200

400

600

800

R
a
te
Hs
-

1
L

0 50 100

-10

0

-20

e)
0 30 60 90 120 150

ISI HmsL
0

20

40

60

80

100
T

im
e
Hm

sL

f)

30.
60.

90.
120.

150.

ISI HmsL
0.

20.
40.

60.
80.

100.

Time HmsL-400

0

400

30.
60.

90.
120.

ISI HmsL

Figure 4.12: 20Hz Poisson Kernels

Similar kernels as in Figure 4.11, except using a stimulus rate of 20Hz.

In burst mode (Figure 4.12(d-f)), the higher input rate causes a decrease in the

kernel properties associated with IT: namely, a decrease in the peak in K1 and the

troughs in both K1 and K2. By increasing the input frequency, the cell’s membrane

voltage is more often depolarized than with the 10Hz stimulus, thus decreasing the

occurrence of bursts in the output response.

As discussed in Section 4.3.4, the accuracy of the system model can be tested

by generating a spike train using the kernels and comparing it to the actual output

from the silicon chip. Figure 4.13 shows the comparison of the predicted spike trains
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Figure 4.13: Model Performance

a,b) Percentage of actual spikes accurately predicted for a silicon cell in (a) tonic and (b) burst

mode. First, second, and third order models (black, red and blue respectively) are plotted versus

window size. c,d) Efficiency of the models for (c) tonic and (d) burst modes. Efficiency takes into

account over-predicting (i.e., including too many prediction spikes) that may distort the results in

(a) and (b). e,f) Sample raster plots for stimulus, actual response and model response of all three

orders for the cell in (e) tonic and (f) burst mode. Spike trains were compared using a distance

metric based on spike times, defined in [147].
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to the real data for both tonic and burst modes. The top row in Figure 4.13 plots

the percentage of correct spikes in the predicted train (i.e., number of correct model

spikes divided by the number of actual output spikes) versus a window size (i.e,

maximum distance for being considered correct)7. In the tonic case, there is an

obvious improvement in the model output from first to second (approximately 60%

versus 83% at 10ms), but hardly any improvement from second to third. This suggests

again that the second order kernel captures much of the synaptic dynamics of the

system. In the burst mode, obviously due to the nonlinearities introduced by IT, each

increase in model order increased the output accuracy, by roughly 20% per order (at

10ms).

The second row plots the efficiency of each model; that is, the measure includes

a penalty for excess spikes, by dividing the number of correct spikes by the sum of

the number of actual output spikes and the number of spike ‘deletions’ (i.e., excess

spikes). Using this measure, it is clear that, in tonic mode, the first order model

only performed as well as it did simply by over-predicting the number of output

spikes, as is seen in Figure 4.13(e). The higher order models do not show significant

change while shifting the measure from percentage correct to efficiency, suggesting

they were capable of capturing the temporal dynamics of the synaptic response. In

the burst case, all three orders slightly overestimated the output spike train; however,

the overpredictions decreased with increasing model order.

7The window size corresponds to the cost of shifting a spike in the distance metric of [147].
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4.4 Discussion

This chapter focusses on my relay neuron circuit, consisting of the circuits for the T

channel, cell and a single excitatory synapse. The goal was to study the changes in

the response of the isolated relay neuron caused by IT, and compare them to results

from biology. For that, I used two different techniques.

The first technique involved calculating the frequency response to input current

sinusoids. The mean current level of the input set the degree of burstiness of the

response by shifting the resting potential of the cell. Four response modes were mea-

sured: a pure burst mode, a pure tonic mode, and two hybrid burst-tonic modes.

During pure burst mode, the cell exhibited a bandpass response defined by the dy-

namics of the inactivation variable. For high frequencies, the membrane voltage was

not hyperpolarized long enough to deinactivate IT, while at low frequencies IT inac-

tivated before it could activate. The peak response occurred at approximately 15Hz.

The tonic mode, by contrast, demonstrated an all-pass response, while the two hybrid

responses consisted of components of the two extreme modes: a (smaller) peak from

the burst response and low frequency components from the tonic response.

Similar experiments have been performed on real cells using both visual[100] and

current[130] stimuli. The peak in the burst bandpass response, in both of these ex-

periments, occurred at approximately 3Hz. This factor of five difference between the

silicon bandpass response and the real neuron response is due to the silicon inacti-

vation time constant that is five times smaller (Figure 3.12). Although the results

from my chip do not demonstrate anything new, they do show that my neuron model

exhibits characteristics similar to real cells.
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For the second analysis technique, I applied an adaptation of the Wiener Series to

calculate a set of kernels using input spikes, as opposed to white noise. I quantified

the ability of these kernels to capture the system response by generating a spike

train—using the kernels—and comparing it to the actual output from the silicon

chip.

As expected, the burst mode is more nonlinear than the tonic mode, evidenced by

the fact that a second order model captured the tonic response better than a third

order model captured the burst response (approximately 83% vs. 74% efficiency at

10ms resolution, respectively). Increasing the tonic model to third order did little

to improve the results of the model, suggesting the second order kernel was able to

capture most of the synaptic and membrane dynamics within the cell. Not so with

the burst model, which showed significant improvements from first to second to third

order (approximately 38%, 59% and 74% at 10ms respectively) in regenerating the

output spike train.

Any inability to fully recreate the output may have a couple of sources. First,

the technique of converting the output spike train to a rate function may be inad-

equate due to its imprecise and discontinuous (i.e., pulse) nature. The accuracy of

my conversion relies on the ability to properly match the contribution of the input

spikes to each output. Without any knowledge of the input dynamics, this would be

difficult. But kernel analysis is typically used for cases where the internal dynamics

are unknown, making my approach for generating the rate function impractical. A

couple other methods were considered: one used only the output spikes to generate

an output rate function (as opposed to both output and input spikes in my analysis)

and the other assumed the neuron functioned as a Poisson spike generator. The prob-

lems with both of these were already addressed previously in Section 4.3.4. The first
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approach ignores the contribution of the input spike to the output rate, since the rate

function is only computed using output spikes. Kernels calculated using the second

approach demonstrate sharp peaks where the spikes occur, even multiple peaks for a

burst, rather than a continuous function. This is due to the deterministic nature of

my neuron, as opposed to the random nature of the Poisson spike generator.

The second source of error may be due to insufficient model order. In the burst case

this is very possible, given the improvement in the model’s efficiency with increasing

order. Generating kernels higher than third order, however, becomes difficult due to

the amount of experimental data that is needed.

When modelling a system using an order that is too low, the higher order kernels

not represented will ‘pollute’ the lower order kernels. This was clear through the

near-disappearance of K1 in tonic mode as the model order was increased from one.

However, the ‘pollution’ depends on the presence of the higher order response in the

actual output. A problem with these nonlinear techniques is their dependence on the

statistics of the probing stimulus. If the order of the model matches the order of the

system, then the processing can be captured precisely in these kernels (assuming an

accurate continuous output function). However, the generated kernels would only be

valid for that specific input, since the operation of the system is computed using the

components of the output. For example, from the burst results in Figure 4.11 and

Figure 4.12, it is clear that as the input rate increased, the effects of the bursting

decreased due to the increased likelihood of the membrane voltage being depolarized.

Had I used an input rate sufficiently high, so that the membrane voltage remained

constantly depolarized, the burst kernels would be very close to the tonic kernels;

any difference would likely be due to the increased leak current to hyperpolarize

the resting membrane potential. There would be no indication of the effects of the
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bursting, since no bursts occurred in the output due to the inactivation of IT.

Since the statistics of the input stimulus provide the context for the kernels, it

would be easy to conclude that it is important to use the proper stimulus in probing

the system response. However, this would complicate the calculations tremendously,

as it is the statistics of the Poisson spike train that make the kernel computation

very simple procedurally. If one chooses to use Poisson spike trains, then care must

be taken in the interpretation of the results. I chose two input frequencies, 10Hz

and 20Hz, such that the mean interspike interval—100ms and 50ms respectively—

occurred outside and within the deinactivation range for IT, to demonstrate the burst

nature and the changes in the burst response due to the higher input. However, had

I no knowledge of internal dynamics, I would have had to use a series of input rates

to comprehend the full range of the system function.

A direct comparison to biological results is not possible as the exact technique

has not been applied to geniculate cells. However, a comparable calculation to K1 of

a first order model is the spike-triggered average. The spike-triggered average (STA)

represents the average input stimulus before each output spike; as such, it often

involves a random continuous signal input (as opposed to spikes). Typically, in the

visual system, the random stimulus is visual white noise. In my computations, K1 is

the average output after each input spike. The similarity in both rests within their

computation: Both involve the correlation of the output and the input[19, 36], though

normalized by opposing spike rates (i.e., either the mean of the input rate (for K1) or

the output rate (for STA)). Most importantly, however, is the fact that the firing rate

of the input ganglion cell varies with the light intensity; as such, the kernels should

qualitatively be similar, though reversed in time. Note that the vertical scales may

be different, since the STA is measured in input units (e.g., amps for current stimuli)
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Figure 4.14: Spike-Triggered Average

Spike-triggered averages for the burst and tonic spikes of a relay neuron from an adult cat. The

input stimulus was visual white noise. From [78].

while K1 in my model is in units of the output (rate).

