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Abstract Smooth and coordinated motion requires pre-
cisely timed muscle activation patterns, which due to bio-
physical limitations, must be predictive and executed in
a feed-forward manner. In a previous study, we tested
Kawato’s original proposition, that the cerebellum imple-
ments an inverse controller, by mapping a multizonal
microcomplex’s (MZMC) biophysics to a joint’s inverse
transfer function and showing that inferior olivary neuron
may use their intrinsic oscillations to mirror a joint’s oscil-
latory dynamics. Here, to continue to validate our mapping,
we propose that climbing fiber input into the deep cerebel-
lar nucleus (DCN) triggers rebounds, primed by Purkinje
cell inhibition, implementing gain on IO’s signal to mirror
the spinal cord reflex’s gain thereby achieving inverse con-
trol. We used biophysical modeling to show that Purkinje cell
inhibition and climbing fiber excitation interact in a multipli-
cative fashion to set DCN’s rebound strength; where the for-
mer primes the cell for rebound by deinactivating its T-type
Ca2+ channels and the latter triggers the channels by rapidly
depolarizing the cell. We combined this result with our con-
trol theory mapping to predict how experimentally injecting
current into DCN will affect overall motor output perfor-
mance, and found that injecting current will proportionally
scale the output and unmask the joint’s natural response as
observed by motor output ringing at the joint’s natural fre-
quency. Experimental verification of this prediction will lend
support to a MZMC as a joint’s inverse controller and the role
we assigned underlying biophysical principles that enable it.
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1 Introduction

Smooth and coordinated motion requires precisely timed
motor commands to drive our musculoskeletal system, yet
despite all evidence suggesting that this is the cerebellum’s
responsibility, the mechanisms by which it does this remain
unknown. Even a simple task like reaching requires precise
orchestration of every muscle within your arm, each contrib-
uting precisely metered torques around the shoulder, elbow,
and wrist that together generate a smooth hand trajectory
that stops on target. Muscle’s slow and viscoelastic response
together with long feedback delay, due to axonal conduc-
tion, forbid improvising during motion execution; instead,
this precise muscle activation sequence must have been pre-
viously rehearsed, and must be executed in a feed-forward
fashion. Disturbing the cerebellum makes motion erratic and
imprecise (Ghez and Fahn 1985), suggesting that it is its
responsibility to properly time motor commands; however,
how its biophysics interact to learn and generate these pre-
cisely-timed motor commands remains a mystery.

Cerebellar models lack sufficient biophysical detail to
explain how the rich cellular dynamics, expressed by all cell
types within the olivo–cerebellar complex, generate precisely
timed motor commands. The earliest Marr (1969) and Albus
(1971) models where mostly inspired by the anatomical
connectivity patterns, considering neurons as instantaneous
threshold elements that responded to sensory context, such
that motions were sequenced by changing sensory input due
to the motion itself. Fujita (1982) proposed that Golgi cells
delay sensory signals jumping from mossy fibers to parallel
fibers, enabling Purkinje cells (PC) to learn spatiotemporal
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patterns; this idea was expanded by Barto and colleagues’
into the Adjustable Pattern Generator model (Berthier et al.
1993), which incorporates the effects of network dynam-
ics but still fails to account for cellular dynamics. Kawato
suggested that motor errors imprint a joint’s inverse model
onto the cerebellar cortex when he mapped his feedback-error
learning paradigm to the cerebellum’s architecture (Kawato
and Gomi 1992), but neither his model nor his mapping con-
siders cellular dynamics. Only recently did Wetmore et al.
(2008) and De Shutter (2009) propose how PC pauses—
tuned to the exact dynamics of deep cerebellar nuclear (DCN)
cells—trigger rebounds as a cerebellar readout mechanism.
Despite a developing trend to include biophysical details, we
are still missing an integrated view that accounts for the rich
diversity in cellular dynamics present within the cerebellum,
without which, it will be impossible to unravel its mysteries
and its computational role.

In particular, cerebellar models have traditionally consid-
ered DCN as a relay station where PC inhibition modulates
the MF pathway, failing to account for the computational role
of its rich membrane dynamics. While Marr (1969) simply
assumed that PC inhibition would be converted into appropri-
ate elemental movements somewhere in the CNS, for Albus
(1971) pauses in PC activity selected elemental commands
controlled by DCN; in both cases the role of DCN as the cer-
ebellum’s output was not well-developed. Discovering that
DCN cells can express powerful Ca2+ rebounds from inhi-
bition (Jahnsen 1986; Llinas and Muhlethaler 1988) put into
question PC’s purely inhibitory role and inspired specula-
tion regarding whether these rebounds could be a mechanism
to distinguish between slowly changing inhibition from PC
simple spikes and fast transients from PC complex spikes
(Aizenman and Linden 1999). Kystler and De Zeeuw (2003)
and Kistler et al. (2000) then proposed that delay, introduced
by these rebounds, gates reverberating activity around the
cerebellar cortico-nuclear loop, but it was only recently that
Wetmore et al. (Wetmore et al. (2008)) gave serious atten-
tion to DCN’s biophysical properties when he proposed that
rebound dynamics act as a filter (or lock) to prevent expres-
sion of inappropriate motor responses that are stored in cer-
ebellar cortex but do not match the correct temporal pattern.
Similarly, Schutter and Steuber (2009) suggest that DCN’s
dynamics decode pauses in PC’s simple spike train, which
form a temporal code to trigger rebounds, and whose ampli-
tude is preset by a rate code in the regular simple spiking
patterns prior to the pause.

