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Abstract To produce smooth and coordinated motion, our
nervous systems need to generate precisely timed muscle
activation patterns that, due to axonal conduction delay, must
be generated in a predictive and feedforward manner. Kawa-
to proposed that the cerebellum accomplishes this by act-
ing as an inverse controller that modulates descending motor
commands to predictively drive the spinal cord such that the
musculoskeletal dynamics are canceled out. This and other
cerebellar theories do not, however, account for the rich bio-
physical properties expressed by the olivocerebellar com-
plex’s various cell types, making these theories difficult to
verify experimentally. Here we propose that a multizonal
microcomplex’s (MZMC) inferior olivary neurons use their
subthreshold oscillations to mirror a musculoskeletal joint’s
underdamped dynamics, thereby achieving inverse control.
We used control theory to map a joint’s inverse model onto
an MZMC’s biophysics, and we used biophysical model-
ing to confirm that inferior olivary neurons can express the
dynamics required to mirror biomechanical joints. We then
combined both techniques to predict how experimentally
injecting current into the inferior olive would affect over-
all motor output performance. We found that this experi-
mental manipulation unmasked a joint’s natural dynamics,
as observed by motor output ringing at the joint’s natural fre-
quency, with amplitude proportional to the amount of current.
These results support the proposal that the cerebellum—in
particular an MZMC—is an inverse controller; the results
also provide a biophysical implementation for this controller
and allow one to make an experimentally testable prediction.
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1 Introduction

Whether we are trying to keep our gaze stable while moving
our head or land a complex acrobatic maneuver on our feet,
smooth and coordinated motion requires that our brains—
the cerebellum in particular—issue precisely timed motor
signals to our musculoskeletal system. Even ordinary every-
day tasks such as reaching or walking become monumental
motor control challenges when considering that dozens of
muscle activations, across multiple joints, must be precisely
sequenced and synchronized to achieve the desired trajec-
tory or to produce the proper forces to balance and propel
us forward. Muscles’ slow response times [>25 ms (Bobet
and Stein 1998)] and the long axonal conduction delays
[∼10 ms for descending motor commands alone (Eyre et al.
1991)] required to drive them further complicate the problem,
precluding fast control loops and thus favoring a predictive
feedforward control strategy (Widrow and Walach 1996). To
predict proper muscle activation sequences, the controller—
in this case the cerebellum—must possess some knowledge
of musculoskeletal dynamics’ and to coordinate the motion, it
must possess the means to precisely time its output. Learning
to predict musculoskeletal dynamics to issue precisely timed
motor commands is the role of the cerebellum, without which
motion becomes erratic and imprecise (Ghez and Fahn 1985).

Existing cerebellar models fail to explain how the rich
membrane dynamics observed in all neuron types within
a cerebellar multizonal microcomplex (MZMC) (Apps and
Garwicz 2005)—the loop formed by the deep cerebel-
lar nucleus (DCN), inferior olive (IO), and Purkinje cells
(PCs)—give rise to precisely timed motor signals. Inspired
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by the anatomy, Marr (1969) and Albus (1971) considered
neurons within the cerebellar network, PCs in particular, as
instantaneous threshold elements that respond to the sensory
context presented through parallel fibers. To produce motor
sequences, their models require that motor commands change
the sensory context, thereby triggering the next motor com-
mand, and so forth. Fujita (1982) proposed that Golgi cells
delay sensory signals as they jump from mossy to parallel
fibers, enabling PCs to learn spatiotemporal patterns. This
idea inspired Barto et al. (1993) adjustable pattern generator
model, which relies on network dynamics but still does not
account for membrane dynamics. Kawato and Gomi mapped
their feedback error-learning paradigm onto the cerebellar
architecture (Kawato and Gomi 1992), claiming that motor
errors encoded by climbing fibers train the cerebellar cortex
to acquire a joint’s inverse model. However, their mapping
did not consider cellular dynamics. Only recently did Wet-
more et al. (2008) and De Schutter and Steuber (2009) pro-
pose models where PC dynamics pause to unlock the DCN’s
membrane dynamics, allowing the latter to burst by rebound-
ing from inhibition. Despite a developing trend toward more
detailed biophysical properties, a biophysically based expla-
nation of how an MZMC functions as a motor controller is
still lacking.

