Advanced Research in VLSI, Atlanta GA, 1999. IEEE Computer Soc. Press, Los Alamitos CA. 1

A Throughput-On-Demand Address-Event
Transmitter for Neuromorphic Chips

Kwabena Boahen
University of Pennsylvania
Dept of Bioengineering
3320 Smith Walk
Philadelphia PA 19104-6392

kwabena@neuroengineering.upenn.edu

Abstract

I present a scalable 2-D address-event transmitter interface designed to take advantage of
the high integration densities available with advanced submicron technology. To sustain
throughput, it exploits the linear increase in the number of active neurons per row with
array size, instead of counting on a linear increase in the unit-current/unit-capacitance
ratio, as existing designs do. I synthesize an asynchronous implementation starting from a
high-level specification, and present test results from a 104 x 96-neuron chip fabricated in a
1.2um CMOS process. Reading out the state of all neurons in a selected row in parallel, and
sending their spikes in a tight burst of events, yields cycle times between 40 to 70ns—six
to ten times shorter than the 420ns minimum cycle time reported in earlier work.

1: Communication channel scaling for 2-D arrays

Random-access, time-multiplexed, communication channels have been developed to com-
municate spike trains between arrays of silicon neurons on multiple chips [11, 7, 12]. These
communication channels find application in retinomorphic imager chips [7, 1, 4], and sil-
icon auditory preprocessors [5], which perform pixel-parallel adaptive quantization. Sev-
eral ways of maximizing and allocating channel capacity have been investigated, including
polling (i.e., scanning) [11], free-for-all [10], and arbitration [12, 5, 7], and the merits of
each approach have been debated [2]. However, little attention has been paid to the scaling
properties of the architectures proposed.

For two-dimensional (2-D) architectures, where neurons are organized into rows and
columns, cycle time is proportional to array size, due to increasing row and column line
capacitance. Migrating to a more advanced fabrication process does not provide relief—
unless the unit-current/unit-capacitance ratio is proportional to the integration density.
Unfortunately, this current-drive ratio increases sublinearly with integration density, as
evidenced by the scaling trends of DRAM and SRAM. Hence, existing 2-D communication
channel architectures cannot take full advantage of the higher levels of integration offered
by advanced submicron technologies.

In this paper, I describe an interchip communication channel for 2-D neuromorphic
arrays that achieves improved scaling behavior by reading spikes from the array in parallel.
When the current-drive ratio is constant, its throughput is sustained as the array size
increases. And when the current-drive ratio increases, its throughput improves as the

»‘*
H
Sendi ng Sendi ng
Neur on H Neur on
Sender Chip — Sender Chi p —

(a) (b)
Figure 1: Throughput-on-Demand Architecture

(a) Silicon neurons convert analog current into spikes (i.e., digital pulses). A neuron interface circuit
communicates spikes to circuitry on the periphery of the array using a pair of request/select lines. A
row/column interface circuit relays requests from a row or column of neurons to the arbiter and relays
acknowledges from the arbiter back; it also activates the address encoder. Row/column arbitration
is hierarchical: A neuron first sends a request to the row arbiter. When its row is selected, it sends
a request to the column arbiter. When both its row and its column are selected, it clears its spike
and withdraws its requests. (b) Throughput is boosted by reading spikes in parallel—using one line
per column—from the selected row, storing them in a latch, and selecting the next row while they are
transmitted. The row’s address is also stored in the latch. The latch sends an acknowledge signal back
to the row-interface circuits; it makes sure the column lines are cleared before withdrawing this signal.

feature sizes shrink. This behavior is achieved by reading out the states of all neurons in
a selected row in parallel over the column lines. My new architecture is contrasted with
the prior art in Figure 1.

The amount of parallelism achieved increases with the level of activity (i.e., what
fraction of a row’s neurons are active, on average, each time it is selected). For a given level
of activity, the number of active neurons in the row increases as the array size increases.
Hence, the number of spikes read out in parallel scales with the time required to drive the
column lines. And, therefore, the channel throughput is sustainable. Furthermore, as the
activity level goes up, this fraction goes up because the probability, per unit time, of a
neuron spiking is higher and more time is spent servicing each row. Thus, more parallelism
is achieved, and throughput goes up as the load increases.

I describe the design and performance of this throughput-on-demand communication
channel in the following sections.