In a previous study we mapped the biophysics of a cerebel-
lar multizonal microcomplex (MZMC) (Apps and Garwicz
(2005))—the loop formed by deep cerebellar nucleus, infe-
rior olive (IO), and Purkinje cells—onto an inverse controller
and showed how IO’s membrane dynamics can mirror the
joint’s dynamics. To develop intuition, we used control the-
ory to model the biomechanics of a single joint as a harmonic

oscillator and the spinal stretch reflex as a closed loop control-
ler; and to overcome performance limitations of the closed-
loop, imposed by physiological signaling delay, we proposed
driving it through its inverse transfer function. We found that
the architecture and computational roles of this inverse trans-
fer function could be mapped onto the anatomy and electro-
physiology of a MZMC, where IO oscillations would mirror
the biomechanic’s oscillatory nature and DCN, in combina-
tion with PC, would implement the spinal cord’s gain factor
(Fig. 1). As a first step in validating the plausibility of this
mapping, we used as a biophysical IO model (Manor et al.
(1997); Chorev et al. (2006)) to determine the range of nat-
ural frequencies and damping ratios that these cells could
express, and found that, indeed, it is comparable to that of
the biomechanics (Alvarez and Boahen (Submitted 2011)).
Here we expand on our mapping’s predictions and show how
within the DCN, PC inhibition interacts in a multiplicative
fashion with CF excitation, effectively implementing a gain
on IO’s signal that mirrors the spinal cord’s loop gain.

2 Methods

2.1 Biomechanical modeling

We had previously modeled a biomechanical joint as a har-
monic oscillator and the spinal cord’s stretch reflex as a
PD closed-loop controller, and mapped this system’s inverse
model onto a microzone’s biophysics (Alvarez and Boahen
Submitted 2011). We modeled the joint’s biomechanics as a
mass connected to a spring, a damper and a force produc-
ing element and described by M Ẍ + β Ẋ + K x = F (t);
where K and β represent the muscles’ elasticity and vis-
cosity respectively, M represents the mass, x is M’s dis-
placement and F(t) represents the net force produced by
the antagonistic muscle pair acting around the joint. We
then modeled the spinal cord’s stretch reflex as a closed-
loop PD controller around the joint’s biomechanics (P(s)),
with proportional (KP) and derivative (KD) gains such that
J (s) = (KP + KD · s) · P(s)/[1 + (KP + KD · s) · P(s)];
and, to improve overall system performance beyond the lim-
its of the closed-loop, we drove this controller—in feed for-
ward fashion—through an inverted copy of itself. Finally,
we mapped this inverse controller (1/J (s)) to a cerebellar
MZMC’s architecture, which predicted that descending com-
mands are looped around the MZMC within which IO mirrors
the joint’s oscillatory dynamics and PC and DCN mirror the
spinal cord’s loop gain (Fig. 1).

2.2 DCN biophysical modeling

We modeled DCN cells biophysically to test if their rebounds
can implement a gain factor on IO’s signal, as predicted by
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Fig. 1 A Multizonal microcomplex maps to an inverse controller: a
Block diagram for a joint’s inverse transfer function’s (1/J (s)) imple-
mentation illustrating a top path that mirrors the spinal reflex’s total
delay and a bottom path that mirrors the spinal cord’s and the mus-
culoskeleton’s dynamics. b Cerebellar microzone diagram, illustrating

an analogous loop around a microzone that hypothetically computes
1/J (s). DCN deep cerebellar nucleus, BS brainstem, IO inferior olive,
PC Purkinje cells, Go golgi cells, gr granule cells, and Inh inhibitory
interneurons. Adapted from Submitted 2011

our MZMC mapping. Following Wetmore’s (Wetmore et al.
(2008)) footsteps, we focused on the role of dendritic Ca2+

channels on rebound generation and thus implemented a sin-
gle-compartment, conductance-based model with a T-type
Ca2+ conductance, a high-voltage-activated (HVA) Ca2+

conductance, a generic leak conductance, and excitatory and
inhibitory synaptic conductances. Specifically,

Cm · dV/dt = gT · n · l · (VCa − V )

+ gHVA · o2 · p · (VCa − V ) + gL · (VL − V )