Figure 4.14 shows the STAs for burst and for tonic spikes from a cell in the

cat LGN. Both STAs are similar to my kernels: a single peak in the tonic mode

and a biphasic curve—a sharp peak followed by a negative trough approximately

100ms in length—in the burst mode. The trough in both instances represents the

deinactivation of IT necessary for the presence of the burst. However, the location of

the peaks in the STA occur farther away from the temporal origin than in my kernels

(approximately 30ms versus < 10ms respectively). This is simply the result of the

stimulus: the delays in the STAs are due to the retinal processing between the visual

stimulus and the geniculate layer, while my inputs are directly into the cell. Another
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difference involves the relative location of the peaks: the burst peak in the STA leads

the tonic peak by approximately 5-10ms, while in my kernels the peaks occur roughly

at the same location. This is likely due to my artificial output rate function, which

represents the input current into an IF neuron (Figure 4.9). The STA focusses on

the output spike itself, while my model focusses on the input that integrates to the

output spike. While this difference would be negligible in the burst case (given the

high-frequency of the burst response), it would be significant for the lower frequency

tonic mode, introducing a temporal shift closer to the origin for the tonic kernel.

One other difference between my results and the STAs involve the experimental

procedure. For the STAs, the output spike train is divided into burst events (i.e., first

spike in a burst) and tonic spikes before computing the average. In my experiment,

I biased the response mode to either tonic or burst, and then used all events for

the calculation of the kernels. In the tonic case, it is unlikely any bursts appeared;

in the burst mode, there is a possibility that some of the spikes are actually tonic

events, present due to inactivation of IT. However, I do not consider this to be a

significant factor in the calculations given the huge difference between the computed

kernels. Other studies have computed the impulse response for geniculate cells that

demonstrate both a peak and an inhibitory dip[145], but in those situations there

was no separation of burst and tonic events, and so it is possible the kernel contained

components of both modes.

What do these results say about the processing in the single cell? Unfortunately,

not much that was not already known. Both the frequency response results and the

kernels demonstrate that the response of the cell can be dramatically adjusted by

shifting the resting membrane potential. Some have suggested that the LGN acts as

a ‘tunable filter’[100, 130, 139], where the resting potential is modulated to achieve
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the ‘desired’ processing. What controls the resting potential? Both cholinergic inputs

from the parabrachial region and glutamatergic inputs from the cortex (which activate

metabotropic receptors) can shift the resting membrane voltage through changes in a

K+ membrane leak, thus switching the cell between burst and tonic modes[84, 95, 39].

However, as discussed in Chapter 2, a problem with these theories is that, both

the cholinergic inputs and the slow cortical glutamatergic inputs work at long time

scales. Only a few cortical spikes are necessary to shift the membrane potential

for a few seconds, and a longer spike train depolarizes the cell upwards of 20s[95].

However, fixation periods between saccades during visual scene perception, whether

on dynamic[75] or static scenes[48], are much shorter (approximately 300ms), and so

any long lasting depolarization of cells would prevent those cells from participating

in subsequent post-saccadic scene analysis. It seems more likely that the cholinergic

and the slow cortical glutamatergic inputs help signify a shift in the behavioral state

of the system from sleep to awake[92, 95].

It is clear that the activation of the T channel has a dramatic effect on the response

of the cell. The burst response is much stronger than the tonic response to visual

stimuli, providing a more salient signal to cortical cells. But with the relay cells

depolarized, this signal requires enough inhibition to change the kernel response from

the tonic kernel to the burst kernel. This, then, creates a dependence of the burst on

the presence of inhibitory action from the reticular nucleus, which is the focus of the

next chapter.
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Chapter 5

TC-RE Pair

In the previous chapter, I studied the influence of IT on the response properties of

a silicon relay neuron. The TC cell, however, does not work in isolation, but is

one component in a large interconnected network, consisting of cells from the lateral

geniculate nucleus and the perigeniculate/reticular nucleus.

Reticular (RE) cells are GABAergic and form inhibitory synapses within the genic-

ulate layer. For TC cells—depolarized in the awake mammal—this feedback inhibition

could be an important factor in the presence of bursts. Since both areas are retino-

topically organized, each spatial location is represented by a set of cells in both layers.

Therefore, in this chapter, I will use a pair of cells, one from each layer, to investigate

how their interactions may lead to bursting and how cortical inputs influence the

dynamics.

After a brief description of the setup, I begin by probing the dynamics of the

cell pair to retinal Poisson spike trains, demonstrating the presence of burst events.
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Retina Cortex

Figure 5.1: TC-RE Pair

Synaptic setup within the TC-RE system. Triangles represent excitatory synapses; circles, inhibitory.

See text for details.

Following that, I spend a significant portion of the chapter designing a model that

captures the cells’ outputs, in response to both retinal and cortical afferents. I use

the model to help shed some light on the role of the T channel in processing input

stimuli. In the Discussion, I discuss the results in the context of experiments on real

cells.

5.1 System Setup

Figure 5.1 shows the setup for the two cell mini-system, the organization of which

has been discussed in Chapter 2. The TC and RE cells form an excitatory-inhibitory

closed loop: the TC cell excites the reticular cell which, in turn, sends inhibition back

to the thalamus[66]. Reticular cells also send inhibition to other reticular cells [2, 5],

here represented as an inhibitory autapse. There are two inputs into the system:

retinal axons, which drive only the TC cells, and cortical axons, which excite both

cell types.
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Figure 5.2: System Circuit

Circuit block diagram of the TC-RE system. This figure shows a more detailed diagram of Figure

5.1. The blocks S1-4 represent the synaptic circuit from Figure 4.3. Green lines represent axons,

either afferent (retinal or corticothalamic) or internal (thalamic or reticular). Blues lines represent

excitatory input into either cell, while red represents inhibitory input. Transistors P1-3 and N1-2

are part of the diffusor circuit used for network connectivity to the different layers (see Chapter

6). Nodes nR, nX, and nT are the network nodes within the diffusors. The transistor types in the

inhibitory synaptic circuit (S4) are reversed; that is, all PMOS transistors are NMOS and vice versa.
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Figure 5.2 provides a more detailed circuit diagram of the synaptic connections

within the system. Blocks S1-4 represent the synapse circuit presented in Section

4.1.2, with separate voltage biases defining the amplitude and time constant of the

output current for each synapse. For the retinal synaptic parameters, I keep the

values used in the previous chapter (see Section 4.3.5). For the remaining excitatory

time constants, I use the same voltage levels since all the excitation in my circuit

represents fast, ionotropic receptors.

The outputs of the cortical and the thalamoreticular synapses (S2 and S3 in

Figure 5.2) both pass through an additional transistor (transistors P1-P3) before

entering either cell. These transistors are part of the diffusor circuit used for network

connectivity (see Chapter 6), and, here, limit (saturate) the synaptic input. Thalamic

inputs demonstrate a saturation in their excitation of reticular cells[69], and so bias

wT sets the limit on the maximum input current. The limit on cortical synaptic inputs

reflect the fact that cortical inputs are weaker than retinal ones. Inputs into thalamic

nuclei are often classified as either drivers or modulators[122, 123]. Drivers define

the response of thalamic cells: Retinal afferents are responsible for the receptive field

of geniculate cells. Modulators influence the response of thalamic cells; for example,

corticogeniculate feedback enhances the inhibitory surround of geniculate cells[17].

Thus, I set the voltage bias wX sufficiently weak so as to prevent spiking through the

cortical inputs over the range of input cortical frequencies (0-40Hz).

Inhibition from the reticular cells to thalamic cells is mediated through both

GABAA[141, 148] and GABAB[140] receptors. However, my synaptic circuit pos-

sesses only one inhibitory synapse. To set the inhibitory time constant, I began

initially at a voltage bias equal to the fast, ionotropic excitatory receptors for a time

constant approximately 5ms, representing fast GABAA inhibition[104, 22, 25]. In
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Figure 5.3: 1st Order Kernels

K1 of a first order model for retinal Poisson spike trains of a) 1Hz and b) 40Hz.

this state, the duration of inhibition from a strong reticular output was insufficient

to deinactivate IT. Thus, I slowly increased the time constant (and magnitude) of

inhibition until I saw an IT response. The final time constant for inhibition ended up

at approximately twice the magnitude of the fast GABAA synapses, representing a

mixture of GABAA and GABAB.

The resting potential of both the relay and reticular cells are set sufficiently

high (depolarized) to inactivate IT—in accordance to observed results for an awake

animal[52, 134]—but sufficiently low to not generate a rebound burst absent an in-

put. As in the kernel computations in the previous chapter, the hypertime factor is

approximately 10.

5.2 Probing the Response

I begin by probing the response of the system to Poisson spikes trains at the retinal

inputs. Figure 5.3(a) shows the first order kernel for the TC cell to a 1Hz Poisson
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spike train. The kernel is similar in shape to the first order kernel of an isolated

relay neuron in tonic mode (Figure 4.11(a)): At this input frequency, the response is

dominated by retinal synaptic dynamics.

If I increase the input frequency to 40Hz (Figure 5.3(b)), the kernel displays some

interesting new features. Rather than a simple scaling of the kernel (as in the previous

chapter), the kernel develops a negative component followed by an additional positive

bump. The negative dip cannot exist because of post-burst IT inactivation, as in the

burst mode kernels from the previous chapter (Figure 4.11(d)), because the ability

of the cell to respond is not dependent on IT. The post-peak dip must be the result

of the inhibitory feedback from the RE cell, being the only other negative element in

the system.

For the post-inhibitory bump, synaptic dynamics are ruled out due to its temporal

location, (i.e., the synaptic input would have decayed by this point). It also cannot

be caused by additional retinal afferents, as that would imply a correlation within the

retinal spike train, not possible with Poisson spikes. Therefore, the only remaining

source of excitation in the system is IT.

Figure 5.4 plots both spike data sets from Figure 5.3 as joint-interval histograms.

For an input of 1Hz, the data is centered about a mean interspike interval of about

100-200s. The output rate of the cell is so low because of the need for multiple

input spikes at the synapse, and the probability of two spikes occurring within a few

milliseconds at 1Hz is quite small.

