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The End of Moore’s Law

A Neuromorph’s Prospectus

Kwabena Boahen | Stanford University

As transistors shrink to nanoscale dimensions, trapped electrons are making it difficult for digital 
computers to work. In contrast, the brain works fine with single-lane nanoscale devices that are 
intermittently blocked. Conjecturing that error-tolerance can be achieved by combining analog 
dendritic computation with digital axonal communication, neuromorphic engineers have created 
Neurogrid, the first neuromorphic system with billions of synaptic connections.

N
anotransistors present challenges for digital computers because of electrons captured by dan-
gling bonds at the silicon–silicon-dioxide interface. Depending on how large a thermal fluc-
tuation (see the “Primer” sidebar; all words in italics throughout this article are defined in this 
sidebar) is required to break the bond formed, the “trap” is a source of stochasticity (short-lived) 

or of heterogeneity (long-lived). Both types of variability have severe consequences if the transistor has 
only a few “lanes” of electron traffic. Each lane is about 5-nm wide—the distance at which a trapped 
electron’s electric field brings an approaching electron to a halt—the exact width depends on permittiv-
ity. Thus, the number of lanes drops below six when the transistor’s width shrinks below 30 nanometers 
(left side of Figure 1). With so few lanes, a smattering of “accidents” or “potholes” brings traffic to a 
complete halt, shutting off the current intermittently (short-lived traps) or permanently (long-lived traps), 
respectively.

To avoid an unacceptable increase in dead chips or computer crashes, the industry is in the process 
of switching from planar to 3D transistors (right side of Figure 1). This newfangled transistor’s “double-
decker freeway,” so to speak, made it possible to shrink its footprint—allowing more to fit on a wa-
fer—while increasing, rather than decreasing, the number of lanes. Hence, the likelihood that traffic 
halts, while not eliminated, is kept negligible. Consequently, the fraction of chips that die stays small 
and computer crashes occur at manageable rates. Going 3D, however, increased the fabrication process’s 
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complexity. As a consequence, in 2014, the number 
of transistors a dollar bought dropped for the very 
first time (Figure 2).1 This cost trend is for infor-
mation-processing chips, not for memory chips.

The challenge posed by single-lane nanotrans-
istors—the ultimate in scaling—will be extremely 
difficult to surmount with an all-digital approach 
to computing. A single-lane transistor is envis-
aged to have a cylindrical channel with the gate 
all around it. Given the channel’s surface area and 
the density of traps, which is measured to be 5.4 
× 10–4 nm–2,2 we can calculate the probability 
of such a transistor having one or more traps, in 
which case it will switch completely off intermit-
tently or even indefinitely. With a diameter of 5 
nm and a length of 5 nm, the surface area is 78.5 
nm2, and hence each single-lane transistor will 

have 0.042 traps, on average. As the distribution 
is Poisson,3 4.2 percent of these nanotransistors 
will have one or more traps. Stochastic switch-
ing or outright failure in this fraction of transis-
tors will be catastrophic for our present all-digital 
computing paradigm.

Analog Computation cum Digital  
Communication
The challenge nanotransistors present can be ad-
dressed by combining analog computation with digital 
communication like the brain does (Figure 3). Dig-
ital computers and brains both use digital signals 
to communicate, but do so differently. Because a 
computer’s digital computation can’t tolerate errors, 
a high cost is paid in energy to squelch stochastic-
ity and heterogeneity in transistors.4 In contrast, by 

Primer

Crossbar: connects each of N axon wires to each of N dendrite 

wires using an N × N array of synapse circuits. If connectiv-

ity is sparse, synaptic recourses are wasted—for instance, the 

wasted fraction is 1 − 1/√N when each axon only connects to √N 

dendrites. IBM’s TrueNorth chip uses a crossbar.1

Gaussian noise: its amplitude at any point in time is described 

by the Gaussian distribution, also known as the normal distribu-

tion. It is said to be white if amplitudes at any pair of times aren’t 

correlated and said to be additive if it’s simply added to the signal.

Memory chip: stores digital information in a crossbar arrange-

ment of memory cells, each of which typically hold 1 bit. This 

circuitry is now being fabricated on multiple planes—a step toward 

truly 3D circuit construction—relieving the pressure to shrink 

transistor footprint.

Mesh: connects each node to its nearest neighbors (north, 

south, east, and west in the 2D version). Copying isn’t possible in 

this routing network—it leads to deadlock—a situation analogous 

to gridlock in downtown Manhattan. TrueNorth uses a mesh.1

Permittivity: a measure of how much a medium resists the 

formation of an electric field. Using the permittivity of bulk silicon to 

calculate the electric field and equating the work done against it to the 

mobile electron’s thermal energy (at 25°C) yielded the 5-nm lane width. 

Accounting for the adjacent oxide’s lower permittivity increases it to 9.5 

nm,2 whereas accounting for charge-screening decreases it to 2 nm.3

Pipelining: an implementation whereby multiple operations 

overlap in their execution, thereby increasing throughput. It’s 

directly analogous to how a car assembly line works.

Poisson distribution: describes the probability of a certain num-

ber of discrete events happening in a fixed interval of time, or space, 

assuming these events happen independently. If the mean number is 

μ, the probability of one or more events happening is 1 − e−μ.

Scaling principles: a derivation from first principles of how a 

MOS transistor’s switching energy (and time) scales as its dimen-

sions shrink.4 Accordingly, shrinking dimensions by a factor of S = 

180 nm/28 nm while dropping voltages by a factor of U = 1.8 V/1 V  

reduces switching energy by a factor of SU2 = 20.8.

Thermal fluctuation: a deviation of a microscopic object’s 

energy from the population’s mean energy (kT = 4.1 × 10−21 J at 

25°C). The mean as well as the fluctuations increase in energy as 

temperature increases, such that a fluctuation of size E occurs 

with probability proportional to exp(−E/kT ).5

Voltage: the amount of energy per unit charge. Thus, if E 

joules of energy is expended trafficking m electrons, the cor-

responding voltage is E/(mq), where q is the electronic charge. 