In particular, cerebellar models downplay the ongoing
effect of the IO’s rich resonant membrane dynamics on motor
signal timing and consider the IO as either relaying exter-
nally triggered training signals or generating an internal pace-
maker clock. Subscribers to the Mars–Albus–Ito perspective
entirely disregard the IO’s membrane dynamics and simply
consider the role of climbing fibers—all of which originate
in the IO—as signaling motor performance errors (Simp-
son et al. 1996). Llinas’ alternate view is that, through its
extensive gap-junction network, the IO groups a set of mus-
cles together to reduce the number of controllable degrees of
freedom, and through its intrinsic subthreshold oscillations
it clocks muscle activation at 10 Hz to discretize time into a
small set of activation events (Llinas 2009; Welsh and Lli-
nas 1997; Leznik et al. 2002; Llinas and Yarom 1986). Both
of these views disregard the temporal interactions that occur
between the IO’s input and its ongoing membrane dynamics.

Here we propose that the IO’s membrane dynamics, in par-
ticular its subthreshold oscillations, mirror a biomechanical
joint’s resonant dynamics, enabling an MZMC to implement
the joint’s inverse transfer function such that the cerebellum
acts as an inverse controller. By modeling the biomechanics
and inverting its transfer function, we arrive at an inverse
controller whose architecture and dynamic properties map
onto an MZMC’s anatomy and physiology. This mapping
supports the hypothesis that the IO mirrors the biomechan-
ical joint’s resonant dynamics and predicts how manipulat-
ing the biophysical properties that determine an IO cell’s
membrane dynamics—its oscillation frequency and damping

ratio—will affect motor output. These results specifically
predict that experimental manipulations that introduce a
mismatch between an IO’s frequency and a biomechanical
plant’s natural frequency will unmask a joint’s dynamics such
that the overall output will ring at the joint’s natural frequency
regardless of the IO’s oscillation frequency.

2 Methods

2.1 Biomechanical modeling

We model a biomechanical joint as comprised of a spring,
a damper, and a force-producing element acting on a mass;
it is a simple model that suffices to reproduce its oscilla-
tory nature. The dynamics of this simplified joint are thus
described by M ·ẍ+β ·ẋ+K ·x = F(t), where K and β repre-
sent the muscles’ elasticity and viscosity, respectively, M rep-
resents the mass, x is M’s displacement, and F(t) represents
the net force produced by the antagonistic muscle pair acting
around the joint (Fig. 1a, b). Through a Laplace transform, we
obtain the transfer function P(s)= X (s)/F(s)= ω2

n/(s2 +
2 · ζ · ωn · s + ω2

n), where the natural frequency is given
by ω2

n = K /M and the damping ratio by ζ = β/(2 · M · ωn).
In particular, we use an exemplary system comparable to an
elbow joint (Lacquaniti et al. 1982; Bennett et al. 1992), mod-
eled as a rotational analog of P(s), where I = 0.072 kg m2,
β = 0.483 N m s/rad, and K = 26.266 N m/rad represent the
rotational equivalents of M, β, and K , respectively. These
parameters yield ωn = 3 Hz and ζ = 0.17. For this under-
damped case (0< ζ <1), the joint responds to a step change
in force by undergoing a rapid displacement, overshooting
its final value, and ringing at its natural damped frequency,
before eventually settling down (Fig. 1e).

We model the spinal cord stretch reflex as a closed-loop
proportional-derivative (PD) controller that improves the bio-
mechanical joint’s performance. The joint is now described
by the transfer function

J (s) = X (s)

C(s)
= (KP + sKD)P(s)e−tff s

1 + (KP + sKD)P(s)e−(tff+tfb)s
,

where KP and KD are the controller’s proportional and deriv-
ative gains, respectively, and tfb and tff represent ascend-
ing and descending axonal-conduction delays, respectively
(Fig. 1a, c). J (s)’s performance may be improved by
increasing the loop’s gains. However, conduction delays—
unavoidable in biology—impose a limit beyond which the
system would become unstable, manifested as ever-growing
oscillations at the output. To have our exemplary system
mimic the physiology, we choose KP = 1 N m/rad, so
that the stretch reflex’s implementation doubles the over-
all joint stiffness (Hoffer and Andreassen 1981; Bennett
1994; Allum and Mauritz 1984; Sinkjaer et al. 1988), and
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Fig. 1 Inverse control. a Spinal cord stretch reflex loop. b The joint’s
biomechanics [P(s)] simplified as a spring with stiffness K , damper
with damping coefficient β, and active force-producing element [F(t)]
arranged in parallel to drive a mass (M). c Stretch reflex modeled as
a closed-loop controller with proportional and derivative gains KP and
KD, and feedforward and feedback conduction delays tff and tfb, around
P(s) [J (s)]. d Inverse control strategy where olivocerebellar complex
intercepts descending motor commands, implementing 1/J (s). e Tem-
poral response for P(s), J (s), 1/J (s), and T (s) illustrating how 1/J (s)
generates the optimal waveform c(t) to predictively overdrive J (s) so
that its output x(t) is a faithful copy of the overall system’s input m(t)

KD = 0.0076 N m s/rad, so that the overall joint’s damping
ratio remains at 0.17 (Lacquaniti et al. 1982; Weiss et al.
1988; Sinkjaer et al. 1988). Although this closed-loop con-
troller does improve P(s)’s performance—by reducing over-
shoot and settling time so that the output trajectory matches
more closely the desired motor command—it is constrained
by instability, leaving room for further reduction of oscilla-
tions when compared with the full physiological response we
wish to mimic.