At 40Hz, the histogram undergoes dramatic changes in its structure. Most of the

response has fallen into three clusters, along the red lines in Figure 5.4(b). The lines
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Figure 5.4: Joint Interval Histograms

The data from Figure 5.3 is plotted in a Joint-Interval Histogram for a) 1Hz input and b) 40Hz

input. Each point represents a spike, with its coordinates defined by its pre- and post-interspike

intervals. Note the unit change on the axes between plots.

represent (approximately) the minimum interspike interval (ISI) caused by synaptic

input. All the points that fall on the inside of these lines (i.e., closer to the axes)

represent the additional excitation by IT, and thus represent spikes within a burst.

The points at the bottom right of Figure 5.4(b) are the initial spikes within a burst:

The long, pre-spike ISI relates to the deinactivation of IT while the short, post-spike

ISI relates to IT activation. The cluster at the bottom left represents the spikes within

the burst, each spike falling between successive short ISIs. The spikes at the top left

are the last spikes in a burst, the long interspike interval following the spike the result

of the return inhibition from the RE cell.

To characterize the output response of the TC cell, I define a criteria for classifying

burst and non-burst events, based on the data in Figure 5.4 and similar to the criteria

123



a)
20 40 60 80 100

ΛG Hs-1L

5
10
15
20
25

R
at

e
Hs-

1 L

TC Hall spikesL

b)
20 40 60 80 100

ΛG Hs-1L

10

20

30

40

R
at

e
Hs-

1 L

RE Hall spikesL

c)
20 40 60 80 100

ΛG Hs-1L

1

2

3

4

R
at

e
Hs-

1 L

TC Burst Events

d)
20 40 60 80 100

ΛG Hs-1L

2
4
6
8

10
12
14

R
at

e
Hs-

1 L

TC Tonic spikes

Figure 5.5: System Response to Retinal Input

These plots show the frequency of events for the TC-RE pair in response to retinal input.

in [83]. The initial spike in a burst is distinguished by its surrounding interspike

intervals: a long period of quiescence (in this case, > 100ms) followed by a very

short interspike interval (< 3ms). Once the start of the burst has been identified,

all successive spikes within 10ms of each other are considered part of the burst, to

account for expanding ISIs as IT inactivates. All remaining spikes not classified as

part of a burst are then considered tonic spikes.

Figure 5.5 plots the output frequency versus input Poisson rate of the TC and

RE cells, as well as the division of the TC data into burst and tonic modes, using

this criteria. At low input rates, the relay neuron responds only in tonic mode.

Bursts cannot exist due to lack of inhibition from the RE cell. As the input rate

rises, eventually the retinal input is able to propagate through the geniculate filter
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and the reticular cell begins to fire. This increases the likelihood of the occurrence

of sufficient inhibition to deinactivate IT, and soon, around an input rate of 20Hz,

bursts begin to emerge. After this point, burst frequency increases with the input

rate, until eventually the bursts begin to dominate the output spike train, causing a

decline in the tonic activity.

5.3 Modelling the Retinal Input Response

To model the activity of both neurons, I begin by defining the output state of the TC

cell—at any given time—as being either burst or tonic. This division makes sense

since the input/output relationship is dramatically different between the two modes.

In tonic mode, the output rate of the cell is strongly dependent on the input rate. In

burst mode, however, the burst response is very consistent and less dependent on the

input: An extended period of inhibition deinactivates IT and a second input triggers

a burst. RE spikes are classified according to the TC cell state: Spikes caused by

TC cell bursts are defined as RE bursts while spikes caused by tonic TC inputs are

defined as RE tonic spikes.

Thus, I define the activity of each of the cells as follows:

fTC = fTs|nb (λG) (1 − Pb) + NTb fb|b Pb

fRE = fRs|nb

(
fTs|nb

)
(1 − Pb) + NRb fb|b Pb,
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where fTs|nb and fRs|nb are the responses of the relay and reticular cells (respectively) in

tonic mode (shortened to fTs and fRs from hereon in), λG is the retinal (Poisson) input

rate, Pb is the probability of a burst, NTb is the average number of TC cell spikes in

a burst, NRb is the average number of RE spikes in response to a TC burst and fb|b is

the frequency of burst events given the cell is in burst mode. Since the structure of

the bursts does not change, fb|b = 1/∆b (λG), where ∆b (λG) is the interburst interval

(IBI): the pre-burst inhibition plus the burst itself. Thus, fb = Pb/∆b (λG), and

fTC = fTs (λ) (1 − Pb) + NTb fb (5.1)

fRE = fRs (λ) (1 − Pb) + NRb fb. (5.2)

5.3.1 Burst Mode

Figure 5.6(a) plots the first order kernel for burst events for the 40Hz input. The

initial peak represents bursts that occurred immediately after the input spike; that

is, the input spike triggered the burst following IT deinactivation. The negative section

after this peak represents a period of time where bursts are less likely to occur, due

to the fact that IT is incapable of sufficiently deinactivating in the time after the

arrival of the input (which depolarizes the cell). The smaller peak represents bursts

occurring subsequent to a deinactivation period following the input spike. In other

words, the input spike belongs to a sufficiently strong retinal input that propagates

to the reticular cell and generates enough feedback inhibition to deinactivate IT. This

suggests there are two components to a burst response: a primer and a trigger.
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Figure 5.6: Burst Response

a) First order kernel for burst events. The first peak represents bursts that are triggered immediately

by the input spike at t=0ms. The negative portion following the peak represents periods where

bursts are unlikely to occur, due to insufficient deinactivation from the time of the input spike. The

smaller, wider, bump represents bursts that occur after IT deinactivation, suggesting the input spike

belongs to retinal input that causes enough RE inhibition within the TC cell to deinactivate IT.

b) Average response (over 20 trials) versus retinal trigger position after an initial input (at t=0ms)

that deinactivates IT. If the spike arrives too early, the excitation is lost in the reticular inhibition.

If the spike arrives too late, then IT will have inactivated.

Once IT has been deinactivated, the timing of the trigger is very important, as

demonstrated in Figure 5.6(b). At t=0ms, a strong retinal input deinactivates IT

via RE inhibition. The cell responds only when the trigger—a single spike—arrives

within a small window after IT has deinactivated. If the trigger arrives too soon, the

spike is lost in the feedback inhibition; too late, and IT inactivates.

I define the probability of a burst event as dependent on the mutual occurrence

of two independent events:
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Pb = PR PT. (5.3)

where PR is the probability of inhibition that sufficiently deinactivates IT and PT is

the probability of a retinal input arriving within the trigger window. Even though

the inhibition derives from reticular axons, it is the activity in the thalamic layer that

drives the reticular cells, and so I define PR in terms of the probability of sufficient

activity in the TC cell layer. This level of activity occurs in two forms: either as a TC

cell burst or—absent a burst—a high-frequency response to a strong retinal input.

Equation 5.3 becomes

Pb = ( Pb + PP (1 − Pb) ) PT,

where PP is the probability of sufficient TC cell activity by retinal inputs. Rearrang-

ing,

Pb =
PP PT

1 − (1 − PP) PT
. (5.4)

PT, as defined above, is the probability of a retinal input arriving within the

trigger window. I also define PP in a similar manner; that is, as a probability based

on the arrival of the sufficient retinal inputs within a defined window. Thus,
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PP = P [ Nr,∆r, λG ]

PT = P [ Ng,∆g, λG ]

where P [N,∆, λ ] is the probability of seeing N or more spikes in a time window ∆

with a Poisson spike train of rate λ. Mathematically,

P [ N,∆, λ ] = 1 −
N−1∑

i=0

(λ∆)i

i!
e−λ∆. (5.5)

The time window ∆ captures the temporal dynamics involved for the event: for PP,

∆ depends on the synaptic time constant, while for PT, ∆ depends on the dynamics of

the T channel (as seen in Figure 5.6(b)). N represents (approximately) the minimum

number of retinal spikes necessary for the event to occur. This value defines the

shape of the probability curve, or how ‘sharp’ the dependence of the probability is

on the input frequency. For N = 1, the probability rises as (1 − exp [−λ∆]), as the

exponential interspike interval distribution means—even at low frequencies—there is

a probability of seeing an ISI less than ∆. As N increases, the variability between

ISIs is averaged out among the spikes. As N → ∞, P [N,∆, λ ] becomes a Heaviside

function at the input frequency λ = 1/∆.

This representation is only an approximation of the dynamics. A more accurate

description would involve a separate ∆ for each integer number of input spikes, since

more spikes would increase the duration of excitation from the synapse and result in

a larger ‘window’. However, for the sake of simplicity, I define the probability using
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Figure 5.7: Modelling Burst Frequency

a) Change in the interburst interval versus input frequency (fit parameters). b) Data fit to burst

frequency. The fit parameters are Nr = 3.51, ∆r = 55.7ms, Ng = 1 and ∆g = 13.4ms.

only a single ∆.

Defining PP in terms of the retinal input rate λG may be confusing since it is the

reticular spikes that cause inhibition in the TC cell. However, the output of the RE

cell is not Poisson, and as such the calculation of probabilities using reticular activity

is much more difficult. Instead, I use the randomness of the retinal inputs to simplify

the calculation since it is the retinal inputs—via the TC cell—that drive the reticular

activity.

Using Equation 5.4, the equation for the burst rate is

fb =
1

∆b (λG)

P [Nr,∆r, λG ] P [Ng,∆g, λG ]

1 − (1 − P [Nr,∆r, λG ]) P [ Ng,∆g, λG ]
.