This voltage increases as m drops with decreasing transistor size, 

reaching 0.25 V for 44 electrons and 0.5 V for 11 electrons when E 

= 220kT, at T = 25°C.
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using analog computation instead, which degrades 
gracefully, the brain tolerates errors in its digital 
communication. This tolerance enables it to activate 
just 20 stochastic, single-lane, nanoscale devices 
per elementary operation (Figure 4), which is just 
20 fJ/op. Thus, 20 W suffices to convey spikes to 
and graded potentials from each of the brain’s 1015 
synapses once per second. The tradeoffs between 
analog and digital signal choices in communication 
and computation can be quantified using informa-
tion theory and thermodynamics.

For communication, using many error-prone, 
low-energy, channels—as brains do—is more 
energy-efficient than using a few pristine, high-
energy, channels—as computers do—because the 
information conveyed decreases only logarith-
mically as signal energy decreases. In the 1940s, 
Claude Shannon came up with a quantitative mea-
sure for information and derived the capacity of a 
communication channel in bits of information per 
second.5 Each signal the channel conveys carries a 
certain number (b) of information bits. This num-
ber grows logarithmically (b = ½log2

 (1 + E/kT )) 
with the ratio of signal energy (E) to noise energy 
(kT, for thermal noise). This expression was derived 
for a channel with additive, white Gaussian noise.  
The number of signals conveyed per second grows 
linearly with bandwidth (B). Their product gives 
the channel capacity (C = Bb). Notice that, for E 
≫ kT, the number of bits a signal carries drops by 
only one when its energy decreases a little more 
than fourfold—for example, it drops from two 
to one when signal energy decreases from 15kT to 
3kT. Hence, energy efficiency (b/(E + kT )) doubles, 
increasing from ⅛ to ¼ bits per kT. Note, how-
ever, that two of these low-energy channels are 
needed to match the high-energy channel’s capac-
ity, taking up more space. The complete space-
energy-bandwidth tradeoff has been analyzed for 

Figure 3. Signal choices for communication and 
computation. Communication moves operands and 
results around while computation combines operands 
to produce results. Analog computers (upper left) use 
analog signals to compute as well as to communicate, 
whereas digital computers (lower right) use digital 
signals to compute as well as to communicate. In 
contrast, the brain (lower left) uses analog signals to 
compute and digital signals to communicate. Using 
analog signals to communicate and digital signals to 
compute (upper right) hasn’t been explored. (Digital 
computer source: US Army, public domain.)
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Figure 1. Planar and 3D transistors. In a planar 
transistor (left), electrons (red) travel along one side of 
a piece of silicon, from source (brown) to drain (brown). 
Their flow is controlled by voltage applied to the gate 
(black), which is insulated from the channel by a thin 
layer of silicon-dioxide (medium gray). In a 3D transistor 
(right), electrons travel along three sides of a “fin” 
protruding from the surface.
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Figure 2. Transistors per dollar. Manufacturing advances continue to shrink 
transistors’ dimensions over time (gate length given). Since 2014, however, a 
dollar no longer buys more transistors every year—or two—halting a half-century 
trend dubbed Moore’s law. (Source: the Linley Group, used with permission.)
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neuromorphic systems.6 Instructively, commu-
nication energy efficiency is maximized by trad-
ing most of our signal-to-noise ratio for energy 
savings—avoiding fine analog coding (Figure 5). 
A similar argument with respect to noise energy, 
which increases as the channel’s bandwidth in-
creases, reaches the same conclusion.7

Errors are highly probable when communication 
is maximally energy efficient, the regime in which the 
brain operates. An axon conveys all-or-nothing voltage 
spikes that fail to trigger ligand release at its terminals 
two-thirds of the time8 and carry little more than 1 
bit of information.9 In contrast, a digital computer’s 
binary voltage signals are corrupted no more than 
once every 10 days or so, even though each of its bil-
lion circuits performs a billion operations per second. 
To achieve such a low error rate (perr = 10−24), it must 
operate with signal energy E greater than 220kT; the 
number of electrons trafficked determines the voltage 
this amount of energy corresponds to. The probability 
that a thermal fluctuation causes an error is given by 
exp(−¼E/kT) for binary coding with a threshold of ½, 
which computers use, as an error occurs when the fluc-
tuation exceeds a quarter of the signal’s energy, E (see 
Figure 5, error probability).4 Consequently, the com-
puter’s communication energy efficiency is 60 times  

lower than the maximum possible (1/(ln(4)e) = 0.265 
bits per kT), which is achieved when E = (e − 1)kT = 
1.72kT and perr = 0.651.

For computation, using analog signals—as 
brains do—is more energy efficient at low precision, 
whereas using digital signals—as computers do—
is more energy efficient at high precision, because  