2: Concurrent hardware processes

Our goal is to design a communication channel that encodes activity on its N service ports
as [logy(N)]-bit words on a single output port. Starting with a high-level specification, I
implement the channel by performing a series of program decompositions. There are two
advantages of reducing the channel process into concurrent subprocesses:

e We can use a divide-and-conquer strategy to reduce the logical complexity.

e We can share expensive hardware resources.

However, for this approach to be successful, we must synchronize the activities of these
concurrent processes and resolve contention for shared resources. To this end, I follow
a correct-by-construction synthesis methodology for asynchronous digital VLSI systems
developed by Martin [8].

The address-event transmitter is defined in the concurrent-hardware-processes (CHP)
description language [8] as follows:

AER(N) = process({,n: 1..N : Ly), Alint([logy(N)]))
*[[c<i| n:1.N: L, — Alenc(n)|Ly)]]

Thus, the interface has N dataless ports, Ly, and a single output port, A, that transmits
a [logy(N)]-bit word. These bits encode the identity of the active input port chosen by
arbitration. The function enc(n) converts an N-bit one-hot representation into a [logy(N)]-
bit binary representation, where n is the position of the bit that is true in the N-bit word.

We realize three optimizations by reducing this high-level specification into a hierarchy
of concurrent processes:

1. We reduce the number of arbiters cells and encoder cells from Y x X toY +X —2 and
Y + X, respectively, by going to a Y-row/X-column organization, where Y x X = N.

2. We boost throughput by performing arbitered sequential transmission of spikes from
a previously selected row concurrently with parallel readout of spikes from a newly
selected row.

3. We reduce the number of column lines by X—and eliminate the need to detect com-
pletion of concurrent column communications inside the array—by using a straight-
data encoding.

The first optimization was introduced in Mahowald and Sivilotti’s pioneering work [12,
7, 5]. The second and third optimizations—which exploit the first one—are innovations
introduced in the present work; they are described in detail in this section. Prior to this
work, I reduced the 2us cycle-time of the first-generation design [7] to 420ns by exploiting
locality in the array (i.e., servicing all requests in a chosen row before picking another row)
and in the arbiter (i.e., spanning the smallest subtree that includes another request) [2].

2.1: Reorganizing into rows and columns

We reorganize the N service ports into rows and columns to reduce the number of arbiters
and encoders from O(N) to O(N'/2). We start by introducing hierarchical row/column
arbitration:

AERY, X)=+[[(ly: 1.Y : (Vo : 1. X : Lyp) — [(| 7 : 1. X : Ly, — Alenc(y - 2)|| Ly..)])]]

where Y x X = N and y -2 = Xy + z. Observe that, first we use a Y-input arbiter to
choose one of Y rows, and then we use a X-input arbiter to choose one of X ports assigned
to that row. Hierarchical arbitration guarantees that only one row is active at any given
instant. Hence, we can share a single X-input column-arbiter between all the rows. We
must OR together all requests within each row to generate requests for the row-arbiter.
Replacing XY — (Y + X — 2) arbiters with X x Y OR gates is a big win, as arbitration is a
lot more expensive that ORing. A similar reduction in the number of encoder cells is also
achieved.

We can save time by servicing all requests in a chosen row before we pick another
row [2]. Our goal, then, is to allow all requests in the selected row to compete in parallel
for access to the column arbiter. It is realized by rewriting the array process:

ARRAY(Y, X) =
process((,n: 1.YX : L), (2 :1.X:Cy),(,y: LY : Ry), (x: 1.X : Ay), (,y: 1.Y : By))
*[[(ly:1.Y : (Vo :1.X : Ly,) —
. Ry; Ayll(||x : 1..X ¢ [Ly.y — Cg; Az||Ly.z; Cp]~ Ly. — skip]); Ry
*

end

ARB(N) = «[[{| n: 1..N : Ly, — Ly; Ly);]], ENC(N) = *[[(|n : 1..N : L,, — Alenc(n)eL,)]|

I extracted the arbiters and encoders, leaving a Y x X array of N service ports. Thus,
AER(N) is now made up of five concurrent processes: The array (ARRAY(Y, X)), an X-
input column-arbiter (ARB(X)), an X-input column-address—encoder (ENC(X)), a Y-
input row-arbiter (ARB(Y)), and a Y-input row-address—encoder (ENC(Y")). In addition
to its XY service ports (Ly), ARRAY (Y, X) has two sets of Y ports (R, and B,) and two
sets of X ports (C and A;). It uses these ports to communicate with the row arbiter (R,),
the row-address encoder (B,), the column arbiter (C), and the column-address encoder
(Az). The bullet operation (e) in ENC(V) allows the next L,, communication to begin as
soon as the last one has completed—even if the last A communication is not finished.!