As mentioned previously, ∆b (λG) is the interburst interval (IBI), which includes the

deinactivation period and the length, in time, of the burst. Assuming that the shape
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of the inhibition remains consistent within a burst event, the change in average input

current—due to the input rate (see Section 5.3.2 below)—affects the point at which

the cell rebounds from its hyperpolarized level. Figure 5.7(a) plots data showing

interburst interval versus input frequency. At higher input rates, the IBI changes

linearly with λG. At lower frequencies, the IBI remains constant because of the

inactivation dynamics of IT.

Once I have calculated the dependence of the interburst interval on the input, I fit

Equation 5.4 to the data (Figure 5.7(b)). What do the fit values represent? Loosely

translated, the probability of a burst is dependent on the occurrence of three or more

retinal spikes (Nr = 3) within a window of 55ms, followed by one or more spikes

(Ng = 1) within a trigger window of 13ms. Recalling that it requires two close spikes

to define a burst, this trigger window width is comparable to the results in Figure

5.6(b).

5.3.2 Tonic Mode

The next step is to calculate the tonic response function of both the TC and RE cells

(fTs (λ) and fRs (λ) respectively). The data in Figure 5.5(d) does not represent fTs,

rather it represents the mean response for the whole stimulus period, as opposed to

the mean response for the total time in the tonic state. However, since I have already

solved for Pb, I can use the tonic term in Equation 5.1 to explicitly calculate the data

for fTs (λ). Through a similar procedure for RE cell, I can calculate fRs (λ), and then

fRs (fTs). The tonic data for both cells are plotted in Figure 5.8.

To represent the synaptic dynamics, I need to calculate the average output synap-
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tic current for a given Poisson input rate. I make two assumptions in this procedure:

1) The output of the synaptic cleft circuit (Section 4.1.2.1) is an ideal pulse; 2) The

width of that ideal pulse is less than most interspike intervals. With these assump-

tions, synaptic dynamics are linear (Equation 4.2), and I can calculate the average

output current by determining the total output charge per input spike. I begin by

integrating the output current during and after the pulse:

Qspk = Q∆ + QP

=

∫ ∆

s=0

I∆ (s) ds +

∫ ∞

s=∆

IP (s) ds

=

∫ ∆

s=0

P
(
1 − exp

[
− s

τ

])
ds +

∫ ∞

s=∆

P

(
1 − exp

[
−∆

τ

])
exp

[
−s − ∆

τ

]
ds

= P

(
∆ − τ

(
1 − exp

[
−∆

τ

])
+ τ

(
1 − exp

[
−∆

τ

]))

= P ∆

Therefore, for a Poisson spike train of rate λ,

Îsyn = ∆P λ (5.6)

Thus, the average output current of the synapse is proportional to the input

Poisson rate. I use this equation to represent the retinal synapse, since the output

feeds directly into the membrane of the neuron (Figure 5.2). But the output of the

thalamoreticular synapse and the cortical synapses pass through a series transistor
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Figure 5.8: Tonic Mode Frequency Transfer Functions

a) Output TC frequency versus input frequency. Fit parameters for Equation 5.8: βgt = 0.523 and

θT = 4.16Hz. b) Output RE frequency versus input TC frequency. Fit parameters for Equation 5.9:

βtr = 1.23, αtr = 2.97ms, θR = 1.86Hz.

that limits the current levels (Figure 5.2). Thus, for these synapses, I insert Equation

5.6 into Equation A.3:

Îsyn =
∆Pλ Ilim

∆Pλ + Ilim

= ∆P
λ

∆ P
Ilim

λ + 1

≡ β
λ

α λ + 1
(5.7)

For each of the IF neurons, the output frequency is proportional to the input

current. Using the above relationships for input Poisson rate to synaptic current, I

represent the output tonic frequency of each cell as a function of its input frequencies:

133



a)
0 20 40 60 80 100

ΛG Hs-1L

5
10
15
20
25

R
at

e
Hs-

1 L

TC Hall spikesL

b)
0 20 40 60 80 100

ΛG Hs-1L

10

20

30

40

R
at

e
Hs-

1 L

RE Hall spikesL

c)
0 20 40 60 80 100

ΛG Hs-1L

1

2

3

4

R
at

e
Hs-

1 L

TC Burst Events

d)
0 20 40 60 80 100

ΛG Hs-1L

2
4
6
8

10
12
14

R
at

e
Hs-

1 L

TC Tonic spikes

Figure 5.9: Model Fit

Data and fits to the retinal input response. Complete fit parameters: Nr = 3, ∆r = 55.7ms, Ng = 1,

∆g = 13.4ms, NTb = 2.80, NRb = 5.73, βgt = 0.523, θT = 4.16Hz, βtr = 1.23, αtr = 2.97ms, and

θR = 1.86Hz.

fTs = βgt λG − θT (5.8)

fRs = βtr
fTs

αtr fTs + 1
− θR, (5.9)

where θ is the rheobase of the cell (in units of Hz), and βgt, βtr, and αtr are synaptic

parameters (Equations 5.6 and 5.7). The fits to the tonic data are also plotted in

Figure 5.8.

With equations calculated for both response modes, Figure 5.9 plots the complete
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fit to the original data in Figure 5.5.

5.4 Modelling the Cortical Modulation

The influence of the cortical feedback is also probed using Poisson inputs; but since

cortical inputs are incapable of driving the cells (see Section 5.1), I probe the influence

of the cortical spikes using Poisson inputs at both the retinal and cortical synapses.

To capture the full range of response, I perform two experiments: 1) I fix the retinal

rate and sweep the cortical rate (column 1 in Figure 5.10); 2) I fix the cortical rate

(λX > 0) and sweep the retinal rate (column 2 in Figure 5.10).

Like the retinal input, the cortical input also affects the number of bursts in the

system (Figure 5.10(a)), but in a much weaker fashion due to its weaker synapses.

There are two ways the cortical spikes influence bursting: 1) by enhancing the initial

retinal input that deinactivates IT, either through interactions in the TC cell or the

RE cell; 2) by helping in triggering IT. Thus, in the burst model, I include the

feedback into Equation 5.4 as follows:

PP = P [Nr1,∆r, λG ] ( 1 − P [ 1,∆r, λX ] ) +

P [ Nr2,∆rx, λG ] P [ 1,∆rx, λX ] (5.10)

PT = P [Ng1,∆g, λG ] ( 1 − P [ 1,∆g, λX ] ) +

P [ Ng2,∆gx, λG ] P [ 1,∆gx, λX ], (5.11)
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Figure 5.10: Cortical Feedback Response

These plot show the data relating to the effects of cortical feedback. In the first column (a,c,e),

the retinal input is kept constant at λG = 20Hz and the cortical Poisson rate is swept to 40Hz.

The second column fixes the cortical input rate (λX = 30Hz) and repeats the initial experiment of

sweeping the retinal inputs. a,b) Burst response versus λX and λG. The fit parameters for Equations

5.10 and 5.11 in Equation 5.4 are Nr2 = 2.14, ∆x = 58.7ms, Ng2 = 0.566, ∆gx = 14.4ms. c,d) TC

spike response (both burst and tonic spikes). e,f) RE spike response (all spikes). The fit parameters

for Equations 5.13 and 5.14 are βgxt = 0.00049, βtxr = 0.00160.
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where P [N,∆, λ ] is defined by Equation 5.12 (see below). The first term represents

the actions of the retinal input without any cortical input, and so the parameters for

P [Nr1,∆r, λG ] and P [Ng1,∆g, λG ] are from the previous section. The second term

represents the combined action of both inputs. Were the cortical synapses stronger,

there would be an additional independent cortical term. However, since the coupled

term sufficed, the independent cortical term was assumed to be negligible.

The original equation for P [ N,∆, λ ] (Equation 5.5) defined the probability of an

event as the occurrence of an integer number of spikes (or more) within a temporal

window. With the addition of cortical inputs, the minimum number of retinal spikes

depends on the number of cortical inputs. Thus, the values for Nr2 and Ng2 will likely

not be constrained to integer values, but as an average over all the possible cortical

inputs. Thus, to measure the cortical influence, I use the continuous form of Equation

5.5[110]:

P [ N,∆, λ ] = 1 − Γ [ N, λ∆ ]

Γ [ N]
, (5.12)

where Γ [n, x ] =
∫∞

x
tn−1 exp [−t] dt is the incomplete Gamma function, and Γ [n ] =

Γ [ n, 0 ] is the complete Gamma function. In this form, N ∈ <.

Figure 5.10(a) and Figure 5.10(b) show the fits to the data. The fit parameters

show that the cortical feedback reduces the threshold for the retinal inputs, as demon-

strated by the lower number of spikes for the trigger (Ng2 = 0.566) and the initiation

(Nr2 = 2.14) versus the retinal-only input case (Ng1 = 1 and Nr1 = 3 respectively).

For the tonic regime, the cortical feedback is incorporated into Equations 5.8 and
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Figure 5.11: Slope Changes during Tonic Mode

a) TC cell response versus retinal input rate. b) Slope change for RE cell to TC cell input. For

both plots, the red curve plots the response without cortical feedback, while the blue curve plots

the response with cortical feedback intact, but fixed.

5.9 as follows:

fTs = βgt λG + βxt
λX

αxt λX + 1
+ βgxt λG

λX

αxt λX + 1
− θT (5.13)

fRs = βtr
fTs

αtr fTs + 1
+ βxr

λX

αxr λX + 1
+ βtxr

fTs

αtr fTs + 1

λX

αxr λX + 1
− θR.(5.14)

Two additional terms are included into Equations 5.13 and 5.14: a simple cortical

term and a term expressing a nonlinear interaction between the inputs. The simple

cortical term, like the retinal inputs, reflects the cortical synaptic input into the IF

neuron. The nonlinear term is not initially obvious, however, from Figure 5.11, it is

clear that there is a change in the slope of the tonic response due to the addition of

the cortical input.