Figure 4. Elementary brain operations. (a) Buffeted by thermal energy, the ion channel opens and closes continually, 
passing a current resembling a random telegraph signal that switches between 0 and 5 pA. A brief pulse of voltage 
or ligand may cause the open probability to rise from close to zero to 0.2, decaying exponentially thereafter (at the 
population level) with a time constant of about 10 ms. Thus, the ion channel conducts an average of 1 pA across 
0.1 V and consumes 1 fJ. (b) Vesicles loaded with ligand fuse with the membrane of an axon’s terminal, a process 
successfully triggered about a third of the time by 0.1V deflections in its membrane potential that last about 1 
ms. These spikes subserve digital communication. The ligand diffuses across a synaptic cleft and binds to ion 
channels in a dendrite’s juxtaposed membrane, causing a graded deflection in its membrane potential. These graded 
potentials subserve analog computation. (c) In communicating a spike from its cell body throughout its axonal 
arbor to thousands of synapses and graded potentials from these synapses along dendritic branches to their cell 
bodies, only 20 ion channels are opened per synapse. As these ion-channels open briefly (10 ms) and spikes arrive 
infrequently (1 spike/s/synapse), only 100 of the 104 synapses a neuron receives are active at any time, passing 2 
nA in total.
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Figure 5. Energy efficiency of communication. A signal with energy 
E conveys b = ½log2(1 + E/kT ) bits of information with an energy 
efficiency of b/(E + kT ) bits per joule. For E > 3kT, it conveys more 
than 1 bit (analog); binary coding caps this to 1 bit (digital). For E < 
3kT, it conveys less than 1 bit (probabilistic) as noise frequently foils 
the signal (error probability). The brain operates in this regime.
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energy scales differently with precision in the ana-
log and digital cases.10,11 Consider low-pass filter-
ing a temporal signal in an analog fashion or in a 
digital fashion, that is, implementing the dynamic 
transformation τdx/dt + x(t) = c(t). An ideal ana-
log first-order, low-pass filter’s precision, defined as 
the ratio of (root-mean squared) signal amplitude to 
noise amplitude, is given by r = √(Eana/kT ), where 
Eana is the energy consumed to cycle its output volt-
age from the minimum value to the maximum val-
ue and back. This relationship arises simply because 
the energy consumed to generate a voltage signal 
scales quadratically with its amplitude. Hence, Eana 
= r2kT joules per cycle (Figure 6, analog). In con-
trast, a digital implementation requires a multiply- 
accumulate unit, which conducts a number of boolean 
operations every time step that grows quadratically  
with the number of data bits, b. For b = 16, it con-
sumes Emac = 0.17 and 0.87 pJ per multiply-accu-
mulate, respectively, for units fabricated in 28 and  
90 nm processes operating at 0.25 and 0.19 V (their 
minimum-energy points).12 Thus, if a cycle is di-
vided into m time steps, it consumes Edig = mb2E1 
joules per cycle, where E1 = Emac/162. Substituting b 
= log2(r + 1) yields Edig = m(log2(r + 1))2E1  (Figure 6,  
digital). For m = 50 and r = 255 (that is, b = 8), 
it consumes 2.1 pJ per cycle (28-nm process). For 
comparison, the ideal analog implementation con-
sumes 0.26 fJ per cycle—8,000 times less. In this 

case, comparing an actual digital implementation 
with an ideal analog implementation is justified be-
cause, in practice, analog circuit designers come to 
within a factor of two or three of the ideal—the so-
called noise efficiency factor.13

Analog computation consumes much less en-
ergy at low precision because it uses much fewer 
primitives than digital computation. In our low-
pass filter example, it uses just two physical primi-
tives: a capacitor and a transconductance amplifier 
built with as few as five transistors. In contrast, 
digital uses 56 logical primitives—three-input, 
two-output Boolean functions—each built with 
30 transistors. Nevertheless, analog’s energy con-
sumption, which scales quadratically with preci-
sion, eventually overtakes digital’s, which scales 
logarithmically. The crossover point has migrated 
to the left over the years—as the digital curve 
moved down with miniaturization—favoring digi-
tal over analog computation for more and more ap-
plications (see Figure 6). However, this migration 
has stalled due to digital computation’s inability 
to work with transistors with a few electron-traffic 
lanes—widening a transistor’s channel increases 
the energy required to switch it on.

Here’s how we neuromorphs plan to combine 
analog computation with digital communication 
to address the nanotransistor challenge. We have a 
five-point plan: first, implement computation with 
subthreshold analog circuits14,15 to consume close 
to the theoretical minimum energy. Second, imple-
ment communication with asynchronous digital 
circuits16,17 to be robust to transistors that shut off 
intermittently. Third, distribute a computation 
across a pool of silicon neurons to be robust to tran-
sistors that shut off intermittently or permanently. 
Fourth, communicate spikes from pool to pool at a 
rate that scales linearly with the number of neurons 
per pool. And, finally, encode continuous signals 
in these spike trains with precision that scales lin-
early with the number of neurons per pool. With 
the successful execution of this plan, neuromorphic 
systems will achieve better energy efficiency than 
all-analog or all-digital solutions across a five-de-
cade precision range (Figure 6, neuromorphic). This 
efficiency offers an attractive solution for numerous 
embedded computing applications that are energy 
constrained, ranging from autonomous miniature 
robots18 to implantable neural prostheses.19

Before describing how neuromorphic com-
puting can achieve linear scaling of precision with 
neuron count, let’s review the progress made to-
ward scaling interpool communication linearly 

Figure 6. Energy cost of computation. Starting at the thermal limit, 
two decades above, and seven decades above, respectively, energy 
increases quadratically, linearly, and logarithmically with precision 
(signal amplitude/noise amplitude) for analog, neuromorphic, and digital 
computation. This scaling of power per unit bandwidth to low-pass 
filter a signal predicts that analog is the most energy-efficient at low 
precision (below 102), neuromorphic at intermediate precision (between 
102 and 5 × 107), and digital at high precision (above 5 × 107). The 
neuromorphic curve assumes neuron count, n, scales linearly with 
precision, r, starting with n = 50 at r = 1, and that a silicon neuron 
consumes twice as much energy as an ideal analog low-pass filter.
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with neuron count and toward performing arbi-
trary computations with pools of silicon neurons. 
After three decades of effort, neuromorphs have 
gotten interpool communication to scale linearly 
with neuron count at scales that require memory 
and computation to be distributed over significant 
distances. They did this by using readily available  
CMOS (complementary metal-oxide-semiconductor)  
technology operating in mixed analog-digital 
mode. And they’ve developed a method to map sys-
tems described by arbitrary linear or nonlinear dif-
ferential equations onto networks of silicon neurons 
that’s tolerant to heterogeneity and stochasticity. 
And, finally, they have proven that this method is 
scalable by using it to build an artificial brain that 
perceives, cogitates, and acts. They now seek to en-
code continuous signals in silicon neurons’ spike 
trains such that precision scales linearly with the 
number of neurons, rather than with its square root.