+gPC · (VGABA − V )+gCF · (VGlu − V ) +Iin

describes the cell’s dynamics; where V represents the
cell’s membrane potential and Cm the cell’s capacitance;
gT, gHVA,gL,gPC, and gCF, respectively, represent the max-
imum conductances for T-type, HVA, leak, PC inhibition,
and CF excitation; Iin represents a generic input current;
VCa, VL, VGABA, and VGlu represent reversal potentials for
the Ca2+, leak, inhibitory, and excitatory conductances; and
n, l, o, and p represent activation and inactivation variables
for both Ca2+ channel species (Fig. 2). The T-type and HVA
channels dynamics were identical to Wetmore et al. (2008)
and Mainen (1996), respectively, (see appendix for the equa-
tions and constants) and the leak conductance and reversal
potential was set such that the cell exhibited a 12 min time
constant and a −58 mV resting potential (Llinas and Muh-
lethaler 1988). Like Wetmore, we explored a wide range of
gT values (from 0.3 to 0.6 ms/cm2), but unlike them we used
smaller gHVA values to insure that cells expressed graded
Ca2+ rebounds and not Ca2+ spikes (see Sect. 4); in particu-
lar we choose gT = 0.45 mS/cm2 and gHVA = 0.045 mS/cm2

for our single cell simulations.
We modeled how inhibition primes DCN cells for rebound

by deinactivating Ca2+ channels. By simplifying the effect of
PC simple spikes into a tonic inhibitory current, as opposed
to a complex time-varying synaptic conductance dependent
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Fig. 2 DCN’s channel dynamics: T-type Ca2+ channel activation (n)
and inactivation (l) and high-voltage-activated Ca2+ channel activation
(o) and inactivation (p)

on spike rate, we were able to solve the model’s governing
equations (using Matlab’s fzero function) and determine the
cell’s equilibrium point as a function of inhibitory input cur-
rent (Fig. 3). Each equilibrium point—the point defined by
the steady state values for the membrane potential as well as
for the activation and inactivation of T-type and HVA Ca2+

channels—defined the cell’s primed state and served as the
model’s initial conditions from where we studied rebounds
triggered by CF excitation.

Through transient analysis we characterized how a DCN’s
primed state determines the strength of its rebound when
the cell is released from inhibition. Using Euler’s method—
with a time step of 100µs—to integrate the model’s differ-
ential equations, we primed DCN cells by injecting a long
inhibitory current pulse, representing PC simple spikes, and
observed the resulting rebound. To quantify the rebound’s
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Fig. 3 Priming DCN for rebound: DCN’s equilibrium point as a func-
tion of PC inhibition, modeled as a tonic inhibitory current injection
(higher current corresponds to higher PC simple spiking rate). leq: T-
type Ca2+ channel deinactivation; peq: High-voltage-activated Ca2+

channel deinactivation; neq: T-type Ca2+ channel activation; oeq: High-
voltage-activated Ca2+ channel activation

strength, we measured its peak and computed its over-
all area (for V > Vrest). Furthermore, we determined the
independent current contributions of T-type and HVA Ca2+

channels, which revealed that T-type Ca2+ channels govern
subthreshold Ca2+rebounds while HVA channel activation
results in Ca2+ spikes (Fig. 4). Based on this, we constrained
DCN priming to that induced by inhibitory currents smaller
than 0.4µA/cm2, as this range results in graded rebound
responses.

Through further transient analysis we characterized how
CF excitation triggers rebounds and determines their strength
(while maintaining inhibition constant). We repeated the pre-
vious transient analysis, but this time we used inhibitory and
excitatory conductances, instead of tonic currents, to insure
that inhibitory and excitatory drive scaled properly as the cell
depolarized throughout the rebound. We modeled PC inhi-
bition as a constant GABAergic conductance (gPC), with a
−75 mV reversal potential (Hille 2001), and choose its values
so that it matched the previously used currents and resulted
in identical equilibrium points as before. We modeled CF
excitation as a 5 ms pulse on a glutamatergic conductance
(gCF), with a 0 mV reversal potential (Chun et al. 2003). We
quantified the rebound’s strength by measuring its peak and
computing its overall area as before.

We quantified how PC inhibition modulates the rebound’s
sensitivity, as measured by the slope of the rebound’s peak
and area, to CF excitation. We primed DCN cells using a
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Fig. 4 DCN’s free rebounds: DCN rebounds when released from an
inhibitory current injection. Warm colors indicate stronger inhibition. a
Membrane voltage, T-type Ca2+ current, high-voltage-activated (HVA)
Ca2+ current, and inhibitory input current (Iin). All currents are in
µA/cm2. b Rebound peak (Vmax) and rebound area as a function of
inhibitory current magnitude

gPC range that would not trigger Ca2+ spikes on its own
(0–0.3 mS/cm2), and for each gPC value we ran multiple trials
where we varied gCF pulse’s strength (from 0 to 0.1 mS/cm2

for 5 ms) and measured the rebound’s peak and area. For each
gPC value, we fit a linear model to the rebound’s peak and
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area, and used the slope to measure the rebound’s sensitivity
to gCF. To perform these fits, we choose the widest over-
all range where the rebound is most sensitive to gCF(0.038–
0.059 mS/cm2 for a single cell and 0.038–0.083 mS/cm2 for
the heterogeneous population) and the fit still returned an
R2 > 0.85. The resulting slopes, one for each gPC value, tell
us how PC inhibition modulates the rebound’s sensitivity to
CF input (Figs. 5 and 6).

To determine if PC inhibition can robustly modulate the
rebound’s sensitivity to CF excitation, we modeled a heter-
ogeneous DCN cell population. We repeated the previous
simulations across cells with various combinations of gT
(0.3–0.6 mS/cm2) and gHVA(0.01–0.08 mS/cm2) and aver-
aged each trial’s resulting membrane potential waveforms
across the cell population. From the averaged membrane
potentials we measured the rebound’s peak and area and used
these, as before, to compute the rebound’s sensitivity to CF
excitation and how it is modulated by PC inhibition (Fig. 6).