To improve motor performance beyond the stability con-
straints faced by the closed-loop controller, we invert the
joint’s transfer function, literally by inverting J (s). This

inverse controller computes a signal that cloaks J (s)’s
response by predicting its dynamics, making the overall sys-
tem transparent from input to output. The controller’s struc-
ture emerges directly from 1/J (s)’s equation; it may be built
from the same components found in J (s) (Fig. 2a). Although
we focus on the case with zero delay for simplicity, in gen-
eral 1/J (s)’s response [C(s), (cyan trace in Fig. 1e)] predicts
the proper input to J (s) such that the overall output [X (s)]
perfectly matches the input [M(s)].

Finally, we map the joint’s inverse controller onto a cere-
bellar MZMC’s architecture (Fig. 2). We do this by observing
similarities between the inverse controller’s structure and the
MZMC’s microcircuit: descending commands [M(s)] arriv-
ing at the DCN are relayed to the IO and then looped back,
through PCs at the cerebellar cortex, to the DCN. Along
this loop, the IO mirrors P(s)’s oscillatory dynamics and
PCs mirror spinal cord’s loop gains, KP and KD. We pro-
pose that the MZMC’s components—IO, PCs, and DCN—
serve equivalent computational roles as blocks within the
ideal inverse controller and, thus, together overcome the per-
formance limitations of the spinal cord loop by computing
J (s)’s inverse.

2.2 IO biophysical modeling

For parsimony, we chose the simplest possible IO model
capable of generating oscillatory dynamics. Although more
complex multicompartmental IO models that include spike
generation via Na+ and K+ conductances are available
(Schweighofer et al. 1999), these models have an immense
parameter space that is a challenge to explore comprehen-
sively. Manor’s minimalistic model of IO cell subthreshold
oscillations has only two conductances (Manor et al. 1997),
and, remarkably, the theoretically predicted effects of modi-
fying these conductances’ strength (i.e., channel density) has
been confirmed experimentally (Chorev et al. 2006).

We implement Manor (Manor et al. 1997) and Chorev’s
(Chorev et al. 2006) Hodgkin–Huxley-like IO model and ana-
lyze it as a 2D dynamical system. Their model, constructed
by measuring T-type calcium channel dynamics in vitro (rat
and guinea pig IO slices), describes an IO cell’s membrane
subthreshold dynamics as

dV/dt = f (V, h) = 1/Cm

· [gT · m · h · (VCa − V ) + gL · (VL − V ) + Iapp
]
,

dh/dt = g(V, h) = (h∞ − h)/τh,

m = (1 + exp [−(V + 55.6)/4.4204])−3,

h∞ = (1 + exp [(V + 71.3)/5.472])−1,

τh = 30 + 30 · exp [(V + 160)/30] / exp [(V + 89)/7.3]

[reproduced from Chorev et al. (2006)], where V rep-
resents the membrane voltage; gT , m, h, h∞, τh , and
VCa = 120 mV respectively represent the T-channel’s maxi-
mum conductance, its activation (considered instantaneous),
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Fig. 2 A multizonal microcomplex maps to an inverse controller.
a Block diagram for 1/J (s)’s implementation illustrating a top path
that mirrors J (s)’s total delay and a bottom path that mirrors the spinal
cord’s and the musculoskeletal dynamics. b Cerebellar MZMC dia-

gram for comparison, illustrating an analogous loop around an MZMC
that hypothetically computes 1/J (s). (DC N : deep cerebellar nucleus,
BS: brainstem, I O: inferior olive, PC : Purkinje cells, Go: Golgi cells,
gr : granule cells, Inh: inhibitory interneurons.

its inactivation, its steady-state inactivation, its inactivation
time constant, and its reversal potential; gL and VL = −60
mV represent respectively the leak conductance and its
reversal potential; Iapp represents a generic input current
(in µA/cm2); and Cm = 1µF/cm2 represents the membrane
capacitance. Within these expressions, numerical parameters
with dimensions of time or voltage are expressed in units of
milliseconds or millivolts, respectively, and conductances in
millisiemens/cm2.