When we OR requests from the same row to generate a request for the column arbiter,
we should not wait for inactive ports to communicate on the column lines when the row is
selected. The forced-choice selection between m and the negated probe, _‘mv in ARRAY
ensures this. Concurrent communication on the C, ports is not prolonged by waiting for
probes on inactive ports to become true. A problem that did not occur in the original
program because, for a given row, we selected active ports one by one and communicated
on them sequentially—and we knew that at least one probe would be true because we
ORed all of them together. The forced-choice selection has an additional effect: It allows
only neurons that were active at the time that the row was selected to participate. Thus,
subsequent activity does not perturb the completion-detection process.

Our final program decomposition makes the array’s row/column organization explicit
by introducing separate row and column processes.

ROW(X) = =x[[(vz:1.X _L_QC) — Ry Al|{||x : 1.X : [Ly — Cy||La]=Ly — skip)); R;]]
COLY) = «*[[(Jy:1.Y:L, — C;A| Ly CY

As shown in Figure la, each row process, row(y), probes the port L,., = row(y).L, to
see if any of its neurons are active. If so, it makes a request to the row-arbiter on the
channel (row(y).R, arby.L,). When its request is granted, it activates its X dataless ports,
(col(x).Ly,row(y).Cy), in parallel and tells the row-encoder, (row(y).A, adry.L,), to out-
put its address. These communications are relayed to the column-arbiter by X column
processes, (col(z).C,arbx.L;). When a column’s request is granted, it completes its com-
munication with the row-process and calls the column-encoder, (col(x).A, adrx.L,), which
outputs its address. As these column communications are completed sequentially, the
column addresses of active neurons in the selected row are transmitted one by one.

!By definition of the bullet, when one operation is finished, we know the other has started. Hence, there
is no danger of performing several L,, communications without doing the corresponding A communications.

2.2: Reading the array in parallel

We can increase throughput by reading spikes from a row in parallel, combining its X
dataless ports into a single X-bit data port. Thus, a row indicates concurrent activity on
its X service ports by setting the corresponding bit in the X-bit word. Of course, we need
to combine the X COL(Y") processes into a single X-bit wide column bus to match. The
column communications may be merged as follows:

ROW(X) = process((,z:1..X : Ly),Clint(X), R, A)
b int(X)
)[(|7:1.X : [Ly — bl [Ly A (Vi 1..X : b.i) — skip]);
R; AI(C0; (|| : 1..X ¢ [by — Ly||by | [2b. — skip])); R;]
end

BUS(Y,X) = process((,y: L.Y : L,%int(X)), Clint(X))
*[[éﬂy :1.Y : Ly, — CI(Ly7))]]
end
LATCH(X) = process(L?int(X), (,x:1.X :Cy),(,x:1.X : A;))
b int(X)
w[L70; (||x: 1.X : [br — Cy; Ag||bx |; Cr]—b.zz — skip]);]
end

I have combined X COL(Y') processes into a single process called BUS(Y, X), added an
X-bit state variable, b, to ROW(X), and added a X-bit latch process, LATCH(X). These
processes are organized as shown in Figure 1b. T allow ROW(X)’s service ports (i.e., L;) to
modify b’s bits concurrently; writing is terminated when at least one bit is set. ROW(X)
then makes a request to the row-arbiter (i.e., R). When it is selected, it outputs b onto
the column bus (i.e., C!b). BUS(Y, X)) transfers the data to the latch (i.e., C1(L,7)). For
every bit b.z that is set, LATCH(X) communicates with the corresponding input, Cy, of
the column-arbiter; these communications occur concurrently. When the arbiter responds,
the address-encoder is asked to output the column’s address (i.e., A,) and the bit is reset.
Hence, the bits are reset sequentially, as columns are selected one by one and their addresses
are transmitted.

