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Abstract— We describe a neuromorphic chip with a two-
layer excitatory-inhibitory recurrent network of spiking neurons
that exhibits localized clusters of neural activity. Unlike other
recurrent networks, the clusters in our network are pinned
to certain locations due to transistor mismatch introduced in
fabrication. As described in previous work, our pinned clusters
respond selectively to oriented stimuli and the neurons’ preferred
orientations are distributed similar to the visual cortex. Here we
show that orientation computation is rapid when activity alter-
nates between layers (staccato-like), dislodging pinned clusters,
which promotes fast cluster diffusion.

I. PATTERN-FORMING RECURRENT NETWORKS

A 2-D recurrent network of spiking neurons with Mexican
hat connectivity (local excitation and distal inhibition) can
exhibit clusters of activity when the feedback is sufficiently
strong. These clusters are an emergent property of the network
and are identified by contiguous regions of activity surrounded
by dead zones (no activity). In a homogeneous network (i.e.,
neurons and their connections are all identical), the locations
of the clusters are unconstrained and have an equal likelihood
of existing at any position. Therefore, clusters in a homoge-
neous network move in a random walk, constrained only by
their interactions with nearby clusters [1].

In contrast, networks with heterogeneous neurons tend to
bias the locations where clusters reside. Clusters do not wander
freely but are instead pinned to the locations that maximize
their local recurrent feedback. One intriguing possibility is
that the interactions between spatio-temporal input patterns
(e.g., visual scenes) and these pinned clusters can process
information. For example, it has been shown that oriented
stimuli are able to shift the clusters away from their preferred
locations to produce orientation selective responses whose
distribution resembles cortical maps of preferred orientation
(PO) [2], [3]. The seemingly complicated task of assigning
similar POs to nearby neurons is cleverly achieved by simply
building an imprecise, recurrent network.

Transforming fixed-pattern noise into a smoothly changing
feature map is an impressive feat, but this transformation is
poorly understood. In particular, it is not known how cluster
dynamics, which can range from fluid (mobile clusters) to
crystalline (immobile clusters), influence PO map creation. We
address this issue by characterizing how clusters diffuse over a
range of network states and by examining the speed at which
orientation maps converge for two disparate diffusion rates.

Exploring a detailed, large-scale recurrent network over
a wide range of network parameters is a computationally
daunting task that is poorly suited for software modeling.
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Fig. 1. Transistor implementations for a neuron, diffuser, and a synapse
are shown together along with their input–output interactions; the network
panel shows how these individual blocks are organized into neural circuits.
We refer to circuit parameters as typepar, where type specifies the section of
the neural circuit, and par specifies the circuit parameter (e.g., the excitatory
cell synapse parameter A is referenced as EA).

Previous attempts to model such networks in software have
sacrificed low-level details that are known to affect cluster
dynamics (e.g., they replace spiking with rate-based equa-
tions) [4], and have explored only a handful of network
states [2], [1]. For these reasons, we have chosen to build our
network in silicon using a neuromorphic implementation [5].
This approach has the advantage of: I operating in real-time,
II retaining important low-level details [6] (i.e., electronic
currents flowing through MOS transistors are analogous to
ionic currents in a biological membrane), and III supporting
large-scale networks (≈ 10, 000 neurons).

Our two-layer excitatory–inhibitory recurrent network is
built from canonical transistor circuits that capture the behav-
ior of their biological counterparts (Fig. 1). These circuits,
which are designed to operate in the subthreshold region,
perform the following functions:

• A neuron integrates excitatory and inhibitory currents
on its membrane capacitor and generates a spike (brief
voltage pulse) after reaching threshold [7].

• A diffuser, which models axonal arbors, spreads synaptic
current to local regions in space with exponential de-
cay [8].
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• A synapse converts spikes into postsynaptic currents that
decay exponentially [3].