We linearize the model to determine the IO cell’s natural
frequency (ωIO) and damping ratio (ζIO) for any given set of
parameter values (gT, gL, and Iapp). We first find the system’s
equilibrium points (Veq, heq) by solving for the intersection
between its V and h nullclines, using a properly seeded New-
ton–Raphson method. We then construct the system’s line-
arized Jacobian at Veq, heq

L(Veq , heq) =
[ δ f

δV (V, h)
δg
δV (V, h)

δ f
δh (V, h)

δg
δh (V, h)

]

and call Matlab’s built-in function eig(L) to calculate its
eigenvalues (λ1, λ2). These eigenvalues describe the model’s
response as V (t)= c1 · exp(λ1 · t) + c2 · exp(λ2 · t) (Izhike-
vich 2007) and give its natural frequency and damping ratio:
ωIO = (λ1 ·λ2)

−1/2 and ζIO = −(λ1 +λ2)/(2 ·ωIO), expres-
sions that are valid for all possible eigenvalues. Unlike the
typical approach of characterizing IO oscillatory dynam-
ics by their decay time constant (determined by λ1,2’s real
component) and their natural damped frequency (determined
from λ1,2’s imaginary component), characterizing IO sub-
threshold dynamics with ωIO and ζIO allows for a direct com-
parison with P(s)’s fundamental parameters (ωn and ζ ).

To determine the full range of values an IO expresses for
ωIO and ζIO, we explore the model’s parameter space, vary-
ing gT, gL, and Iapp over physiologically plausible ranges
(Chorev et al. 2006). We first sweep gT and gL with-
out injecting current and classify the responses as over-
damped (ζIO > 1), underdamped (0 < ζIO < 1), or undamped

(ζIO < 0) (Fig. 3a1, a2). Within each region, we choose exem-
plary points (gT, gL pairs), simulate the transient response for
various Iapp values (Fig. 3b1, b2), and compute Iapp’s effect
on ωIO and λIO (Fig. 3c1, c2). Finally, we explore the IO’s
full range by simulating the effect of a maximum and min-
imum applied current (Iapp = ± 1µ A/cm2) for all gT, gL

pairs (Fig. 4).

2.3 Mirroring joint dynamics

To compare an IO’s expressible ωIO and ζIO range to a joint’s
physiological ωn and ζ range, we represent them graphically
(Fig. 4). To do this, we plot all ωIO versus ζIO pairs found
for the entire gT, gL simulation range and manually trace a
contour over all the samples from the simulation results to
define three regions: one region for samples where Iapp = 0,
one for Iapp = 1 µA/cm2, and one for Iapp =−1 µA/cm2.
For comparison, we plot experimentally measured ωn and
ζ for the physiological human ankle (Gottlieb and Agarwal
1978; Weiss et al. 1988; Hunter and Kearney 1982; Aruin and
Zatsiorsky 1984; Allum and Mauritz 1984; Sinkjaer et al.
1988), knee (Zhang et al. 1998), elbow (Lacquaniti et al.
1982; Bennett et al. 1992), wrist (Sinkjaer and Hayashi 1989),
and finger (Becker and Mote 1990) joints, and we manually
trace an estimated region around each joint’s data samples.

2.4 Mismatch’s effect on overall motor output

To characterize the effect of an imperfect inverse transfer
function implementation on overall motor performance, we
introduce a mismatch between ωIO and ωn or between ζIO and
ζ . Using Matlab’s Control System Toolbox, we implement
T (s)= [1/J ′(s)] · J (s) for various amounts of mismatch and
simulate T (s)’s transient and frequency response using Mat-
lab’s built-in functions, sim() and bode(), respectively. As a
step input demands infinite torque, we instead use a sigmoid,
described by m(t)= 1/(1 + exp(−(t − t0)/τ)), and choose
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Fig. 3 Inferior Olive (IO) dynamics. a1 Natural oscillation frequency
(ωI O ) and a2 damping ratio (ζI O ) for IO neurons with various com-
binations of leak (gL ) and calcium (gT ) conductances (zero applied
current), computed from eigenvalues at the system’s equilibrium point.
b1 and b2 Transient responses to current injections (Iapp = −1 to 1

µA) for points highlighted in a1 and a2; color represents, ωI O and
ζI O , respectively, and subpanel locations correspond marker locations
in a1 and a2. c1 ωI O and c2 ζI O as a function of Iapp for the same
points.