For high speed, we must allow the row’s parallel write (i.e., L?b in LATCH(X)) to occur
concurrently with the arbiter’s serial reads (i.e., C; in LATCH(X)). To be more precise,
the latch and the array should only be synchronized at the beginning of the sequence, when
data is transferred. The reset of the data lines should be acknowledged asynchronously
with on-going latch-to-arbiter communications. This way, new data shows up from the
array, ready to be written, as soon as the serial readout is completed. Specifying the
detailed relationship between particular communication-cycle phases is not possible at this
level of abstraction, so we will wait till we get to a lower level to pursue this part of the
design further.

Having decomposed the address-event transmitter single-line CHP programs—while
optimizing the utilization of time and space—our next step is to expand each communiation
into a four-phase handshake.

3: Implementing concurrent hardware processes

We now hand-compile our decomposed CHP programs into production rules, which can be
implemented directly with CMOS transistors [8]. First, we perform handshaking expansion
(HSE), which involves fleshing out each communication into a four-phase handshake on

Figure 2: Neuron and Row/Column Interface Circuits

(a) This circuit interfaces the neuron (i.e., Iix,Tox) with the row interface circuit (i.e., §,s) and the
latch cell (i.e., 8ox). The pull-downs on § and &ox form row-wide and column-wide wired-NOR gates;
a current source at the edge of the array serves as the pull-up. The neuron is disabled when the row is
selected (i.e., s is high) to prevent generation of new spikes. The capacitive positive-feedback provides
hysteresis [9] and speeds up the cycle, making 1ix change at close to 1V/ns—even when the neuron’s
input capacitor charges at only 1V/ms. And the current-starved nMOS-style inverter—which operates
with less than a microamp of bias current—limits static power dissipation [6]. (b) This circuit interfaces
either the row or the latch cell (i.e., §,s) with the arbiter (i.e., ro, ¥i) and the address-encoder (i.e.,
ao, &i). It consist of two aC-elements—gates whose outputs are set when both inputs are high and
cleared when a given input is low.

a pair of lines, assigning an active or passive role to each port, and choosing a data
representation. For each subroutine, we realize two kinds of optimizations by reshuffling
the sequence in which the four phases of each communication cycle occur—with respect to
those of other communications in the same sequence.

e We can improve speed by performing the second half of the communication cycle
concurrently with succeeding communications—in cases where it is not used for syn-
chronization.

e We can reduce memory by carefully deciding when output transitions occur—co-
opting them to store state information.

For each pair of ports that form a channel, we must choose which port is active and which
is passive (i.e. which port initiates the communication). Of course, in cases where a port
is probed, it must be passive [8]. For the other cases, we have complete flexibility, and we
may seek the option that results in a more efficient solution.

3.1: Rowing along

We start by performing HSE on ROW(X), making L, passive, R active, and C active. We
ignore A for now and use a straight-data representation for C' (i.e., a single line per bit
and no separate request line). Thus, we obtain:?

2For compactness, I introduce a vector notation for HSE: Civen {x = 1..X}, we expand {ax *}

=al ¥ a2 * ... x aX. There can be more than one dimension: Given {x = 1..X},{y = 1..Y},
we expand {{ayx *} @ ay:} = (all * al2 * ... * alX) @ al: (a2l * a22 * ... * a2X) @ a2:
(a¥1l * aY¥Y2 * ... x a¥X) @ aY:—=x is expanded first because it appears only at the first level.

({lix,},ri,ci)row({lox,},ro,{cox,}) {x = 1..X}

*[{1lix —> bx+,}; {bx |}; ro+; [ril; {(bx —> cox+,lox+; “lix -> bx-) ||};

[ci & {"bx &}]; {cox-,lox-,}; [Tcil; ro-; ["ril;]

I implemented the two R’s with a pair of two-phase communications (i.e., two halves of
a four-phase communication). Using a straight-data representation requires just X data
lines, compared to 2X for a delay-insensitive dual-rail representation. The original un-
merged column communications, with X dataless channels, also required 2X lines [12, 7,
5, 2]. Therefore, merging the column communications saves X column lines—and also
allows us to push detecting completion of X concurrent column communications outside
the array.