2.3 Implications for biomechanical control

To make experimentally testable predictions, we quantified
how current injection affects the rebound’s sensitivity to CF
excitation. Once again, we repeated the previous transient
simulations and analysis, but this time we added an exper-
imental current injection (Iin) (−0.3–0.3 µA/cm2) to our
stimulation protocol. Comparing the results to the case with-
out Iin reveals how a tonic input current adds to PC’s effect
and biases the rebound’s sensitivity to CF excitation (Fig. 7).

Using our control theory model, we characterized how
experimentally manipulating the rebound’s sensitivity to CF
excitation would affect motor output by simulating a mis-
match between the inverse transfer function’s gains (KPPC
and KDPC) and the spinal cord’s loop gains (KP and KD). As
in our previous study (Alvarez and Boahen Submitted 2011),
we use Matlab’s Control System Toolbox to implement an
exemplary elbow joint described by T (s) = 1/J ’(s) · J (s)
and simulated its transient and frequency response using Mat-
lab’s built-in functions lsim() and bode(), respectively. We
drove T (s) with a sigmoid, described by m(t) = 1/(1 + exp(-
(t − t0)/τ )) where τ = 15 ms and t0 = 100 ms, and measured
the motor output’s maximum percent overshoot, its rise-time
(from 10 to 90%), and its settling time (to within a ± 5% error
band) as a function of mismatch between KPPC and KP and
between KDPC and KD (Fig. 8); we varied KPPC and KDPC
in the same proportion.

3 Results

Our mapping predicts that a MZMC loop’s gain must mirror
the spinal cord’s gain, and therefore there must be a multipli-
cative interaction between PC inhibition and CF excitation

a

b

c

Fig. 5 Climbing fiber-triggered rebounds: DCN rebounds primed by
PC inhibition and triggered by climbing fiber excitation (CF), the latter
modeled as 5 ms steps in glutamatergic conductance (gCF). a Rebounds
when primed with no inhibition (gPC = 0.0 mS/cm2), low PC inhibition
(gPC = 0.014 mS/cm2) and high PC inhibition (gPC = 0.037 mS/cm2);
these samples correspond to encircled points in Fig. 4b: Rebound peak
(Vmax) and rebound area as a function of CF excitation (horizontal axis)
and PC priming (colored lines consistent with Fig. 4). c Slope from lin-
ear fit to Vmax and area data within grayed region in (b), slopes are in
units of mV/mS/cm2 and mVs/mS/cm2, respectively. Inset illustrates
goodness of fit

at the DCN. In our control theory model, a gain factor must
be applied to the oscillator’s output within the joint’s inverse
transfer function. Due to its rich Ca2+ dynamics, we propose
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a

b

Fig. 6 Gain implementation by a DCN population: rebounds primed
by PC inhibition and triggered by CF excitation (as in Fig. 5) for a
heterogeneous DCN population expressing a maximum T-type Ca2+

conductance (gT) range from 0.3 to 0.6 mS/cm2, and a maximum HVA
Ca2+ conductance (gHVA) within the range gT/10 ± 0.020 mS/cm2. a
Rebound peak (Vmax) and rebound area as a function of CF excitation
(horizontal axis) and PC priming (colored lines consistent with Figs. 4
and 5). b Slope from linear fit to Vmax and area data within grayed
region in (a), slopes are in units of mV/mS/cm2 and mVs/mS/cm2,
respectively. Inset illustrates goodness of fit

that DCN implements this gain factor, set by Purkinje cell
inhibition, on IO’s signal.

Using a biophysical DCN model we determined how
hyperpolarization, due to PC inhibition, primes the cell for
rebound by deinactivating T-type Ca2+ channels such that
subsequent depolarization, due to CF excitation, triggers a
rebound. Specifically, through transient analysis of a single-
compartment cell we characterized how interactions between
these two inputs determine the rebound’s strength, and found
that within the range where PC inhibition and CF excitation
are strong enough to activate T-type Ca2+ channels—but
not too strong to activate the cell’s HVA Ca2+channels—
we observe graded rebound strengths that encoded the prod-
uct of the two inputs; beyond this range, activation of HVA
Ca2+ channels results in a stereotypical all-or-none Ca2+

spike which is thought to rarely be expressed in vivo (Alv-
ina et al. 2008). Furthermore, we found this to be true for
cells expressing the entire physiologically realistic gT range
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Fig. 7 Effects of current injection on DCN’s gain factor: DCN’s gain
factor resulting from experimental current injection (Iin), as measured
by slope from linear fits within same population as in Fig. 6. Slopes are
in units of mV/mS/cm2 and mVs/mS/cm2, respectively. Inset illustrates
goodness of fit

(0.3 to 0.6 mS/cm2), as long their gHVA expression was not
too large (gHVA < gT/10 + 0.02 mS/cm2) to significantly
reduce the threshold for all-or-none Ca2+ spikes.