τ = 15 ms such that the torque from the exemplary elbow
joint never exceeds 40 N m (t0 simply delays the input’s
onset by 100 ms). Using the waveforms obtained from tran-
sient simulations, we measure the motor output’s maximum
percentage overshoot, rise time (from 10 to 90 %), and set-
tling time (to within a ± 5 % error band) as a function of
mismatch between ωIO and ωn or between ζIO and ζ .

We model the effect of experimental current injection
into IO on motor performance, T (s), by determining how
it changes J (s). We begin by choosing an IO cell configu-
ration that exactly mirrors the exemplary joint’s dynamics
(P(s)). In particular, gT = 0.1792 and gL = 0.05 mS/cm2

yields ωIO = ωn = 3.04 Hz and ζIO = ζ = 0.1756 (bot-
tom left circle in Fig. 1a1, a2). For this specific configura-
tion, we sweep Iapp over a ±0.2µA/cm2 range, compute ωIO

and ωIO, adjust J (s) accordingly, and then compute T (s)’s
temporal and frequency responses. The temporal responses
predict performance (maximum percentage overshoot, rise
time, and settling time) as a function of Iapp.

3 Results

One strategy to overcome the performance limitations of the
spinal cord’s closed-loop controller is to drive it through its
inverse transfer function, which we found maps to a cerebel-
lar MZMC. The inverse transfer function [1/J (s)] emerges
naturally from inverting the spinal cord’s closed-loop trans-
fer function [J (s)], and therefore consists of the same com-
ponents now arranged along two distinct pathways. One
pathway matches the spinal cord’s total delay, whereas the
other pathway forms a loop that inverts the joint’s dynamics.
This loop is remarkably similar to the loop that defines an
MZMC’s architecture (Fig. 1). Around these similar loops,
the IO mirrors the biomechanical joint’s oscillatory dynamics
[P(s)], PCs mirror the spinal cord’s loop gains (KP and KD),
and the DCN integrates descending input and feedback from
the IO to produce the final output that projects to the brain-
stem (Fig. 2). By mirroring J (s)’s dynamics, 1/J (s) (or an
MZMC) overdrives J (s), cloaking its natural response such
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that the overall system becomes transparent and thus outputs
a faithful copy of the input (Fig. 1).

Although our mapping assigns specific roles to each cell
type within an MZMC, here we focus on the IO as it is
the most salient link between the inverse transfer function
[1/J (s)] and an MZMC’s biophysics—specifically, both the
IO and a biomechanical joint [P(s)] are damped oscillators.
In particular, the IO’s unique oscillatory dynamics stand out
as a direct match to the musculoskeletal system’s oscillatory
dynamics. Our mapping’s prediction that, for an MZMC to
implement a joint’s inverse transfer function, the DCN imple-
ments proportional and derivative gains is explored in a com-
panion paper (Alvarez-Icaza and Boahen 2011).

Mapping a joint’s inverse transfer function to an MZMC
requires that the IO’s subthreshold dynamics match the bio-
mechanical joint’s natural frequency (ωn) and damping ratio
(ζ ). In humans, for small perturbations, joints such as the
ankle, wrist, elbow, and fingers are well described by a sec-
ond-order system (Gottlieb and Agarwal 1978; Hunter and
Kearney 1982; Lacquaniti et al. 1982; Allum and Mauritz
1984; Aruin and Zatsiorsky 1984; Weiss et al. 1988; Sinkjaer
and Hayashi 1989; Becker and Mote 1990). Depending on
the joint, ωn may be between 1 and 30 Hz and ζ between 0.06
and 0.4; these values also depend on the joint’s angle, dis-
placement amplitude, and voluntary stiffening (Lacquaniti
et al. 1982).

A biophysical IO model suggests that matching can be
achieved by varying the amount of leak (gL) and calcium
(gT) conductances expressed as well as the tonic input
current (Iapp). This simple model ignores Na+ spikes and

gap-junction coupling. Ignoring Na+ spikes is justified if
they serve purely as a readout mechanism—a phenomenon
observed in vivo where axonal bursts ride atop subthreshold
oscillation to encode phase or amplitude but do not disrupt the
underlying period (Mathy et al. 2009). Ignoring gap-junction
coupling is justified if the population’s behavior is captured
by a single IO cell with average properties—; Manor et al.
1997 showed that this is indeed the case.

We studied the biophysical IO model’s response as gT and
gLvaried over the physiologically plausible ranges, focusing
on underdamped subthreshold oscillations (0 < ζIO < 1).
We found that underdamped oscillations occurred with ωIO

ranging from 2 to 15 Hz. Furthermore, we found that
Iapp(−1to1µA/cm2)couldalterωIO byup toa factorof2 (and
ζIO by 5), resulting in a total ωIO range of 1 to 17 Hz for under-
dampedoscillations.Overall,assumingsimilar IOphysiology
in rats and humans (Sect. 4), these results suggest that IO cells
ωIO and ζIO can match the spectrum of biomechanical ωn and
ζ , as predicted by our mapping (Figs. 3, and 4).