Neurogrid: Organizing Physical  
Primitives at Scale
A decade ago, in 2006, my group embarked on 
a project to scaleup neuromorphic systems by 
three orders of magnitude.20 Through arguments 
presented in the previous section, I had reached 
the conclusion that nanotransistors provide bet-
ter physical computational primitives than logi-
cal ones. At that time, however, we neuromorphs 
hadn’t conceived a feasible strategy to organize our 
physical computational primitives—analog silicon 
neurons and synapses—at a consequential scale. 
In the early 1990s, to circumvent communication 
limits imposed by a chip’s planar wiring layout, we 
invented a pragmatic scheme to share a small set 
of wires among a population of silicon neurons in-
stead of dedicating a wire to each silicon neuron’s 
axon. Sharing is possible because signals travel 
much faster along wires than along axons. Howev-
er, the address-event bus, as this scheme was called, 
had reached its limits.

The address-event bus had been successfully 
used to build networks that had from a few hun-
dred thousand21 to a few million22 synaptic con-
nections. When a neuron spikes, an address unique 
to it is encoded by a logic circuit called an arbi-
ter. This address is then sent on a digital bus to a 
random access memory (RAM), where it is used to 
look up addresses of neurons this neuron is con-
nected to. These addresses are decoded by another 
logic circuit called a selector that triggers synaptic 
input to those neurons.23,24 The RAM’s maximum 
read frequency, however, limits the number of syn-

aptic connections to a few million—even when the 
RAM is placed on chip, right next to the silicon 
neuron array.22 This number is for a 14-year-old 
fabrication process (180 nm); it would be an order-
of-magnitude larger for a state-of-the-art one.

The fundamental problem is that we were traf-
ficking addresses at a rate that scales as the product 
of the number of neurons in a pool and the number 
of synaptic connections each neuron makes. This 
rate is proportional to nPN when each neuron in 
an N-neuron pool connects to n neurons in each 
of P other N-neuron pools. As both n and P appear 
to scale as √N in the brain,25 it is as if the address-
event bus is emulating a nerve with a number of 
axons that grows as N2. We reduced the traffic by 
emulating two organizational principles the cortex 
uses to scale its axon count as N (linear scaling): 
overlapping dendritic trees within a pool of neu-
rons and hierarchical axonal arbors between pools 
of neurons (see the “Mimicking Overlapping Den-
drites and Hierarchical Axons” sidebar).

Emulating the cortex’s overlapping dendritic 
trees and hierarchical axonal arbors enables Neu-
rogrid to accommodate columnarly organized 
cortical networks with thousands of synaptic con-
nections per neuron. Columnar organization de-
scribes the expedient manner in which neurons 
are arranged and interconnected in some corti-
cal areas.26 In sensory cortical areas, which have 
been extensively studied, neurons respond to cer-
tain stimuli with higher spike rates. For instance, 
when shown bars of different orientations, neurons 
in visual cortex respond most strongly to a specific 
orientation. Their orientation preference changes 
gradually as we move across the cortical sheet (x, y) 
but not along its depth (z).27 This lack of change 
with depth led to the notion that cells in a column 
cooperate to process the stimulus. It’s true that 
a column’s cells prefer the same stimuli, but they 
don’t have the same physiology, nor do they have 
the same anatomy. There are distinct cell types 
connected in distinct wiring patterns. This cellu-
lar specialization led scientists to hypothesize that 
a canonical cortical microcircuit instanced in each 
column mediates interactions with areas at lower, 
the same, or higher levels of the cortical hierarchy.28

Neurogrid’s software stack maps each corti-
cal area onto a group of Neurocores spanned by 
a subtree of its interchip-routing network. Cir-
cular pools of neurons at corresponding (x, y) lo-
cations on these Neurocores’ 2D silicon neuron 
arrays model a column, using as many Neurocores 
(addressed by z) as there are distinct cell types  



THE END OF MOORE’S LAW

20 March/April 2017

(Figure 7a). Intercolumn (primary) axonal branch-
es are routed by using the spiking neuron’s ad-
dress (zs, xs, ys) to retrieve the target columns’ 
centers (xc, yc) —along with the path to the span-
ning subtree’s root—from an o� -chip RAM (on a 
daughterboard).29 � is RAM is programmed to 
replicate the cortex’s preferred-feature-speci� c in-
tercolumn connectivity. Intracolumn (secondary) 

axonal branches are routed by copying the spiking 
neuron’s layer (zs) together with the target columns’ 
centers (xc, yc) to all of the subtree’s Neurocores, in-
cluding ones the axon doesn’t connect to.29 � ese 
unneeded copies are � ltered based on a bit stored 
in an on-chip RAM. � e same entry applies to all 
(xc, yc) locations—the decision to � lter or deliver de-
pends only on which layer (zs) the axon originates 

Mimicking Overlapping Dendrites and Hierarchical Axons

Overlapping dendritic trees extend dendritic branches to 

meet incoming axons, eliminating the axons’ terminal 

branches (Figure A1).1 This strategy is effi cient because higher-

level dendritic branches recursively aggregate signals from more 

and more axons. Neurogrid emulates this organizational principle 

by interposing a resistive grid—instead of a crossbar—between 

its synaptic circuits and its silicon neurons’ cell bodies, cutting 

traffi c by a factor equal to the number of neighboring neurons 

(n) that thereby receive input (Figure A2, n = 3).

Hierarchical axonal arbors minimize wiring by recursively 

replacing p long branches with a single long branch that feeds 

p short branches, thereby amortizing the energy expended to 

communicate across the long branch over many synapses 

(Figure A3, p = 2).1 Neurogrid emulates this organizational prin-

ciple by interconnecting its silicon neuron pools with a tree-like 

routing network2—instead of a mesh—cutting traffi c at the tree’s 

root by a factor equal to the number of copies (P) that arrive at the 

tree’s leaves (Figure A4, P = 4). These two factors compounded 

cut traffi c nP-fold, thereby achieving linear scaling.

Neurogrid actually realizes the corresponding nP-fold increase 

in throughput for columnarly organized cortical networks. To see 

this, consider routing a spike to K columns, copying it to each of 

those column’s L layers, and triggering postsynaptic potentials in 

n-neuron pools (that is, neighboring neurons) in P of those layers. 