We can give the arbiter an early start on selecting the next row by moving the second
R communication in front of the second half of C. Thus, we have
({lix,},ri,ci)row({lox,},ro,{cox,}) {x = 1..X}

*[{1ix -> bx+,}; [{bx |}]; ro+; [Tci & ril; {(bx -> cox+,lox+;

“1lix -> bx-) |I}; [ci & {"bx &}]; ro-; ["ril; {cox-,lox-,};]
This reshuffling is dangerous, however, because the arbiter can select another row immedi-
ately after ["ri]—before the previous row releases the column lines. To guarantee mutual
exclusion, I have moved [~ci] forward to where [ri] occurs in the next cycle, effectively
blocking a newly selected row from proceeding until the ongoing column communication
is completed. We also get more time to complete the column communication to boot. For
the same reason, it is beneficial to delay [ci] as long as possible. However, we cannot
move it past ro-, because ci must be high in order to lock out the other rows.

Now let us break the reshuffled sequence in two, the pixel part and the control part,
and introduce two intermediaries, p and s, for them to communicate with.

*[{1lix -> bx+,}; {bx |} -> p+; [s]; {(bx -> cox+,lox+; “lix -> bx-) ||};
{"bx &} -> p—; {"s -> cox-,lox—,};]
I[1*[[p); ro+; [ri & "cil; s+; [p & cil; ro—; ["ril; s-;]
p signals when the row wants to make a request (it is set when any bx is set and cleared
when all bx are cleared) and s signals when the row is selected.

Our final sequence operates as follows. When a spike occurs (i.e., 1ix becomes true),
the bit is set (i.e., bx+) and the pixel drives the row-request line high (i.e., p+). The
controller relays this request to the row arbiter (i.e., ro+) and acknowledges the pixel by
driving the row-select line high (i.e., s+) when the arbiter acknowledges. If necessary,
the controller waits until ongoing column communications are completed. When the row
is selected, all pixels with spikes place requests on their column lines (i.e. cox+), clear
their spikes (i.e., lox+), and clear their bits. When all the bits have been cleared, the
row-request line goes low. The controller responds by withdrawing the request it made
to the arbiter, but it waits till it receives an acknowledge from the column bus, since this
signal prevents interference with ongoing communications. As soon as the arbiter clears
its acknowledge, the controller deselects the row. The pixels then release the column lines
and clear their service acknowledges.

We are yet to implement the =L, — skip part of the L, /=L, selection, which allows
the second R communication to start as soon as any of the bits are set, and freezes the
row’s state. We can use the upward transition on s to lock-in the state of bx. Thus, we
obtain the following PRS:

row {x =1..X} # {bx I} -> p+ P -> ro+
{ lix (& "s) -> bx+ } {"bx &+ -> p- P & ci -> ro-
{"1ix -> bx- } {s & bx -> cox+,lox+ } ri & “ci -> s+

{"s -> cox—,lox- } “ri -> s-

The gates are shown in Figure 2. I eliminated the staticizers in the two aC-elements to save
space. Unfortunately, this simplification resulted in a race condition, which is described in
Section 4.

Turning our attention to communication with the row encoder, A, it is possible to merge
this communication with the column communication, C!b, as they occur simultaneously.
Hence, we can drive ao as well as cox with s, and combine ci with ai using a C-element.
Alternatively, since we activate the row and the encoder at the same time with s, we can
treat the encoder’s outputs just like we treat the neuron’s outputs, add a few more bits to
the latch to store the row address, and use the column bus’s acknowledge ci to indicate
when both the row’s state and address are latched. Merging the column and row-encoder
communications (C and A) in this way eliminates the need for a C-element. However, it
requires us to compensate for the worst-case delay between the encoding processes and the
column communications.

Now let us perform HSE on BUS(Y, X), making L, passive and C active.

({{1iyx,},},ci)bus({loy,},{cox,}) {y = 1..Y},{x = 1..X}
x[{{liyx |} -> cox+,}; [cil; {{liyx |} —> loy+,};

{{"liyx &} -> cox-,}; [“cil; {loy-,};]
The implementation is straightforward, as row activity is mutually exclusive. We obtain
outgoing data by ORing together all the incoming data for that column. The acknowledge
must be steered back to the right row. We determine which row was active by ORing to-
gether its data inputs. But wait a minute, why go through all this trouble just to prevent
the acknowledge from showing up on the other rows? Actually, we want them to snoop on
the bus and wait until ongoing communications terminate before they board. So it is okay
to broadcast the acknowledge! Therefore, we can eliminate the Y X-input OR gates that
determine input activity and the Y aC-elements that steer the acknowledge to the right
row. The only gates needed are a Y-input OR gate for each column and a single wire for
the acknowledge.