3.1 Gain modulation in a biophysical DCN model

PC inhibition deinactivates both T-type and HVA Ca2+ chan-
nels, but it is T-type Ca2+ channels that prime DCN cells
for rebound. Increasing PC simple spiking above the base-
line rate of 40 Hz (Berthier and Moore 1986) hyperpolarizes
DCN’s cells, via a GABAergic synaptic conductance with
a −75 mV reversal potential, below DCN’s natural resting
potential of −58 mV (Llinas and Muhlethaler 1988). Within
this viable hyperpolarization range, from −58 to −75 mV,
the T-type Ca2+ channels undergo a large change in inactiva-
tion—from 0.2 to 0.98—with a relatively fast time-constant
(20–100 ms). In contrast, the HVA Ca2+ channels undergo
a smaller change in inactivation—from 0.5 to 0.7—with a
slower time constant (180 ms) (Figs. 2 and 3). T-type Ca2+

channel deinactivation thus stores a reliable history of the
cell’s hyperpolarization state, so that when the cell is depo-
larized, it will be the T-type Ca2+ channel deinactivation that
shapes the initial Ca2+ rebound.

While T-type Ca2+ channel activation governs graded
Ca2+ rebounds from inhibition, HVA channel activation pro-
duces all-or-none Ca2+ spikes. When a primed DCN cell
is depolarized—by releasing the cell from inhibition or by
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Fig. 8 Disturbing DCN: experimental predictions: a T (s)’s temporal
response to a smoothed input step when mismatch between DNC’s
gain factor and the spinal cord’s loop gain factor is experimentally
induced. RTI range over which rise time is computed. b T (s)’s frequency

response for same cases as in a, illustrating the unmasking of the joint’s
natural response. c Output’s percent overshoot, settling time and rise
time as a function of gain mismatch; all metrics are computed relative
to the ideal response

direct excitation—T-type Ca2+ channels are the first to acti-
vate, around −60 mV. This activation combines with the
primed deinactivation and sets a Ca2+ current that continues
to depolarize the cell until these channels inactivate again. If
the T-type Ca2+ channel current (or depolarizing excitation)
is not strong enough to depolarize the cell beyond −38 mV,
then HVA channels are not activated and the rebound decays
rapidly (Fig. 4 blue through cyan); however, if the current is
strong enough to depolarize the cell beyond −38 mV, then
HVA channels are activated and their Ca2+ current will con-
tinue depolarizing the cell. Owing to HVA channel’s slow
inactivation time constant (about 100 ms), activating these
channels will hold the cell in a depolarized state for about 65
ms, resulting in a more stereotyped all-or-none Ca2+ spike
(Fig. 4 aqua through red traces).

Therefore, to trigger a graded response, excitation from
CF collaterals must depolarize the cell enough to activate
T-type Ca2+ channels, but without crossing the threshold for
triggering a HVA Ca2+ spike. While keeping PC inhibition
constant, we varied the strength of CF excitation and found a
sweet spot over which CF excitatory drive is strong enough
to activate T-type Ca2+ channels, but not too strong to acti-
vate HVA channels. Within this range, the rebound’s peak
and its area are most sensitive to CF excitation; below this

range the rebound’s peak and area are not very sensitive to
CF strength, and above this range the response saturates as
the cell fires a Ca2+ spike (Fig. 5).

Within the range where CF excitation activates T-type
Ca2+ channels, but not HVA channels, priming by PC inhi-
bition and triggering by CF excitation interact in a multipli-
cative fashion. The sensitivity of the rebound’s peak and area
to CF excitation increases with PC inhibition. However, for
the rebound’s area the sensitivity increases much more rap-
idly, and therefore the rebound’s response quickly saturates,
appearing as if PC inhibition decreases the threshold for a
Ca2+ spike. Whether the downstream readout for a single
cell is the rebound’s peak or area, priming the cell through
PC inhibition strengthens the cell’s response to CF excitation
(Fig. 5).

A heterogeneous population of DCN cells exhibits this
multiplicative interaction over a wider range than any sin-
gle cell. Averaging voltage waveforms from DCN cells
expressing variable T-type and HVA maximum conductances
expands the range over which rebound metrics are most sen-
sitive to CF excitation; and unlike the results for a single
cell where only the rebound’s peak follows a linear trend, for
a DCN cell population the rebound’s area also grows line-
arly with CF excitation (Fig. 6). On one hand, these results
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are consistent through the entire physiologically realistic gT
range (from 0.3 to 0.6 mS/cm2); below this range DCN cells
do not express Ca2+ rebounds and above this range they
become spontaneous oscillators. On the other hand, although
a wide gHVA range (0.025–0.065 mS/cm2) still shows a lin-
ear trend for the rebound’s peak, linearity improves when the
gHVA range is constrained around gT/10 ± 0.020 mS/cm2;
actually, increasing the gHVA range around gT/10 improves
linearity at the expense of reducing the rebound’s sensitivity
to gCF(not shown). Overall, by expanding the range of this
effect and improving its linearity, channel expression heter-
ogeneity improves DCN’s capacity to implement a multipli-
cative interaction between PC inhibition and CF excitation
(Fig. 6).