In this case, KPn synaptic connections are made by looking up just 

K entries in each of L + 1 RAMs. That is, instead of looking up 

addresses at a rate of K × Pn × Lnfspk = KPLn2fspk, where fspk is the 

mean spike rate, they’re looked up at a rate of KLnfspk (nP times 

slower). For example, with K = 10, L = 6, n = 100, and P = 5, each 

RAM is read at the rate of 6,000 fspk instead of 3,000,000 fspk. 

Hence, a 500-fold increase in throughput is realized by pipelining
the fi rst RAM read with the remaining six, which occur concurrently. 

Thus, moderate improvements in the RAM’s maximum read fre-

quency, and in the digital bus’s signaling rate,3,4 suffi ce to increase 

the number of synaptic connections from millions to billions.
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Figure A. Mimicking overlapping dendrites and hierarchical axons. 
(1) Overlapping dendritic trees (bottom) eliminate axons’ terminal 
branches (top). (2) Mimicking them with a resistive grid allows 
three address-events (top) to be replaced with one (bottom). (3) 
Hierarchical axonal branches minimize axonal arbors’ lengths 
(right versus left). (4) Mimicking them with routers enables four 
address-events (left) to be recreated by copying one (right).
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from—thanks to columnar organization. Finally, 
pool-spanning dendritic branches—arborizing over 
a circular disc centered at (xc, yc)—are realized us-
ing the (2D) resistive grid. A transistor-based imple-
mentation that elegantly exploits current flow by 
diffusion in the subthreshold region makes it pos-
sible to adjust the spatial decay rate electronically to 
match the column’s radius.30

Neurogrid simulates such cortical models with 
up to a million neurons and billions of synapses in 
real time, the first system ever to do so. To simu-
late a cortical model on Neurogrid, computational 
neuroscientists specify properties of ligand- and 
voltage-gated ion channel populations31,32 and of 
spike generation33 for neurons in each of the mod-
el’s layers, as well as their intercolumn connections, 
intracolumn connections,29 and dendritic radius30 
(Figure 7b). They code up this information in a Py-
thon script that Neurogrid’s software stack parses 
to configure its Neurocores. To run a model with 1 
million neurons firing 10 spike/s, on average, con-
nected by 8 billion synapses, Neurogrid’s 16 mixed 
analog-digital Neurocores consume 3.6 W alto-
gether,6 or 45 pJ per synaptic activation—a useful 
measure of energy efficiency—as the rate of both 
computation and communication nominally scales 
with the product of the average spike rate and the 
total number of synapses.

Neurogrid’s energy efficiency matches that of a 
board with 16 of IBM’s all-digital TrueNorth chips, 
even though these chips were fabricated in a process 
40 times denser.34 The IBM board consumes 2.5 W 
to run a model with 16 million neurons firing 50 
spike/s, on average, connected by 1 billion synapses,35  
which is 50 pJ per synaptic activation. Neither 
number—the TrueNorth board’s or Neurogrid’s—
includes power consumed by the field programma-
ble gate arrays (FPGAs). When the 40-fold density 
difference between the processes TrueNorth (28 
nm) and Neurogrid’s Neurocore (180 nm) were fab-
ricated in is accounted for using scaling principles, 
Neurogrid is 23 times more energy efficient.

The secret to scaling interpool communica-
tion linearly with neuron count is in emulating 
the cortex’s hierarchically branching wiring pat-
terns. Hierarchical organization amortizes the cost 
of more energetically expensive memory lookups 
and address-event communications over greater 
numbers of synapses so as to minimize the aver-
age energy consumed per synaptic activation. This 
organizational principle recognizes that energy 
consumption is proportional to how far informa-
tion travels: reading data from a large memory or  

moving it over a long distance is much more expen-
sive than adding one number to another inside a 
logic circuit. By adopting this organizational prin-
ciple, Neurogrid organizes its networks of silicon 
neurons scalably, and thereby simulates large-scale 
cortical models energy efficiently. While it worked 
well in that capacity, we presently lack a method 
that maps arbitrary computations onto the cortex’s 
myriad cell types, canonical microcircuit, and co-
lumnar organization.

Performing Arbitrary Computations  
with Physical Primitives
My group recently developed a procedure to map 
arbitrary dynamical systems onto networks of spik-
ing silicon neurons in collaboration with Chris 
Eliasmith’s group at the University of Waterloo. 
In 2003, Eliasmith and Charles Anderson made a 

Figure 7. Neurogrid. (a) Cell layers (green, lemon, and orange) are 
mapped onto Neurocores, which are connected in a binary tree network. 
Inter- and intracolumn connections are programmed in off- and on-chip 
RAM, respectively. (b) A neuron has four ligand-gated and four voltage-
gated ion-channel populations, a dendrite, and a cell body, all modeled 
using subthreshold analog circuits (color coded; see cell cartoon). 
Neurocore has 65,536 silicon neurons (256 × 256 array), as well as 
spike routers implemented using asynchronous digital circuits. Neurogrid 
holds 16 interconnected Neurocores.
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radical breakthrough by throwing out most of the 
cortex’s complicated anatomy and physiology. Th ey 
identifi ed a minimal set of neuronal properties—
linear exponentially decaying synaptic responses 
and heterogeneous nonlinear somatic responses—
suffi  ciently powerful to approximate any linear or 
nonlinear dynamical system.36 Th at is, systems de-
scribed by multidimensional diff erential equations 
of the form dx/dt = f(x(t),c(t)), where x and c are 
vectors of continuous signals and f is any vector-
valued function. Th eir theory, the Neural Engi-
neering Framework (NEF), provides a recipe that 
enables us to derive the weights applied to synaptic 
inputs (analog computation) triggered by spikes 
that silicon neurons emit (digital communication; 
see the “Neural Engineering Framework” sidebar).