A computational block of our network, which is tiled across
the chip, consists of an excitatory (EXC) and an inhibitory
(INH) neuron reciprocally connected through synapse and
diffuser circuits (Fig. 1 network). Note that feedback excitation
(not shown) is implemented by routing EXC spikes trans-
mitted off-chip back into neighboring synapse circuits (see
Section II).

II. MODEL IMPLEMENTATION

We implemented our recurrent network in silicon using a
0.25µm 5-metal layer CMOS process. The fabricated chip
consists of a 2-D core of 48×48 blocks, surrounded by asyn-
chronous digital circuitry that transmits and receives spikes,
encoded using the address-event representation (AER), in real-
time [9]. Our custom chip has ≈ 460,000 transistors packed in
10 mm2 of silicon area for a total of 9,216 neurons (only half
of which are used in this paper for the recurrent network).

To implement spatial interactions in our network, we use
diffuser circuits to spread post-synaptic currents (described
previously). However, we must use caution when diffusers
implement connectivity between cells in the same layer. The
caveat is that in addition to spreading current to neighboring
nodes, they also implement an autapse (self-connection) that
is weighted by the peak of the exponential. For this reason, we
implement EXC to EXC connections through a FPGA–RAM
interface, which generates multiple events targeted to neigh-
boring neurons (whose addresses are stored in the RAM). Self-
excitation is still present through neighboring diffuser nodes
(see Fig. 1), but the strength of the autapse is significantly
reduced.

A bi-directional AER–USB (universal serial bus) interface
allows us to view, process, and save neuron activity from our
chip in real-time while simultaneously sending events (i.e.,
afferent spikes) to drive the network. Utilizing the USB 2.0
high-speed standard (asynchronous mode), we achieved ≈ 7
million address-events/sec. With a custom GUI, we were able
to interact with our network in real-time by: I changing the
level of input activity to the chip with a keystroke, II viewing
spike rasters to gauge the extent of network synchronization,
III viewing network activity over space, and IV determining
when neural activity becomes unstable by monitoring the
most-excitable cells.

III. CLUSTER DYNAMICS

Our network exhibits spatio-temporal patterns in certain pa-
rameter regimes. In particular, when local feedback excitation
(EA) is scaled relative to distal inhibition (IA), clusters of
neural activity form across the network (Fig. 2). These clusters
are dynamic: over time they can change shape, coalesce with
neighbors, disappear, or diffuse. However clusters do not move
far; this confinement is the result of transistor mismatch. With-
out this heterogeneity, clusters have no preferred locations.
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Fig. 2. Contours of EXC cell activity (clusters) are shown for two 10ms
intervals 50ms apart (thin and thick lines). In this example, the network
parameters (in volts) are: for INH, Isr = 1.844, Isg = 1.897, Ite = 2.374,
IA = 1.45, Itc = 0.061; for EXC, Esr = 2.046, Esg = 2.045, Ete = 2.4,
EA = 1.855, Etc = 0.052; for their interaction, E2Isr = 2.051, E2Isg =
2.098, E2Ite = 2.387, E2IA = 1.602, E2Itc = 0.05, and Vdd = 2.5. Each
cell in the network is driven with a 75Hz poisson background input. These
setting are used throughout the paper except where noted.

Our goal is to characterize the dynamics observed in our
heterogeneous network over a range of parameters. To ac-
complish this, we first introduce metrics that quantify how
clusters diffuse in time. We then compare cluster dynamics
over a range of different network states — a daunting task
considering the extent of the parameter space. We whittle the
astronomic parameter space down to an interesting subspace
by taking advantage of the real-time visualization offered in
our neuromorphic system. Finally, we gauge the speed of
computation by exploring how cluster diffusion relates to PO
map convergence.

A. Confined cluster diffusion

We characterize our network dynamics by measuring the
mean-squared displacement of clusters 〈∆2r〉 over time. The
measurement is performed as follows: First, we identify the
centers of clusters for two frames separated by time t0.