3.2 Experimental predictions and biomechanical
implications

Experimentally injecting an inhibitory current into DCN adds
to PC’s priming effect and increases the population’s overall
gain factor. This inhibitory current adds to PC’s GABAergic
current to further hyperpolarize the cell, increasing T-type
Ca2+ channel deinactivation, and thus increases the sensi-
tivity of a rebound’s peak and area to CF excitation. Inhibi-
tory currents, similar in magnitude to PC’s inhibition (0–0.3
µA/cm2), may therefore increase the population’s overall
gain factor to approximately 1.75 times its original value. By
the same token, excitatory currents of the same magnitudes
(0–0.3µA/cm2), which depolarize the cell and thus reduce
T-type Ca2+channel deinactivation, may therefore decrease
the population’s overall gain factor to approximately 0.33
times its original value (Fig. 7). As a result, we may test
our model by dramatically perturbing DCN’s gain in vivo
through current injection, while observing how this affects
overall motor output.

Our control theory model predicts that experimentally
introducing mismatch between the DCN’s gain and the spinal
cord’s will scale the overall motor output response and intro-
duce ringing at the biomechanical joint’s natural frequency,
unmasking the joint’s (J (s)) natural response. This is easily
observed in transient analysis, where the steady state value
scales with DCN gain and the waveform’s peaks and troughs
line up—albeit phase shifted for reduced gain—with J (s)’s
natural response, as well as in the frequency response, where
there is a boost around the biomechanical joint’s natural fre-
quency (Fig. 8). Analytically, J (s)’s poles define the whole
system’s (T (s)) poles and thus, when not properly canceled
(because of mismatch), these poles emerge and dominate
the system’s output, setting its resonance frequency at the
biomechanical joint’s natural frequency. Although mismatch
between DCN’s gain and the spinal loop’s gain has a strong
effect on steady state value, percent overshoot, settling time,

and rise time, remarkably, motor output always rings at the
biomechanic’s natural frequency.

4 Discussion

We presented results from a biophysical model showing
how PC inhibition primes the DCN for rebound, modulat-
ing the effects of CF excitation in a multiplicative fashion
thus validating that PC and the DCN implement gain on IO’s
signal—a prediction of our MZMC mapping. Sustained
hyperpolarization by PC inhibition deinactivates the cell’s
T-type Ca2+ channels—priming the cell—so that an abrupt
depolarization by CF excitation may trigger a depolar-
izing Ca2+ current whose magnitude is the product of
the channel’s inactivation and activation. Through tran-
sient analysis we extended this intuition and verified that
there is a wide range over which priming and trigger-
ing are strong enough to activate the DCN’s T-type Ca2+

channels—but not HVA Ca2+ channels—and thus produce
rebounds whose strength, as measured by the rebound’s
peak and area, is set by the product of PC inhibition and
CF excitation. Below this range, T-type Ca2+ channels
are not activated and thus PC inhibition does not increase
the rebound’s sensitivity to CF excitation, and above this
range HVA Ca2+ channels are activated and DCN fires
an all-or-none Ca2+ spike (Figs. 5 and 6). Altogether,
it is clear that PC inhibition can modulate the sensitiv-
ity of DCN rebounds to CF excitation in a multiplicative
fashion.

Our choice to focus on graded rebounds as DCN’s readout
mechanism is justified by there being little direct evidence
supporting the prevalence of Ca2+ spikes in vivo. Our model-
ing results showed two distinct rebound regimes which could
be induced in any given cell expressing some combination of
T-type and HVA channels: one where T-type Ca2+ currents
induced rebounds with graded amplitude and another where
HVA Ca2+ currents induced in an all-or-none stereotypical
Ca2+ spike (Fig. 4); the latter could always be induced if the
cell was sufficiently primed or depolarized, and as expected,
higher HVA Ca2+ expression lowered the threshold for Ca2+

spikes. Given that in our MZMC mapping DCN must out-
put an analog signal, we constrained our model to express a
weaker HVA Ca2+ conductance (around gT/10), as compared
to that used by Wetmore et al. (2008), and only studied stim-
uli that resulted in graded rebounds (Figs. 5 and 6). Although
the earliest physiological recordings clearly showed that
in vitro DCN cells express strong Ca2+ spikes (Jahnsen
1986; Llinas and Muhlethaler 1988; Aizenman and Linden
1999), our choice to focus on graded rebounds is justified by
evidence showing a very low prevalence for Ca2+ spikes in
vivo (Alvina et al. 2008).
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Our MZMC mapping assumes that direct excitation from
climbing fiber collaterals into DCN must trigger rebounds,
rather than PC desinhibition, which is plausible but has not
been definitely shown experimentally. Anatomically, of their
total synaptic input, DCN cells receive about 5% from the IO,
about 10–35 % from mossy fibers and the remaining 60–85%
from PCs (Chan-Palay 1973), so IO accounts for 1/3rd to
1/8th of the total excitatory input. However, physiologically,
the earliest DCN recordings revealed the occurrence of short-
latency excitatory-post-synaptic-potentials (EPSP) as a result
of harmaline injection into the IO (Llinas and Muhlethaler
1988). Furthermore, IO’s ability to directly excite DCN has
been confirmed by experiments involving direct electrical
excitation of the IO (Rowland and Jaeger 2008); however,
the complexity of the olivo-nuclear connection, which has
an additional indirect pathway through PC inhibition, have
made it difficult to rule out the contribution of PC’s desin-
hibition casting doubts on the overall effect that IO has on
DCN (Baumel et al. 2009).