This is surprising considering the inputs into the chip are separate synapses and

the cell is a simple integrate and fire neuron. It is not clear, at the moment, the reason

for this change in slope; further work would be required to verify this. However, for
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Figure 5.12: 2D Burst Rate Plot

Burst frequency over the full range of input retinal and cortical frequencies: a) data from chip; b)

model fit to the data in (a).

simplicity, the extra term representing the product of the inputs is sufficient to capture

the effects.

With these equations, I fit the rest of the data in Figure 5.10. Figure 5.12 shows

a three-dimensional plot of the response—both data from the chip and the model

fit—over the whole range of retinal and cortical frequencies.

5.5 Interpreting the Model

For retinal inputs, the response of the two cell system (Figure 5.9) shows that bursts

are more likely to occur at higher rates, where greater TC activity translates into

increased inhibition from RE cells for IT deinactivation. This is further demonstrated

in Figure 5.13(a), which plots the probability of each of the response modes with

respect to the input Poisson rate. At low frequencies, the cell responds completely
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Figure 5.13: TC Cell Response

a) Proportion of time the output spike train is in burst or tonic mode with respect to the input

rate. b) TC cell output rate (bottom) to a generated retinal input rate (top). Input generated by

filtering Gaussian random noise (mean and variance of 15Hz) with a biphasic linear kernel. The TC

cell output is calculated using Equation 5.1. The shaded portion in cyan represents the proportion

of the output spike train that is burst.

in tonic mode. As the input rate increases, so does the probability of bursts. This

suggests that bursts signal strong features in the input.

Figure 5.13(b) demonstrates this with a simple example. The top figure plots the

input into the system: a random, filtered rate function λG (t). The bottom figure plots

the output fTC (λG), generated using Equation 5.1, with the cyan and white regions

representing the probability of the output for burst and tonic modes (respectively),

based on Figure 5.13(a). For most of the response, the cell remains in tonic mode;

only at the strong peaks is there a possibility of a burst.
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What advantage does IT add to the response? In terms of mean response, not

much. Figure 5.14 shows, up to λG = 50Hz, that the silicon cell and a cell responding

only in tonic mode have similar output functions. The difference, however, lies in

the structure of the response. Recall that IT requires hyperpolarization; the burst

response, therefore, would be high-frequency clusters of spikes around longer periods

of silence. The tonic response—assuming the same number of spikes—would be more

spread out and of a much lower frequency. Even if the RE inhibition helped shape

the temporal shape of the tonic cell spikes, the response still would not be able to

achieve the higher frequencies that IT can (Figure 5.4(b)).

How does the cortical feedback influence the response? Increasing the cortical

rate clearly increases the number of bursts in the cell’s output (Figure 5.15(a)). But

the effect is more than a simple linear shift in the response, which might be expected

if the burst increase was only the result of increased excitation in the TC cell. The

cortical input also changes the sensitivity of the burst output to retinal inputs (Figure

5.15(b)).

Figure 5.16 plots the same set of figures as in Figure 5.13, except with the addition

of a cortical input at a fixed rate of 40Hz. As already demonstrated in Figure 5.15,

the cortical input increases the probability of bursting in response to the retinal

input, shown in magenta in Figure 5.16(a). In general, the addition of the cortical

input raised the excitability of the system, seen through a general increase in mean

output response (Figure 5.16(b)). Peaks in Figure 5.13(b) that demonstrated some

probability of bursting now had a greater likelihood of bursting. In addition, weaker

inputs that passed through initially in tonic mode now demonstrated a probability

of bursting. The cortical input, then, acts to enhance the response of the system,

not only through an increase in the tonic firing rate, but also in an enhancement by
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Figure 5.14: Mixed Mode Versus Tonic Response

This figure plots Equations 5.1 and 5.8, comparing the mean response of a cell possessing IT (black)

with a cell only in tonic mode (red).
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Figure 5.15: Cortical Modulation of Bursts

a) Burst event frequency versus retinal input rate λG for different cortical rates. λX varies from 0Hz

(black) to 40Hz (dark green) in steps of 2.5Hz. b) Derivative of fb with respect to λG.
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Figure 5.16: TC Cell Response With Cortex

Same setup as in Figure 5.13, with the addition of a fixed cortical rate λX = 40Hz. a) Division of the

output spike train into burst and tonic modes with respect to the input retinal rate. Cyan represents

the burst division from Figure 5.13; magenta represents the increase in the burst probability due

to cortical enhancement. b) New TC cell output rate (bottom) to the same generated retinal input

rate (top) from Figure 5.13. The output response of the silicon model (Equation 5.1). The shaded

portion in cyan represents the proportion of the output spike train that is burst.

recruiting IT.

5.6 Discussion

In this chapter, I studied the interaction between two silicon neurons, representing

cells from the lateral geniculate nucleus and from the reticular nucleus. I had two

goals: 1) I wanted to probe how the feedback inhibition from the RE cell influenced
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the role of the T channel; 2) I wanted to study how the cortical feedback can affect

the dynamics between the two cells. To accomplish this, I used Poisson spike trains

of varying frequency at both the retinal and cortical synapses.

Bursting behavior in the TC cell was strongly dependent on sufficient inhibition

from the RE cell. Absent any cortical inputs, the TC cell provided the only source of

excitation for the RE cell, and thus the inhibition occurred only after a strong retinal

input. In addition, a second input—a trigger—was necessary to release the burst.

This trigger was temporally constrained to a small window in time: too soon, and the

trigger would be lost in the feedback inhibition; too late, and IT will have inactivated.

At low input frequencies, insufficient RE activity kept the TC cell in tonic mode.

As the input rate increased, so did the output rate of the TC cell, and thus the

reticular rate. Eventually, enough feedback inhibition deinactivated IT and the TC

cell exhibited both tonic and burst responses. As the input rate increased further, the

TC cell entered more of an oscillatory response as the cell elicited successive bursts.

Cortical inputs, synapsing to both cells, affected burst generation by increasing

the level of input current, and thus the excitability, of the system in three places:

1. In the TC cell, during the initial, pre-inhibitory input.

2. In the RE cell, during the response to the TC cell.

3. In the TC cell again, during the trigger phase.

Since the cortical synapses were much weaker than retinal synapses, they could

only enhance the response of the cells to retinal inputs as opposed to driving the cells

themselves. Thus, they had the effect of reducing the threshold of activation in each
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of these stages. As a result, the cortical input shifted the probability of bursting to

lower retinal frequencies.

With the probability of bursting increasing with input intensity, IT acts as a

nonlinear amplification of strong inputs. Though the mean output rate was similar

between a TC cell with and without IT (Figure 5.14), the structure of the spike train

in both instances would be significantly different. With IT, the spikes are grouped

into higher frequency bursts surrounded by periods of quiescence corresponding to

the RE inhibition. Without IT, the cell is incapable of attaining the high frequencies

achievable with IT, and so the spikes are more ‘spread out’ in their response. This may

have dramatic effects on the cortical cells. For depressing synapses, such as thalamic

synapses to GABAergic interneurons in the rabbit somatosensory cortex[137], the

mean rate of the thalamic cells kept the synapses in a constant state of depression.

Thus, the inhibitory period, crucial for IT deinactivation, helps the synapse recover

from depression, making the cell respond strongly to the initial spike in the burst.

For synapses demonstrating facilitation, such as in simple cells in the cat[144], spikes

arriving within 15ms of the previous spike are more effective at eliciting a response,

making bursts very effective at driving these cortical cells. Bursts are also more

reliable responses at unreliable synapses[79]. In addition, high-frequency trains of

spikes are better than single spikes at activating widespread recurrent activity in

cortical layers[9].

IT need not cause an all-or-none burst; characterizing the response in terms of

bursts was necessary as it was the only way I could extract response changes of IT

at the spike level[83]. But different levels of IT could exist corresponding to different

amplitude or duration of inhibition from the RE cell. Smaller IT response would mean

smaller synaptic enhancement at the cortical level, either in a decreased removal of
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synaptic depression—because of a smaller deinactivation duration—or decreased fa-

cilitation due to less spikes in the burst (or even lower frequency within the burst).

What’s interesting is that the burst response affects both synapse types simultane-

ously. A tonic response could also take advantage of both these synaptic effects also

by following a quiet period with a strong tonic response. However, that requires two

separate effects—silence followed by strong input—whereas IT automatically links the

length of the silence with the strength of the following enhancement.

Another role for this temporal linkage is also suggested by the structure of the

burst model (Equation 5.3). There, the probability of a burst is determined by the

probability of two signals: an inhibitory input that deinactivates IT and a positive

input that activates it. Another way to consider this: a burst indicates the pres-

ence of these two successive events. In the data in this chapter, the source for the

two signals was (primarily) the retinal inputs; thus, as the input rate increased, the

probability of each event also increased, raising the number of bursts. However, the

axonal divergence between the TC and RE layers, as well as influence of the cortical

input, means the two signals may be completely independent of one another (i.e.,

from different sources). As such, the presence of a burst could signal the correlation

between these two signals.

This linkage is the result of a couple of assumptions within my setup. First, that

the TC cell rests sufficiently depolarized such that IT is inactivated. This requirement

forces the burst to depend on the presence of sufficient inhibition from the reticular

nucleus. The other assumption involves the lack of rebound from inhibition. Many

studies have focussed on the rebound burst, assuming that once deinactivated, the

cell automatically causes a burst after the inhibition has been removed[131, 141, 116].

Rebound bursts depend on a number of factors. The first is the level of deinactivation:
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Lower levels of deinactivation may mean IT is too weak to overcome the rheobase of

the cell. The second factor is whether—or how far—the resting potential is in the

activation range of the T channel (Figure 3.1). The final factor is the level of the pas-

sive conductance within the cell membrane. Increasing the membrane conductance,

to mimic in vivo conditions, reduces the possible range of rebound bursts within

thalamic cells[28].