3.2: Choosing

Arbiters with any number of inputs, N, may be built from two-input arbiter cells using
the following recursive definition [3],

ARB(N) = ARB(N/2)||ARB(2)||ARB(N — N/2),

as shown in Figure 1. A total of (N — 1) ARB(2) cells are required to arbitrate between
N inputs; these cells are connected in a balanced binary tree with [logy(N)] levels. The
two-input, arbiter cell is described by:

ARB(2) = #[[L1 — R; L1;L1; R | Ly — R; La; Lo; R]|

This process probes its L ports to determine if there are active neurons in either its N/2-
subgroup or its (N — N/2)-subgroup. Next, it communicates on its R port to ensure that
the group of neurons it serves has been chosen. And finally, it communicates on either of
its L ports to select an active subgroup, and ignores the other subgroup. Thus, activity is
relayed up the tree by probing the R-to-L channels, while selection is relayed down the tree
by communicating on the same channels. Mutual exclusion is guaranteed by performing a
second pair of L and R communications to terminate the selection. The two-input arbiter
at the top of the tree, which serves all the neurons, is special, since its group is always
chosen. Therefore, its R port is connected to a process that automatically completes the
communication (i.e., x[L]). I present a brief derivation and description of my arbiter design
here, which improves on the robustness and performance of prior designs [12, 7, 5, 2]. A
complete description is available in [3].

We decompose the two-input arbiter into two subprocesses that handle communications
between the two input ports and the common output port, and a third subprocess that

T L5 S a
B UA
1
J—L,ﬁ_h“, ¥ g

o Pl Tl e gy

- ﬁ% E | ? 3 T g

Figure 3: Two-Input Arbiter Circuit
Active-high request signals, 11i and 12i, propagate down the arbiter tree through a modified OR gate
(right) and active-low acknowledge signals, #i, propagate up the tree through a router (middle). A
flip-flop (left) arbitrates between the requests and controls the router. The router filters the flip-flop’s
metastable (i.e., in-phase) oscillations to ensure the decision is irreversible before it steers the incoming
active-low acknowledge to the chosen request, by NORing it with the flip-flops's active-low outputs.
Filtering is realized by source-switched PMOS transistors, which cut off power to the pull-ups when
the flip-flop’s outputs differ by less than the threshold voltage [8]. Since one of the flip-flop’s outputs
is always high, we connected a single transistor between the outputs, instead of providing a #i-driven
pull-down for each output [12]. A pair of NAND gates invert active-high acknowledges from the steering
circuit and blocks them from propagating up the tree when the outgoing active-high request, ro, is low.

arbitrates between them. By disentangling arbitration and communication, we obtain the
following simpler subprocesses:

ARB(Q) = *[[A_1 — Al;Al | A_g — AQ;AQH
| % [[L1 — A1; Ry Ly; Ly Ry A1) || * [[L2 — Ag; R; Lo; Lo; R; As]]

I have specified connectivity implicitly, using the same name for ports that are connected.
We use the reshuffling below for the input/output subprocesses (L1 and Lg are passive;
A1, Az, and R are active); the arbiter itself is implemented in the standard fashion using
two cross-coupled NAND gates [8].
*[11i —> alo+,11i & “ri -> ro+; [ri & alil; 1llo+; [T11i]; ro—,alo-; [Talil; 1llo-;]
When a request is received from the lower level, we make a request to the local arbiter and
relay the incoming request to the upper level. We do not wait for a response from the ar-
biter, but we make sure the upper level has cleared its acknowledge to the previous request.
If not, we do not make a new request. Instead, we accept the old acknowledge, assuming
it is stable (i.e., ro is high), and relay it to the lower level as if it was a new acknowledge.
However, we wait for a response from the arbiter before we relay this acknowledge to the
lower level. At this point, we are half way through the communication cycle, and all signals
are set high. When the lower level clears its request, we clear our request to the arbiter.
To prevent a new incoming request from using an unstable acknowledge from the arbiter,
we wait for the arbiter to clear its acknowledge before we clear our acknowledge to the
lower level. Also, when we clear our request to the arbiter, we clear our request to the
upper level as well only if both incoming requests have been cleared. A strategy that gives
our sister process the opportunity to service her daughters with the old acknowledge. The
circuit is shown in Figure 3.