1 Next,
we calculate the pair-wise distances of all the centroids from
one frame to the next (Fig. 3). The mean of this distribution,
〈∆2r(t0)〉, is calculated using the region around the initial
peak (Fig. 3, lighter region), which corresponds to local cluster
diffusion (explained below). Repeating this measurement for
different values of t, we obtain 〈∆2r(t)〉 (Fig. 3 Inset).

The multiple humps observed in the |∆|r(t0) distribution
(Fig. 3) are characteristic of clusters diffusing in a confined
area. The initial peak is the result of clusters moving a small
distance (or not moving at all), whereas the nearby trough

1Clusters are identified by finding contiguous regions of activity within a
frame (i.e., cells that have at least half of their neighbors active). Then, the
center of mass of each cluster is computed, where the mass of each cell is
determined by its firing-rate. We cap the max firing-rate to 500Hz (i.e., 5
spikes in a 10ms frame), which limits the contribution of over active cells.
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Fig. 3. The distances that clusters travel in 10ms, or |∆|r(10ms) (same
network state as in Fig. 2). We show |∆|r(10ms) instead of ∆2r(10ms) be-
cause the former distribution is easier to visualize. All computations however
use ∆2r(t). Inset Mean-squared displacement, 〈∆2r(t)〉, only considering
the region around the initial peak. The slope of the fit (D) is 43.02 pix2/s.

represents distances where clusters are unlikely to travel. The
n subsequent peaks correspond to the mean distance between
n-th nearest neighbors; the peaks exist because, on average,
many clusters are consistently the same distance from each
other. In this paper, we only consider the distribution near the
initial peak.

The shape of 〈∆2r(t)〉 (inset of Fig. 3) provides further
evidence that, in this particular network state, clusters diffuse
in a confined area. Indeed, over short time intervals (10 to
50ms), the mean-squared displacement varies linearly with
time. In other words, the expected distance a cluster will travel
is proportional to how long we wait (up until ≈ 50ms). We
denote the slope of this linear region as D (traditionally called
the diffusion constant). For longer time intervals (> 90ms), the
expected distance tends to saturate. This behavior is indicative
of a confined cluster; it will never travel beyond a certain
distance regardless of how long we wait. An analogy between
cluster dynamics and particles vibrating in a crystalline lattice
can be drawn — but we must be careful not to take the analogy
literally. Unlike particles, clusters are not required to follow
physical laws (e.g., the probability that a cluster must exist
somewhere is not required to be 1).

The method that we have described allows us to obtain
D without explicitly tracking clusters through time. By us-
ing the distance distribution directly, we avoid the task of
characterizing non-diffusive cluster behavior. For instance, a
cluster that vanishes (or merges with a neighbor) from one
frame to the next does not affect the distance distribution near
the initial peak; hence, non-diffusive behavior is automatically
segregated from our analysis.2

B. Dependence on network parameters

Here, we explore how cluster dynamics, and in particular
the diffusion constant D, depend on parameter choices. We

2This method was inspired in part by Tristan Ursell’s web document
Diffusion of solid particles in viscous fluid, and by [10].
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Fig. 4. Chip behaviors (numbered) are shown for different voltages IA and
EA. Corresponding diffusion rates D are shown to the right. Note that lowering
the voltage corresponds to increased synaptic strength (since A connects to a
PMOS transistor).

accomplish this by first finding a suitable network operating
point in the high-dimensional parameter space with interesting
cluster dynamics; the chosen settings are indicated in Fig. 2.
Our real-time GUI facilitated this search since we were able
to monitor relevant network properties (e.g., network stability)
while tuning the parameters.

Having found a suitable operating point, we now constrain
our analysis to the post-synaptic current amplitudes (EA and
IA), for the simple reason that these two parameters sample a
wide-range of different dynamics (from inspection). Because
two parameters still constitute a large space, we further reduce
their range by cutting out regions where: I clusters do not self-
sustain for more than 10 seconds in response to an impulse
(no hysteresis); II clusters do not pack the entire network (few
clusters); and III more than 28 neurons have an average firing-
rate above 1,000Hz (unstable) (I and III are demarcated by
x’s in Fig. 4). It is important to note that these regions are
empirically defined and do not imply underlying bifurcations.