We use the NEF to confi gure Neurogrid to 
perform a desired computation in a manner akin 
to how a logic synthesis tool confi gures an FPGA. 
Th is tool specifi es input-output functions (truth 
tables) and connectivity (closed switches in a wir-

ing matrix) of the FPGA’s logical computational 
primitives (logic gates). Similarly, the NEF takes 
the physical computational primitives of hetero-
geneous spiking neurons and interconnects them 
with programmed weights to perform a desired 
computation. Only the connections among Neu-
rogrid’s silicon neurons are fi eld programmable, 
however. Th e input-output functions of its analog 
silicon neurons (known as tuning curves) aren’t 
programmable. Fortuitously, the NEF doesn’t re-
quire programmable tuning curves. It only requires 
them to be nonlinear and heterogeneous (that is, 
diff erent from each other).

In Neurogrid, the NEF harnesses nonlinear-
ity in the silicon neurons’ spiking mechanism and 
heterogeneity in this behavior introduced by tran-
sistor variability. Th e degree of heterogeneity is 
such that silicon neurons fed the same input cur-
rent spike at extremely diff erent rates (Figure 8). 
Hence, setting neuron i’s input current to i

Te x
yields a tuning curve, a ( ),i i

Te x  that’s diff erent from 

The neural engineering framework

In the NEF, a neural ensemble’s spike trains encode a vector 

(denoted by x) of D continuous signals. Linear or nonlinear 

static transformations of this vector (defi ned by f) are linearly 

decoded from the ensemble’s spike rates ai (Figure B1). To 

accomplish this decoding, the spike rates—estimated by fi lter-

ing the spike trains with exponentially decaying synapses—are 

weighted by D-dimensional decoding vectors (labeled di) as-

signed to each neuron and summed. The resulting vector of D 

continuous signals (labeled f(x)) is encoded in the next ensem-

ble’s spike activity by taking its inner product with D-dimensional 

encoding vectors (labeled ej) assigned to that ensemble’s neu-

rons. For dynamic transformations (defi ned by dx/dt = f(x(t),c(t)), 

this vector is encoded in the very same ensemble’s spike activity, 

forming a recurrent network. Whereas decoding vectors are 

chosen to approximate the desired transformation as closely as 

possible, encoding vectors are chosen randomly from a uniform 

distribution on the D-dimensional unit-hypersphere.1 Note that 

decoding vectors ddM( )i  for any linear transformation (defi ned by 

M, a D × D matrix) could be expressly obtained from decoding 

vectors dI( )i  for the identity transformation =d MdM M( ).i i
1

To illustrate the NEF network’s advantages, imagine convert-

ing it into a conventional neural network (Figure B2). Connect each 

neuron in the fi rst ensemble directly to each neuron in the second 

ensemble with a synaptic weight equal to the inner product of the fi rst 

neuron’s decoding vector with the second neuron’s encoding vector 

= Te dw( ).ij j i  This weight matrix transforms the spike activity pattern 

in the fi rst ensemble, representing an input vector, directly into a spike 

activity pattern in the second ensemble, representing the specifi ed 

transformation of that input vector. However, this approach uses 

N2 synaptic weights versus the NEF’s 2ND decoding and encoding 

vector components. Typically, N/D ≈ 50 neurons per dimension, so 

the conventional network uses 25 times more memory if its synaptic 

weights have the same number of bits as the components of the NEF 

network’s decoding and encoding vectors. Conversely, an NEF network 

whose decoding and encoding vector components have 8 bits would 

use the same amount of memory as a conventional network whose 

synaptic weights have 0.32 bits (8 × 2ND/N2). Even more impressive, 

for a linear transformation (M), a D × D matrix replaces an N × N one, 

resulting in 2,500-fold compression ((N/D)2).

Reference
1. C. Eliasmith and C.H. Anderson, Neural Engineering: Compu-

tation, Representation, and Dynamics in Neurobiological Sys-
tems, MIT Press, 2003.

figure B. NEF network and its equivalent two-layer network.
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neuron j’s—even if neuron j’s encoding vector is 
the same as neuron i’s (ej = ei). The NEF finds a 
weighted sum of these measured tuning curves 
that closely approximates the desired transforma-
tion, f(x). Specifically, it solves for the decoding 
vectors, di, that minimize the mean squared error, 
{ }Σ −d e x f xa ( ) ( ) .i i i i

T 2

So far, we’ve used the NEF to configure Neu-
rogrid to do two things: perform basic mathematical 
operations and control a robot arm. To gain experi-
ence using the NEF with Neurogrid, we configured 
4,000 of a Neurocore’s silicon neurons to perform 
three mathematical operations on scalars: identity, 
squaring, and integration.37 This work demonstrat-
ed for the very first time a procedure to map arbi-
trary linear or nonlinear dynamical systems onto 
neuromorphic chips. Next, in collaboration with 
Oussama Khatib’s group at Stanford University, we 
configured 1,280 of a Neurocore’s silicon neurons 
to control a three-degrees-of-freedom robot arm in 
a 3D task space (Figure 9).38,39 In both cases, we 
implemented the NEF’s linear decoding by con-
figuring a FPGA on Neurogrid’s daughterboard to 
deliver spikes to a target with a probability propor-
tional to the corresponding encoding or decoding 
vector component.40 Our implementation proved  
robust to the stochasticity that results from randomly  
dropped spikes as well as to the heterogeneity that 
results from transistor variability.

Brains in Silicon: Spaun and Neurogrid 
Are the NEF’s minimalist neuronal properties—
linear exponentially decaying synaptic responses 
and heterogeneous nonlinear somatic responses—
sufficient to build systems capable of complex 
behaviors? Eliasmith’s group addressed this ques-
tion in 2013. A decade after proposing the NEF, 
they used it to build Spaun, the first behaving 
model brain that used spiking neurons.41,42 Spaun 
demonstrates convincingly that NEF-synthesized 
spiking neural networks can perform visual, cog-
nitive, and motor tasks—involving statistical 
inference, symbolic manipulation, and dynami-
cal control, respectively—and do so at full scale  
(Figure 10). Spaun has 3.9 million neurons and 
123 billion synapses. Running this scale of spiking 
neural network on commercially available digital 
hardware leaves a lot to be desired when it comes to 
real-time operation and energy efficiency, however.