Our MZMC model predicts that a mismatch between ωIO

and ωn or between ζIO and ζ will unmask J (s)’s natural
response, as seen by overall output ringing at ωn , with ampli-
tude proportional to the mismatch. We deliberately imple-
mented an imperfect inverse transfer function—one in which
the IO’s parameters (ωIO and ζIO) did not match the biom-
echanics fundamental parameters (ωn and ζ )—and charac-
terized the effect of mismatch on overall motor output. Mis-
match, either between natural frequencies or damping ratios,
introduces output ringing, always at a joint’s natural fre-
quency. This is easily observed for all mismatch cases, in
transient analysis, where the waveform’s peaks and troughs
line up—albeit phase shifted—with J (s)’s natural response
(Fig. 5); the amplitude is proportional to the amount of mis-
match. A natural frequency mismatch has a much stronger
effect on percentage overshoot than a damping ratio mis-
match. Other output characteristics are also affected by mis-
match: the output’s settling time is weakly affected by a
damping ratio mismatch, but it grows longer (showing abrupt
steps when an oscillation’s peak crosses beyond the ±5 %
error band) with an increasing natural frequency mismatch,
and the output’s rise time grows for ωIO faster than for ωn

but decreases for ζIO larger than for ζ . Altogether, the stron-
gest effect is that of a natural frequency mismatch on motor
output percentage overshoot (Fig. 5).

Our MZMC model’s predictions can be tested experimen-
tally by injecting current into an IO to perturb ωIO and ζIO.
To evaluate the effects that experimentally injecting cur-
rent—by electrical stimulation or optogenetic techniques—
into a population of IO cells would have on motor output
performance, we implemented an inverse transfer function
where ωIO and ζIO were functions of current injection (Iapp),
as determined using Manor and Chorev’s IO model. Simu-
lating Iapp’s effects on the IO (Fig. 3c), and then substituting
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quency (ωn), or between the IO’s damping ratio (ζIO) and the biome-
chanical damping ratio (ζ ). RTI: range over which rise time is computed.
b T (s)’s frequency response for same cases as in a, illustrating how

mismatch unmasks a joint’s natural response. c Output percentage over-
shoot, settling time, and rise time as a function of mismatch between
oscillation frequencies or between damping ratios. The steplike behav-
ior observed in the settling time is due to the peaks of later cycles of the
oscillatory waveform abruptly crossing to the outside of the error band
as the overall amplitude of the oscillation’s overshoot grows

the resulting ωIO and ζIO into 1/J (s), predicts that Iapp will
introduce motor output ringing at ωn , with the amplitude ris-
ing with Iapp’s magnitude, but quickly saturating (Fig. 6).
Similarly, the settling time increases with Iapp’s magnitude,
whereas a positive current increases the rise time and a neg-
ative current decreases it. These effects saturate for currents
larger than 0.15 A/cm2. Using the results from the IO bio-
physical model to define 1/J (s), we establish a direct link
between Iapp and its associated effects on overall motor out-
put and make experimentally testable predictions.

4 Discussion

While previous analyses focused on the IO’s ability to sus-
tain subthreshold oscillations, we studied the IO’s ability to
express the damped (nonsustained) oscillations appropriate
for mirroring a joint’s dynamics. Initially, inspired by the
anatomy, the IO was considered to be a source of training
signals to the cerebellar cortex (Marr 1969; Albus 1971);
however, this view changed drastically when physiological
recordings revealed the IO’s unique ability to sustain sub-
threshold oscillations (Llinas and Yarom 1986). Despite the
fact that only 15 % of IO slices have neuron pools that sustain

spontaneous oscillations (Devor and Yarom 2002), sustained
oscillations quickly became the focus of attention, reposi-
tioning IO as a timekeeper at the expense of disregarding its
full dynamical repertoire. In particular, through biophysical
modeling, Manor explains how gap junctions among a het-
erogeneous network of IO cells are required to generate sus-
tained oscillations at the network level, and Chorev explains
how the leak and T-channel conductances may be modulated
to sustain oscillations. Manor and Chorev both disregard the
IO’s ability to act as a damped oscillator. We rectified that
oversight by using their computational model to analyze the
regime in which the IO acts as a damped oscillator, suitable
for mirroring biomechanical dynamics.