These assumptions differentiate my model from other models of IT processing in

the awake thalamus. Many models assume external control of the resting potential

of thalamic cells[120, 78, 139, 130], possibly through either metabotropic receptors

from the cortex[95, 39] or through inputs from the parabrachial region[84]. As seen

in Chapter 4, shifting the resting potential of the cell dramatically alters the response

properties of the cell, giving external control of the type of geniculate filter for the

desired processing, such as detection of unattended strong stimuli[120], temporal

decorrelation at the timescale of IT dynamics[139], or temporal filtering[100, 130].

However, as already discussed in Chapter 2, the timescale of these resting potential

interactions are too slow too account for rapid processing necessary in the human

visual system.

The idea of the reticular nucleus deinactivating IT in the thalamus to strengthen

sensory signals to the cortex is not new. This is part of the premise for Crick’s

“searchlight hypothesis”[15]. In his theory, the reticular nucleus acts to guide the

focus of attention to different areas of the retinotopic field, deinactivating IT inside

the searchlight and weakening signals outside of it. Once IT inactivates, silencing

the current area of attention, the searchlight moves to the next active area of visual

space, repeating the process. Cortical input influences the position of the searchlight,

and can also provide the context for the search. While Crick places more emphasis
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on the role of the reticular nucleus in shifting attention, these ideas have similarities

to those suggested by my results.

My results support the hypothesis that cortical feedback controls attention in

analyzing the visual field. FMRI studies on the LGN in humans demonstrate increased

neural responses to attended stimuli, attenuated responses to unattended stimuli, and

increased baseline activity in the absence of visual stimulus[103]. These easily agree

with the results I have demonstrated here. The cortical feedback clearly increased

the response to the visual input (compare Figure 5.9(a) to Figure 5.9(d)). Since I

only studied a single TC-RE pair, I was unable to demonstrate an attenuation of

response to unattended stimuli. But it is easy to imagine that within a population of

neurons, the attenuation could occur because of the spread of RE inhibition from the

attended spatial area, or possibly because of the loss of cortical input due to limited

attentional resources[76]. Increase in the baseline activity, in my system, would occur

if I strengthened the corticothalamic synapses to allow the cortical inputs to cause

spike activity in the TC cell.

There are a number of experimental results from interactions between real TC and

RE/PGN cells that, at first glance, invalidate this model. IT deinactivation through

inhibition can occur through GABAA[141, 148] and/or GABAB[60, 16] receptors.

Both require high-frequency input from the PGN—the GABAB response requiring

a prolonged burst—either as a burst or a strong tonic response[116, 70]. However,

TC cell inputs onto depolarized PGN cells demonstrate a reduced excitatory drive

such that a TC cell burst registers as an extra spike in the PGN cell response in

tonic mode [69]. A response to a TC tonic output would thus be even less. It would

seem impossible for a real TC-RE pair to interact in the fashion demonstrated by my

results, as a single TC cell cannot cause sufficient RE activity to deinactivate IT in
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itself.

However, a population of TC cells could produce a strong enough input drive to

cause the RE cell to fire rapidly, which is possible considering the steep f-I curve

of the reticular neurons[8]. Another possibility is that the RE activity is from a

population of RE cells, which may then provide a prolonged GABAA activity or strong

synchronous activity to cause a GABAB response in the TC cell[116]. Regardless of

which population, and it is possible it could be both, the point is that the restrictions

on the individual cells force the stimulus to have some spatial structure to it. This is

the focus of the next chapter.
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Chapter 6

TC-RE Network

The two cell system of the previous chapter provided some interesting insight into

the occurrence of bursts in the relay neuron. In and of itself, that system was not

representative of actual interactions between two real cells, for reasons brought up in

the discussion. However, the response can be considered as encompassing the activity

of the population.

Two components were necessary for the presence of a burst: sufficient inhibition

to deinactivate IT and sufficient depolarization to activate it. In the previous chapter,

I modelled the inhibition as driven from the TC cell, and influenced by the cortical

input. However, the network properties of the TC-RE layer add a spatial dimension

to the whole situation. Thus, to understand the role of the T channel within the

system, it is important to understand the response of the inhibitory component that

deinactivates the channel.

The goal of this chapter is to discuss those results in the context of the LGN-PGN
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network response to visual stimuli. Unfortunately, due to problems within the chip,

related to the leakage currents discussed in Chapter 3, I am only able to perform

simple population experiments. The first section presents some population results

from my silicon chip, demonstrating the dependence of the burst response on the

stimulus bar length, and the changes in the response due to varying patterns of cortical

feedback. Following that I speculate on the function of the thalamocortical system

(which includes the reticular nucleus) through the action of the various components,

including IT. Finally, I conclude with a few comments on the advantages of using a

silicon model.

6.1 Chip Results

Figure 6.1 shows the network organization—both the physical layout and the synaptic

organization—on the silicon chip. The chip consists of a hexagonal array (Figure

6.1(a)); each node of the grid consists of four relay cells and a reticular cell. Each

relay cell excites the reticular cell, which, in turn, sends inhibition back to all of them.

Retinal inputs form synaptic circuits (excitatory and inhibitory) with the relay cells

to generate ON or OFF, lagged or nonlagged cells, although in my experiments I only

use the nonlagged ON cells. Cortical inputs into the node excite all five cells equally.

Diffusor networks (Appendix A.3) implement axon divergence. The output of

the diffusor is a spatially decaying exponential centered topographically at an input

spike. Since both the thalamic and reticular layers are retinotopically organized,

the strongest influence is between two cells sharing the same topographic location.

Through voltage biases I can adjust the space constant of the exponential decay.
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Figure 6.1: Network Connections

This figure shows the network connectivity built into the chip. a) The organization of the chip is

a hexagonal grid, with each node consisting of 5 cell types: ON and OFF, lagged and nonlagged

relay neurons plus a reticular cell. Diffusor networks (Section A.3) implement all spatial network

connections. Each node within the 2D hex grid represents a node (e.g., ni) in the 1D diffusor in

Figure A.2. b) 1D layout of network connections, with triangles and circles representing excitation

and inhibition respectively. The dashed circle indicates all of the cells within a single node in the 2D

hex grid. There are four diffusor arrays within the chip: 1) Relay cell excitation of reticular layer

(blue triangles); 2) reticular inhibition of both thalamic (black circles) and reticular (red circles)

layers; 3) cortical excitation of both layers (green triangles); 4) gap junctions between reticular cells

(red resistor symbols). Retinal inputs drive only the relay neurons at the same spatial location.
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Figure 6.2: Influence of Reticular Population Activity on IT Activation

a) Contour plot of horizontal spread of reticular activity from a central bar of varying length.

Horizontal axis: Column position with respect to bar position (column 0). Vertical axis: Length of

bar, with one unit of length equal to one neuron. The data was collected by presenting each bar

length to 46 columns on the chip and measuring the spread in activity within each column. The

input was a short 100ms spike train at 50Hz. The grayscale range (0-1) maps to total number of

spikes in a column (0-25). b) Average number of bursts as a function of input bar length. Each

neuron in the bar received independent Poisson spike trains with a rate of 40Hz.

Retinal inputs were the sole set of axons that did not pass through a diffusor before

entering a cell layer. Since retinal axon convergence can be as low as one (see Section

2.1), I implemented a one-to-one retinal axon to TC cell connection. All other layer-

to-layer connections (TC to RE, RE to TC and cortical afferents) use a diffusor circuit

to implement axon fan-out.

Since PGN cells show increasing response with increasing stimulus size[35], I study

the influence of the network on bursting by inputting a visual “bar” stimulus of

varying lengths, but of a fixed width (one column in my neuron array). Given the

divergence from the TC to RE and RE to TC cell layers, increasing the bar length
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will increase the activity within the reticular population, which—since it generates

more reticular inhibition—should increase the number of recorded bursts.

Figure 6.2(a) plots the reticular activity within each column of the chip around

the location of the bar (column 0). I present the bar to each column within the

chip (48 columns total) to reduce the effects of mismatch. As the length of the bar

increases, measured in units of neurons, the level of activity in the reticular population

also increases, spreading farther horizontally from the center. Not surprisingly, this

greater inhibitory activity from the reticular network increases the likelihood of IT

deinactivation in the stimulated TC cells (Figure 6.2(b)), measured here as number

of bursts per unit length of the bar.

How would cortical input influence the response? In the previous chapter, cortical

inputs reduced the threshold for activation of bursts, increasing the number of bursts

with the level of cortical input. Since the cortical feedback diverges into the reticular

nucleus and lateral geniculate nucleus, the cortical feedback has the effect of increasing

the excitability of multiple cells within the population, not just those at the same

spatial location. This is demonstrated in Figure 6.3(a): The spread of the reticular

activity with respect to bar length is much greater with the cortical feedback, as not

only are the stimulated TC cells excited, the cortical fan-out influences the reticular

network.

But the addition of the cortical inputs adds another dimension: the shape of the

cortical feedback. Figure 6.3(b) plots the burst response per unit length of retinal bar

to four different cortical configurations. The black curve shows the original data from

Figure 6.2(b), absent cortical feedback. The green curve plots the response when the

length of the cortical bar varies with the retinal input; that is, the number of cells
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Figure 6.3: Cortical Influence on Reticular Population Activity

Same experiment as in Figure 6.2 with the addition of cortical 40Hz input Poisson spike train at

the cortical synapses. a) The grayscale range (0-1) maps to the total number of spikes in a column

(0-70). In this map, the length of the cortical bar varies with the retinal input. b) Average number

of bursts as a function of input bar length. Each neuron in the bar received independent Poisson

spike trains with a rate of 40Hz. The different colored lines represent different configurations for the

cortical input. Black: no cortical input, retinal input only (Figure 6.2(b)). Red: Cortical bar length

varies with retinal. Green: Cortical bar length fixed at 11 neurons. Blue: Cortical bar width fixed

at 29 neurons

receiving cortical spikes matches the retinal input. In this situation, the number of

bursts increased more rapidly with each increasing unit length, since there is now the

additional influence of greater cortical feedback with each increase in bar size.