Spaun currently runs 23 times slower than real 
time on a Nvidia Titan X GPU. This is an impres-
sive achievement, given that four years ago it ran 
9,000 times slower than real time on a PC. Elia-

Figure 9. Robot control with Neurogrid. Desired end-effector 
force, f = [fx fy fz]T, and gravitational forces, −g (canceled by 
negation), are related to applied joint torques, Γ = [Γ0 Γ1 Γ2]

T,  
by Γ = −ΣmJ f J g.i ix

T
com
T

i
 The Jacobians, Jx and J ,comi

 relate 
changes in the robot arm’s three joint angles (q = [q0 q1 q2]

T)  
linearly to changes in its end-effector’s position (xee) and 
its i-th link’s center of mass’ position x( ):comi

 dxee = Jxdq 
and =x J q.com comi i

d d  Note that Jx and Jcomi
 are nonlinearly 

related to q (for example, Jx0,0 = − 0.35sin(q0)cos(q2)). 
The torque–force relationship was decomposed into a 
set of five 3D functions, linear combinations of which 
yield the individual joint-torques. These functions are 
decoded from five 256-neuron pools. Each pool’s input is 
a unique combination of joint angles (q0, q1, q2) and force-
components (fx, fy, fz)—follow the links.
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Figure 8. Silicon-neuron heterogeneity. Neurogrid’s analog 
silicon neurons have similarly shaped current-to-spike-rate 
curves but start firing at wildly different input current levels, 
due to transistor variability. As a result, the distribution of 
spike rates across this 100-neuron sample is extremely 
broad. The input current is normalized such that a silicon 
neuron without any variability would start firing at 0.5.
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smith’s group ported Nengo, their simulator for 
NEF-synthesized spiking neural networks, onto 
GPUs to exploit their parallelism.43 The Titan X’s 
3,072 cores yielded a 390-fold speed-up. Even more 
impressive, they realized this speed-up while con-
suming energy at about the same rate as a PC—a 
two orders-of-magnitude improvement in energy 
efficiency. Assuming speed increases linearly, 23 
Titan Xs could run Spaun in real time, consuming 
23 × 250 W = 5.75 kW, whereas four Neurogrid 
boards could run Spaun in real time, consuming 
4 × 3.6 W = 14.4 W—400 times less.6 It isn’t as 
simple as slapping these four boards—and their 
daughterboards—together, however.

While Spaun’s decoding vectors, encoding vec-
tors, and transform matrices will fit on just two 
Neurogrid daughterboards (each has 32 Mbytes), 
connecting each of Spaun’s 61,100 ensembles to 316 
others (on average) exceeds these boards’ routing 
capacity. Thanks to the NEF, Spaun’s 123 billion 
synaptic weights are compressed 2,650-fold—re-
placed by 8.6 million, 16.1 million, and 21.7 million 
encoding vector, decoding vector, and transform 
matrix components, respectively. Thus, at 8-bit 
resolution, they only occupy 46.4 Mbytes of RAM. 
However, Spaun’s 3.9 million neurons fire a few 
hundred spikes per second each, on average, whereas 
the routing capacity of Neurogrid’s Neurocores and 
its daughterboard’s off-the-shelf chips was designed 
to accommodate up to 10 spikes per second per neu-
ron—a rate chosen to match the brain’s neurons.

To increase routing capacity dramatically, my 
group is migrating our mixed analog-digital cir-
cuit designs from Neurogrid’s decade-and-half-old 
fabrication process (180 nm) to a state-of-the-art 
CMOS process. This migration will enable us to 
increase the number of neurons by over an order 

of magnitude, while at the same time increasing 
the amount of RAM on a Neurocore-sized chip 
from 512 bytes to 16 Mbytes—sufficient to store 
decoders, encoders, and transform matrices on 
chip. This on-chip RAM will cycle 50 times faster 
than Neurogrid’s daughterboard (1 GHz versus 
20 MHz). Compounding this speed-up with per-
forming decoding concurrently in each Neurocore 
will increase throughput by close to three orders of 
magnitude and energy efficiency by two orders of 
magnitude. When these energy savings are com-
bined with energy savings from routing spikes 
among (up to 10 million) neurons without going 
off-chip, and from encoding continuous signals 
in their spike trains efficiently, a 4 million-neuron 
network will consume just 0.14 W. Thus, instead 
of consuming as much electricity as four hairdryers 
to run in real time on 23 Titan Xs, Spaun can run 
for a whole day on a single 1.5-V, 2,400-mAHr AA 
battery.

Promising New Directions: Efficient  
Spike Coding
Novel neural engineering frameworks for approxi-
mating arbitrary linear or nonlinear dynamical sys-
tems with networks of spiking neurons are being 
developed that encode information with spikes ef-
ficiently, spiking at rates comparable to our brain’s 
neurons. Minimizing the number of spikes used to 
transmit a signal minimizes the amount of energy 
consumed to communicate it as well as to lookup 
the synaptic (or decoding) weights applied to it, 
thereby reaping energy savings above and beyond 
those realized by amortizing the costs of more en-
ergetically expensive communications and memory 
lookups over greater numbers of synapses. With 
these new frameworks, a pool of neurons encodes 

Figure 10. Spaun performs a question-answering task. Its 220,000-neuron visual hierarchy recognizes digits presented to its 28×28-pixel 
retina (left panel, thought bubble with “5”). Its 154,000-neuron prefrontal cortex stores this query (middle panel, bubble with “5”) while its 
1 million-neuron dorsolateral prefrontal cortex stores a list of digits presented afterwards (middle panel, bubble with “9 4 7 3 0”). Spaun is 
then asked to infer the queried digit’s position in the list (“K” question) or to recall which digit is in the queried position (“P” question), the 
case in this trial. Its 500,000-neuron ventrolateral prefrontal cortex applies the right transformation (right panel, bubble with “TRANS2”). 
Spaun then writes down the correct answer (“0”) by using its 35,000-neuron motor cortex to control its arm.
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a signal with precision that scales linearly with 
its total spike rate—and hence linearly with neu-
ron count—a dramatic improvement over current 
frameworks’ square-root scaling. 