We presented results showing that manipulating the IO’s
oscillation frequency and damping ratio—either by manip-
ulating its conductances or by injecting current—results in
motor output ringing at a joint’s natural frequency. Analyt-
ically, regardless of the source of mismatch, T (s)’s output
always rings at a joint’s natural frequency because J (s)’s
poles determine the system’s overall poles; therefore, when
J (s)’s poles are not perfectly canceled, they cause the system
to ring at ωn . For the case where ζIO < ζ , the gain at ωn is
less than one; hence we see a notch in the frequency response
instead of a resonance (i.e., a peak). This is because the sys-
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Fig. 6 Disturbing IO, experimental predictions a T (s)’s temporal
response to a smoothed input step when tonic current is injected (Iapp) to
induce mismatch between IO’s dynamics and the biomechanic’s dynam-
ics. RTI range over which rise time is computed. b T (s)’s frequency
response for same cases as in (a), illustrating the unmasking of the

joint’s natural response. (c) Output’s percent overshoot, settling time
and rise time as a function of Iapp. The step-like behavior observed
in the settling time is due to the peaks of later cycles of the oscilla-
tory waveform abruptly crossing to the outside of the error band as the
overall amplitude of the oscillation’s overshoot grows.

tem’s overall gain is dominated by the ratio of dampening
ratios, in particular T ( jωn)= (ζIO − G)/(ζ − G), where
G = jKP − K Dωn . However, in the time domain there is still
ringing at ωn because this notch subtracts ωn from the step
response, which is then described by m(t)–sin(ωnt) (Fig. 5).
Overall, conductance manipulation varies ωIO and ζIO over
the observed range of ωn and ζ . Current injection also varies
ωIO and ζIO but has a much stronger effect on ζIO (Fig. 3).
Remarkably, regardless of which parameter is mismatched,
or the amount of current injected, motor output always rings
with a frequency of ωn (Fig. 6).

Our model predicts that, across species, the IO must match
a joint’s dynamics, yet we presented results comparing rat IO
dynamics to human joint dynamics. As much as we would
have liked to compare rodents to rodents and primates to pri-
mates, there is currently no literature describing subthresh-
old IO behavior in primates or joint dynamics in rodents.
Our rodent–primate comparison is justified if two assump-
tions hold. First, IO cells’ biophysics are conserved across
mammals, and therefore IO dynamics are similar for all spe-
cies regardless of size. Second, joint dynamics fall within
this conserved IO frequency range regardless of animal size.

Support for the first assumption will remain pending the
unlikely availability of IO slice recordings from larger ani-
mals. Support for the second assumption comes from the fact
that, although somewhat counterintuitively, the frequencies
at which even the smallest mammals move rarely go beyond
10 Hz; mice in particular may run with stride frequencies
of up to 11 Hz (Herbin et al. 2004), but their typical gait is
approximately 5 Hz (Amende et al. 2005). Furthermore, leg-
ged-locomotion studies show that, in animals ranging from
cockroaches to kangaroos, leg stiffness is proportional to
body mass, rendering natural frequencies relatively constant
(Blickhan and Full 1993).

Unlike IO subthreshold oscillations serving simply as a
clock, our results argue that they actually serve to reproduce
a limb’s resonant dynamics. In the clock hypothesis, first
proposed by Welsh and Llinas, muscle activation strengths
are read out from the cerebellar cortex at discrete time inter-
vals, clocked by IO spikes (Llinas and Welsh 1993; Welsh
et al. 1995; Welsh and Llinas 1997). This model can produce
arbitrary muscle activation patterns at the cost of requiring
extensive storage within the cerebellar cortex. In our hypoth-
esis, the IO solves the differential equations that describe
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a joint’s biomechanics, functioning as an analog computer,
and the cerebellar cortex modulates IO output to implement
the gains of the spinal cord stretch reflex. Our model better
utilizes (and accounts for) the IO’s rich temporal dynamics,
at the cost of limiting the available waveforms.

Despite the longstanding belief that the IO only provides
error signals to train the cerebellar cortex, predictions that
the IO internally mirrors a joint’s dynamics are also con-
sistent with physiological evidence. Following Albus’ pro-
posal (Albus 1971), the IO has been considered the source
of error signals to train the cerebellar cortex—a perspective
supported by evidence that climbing fibers weaken paral-
lel-fiber synapses onto PCs (Ito and Kano 1982) and that
PC complex spiking increases during motor learning tasks
(Gilbert and Thach 1977; Ojakangas and Ebner 1992). Nev-
ertheless, consistent with the model’s predictions, physio-
logical recordings from PCs in monkeys during reaching
tasks clearly show an increase in complex spiking prior to
or during the earliest phase of motor initiation, with such
increase being most significant for rapid or ballistic motions
(Mano et al. 1986) where joint dynamics play a greater role
in motion execution. In particular, detailed analysis of com-
plex spiking during reaching tasks has revealed that, dur-
ing the earliest phase of motion initiation, complex spikes
encode the target’s absolute position and that upon complet-
ing the reach, complex spikes encode the relative error to the
target (Kitazawa et al. 1998).