The other two curves in Figure 6.3(b) use a fixed cortical bar length. For the red

curve, the cortical bar length is fixed at 13 neurons, approximately where the green

and red curve meet, while the blue curve has a cortical bar spanning 29 cells. With

each increasing bar length (from 0 (black) to 13 (red) to 29 (blue) cells), there was

a general increase in the excitability of the system, but the response to retinal bar
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lengths increased at approximately the same rate in all three situations.

Thus, greater amounts of cortical input, whether in the form of higher input

rate of the previous chapter or greater input population activity here, increased the

likelihood of bursts through an increase in the excitability of the reticular and relay

neurons in the system. In the context of bursts as a measure of saliency, cortical

feedback, acting as an attention mechanism, can increase the saliency of a weaker

(smaller) stimulus.

6.2 Discussion and Conclusions

Studying IT is difficult given its sensitivity to the resting membrane voltage of the

cell. Anesthesia can increase the number of observed bursts in the thalamic response,

through increased hyperpolarization of the membrane voltage[87, 86]. And as demon-

strated in Chapter 4, shifts in the resting potential can alter the response properties

of thalamic cells due to increased deinactivation of IT. As a result, care must be taken

in interpreting studies of IT that use anesthetized animals[41, 83, 109, 113, 78].

Since it is not possible to record from the ion channel itself, the influence of

IT is often measured extracellularly through the presence of bursts within the spike

train[83]. This classification of output spikes as bursts and non-bursts may be mis-

leading, as the assumption often follows that the thalamus functions in two response

modes[94, 83, 120]. However, when considering that the duration (Figure 3.2(b)) and

level of hyperpolarization (Figure 3.3(b)) influences the size of the Ca++ spike[157],

the burst response is but an extreme condition within a continuum of possible re-

sponses by the channel. So while I also used the same classification of bursts in my
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previous chapter, my interpretation of the results consider IT as capable of a variable

response.

Figure 6.4 summarizes the role of the T channel, the reticular nucleus, and the

cortical feedback on the response of the TC cell and the resulting influence within the

cortex. Since TC and RE cell are depolarized in the awake state[52, 134], IT is in-

activated absent any input and requires inhibition for deinactivation to occur. Thus,

the presence of IT depends on the visual response properties of the inhibitory cells

within the thalamus. I have chosen to study the role of reticular cells—as opposed

to thalamic interneurons—given their interesting position between the thalamus and

the cortex, merging ascending thalamocortical and descending corticothalamic infor-

mation.

As discussed in Section 2.2, PGN cell possess large receptive fields relative to

geniculate cells [35, 29, 54]. Since geniculate cells are the sole source of visual input[1],

there is a large convergence from the geniculate layer. As such, perigeniculate cells

increase their response with stimulus size[35]. In addition, PGN cells respond strongly

to moving stimuli within their receptive fields, due to the continuous input from the

relay neurons[35, 29]. Thus, the likelihood of bursting should increase in these two

instances, as has been observed with increasing stimulus size[152] and suggested for

moving stimuli[71, 72].

The burst response in my network also required a well-timed trigger to activate

IT after deinactivation, otherwise IT inactivates and the influence is lost. These two

components to the T channel response—the deinactivation and activation—suggests

the role of the T channel as an enhancement of correlation between two (possibly)

independent signals, with the level and temporal position of the enhancement de-

157



Inhibition EnhancementStimulus

IT

RE

Depression

Facilitation

VI
CTX

TC-RE

CTX

TC-RE

Figure 6.4: Thalamo-Reticulo-Cortical Interactions

This figure shows the influence of the reticular nucleus, the cortical feedback, and IT on the response

properties of the thalamic neuron. The thalamic response is presented as the first order kernel from

Figure 5.3(b). See text for details.
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pendent on the inhibition. Thus, as indicated in Figure 6.4, the role of the reticular

nucleus is to translate the features within the stimulus to a level of inhibition in the

relay cell. The T channel, then, translates the inhibition to a level of enhancement

by IT for another input signal.

IT dynamics, as discussed in the previous chapter, influence the response at both

depressing and facilitating synapses within the cortex[143]. Depressing synapses bene-

fit from the deinactivation period (duration of the inhibition), which aids the synaptic

recovery from its perpetually depressed state, strengthening the response to the ini-

tial spike within a burst[137]. Facilitating synapses benefit from the tighter spikes

(smaller interspike intervals) because of IT enhancement[144]. Thus, IT dynamics link

the gain at both synapses, even though they occur through different mechanisms.

Even in the absence of depressing or facilitating synapses, bursts are also more re-

liable responses at unreliable synapses[79]. Regardless of the synaptic mechanism,

high-frequency trains of spikes are better than single spikes at activating widespread

recurrent activity in cortical layers[9].

IT is also likely to help synchronize the response of TC cells to a stimulus. Reticular

cells with overlapping receptive fields also overlap in their terminal axonal fields in

the thalamus[106]. Thus, for a large stimulus, reticular inhibition that deinactivates

IT does so in multiple thalamic cells. The activation of IT then ensures a greater

degree of synchrony within these cells by reducing the effects of variability between

them in the integration of synaptic inputs, generating a greater influence on cortical

cells[129, 6, 143].

Cortical feedback influences the system in two ways: 1) it increases the response

of TC and/or RE cells to the initial stimulus by increasing the total input current; 2)
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it increases the response of the cells during the IT enhancement phase. The cortical

input acts as an attentive mechanism, increasing the response of the system such that

smaller stimuli can achieve equal levels of inhibition/IT-enhancement as larger stimuli

without the cortical aid. These attention related influences have been observed in the

LGN[103]. Many studies have suggested the importance of the reticular nucleus in

attention (reviewed in [91]). Lesions of the reticular nucleus eliminated the attentional

advantages of a visual cue preceding a target in reaction time tasks in rats[151]. In

addition, specific sensory areas of the reticular nucleus, used by rats to attend to

stimuli during active exploration, demonstrated higher levels of activity compared to

other sensory areas not used[98].

One of the design flaws in my chip involves the strength of the cortical feedback

onto thalamic and reticular cells. In my system, cortical synapses onto the reticu-

lar and thalamic cells were designed with equal weight. However, observations on

synaptic numbers[81] and on the size of the cortical EPSCs between RE cells and TC

cells[40] suggest the cortex has a greater influence on the reticular nucleus than the

thalamic cells.

How would this affect my results? Obviously this would increase the influence

of the cortex on the generation of bursts. In my experiments, the cortical feedback

was set up as a modulatory influence; that is, the feedback was sufficiently weak to

prevent spiking, or minimize spiking, in the TC cell, and (as a consequence) in the

RE cell. Strengthening the cortical influence on reticular cell gives more control to

the cortex in the deinactivation of IT, possibly to the point of allowing the cortical

inputs to “prime” IT without the TC cell input. This is outside the scope, and

capabilities, of my current system, since the synaptic weights are fixed within my

chip. Some studies in the somatosensory system of rats suggest a role for the cortical
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input in causing bursts during different behavioral states[32], while another theory on

thalamic function suggest the inhibition from cortical feedback acts as a predictive

element to sensory processing[131]. Although, computational studies on the role of

corticothalamic input into the thalamo-reticular system suggest the influence of the

cortical inputs to thalamic cells is predominantly excitatory, even with the stronger

reticular synapses[21, 28].

How do my results apply to visual processing? During visual scene analysis,

humans generate eye movements (saccades) approximately 3 times a second to shift

the visual image such that various visual features are centered on the fovea[47, 48].

Visual processing occurs between saccades, where the visual image remains relatively

stable. The sudden changes in the visual field by saccades cause changes in contrast

levels within the visual field. Since reticular cells are responsive to contrast changes

in their receptive field[35], they would likely become transiently active.

Figure 2.7 shows the post-saccadic1 response of an ON center Y-cell to a large

flashing square overlapping the receptive field[77]. The initial transient represents

the initial viewing of the stimulus, presumably where initial acquisition and analysis

of the new visual scene occurs, in line with observations that some visual processing

occurs at higher levels in under 150ms [138]. The inhibitory period is the responding

reticular inhibition, which then causes the secondary peak, through IT, within the

response.

As already discussed above, the reticular nucleus translates the stimulus size to

inhibition, which then relates to the size of the IT response. If all the cells responding

1The qualifier post-saccadic is technically accurate in the sense that the flashing square stimulus
used to generate the responses in Figure 2.7 occurred shortly after a saccade. However, the stimulus
onset was varied over 500ms, making it more likely that any effects of the saccade are averaged out.
Thus, the response in Figure 2.7would most likely be similar in the absence of the saccade.
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to the same stimulus receive the same level of inhibition, then the latency introduced

by different object sizes (via inhibition) also serves as a way to solve the binding

problem[37] through their synchrony[129].

The enhancement by IT need not occur at the same spatial location as the origi-

nal stimulus. Rather, through the axonal divergence between the thalamus and the

reticular nucleus, a moving stimulus can ‘prime’ locations ahead in space, using IT to

synchronize responses of geniculate cells once the bar eventually crosses the receptive

field[127, 71, 126].