With independent spiking codes, as in the 
NEF for instance,36 precision scales as the square 
root of the total spike rate. While individual neu-
rons’ spike trains are periodic, when their spike 
trains are merged (superposed) during decoding 
the resulting spike train looks Poisson (Figure 
11a). That is, for large neuron count, n, and low 
individual spike rates, f ≪1/T, the variance of spike 
counts in T-second time bins becomes equal to the 
mean count. Hence, precision, defined as the mean 
over the standard deviation, is proportional to the 
square root of the mean. Since the mean is propor-
tional to the total spike rate, to double precision, 
we must quadruple the spike rate. And therefore, 
as energy is consumed at a rate proportional to the 
total spike rate, we recapitulate classic analog com-
putation’s quadratic increase in energy with preci-
sion (see Figure 6, analog).

Recently developed coordinated spiking 
codes promise to scale precision linearly with 
total spike rate. With coordinated spiking, fast, 
strong synapses are introduced between neu-
rons.44,45 While these synapses make individual 
neurons’ spike trains look Poisson, when these 
spike trains are merged during decoding, the re-
sulting spike train looks periodic (Figure 11b). 
As a result, the variance of spike counts remains 
constant as the spike rate increases. Hence, pre-
cision is proportional to the mean count, which 
itself is proportional to the total spike rate (λ). 
Thus, spike rate—and hence energy—scales lin-
early with precision, outperforming classic analog 
computation (see Figure 6; compare neuromor-
phic with analog). For example, controlling a 
robot joint with precision λ/σ = 102 and latency 
τ = 10 ms using independent spiking requires 
500,000 spike/s while controlling it using coor-
dinated spiking requires only 2,900 spike/s—173 
times lower. To obtain this result, I set σ2 = λ/
(2τ) for independent spiking and σ2 = 1/(12τ2) 
for coordinated spiking, which assumes their 
merged spike trains are Poisson and periodic, re-
spectively, and solved for λ in each case.

Neuromorphs are only just now beginning to 
explore realizing coordinated spiking neural net-
works with mixed analog-digital CMOS circuits. 
Toward this end, with its four ligand-gated ion 
channel populations, its conductance-based syn-
apses, and its spatially decaying resistive grid, Neu-

rogrid already supports the multiple synaptic time 
constants and saturating dendritic branches that 
coordinated spiking networks require (see the “Co-
ordinated Spiking Network” sidebar). When these 
networks’ promise of linear spike rate scaling with 
precision is realized in neuromorphic hardware, the 
number of silicon neurons per pool will scale linear-
ly with precision, yielding better energy efficiency  
than all-analog or all-digital solutions across a five-
decade precision range (see Figure 6; compare neu-
romorphic with analog and digital).

After three decades of effort, we neuromorphs 
are on the cusp of achieving the full prom-

ise of combining analog computation with digital 
communication like the brain does, a goal that 
requires us to realize linear—rather than square-
root—scaling of precision with pool size. When we 
succeed, neuromorphic computing will offer great-
er energy efficiency than all-analog or all-digital 
computing. Realizing this goal will provide an at-
tractive solution for numerous energy-constrained 
applications of embedded computing, ranging 
from autonomous miniature robots to implantable 
neural prostheses.  
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Figure 11. Encoding continuous signals with spike trains: (a) independent 
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variance is 5.2 times lower when spiking is coordinated.
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Coordinated spiking network

This network approximates the nonlinear dynamical system dx/

dt = − λxx(t) + tanh(Ax(t)) + c(t)  by incorporating two cortical 

features that the NEF threw out. First, in the cortex, time constants 

of both excitatory and inhibitory synapses span a vast range (1 ms 

to 100 ms). Coordinating spiking calls for a set of synapses with an 

extremely short—ideally instantaneous—time constant to update 

the neurons’ membrane potentials immediately after each spike. 

These fast synapses’ weights are chosen to ensure that a neuron’s 

membrane potential tracks the error’s projection onto its decoding 

vector (denoted by Γi) through negative feedback.1 The error is a 

vector of differences between the continuous signals (x) and their 

approximations (∑iΓiai). These fast synapses are in addition to the 

slow ones that estimate spike rates (ai) by fi ltering spike trains with 

a run-of-the-mill time constant—just like the NEF does. Second, 

in the cortex, when a dendritic branch receives too much synaptic 

input, its membrane potential saturates. Approximating nonlinear 

dynamical systems calls for a nonlinearity to be applied to the 

continuous signals that an ensemble’s spike activity encodes. While 

NEF networks exploit spike generation for this purpose, coordinated 

spiking networks exploit dendritic saturation (modeled by the tanh).2

A linear transformation chosen to best approximate the desired 

nonlinear dynamical system is applied fi rst (specifi ed by A). In the 

original formulation,2 it was applied afterward, which requires the 

cell bodies to weigh a dendrite’s saturated signal differently from its 

nonsaturated (that is, linear) signal. The resulting approximation’s 

precision scales linearly with the network’s total spike rate when fast 

synaptic coupling is instantaneous. We don’t yet know how fast this 

coupling must be to preserve linear scaling.

As it turns out, the differences between a coordinated spiking 

network (Figure C) and an NEF network (see the previous sidebar) are 

subtle. They look similar at fi rst glance because there is a one-to-one 

correspondence between the former’s dendrites’ signals and the lat-

ter’s adders’ signals—both correspond to the D continuous signals (x). 

However, there are two subtle differences. First, whereas a neuron’s 

contribution to an adder’s signal (specifi ed by di) is chosen to best 

approximate a desired transformation (defi ned by f), a cell body’s 

contribution to a dendrite’s signal (specifi ed by Γi) is chosen randomly. 

Second, whereas the fraction of an adder’s signal delivered to a neuron 

(specifi ed by ei) is chosen randomly, the fraction of a dendrite’s signal 

delivered to a cell body (specifi ed by Γi on the fi gure’s right side) is 

chosen to match the fraction of this cell body’s signal delivered to that 

same dendrite (specifi ed by Γi on the fi gure’s left side). In the fi gure, x, 

Γi, and c are 2 × 1 while A is 2 × 2.
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