Our results raise the question of how the IO transmits the
phase and amplitude of its subthreshold oscillations, with
frequencies above 3 Hz, to the cerebellum, using spikes that
on average occur at <2 Hz (Gilbert and Thach 1977; Mano
et al. 1986; Ojakangas and Ebner 1992; Kitazawa et al. 1998).
The population of approximately 100 IO cells (Llinas et al.
2004) that belong to an MZMC can achieve this through
their spike rate or spike timing. In rate coding, the number
of spikes that occur across a population encodes the sub-
threshold oscillations’ amplitude from instant to instant—,
that is, the subthreshold waveform. This is possible because
the cells’ spikes occur independently, even though their sub-
threshold oscillations are tightly synchronized via gap junc-
tions (Llinas and Yarom 1986; Leznik et al. 2002; Devor and
Yarom 2002; Yarom and Cohen 2002). For instance, a dif-
ferent subset of ten cells would fire on each cycle, and their
ten spikes would be distributed in time so as to reflect the
oscillation’s instantaneous amplitude throughout that cycle.
Together, these ten subsets represent a 10 Hz subthreshold
oscillation’s amplitude and phase whereas individual cells
only fire at 1 Hz. As an oscillation dampens, fewer cells fire
in each subset, encoding its decreasing amplitude. In timing
coding, the cells would always spike at a particular phase of
the oscillation (Jacobson et al. 2009) but produce a burst of
spikes, with the number of spikes increasing with the oscilla-
tion’s amplitude (Mathy et al. 2009). Specifically, in vivo, a

single somatic spike becomes an axonal burst, and this code
is reliably transmitted to PCs, as observed in the duration of
the resulting complex spike.

Our MZMC model predicts that for smooth motion to
ensue, an MZMC’s inverse transfer function must match a
joint’s dynamics. External changes, such as picking up an
object, or internal changes, such as flexing the elbow, contin-
uously change the joint’s dynamics—in particular P(s)’s ωn

and ζ . The most direct strategy for the cerebellum to com-
pensate for these ever-changing dynamics would be to mirror
the changes by adapting the IO’s ωIO and ζIO. This could be
achieved by varying the amount of tonic input into the IO,
and thus the average applied current (Iapp), to instantaneously
change the dynamics of the cell (Fig. 4) to track the joint’s ωn

and ζ . Alternatively, to track a joint’s dynamics, the cerebel-
lum may altogether recruit a different MZMC—also associ-
ated to the joint in question—tuned to the proper dynamics.
As indeed we are capable of producing smooth motion under
widely diverse external and internal dynamic configurations,
to match these ever-changing joint dynamics, the cerebellum
must somehow select or modulate the proper MZMC.

Our MZMC model may be tested by experimentally
manipulating a joint’s dynamics. Even though our MZMC
model does not incorporate the role of ascending feedback
from the spinal cord, it can account for the final state reached
through adaptation. This adaptation may occur in the same
MZMC that served that joint previously or it may occur in
a different MZMC, depending on the cerebellum’s adapta-
tion strategy. Therefore, our model will predict that either
the MZMC will change to match the new joint’s dynamics
or it will go silent. If an MZMC’s activity did not adapt or
go silent, this would invalidate our model.

Overall, our mapping between an MZMC and an inverse
transfer function provides a mechanistic explanation that
supports the hypothesis of the cerebellum as an inverse
controller. Unlike most associative cerebellar models that
imply the learning of stereotypical temporal patterns, our
model suggests that an MZMC—through its dynamics—
acts as an analog computer that implements a joint’s inverse
transfer function in real time. Our proposed implementation
goes beyond abstract cerebellar models in that, at a mech-
anistic level, it is inspired by, and accounts for, membrane
dynamics within the olivocerebellar loop, where in partic-
ular we have focused on the similarities between a joint’s
dynamics and the IO’s dynamics. Inevitably, the cerebel-
lum must generate appropriate temporal patterns to drive the
joints; however, unlike other such models where patterns are
stored as a sequence of activations, at a mechanistic level
we propose that these patterns are computed in real time
by the intrinsic dynamics within the system. Overall, the
results so far suggest that biophysically mirroring a joint’s
dynamics internally may implement an inverse controller
efficiently.
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