The spatial extent of the inhibition preceding a moving stimulus would depend

on the velocity of the stimulus. This then excludes the classical receptive field as

a medium for this inhibition given its fixed spatial size. However, moving gratings

outside the classical receptive field—in the extra-classical surround—are capable of

inhibiting relay cells[150]. Interestingly, cells in magnocellular pathway, which are

more sensitive to motion in the visual field, demonstrate greater extra-classical inhi-

bition than parvocellular cells[150].

Given their larger receptive fields and their propensity to respond strongly to

moving gratings, PGN cells are the likely source for this inhibition[29, 35]. It is

unclear whether the driving source of this inhibition derives from relay neurons or

from the cortex. Cortical feedback cells are direction selective and can influence the

response of geniculate cells to moving gratings[101, 17, 126]. Ablating V1 reduces the

effects of the extra-classical inhibition[150], but does not eliminate it. In line with the

idea of attentional modulation, cortical feedback may control the level and/or extent

of this inhibition in response to the moving stimulus.
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Presumably, greater stimulus velocity requires more inhibition from reticular cells,

since moving gratings generate greater activity in the perigenicualte nucleus than

static gratings[35] (see also Figure 2.6(b)). What is interesting about this fact is that,

to an observer, closer objects are both larger and move faster, two characteristics to

which PGN cells naturally respond.

Low threshold calcium channels exist in numerous places within the brain: in

the neocortex[38], in the inferior olive[82], within cerebellar purkinje cells[108], in

hippocampal interneurons[33], and in many other areas[57]. The channel properties

vary dramatically, both in their time constants and in their steady-state levels for

activation and inactivation (reviewed in [57]). It is difficult to say whether the role

of the T channel in those instances are similar to what my results suggest, since even

minor differences in the resting potential of the cell with respect to steady-state levels

can change the response dynamics. If, however, the channel is naturally inactivated,

like those in the inferior olive[82], then the channel deinactivation becomes dependent

on inhibition, linking the dynamics of the inhibitory input to any post-inhibitory

input. The different temporal dynamics of the channels then define the different

response of the channels: a shorter deinactivation period, for example, means less

inhibition is needed. Understanding the role of the T channel, in these cases, should

begin with a greater understanding of the inhibitory influences.

To conclude, I pose the question: Was there an advantage to using silicon as a

medium for these models? Since I have not implemented a comparable computational

model (in terms of network structure and interactions), I cannot do a direct compari-

son with my network. However, since computational models numerically solve a series

of differential equations, one method of comparison would be to calculate the number

of differential equations needed for my chip and estimate the simulation time based
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on results from a computational model.

Each neuron (without synapses) on my chip requires three differential equations:

2 for IT (activation and inactivation) and one for the membrane. Within a single node

in the hexagonal array (Figure 6.1), there are approximately 9 differential equations

for all of the synaptic interactions (6 for all retinal input interactions, and 1 each for

TC excitation, RE inhibition and cortical input). That translates to 24 differential

equations per node: 15 for all 5 cells within a node, plus 9 for all the synaptic

dynamics. Since there are 1440 nodes within the neuron array, that translates to

approximately 34,560 differential equations for the whole chip.

A simulation of a single cell model in NEURON[154]—with 29 compartments each

consisting of 18-20 ion channels for a total of 5,568 differential equations—on a dual

2.5GHz G5 (with 2GB RAM) ran at 300-times slower than real-time. Assuming

linear extrapolation, my chip would run about 1860 times slower than real-time as a

computer model. In other words, there is a tremendous advantage to using the silicon

in performing the experiments.

Even in the two-cell system of the previous chapter, the chip outperforms the

computational model. The two-cell system consists of 8 differential equations: 3 for

the TC cell with IT, 1 for the RE cell, 4 for the different synaptic interactions. This

translates to a simulation running about 2.3 times faster than real-time. However,

recall that my chip was running in hypertime, approximately 10 times faster than

real-time. This is just over 4 times faster than the equivalent computational model,

making the silicon medium advantageous in experiments where large quantities of

data are collected at low input rates, such as in many of the kernel computations

within this work.
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Appendix A

Common Transistor Circuits

This appendix describes two common transistor circuits used within my neuromorphic

model.

A.1 Current Mirror

In analog circuit design, it is often necessary to invert a current before merging two

separate circuits. The most common circuit for this task is the current mirror (Figure

A.1(a)).

Circuit operation is very simple. Connecting the gate to the drain terminal of

the input transistor moves the gate sufficiently to match the channel current with

the input current. Since the input and output transistors share gate terminals, the

output current then has the same magnitude—but now opposite sign—as the input.
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Figure A.1: Basic Transistor Circuits

a) Current Mirror. As its name implies, this circuit mirrors the input current. That is, a current

source (sink) into the mirror is outputted as a current sink (source) with unity gain. The bulk

voltages VB1 and VB2 can be used to adjust the gain in the mirror. (b) Series Transistors. Two

transistors in series function the same as two conductors in series: the total conductance is equivalent

to product of the conductances normalized by their sum. Similarly, the output current is the product

of the currents in the individual transistors normalized by their sum. See text for details.

Gain in the mirror circuit is commonly implemented either through differences in

the dimensions of the input and output transistors, or through differences in their

source voltages. However, it is also possible to use the back gate for this purpose.

From Equation 3.18,

166



IOUT = Ids0 eκ Ve(1−κ )VB2

=
IIN

e(1−κ )VB1
e(1−κ )VB2

= IIN e(1−κ )(VB2−VB1) (A.1)

Intuitively, lowering VB1 necessitates a higher gate voltage to match the channel

current with the input, increasing the output current, and thus the gain. If I lower

VB2 instead, then I decrease the channel current in the output transistor for a given

gate voltage, thus lowering the gain.

A.2 Series Transistors

Another common transistor combination is the series placement of two (or more)

transistors (Figure A.1(b)). Intuitively, the output of such a circuit will always be

limited by the transistor with the smaller individual current (i.e., lower gate voltage).

The current through the transistors is defined as

I = I1
(
e−VS − e−V

)
= I2

(
e−V − e−VD

)
(A.2)

where I1 = Ids0 eκ Vg1 and I2 = Ids0 eκ Vg2 and V is the voltage at the middle terminal

(see Figure A.1(b)). Solving for e−V and substituting back into Equation A.2,
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e−V =
I1

I1 + I2
e−VS +

I2
I1 + I2

e−VD

I = I1
(
e−VS − e−V

)

= I1

(
e−VS − I1

I1 + I2
e−VS − I2

I1 + I2
e−VD

)

= I1

(
I2

I1 + I2
e−VS − I2

I1 + I2
e−VD

)

=
I1 I2

I1 + I2

(
e−VS − e−VD

)
(A.3)

The output current is then the product of the individual currents normalized by

their sum [20]. Since the output current is proportional to the product of the inputs,

it is often used as a current correlator.

A.3 Diffusor Circuit

Figure A.2 shows the diffusor circuit, which I use to extend synaptic input spatially

to implement synaptic fan-out within a network. The output current at each node i

is defined by

Ii = Ids0 eκ Vw
(
e−Vi

)
(A.4)

The current within the horizontal transistors P2 is defined by
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Figure A.2: Diffusor Circuit

Diffusor circuit for implementing network connections within the chip. The input current is the

output of the synapse described in Section 4.1.2. The biases Vw and Vs define the space constant

of the diffusor circuit. Each diffusor output current Ii enters the membrane of a spatially distinct

neuron.

IP2 = Ids0 eκ Vs
(
e−Vi − e−Vi−1

)
(A.5)

Substituting Equation A.4 into Equation A.5:
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IP2 = eκ Vs
(
e−κ Vw Ii − e−κ Vw Ii−1

)

= eκ ( Vs−Vw ) ( Ii − Ii−1 )

= α ( Ii − Ii−1 )

where α = exp [κ (Vs − Vw )]. Ignoring (for the moment) the fixed input current Iin

(Figure A.2), Kirchoff’s current law for node ni requires

0 = α ( Ii − Ii−1 ) + α ( Ii − Ii+1 ) + Ii

= Ii − α ( Ii−1 − 2 Ii + Ii+1 )

Substituting Ii = λi:

λi − α
(
λi−1 − 2 λi + λi+1

)
= 0

α λi−1
(
λ2 −

(
2 +

1

α

)
λ + 1

)
= 0

Ignoring the simple solution and solving the quadratic for λ:

λ+,− =

(
1 +

1

2α

)
±
√

1

α
+

1

4α2
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Figure A.3: Diffusor Output

Sample output current plotted versus the distance from the center. The output decays exponentially,

with a space constant λ. Note that Iin =
∑

i Ii.

What this suggests, then, is that the current changes exponentially from node to node.

Since λ− = 1/λ+ < 1, the output current is either rising or falling exponentially with

increasing i. The transistor biases Vw and Vs define α—the ratio of the input current

that flows horizontally (spatially) versus vertically (into the cell)—which defines the

space constant for the exponential.

Introducing an input current into node ni :

Iin = Ii − α ( Ii−1 − 2 Ii + Ii+1 )

Since the diffusor is a passive circuit, Iin =
∑

i Ii. In addition, the location of the

input defines the center of the decaying exponential (Figure A.3):
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Ij = I0 λ|j−i|

where λ = λ− and I0 = Ii . Solving for I0:

Iin = Ii − α ( Ii−1 − 2 Ii + Ii+1 )

= Ii − α (λ Ii − 2 Ii + λ Ii )

=
(
1 + 2α (1 − λ)

)
Ii

∴ I0 =
1

1 + 2α (1 − λ)
Iin

where λ = λ−. Substituting λ−:

I0 =
1√

4α + 1
Iin

Thus,

Ij =
1√

4α + 1
Iin λ|j−i|

For the hexagonal grid used within my networks (Figure 6.1), the diffusor circuit
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forms a two-dimensional decaying exponential, centered at the synaptic input.
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