Our results, or more precisely our focus on the rebound’s
peak and area, raise the question of how rebound strength
is read out from DCN. We chose to limit our model’s com-
plexity to the minimum required for validating a multiplica-
tive interaction between PC and CF pathways, and as such
focused on a single compartment—representing DCN’s den-
drites—expressing well-characterized Ca2+ conductances.
By ignoring Na+ spikes we were forced to assume that
increases in dendritic potential above the cell’s resting poten-
tial would appear as a current injection into the soma and thus
directly increase the cell’s spiking rate above its 25 Hz base-
line (Aksenov et al. 2005; Jahnsen 1986; Raman et al. 2000).
Based on these assumptions we gauged rebound strength
from both the rebound’s peak, as a measure of maximum den-
dritic current injection into the soma, and the rebound’s area,
as a combined measure of current amplitude and duration.

Our model assumes that joint dynamics, represented
within a MZMC, get converted into muscle activation com-
mands, which are in turn distributed to the appropriate flexor
or extensor muscles (or their subunits) by neuronal circuits
outside of the olivo-cerebellar complex. Our model assumes
that a conversion from a position command to a muscle
activation command occurs within the spinal cord’s servo
loop. Furthermore, within our model a joint has a single con-
trol input whereas biomechanical joints are driven by mul-
tiple agonist and antagonist muscles, some of which may
act across more than one joint, therefore requiring care-
fully distributing any descending command. In our mapping
we assume this distribution is handled by either brain stem
nuclei that relay cerebellar commands or by the spinal cord’s
circuitry.

The multiplicative interaction between PC inhibition and
CF excitation can be tested experimentally using standard
electrophysiological techniques with acutely prepared DCN

slices. For simplicity we stimulated our model by tonically
setting the cell’s synaptic conductances and our stimulation
protocol may be repeated in vitro using a dynamic clamp.
The DCN slice preparation will afford the ability to use Na+

spiking as an additional measure of rebound strength and
verify if indeed there is a multiplicative interaction between
the two pathways.

Although the gain of spinal reflexes is known, we would
need a full MZMC model to establish a quantitative compar-
ison between the spinal cord’s gain and the MZMC’s gain.
Data for spinal cord reflexes (Allum and Mauritz 1984; Ben-
nett 1994) allows us to compute closed-loop gain factors for
our control theory model (KP =1, KD = 0.0076), and we
have shown that there is a multiplicative interaction between
PC inhibition and CF excitation expressed in DCN’s rebound
strength. However, the absolute loop gain of the MZMC will
also depend on the synaptic mechanisms by which DCN out-
put affects the IO itself (as well as other brain targets). There-
fore, we cannot determine the MZMC’s loop gain without
having a spiking model that closes the loop around IO and
DCN.

At the system level, our results predict how experimentally
injecting current into DCN will affect its gain factor, and how
this in turn, will scale overall motor output and unmask the
joint’s natural dynamics as seen by output ringing. Through
the biophysical DCN model we found that inhibitory current
injection adds to PC’s priming effect and increase the cell’s
sensitivity to CF excitation, effectively increasing DNC’s
gain factor (Fig. 7). Furthermore, using our control theory
model we found that increasing the inverse transfer function’s
gain—which maps to DCN’s gain—will increase the out-
puts steady state value and introduce motor output ringing, at
the biomechanical joint’s natural frequency. Our model also
predicts that inhibitory current injections will advance the
outputs phase and reduce the output’s rise-time, speeding up
the system’s response at the expense of ringing; in contrast
excitatory current injection will decrease the gain, reducing
the outputs steady state and slowing down the system (Fig. 8).

Although we did not model a detailed synaptic stimula-
tion sequence, we modeled the worse case scenario, where
PC inhibition remains constant even when CF excitation trig-
gers a complex spike. To minimize the parameter space we
reduced synaptic input to one GABAergic and one glutama-
tergic conductance and set their values such that their effects
where within the physiologically observed ranges, instead of
implementing detailed GABAergic and glutamatergic syn-
aptic dynamics, each with its own time course, synaptic
number, spiking rate, and distribution. Furthermore, to
approximate the EPSP physiologically observed from CF
excitation (Llinas and Muhlethaler 1988), we activated the
glutamatergic conductance for 5 ms; but to avoid speculat-
ing about the length, magnitude and even the sign required
to properly implement the effects of a PC complex spike—
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inevitably triggered by the CF—we assumed the simplest
scenario and maintained our GABAergic conductance con-
stant throughout each trial. Most likely, DCN cells actually
see a complex spike as a 10 ms pause in PC inhibition (due
to the fast spikelets getting lost at the PC axon (Monsivais et
al. 2005; Gauck and Jaeger 2000)). Therefore, by ignoring
desinhibition subsequent to a complex spike, CF excitation
undertakes the full responsibility of rebound initiation.