Having carved out a parameter range for EA and IA, we
compute D for points in that range (Fig. 4). For each point
〈∆2r(t)〉 has been measured over 10ms to 150ms in 10ms
intervals. D is the slope of the linear fit from 10 to 50ms; the
lowest R2 (i.e., percentage of variance explained), considering
the entire dataset, was 0.885.

C. Orientation map convergence

We track PO maps over time in two different network states
to gauge how cluster diffusion affects computational speed.
First, maps are computed by presenting four moving gratings
with orientations ranging from 0 to 135 degrees for 1,000
seconds and then computing the vector sum — the resulting
angle is a neuron’s PO (see [3] for an example). Next, we
compare short-term PO maps (considering part of the trial)
with the final PO map (entire trial); comparisons are made
using a map similarity index (SI) that computes the normalized
angle difference between maps, (adopted from [11]). An SI of
1 signifies the maps have identical orientation preferences; 0.5
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Fig. 5. Map convergence rates, measured as the SI between short-term PO
maps and the final map, for two states. Fits for the first 10s of each state are
shown, and extrapolated out to an SI of 0.9 (dashed lines). PO maps are also
shown for the time indicated by the 4; colors are determined by each cell’s
PO. Dark regions indicate cells that have not fired; note that more cells are
active when cluster diffusion is high.

signifies no correlation (i.e., the average PO difference is 45
degrees); and 0 signifies anti-correlation (i.e., the average PO
difference is 90 degrees). The convergence rates for the two
distinct network states 29 and 4 (red and blue traces in Fig. 5,
respectively) show that greater cluster diffusion results in faster
convergence. For example, the initial rate is 6.6×10−3 in SI/s
(dashed red) when D = 51 pix2/s (state 29), whereas the rate
is 3.8× 10−3 (dashed blue) when D = 23 pix2/s (state 4).

We have shown that cluster diffusion (D) can influence map
convergence, but D only quantifies how far clusters diffuse
over time; the fundamental question of how clusters diffuse
in the presence of heterogeneity is still open. Viewing spikes
from EXC and INH neurons directly (Fig. 6) provides a clue.
In the high diffusive state (state 29) activity alternates between
the two layers — first EXC responses build for about 80ms
(green rasters), which then recruit massive activity in INH
cells (black rasters). These staccato-like dynamics can also
be seen in the autocorrelation (AC) (Fig. 6 right, red trace);
the AC is high for short times (activity is initially correlated
with itself), forms a trough at around 80ms (activity is anti-
correlated 80ms later), and rebounds near 200ms. In contrast,
activity in the low-diffusive state (state 4) is more regular, and
its AC decays monotonically as a power law with an exponent
of -0.10 (Fig. 6 right, blue).

IV. CONCLUSION

We have presented a chip that implements a recurrent
network of spiking neurons with Mexican hat connectivity. The
network displays clusters of neural activity that are biased to
certain locations as a result of network heterogeneity. Previous
work has shown that these pinned clusters and their interac-
tions with spatio-temporal patterns can perform a useful vision
computation (orientation extraction). In this paper, we have
elaborated on how the dynamics of clusters influence network
computation; specifically, we show that diffusive clusters lead
to faster-converging orientation maps.
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Fig. 6. Spike rasters (left) for 10 EXC (green) and INH (black) neurons
for two network states and their average AC’s (right). AC is calculated by
considering EXC spikes over a 50s interval at a 0.1ms bin resolution; it is
normalized for each neuron individually and averaged over 100 neurons.

The cluster dynamics that we observed in our network,
quantified by the local diffusion constant D, ranged from 17
to 51 pix2/s. To reach the high-diffusion regimes, the network
operated with staccato-like interactions between EXC and INH
neurons. We propose that this staccato activity state is one way
to achieve cluster diffusion in the presence of heterogeneity.
Furthermore, this staccato state could provide a way to balance
computational speed and efficacy in a heterogeneous network.
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