Dissecting the mechanistic nature of DCN rebounds sug-
gest that the roles played by the PC pathway, the CF pathway
and the MF pathways during the slow priming phase, the fast
triggering phase and the rebound’s expression, respectively,
are consistent with our MZMC mapping. Priming is a slow
process, due to T-type Ca2+ channel’s slow inactivation time
constant (20–40 ms), which must be dominated by longstand-
ing inhibitory input from PC activity to hold the cell at a hy-
perpolarized level, and which will set DCN’s gain factor. The
rebound’s trigger must be an abrupt depolarization event, due
to T-type Ca2+ channel’s inactivation speeding up above −58
mV (6–15 ms), for which synchronous excitation from the
CF (on a millisecond time scale (Llinas et al. 2004)), which
has been shown to carry IO’s phase (Mathy et al. 2009), is
the ideal candidate and consistent with our mapping. Finally,
if MF activity coincides with CF excitation it will further
activate T-type Ca2+ channels and multiplicatively interact
with PC inhibition; otherwise, as long as MF activity is not
synchronous and strong enough to trigger a rebound, then it
will only act as tonic excitation.

Our mapping predicts that PC’s simple spiking rate must
prime DCN prior to motion initiation, setting its gain fac-
tor, and adapt during motion execution, tracking the joint’s
effective gain, which is consistent with physiological record-
ings. Prior to motion initiation, DCN cells must be hyperpo-
larized by PC inhibition for approximately 20–100 ms to
deinactivate T-type Ca2+ channels thus setting the rebound’s
strength. Throughout motion execution, DCN cells within the
population must continually be primed for rebound and there-
fore PC inhibition must ensue and their simple spiking rate
must track the joint’s effective gain. Consistent with our map-
ping, PC firing patterns during reaching show increased activ-
ity approximately 100 ms prior to motion initiation (Fortier
et al. 1989; Fu et al. 1997), suitable for priming DCN cells
and setting the gain factor, followed by a relatively constant
firing rate throughout a reaching motion.

In contrast with the prevailing views that desinhibition
triggers DCN rebounds, and that these serve timing purposes
(Kistler and Zeeuw 2003; Wetmore et al. 2008; Schutter and
Steuber 2009), our mapping and results suggest that it is CF
excitation that triggers them, and that their role is scaling IO’s
signal, not timing the MF or PC pathways. Understandably,
the long delay between desinhibition and rebound expres-
sion (Llinas and Muhlethaler 1988; Aizenman and Linden
1999) inspired Kistler’s model and supports Wetmore’s lock-

and-key hypothesis, and may serve a purpose for classical
conditioning-like task. However, it is counter intuitive that
for motor control tasks, the cerebellum’s output stage would
introduce the long delay required for priming plus the delay
required to passively express the rebound into the motor
response, where a short reaction time is a clear evolutionary
advantage. Similar to De Schutter and Steuber’s proposal our
results suggest that ongoing PC simple spiking activity sets
the rebounds strength, which can either be precisely adjusted
during a planning phase to optimize motion if time allows,
but can also have a default value that supports a quick reaction
time if required; but unlike in their model, where rebounds
are passively triggered by pauses in PC simple spiking trains,
in our model direct excitation from CF collaterals expedites
rebounds, dramatically reducing their onset to a few milli-
seconds (Fig. 5).

In combination with our previous work showing that IO
is capable of mirroring the biomechanic’s dynamics, by now
showing that DCN is capable of implementing a gain fac-
tor on IO’s signal to mirror the gain of the spinal cord’s
loop, we have completed a preliminary validation, at the
biophysical level, of our mapping between a MZMC and a
joint’s inverse transfer function thus supporting the hypoth-
esis of the cerebellum as an inverse controller. We proposed
that a MZMC acts as an analog computer that implements
a joint’s inverse transfer function, and we have now shown
that the IO and the DCN support the two key computational
primitives required: an oscillator and a multiplier, respec-
tively. This framework has already offered experimentally
testable predictions that link the cerebellum’s biophysics to
their computational abstraction and to overall motor perfor-
mance, but beyond this, the proposed framework will serve
as a test bed to explore how ascending feedback from the
spinal cord drives cerebellar plasticity to acquire an accurate
inverse transfer function by tuning IO’s oscillatory dynam-
ics and DCN’s effective loop gain. Finally, this framework
can be extended to control multiple joints, and in the process
explore which anatomical and biophysical properties enable
coordination between various MZMCs.

Appendix

T-type Ca2+ channel activation

dn/dt = (n∞ − n)/τn

n∞ = (1 + exp [− (V + 42.0) /4.25]) − 1

τn = 0.287 + 0.0711 · exp (−V/15.8)

T-type Ca2+ channel inactivation

dl/dt = (l∞ − l)/τl
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l∞ = (1 + exp [(V + 63.0) /3.50]) − 1

τl = 5.960 + 0.00677 · exp (−V/7.85)

HVA Ca2+ channel activation

o∞ = αo/(αo + βo)

τo = 1/(2.3 · (αo + βo))

αo = 0.055 · (V + 27) /(1 − exp (− [V + 27] /3.8)

βo = 0.94 · exp (− [V + 75] /17)

HVA Ca2+ channel inactivation

p∞ = αp/(αp + βp)

τp = 1/(2.3 · (αp + βp))

αp = 4.57e − 4 · exp (− [V + 13] /50)

βp = 0.0065/ (1 + exp (− [V + 15] /28))

Constants

Cm = 1µF/cm2, VCa = 140 mV, VGABA = −75 mV,

VGlu = 0 mV
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