oxi

~lix

i b -9

(a) (b)

Figure 4: Latch Cell and Control Circuits
(a) This circuit latches data on the column line, Iix, which is pulled low when the neuron in the selected
row is spiking. It sends a request to the interface circuit on gxo, which acknowledges on gxi. (b) This
circuit strobes the row-data/address latch using b; monitors write and read—reset operations on the latch
using g; monitors data transmission on the column lines using 1p; and tells the row interface circuits
when column data is written and the column lines are clear using To.

3.3: Latching on

We now direct our attention to latching data from the column bus, and transmitting the
stored spikes sequentially by communicating with the column arbiter and the column en-
coder. We start by isolating communication with the arbiter and the encoder, decomposing
the latch’s CHP program as follows:

LATCH(X) = #[L?;(||z: 1.X : [b.x — Gpiba] [=b.x — skip])]
I [(lo 1.X « [Go — Co; Ax|Ga; Ca)])]

The second process synchronizes the first process—which is the latch proper—with the
arbiter and the encoder; they communicate over their G, ports. Starting with the first
process, making L passive and G, active yields the following HSE.

({lix,},{gxi,Platch({gxo,},l0) {x = 1..X}

*[{lix -> bx+ ,}; {([bx]l; gxot+; [gxil; bx-; [“bxl; gxo-) II}

[1([{bx 1}]; lo+; [{"1lix &}]; lo-); [{"gxi &} & ~lol;l]

I acknowledge the column bus (i.e., Lo+) as soon as any of the bits are set and complete L
concurrently with G,. I postponed the second half of G, until after b.x is reset, a benign
change.

Our immediate goal is to divide the latch proper into three subsequences: set bits,
clear bits, and sense column lines—and a fourth subsequence, control, that coordi-
nates them. Let us introduce a strobe signal, b, a full signal g, and a column signal 1 for
this purpose. b is set when it is safe to write new data into the latch; g is set by ORing
the stored bits; and 1 is set by ORing the column data signals. Augmenting the sequence
above with these variables, we obtain:

({1lix,},{gxi,})latch({gxo,},10) {x = 1..X}
x*[({b & 1lix -> bx+ ,}; {bx |} > gt)|I(b & {lix |} -> 1+); [g & 1]; b-;
({{["b & bx]; gxot; [gxil; bx—; [“bx]; gxo-) |I}; {"gxi &} —> g-)
[1C["b]; lo+; [{"1lix &}]; 1-); “g & "1 -> b+, "1 —> lo-;]
First, we set the bits and sense the column data concurrently, and confirm completion.
Next, we clear the bits and acknowledge the column bus, and confirm completion in this
case as well.

It is safe to make the latch transparent again when it is empty and the column data

lines have been cleared. However, waiting for the arbiter to clear its last acknowledge first

10

(i.e., [{"gxi &}1) allows us to send it new requests as soon as data is written into the
latch. Therefore, I wait for {“gxi &} to become true before I clear g. Whereas, I clear 1
once the column data is cleared (i.e., [{"1ix &}1). And then I set b when both g and 1
are cleared—and clear it when they are both set. Whereas, I clear 1o immediately after 1
is cleared.

We create the opportunity to write data onto the column bus in advance by clearing
our acknowledge (i.e., 1o-) before the latch is emptied (i.e., [*gl). Therefore, I clear lo
and set b concurrently. However, deadlock could occur if new data appears—after 1o goes
low—and takes 1 back up while we are waiting for g to go low. Including b in the guard
for 1+ prevents this. On the other hand, I do not set 1o and clear b concurrently. I break
the symmetry because we must be sure the write was successful before we clear 1o, and
hence it cannot occur before g becomes true. Either we clear 1o at the same time as b or
immediately afterwards. I chose the sequential option to avoid introducing an isochronic
fork; the speed penalty is minimal.

Hence, we obtain the following four subsequences:

set bits {x = 1..X} # # clear bits {x = 1..X}

*[{([b & lix]; bx+) [I}; [H{bx [}; g+;1 *[{([bx]; gxo+; ["b & gxil; bx-;

control # [“bx]; gxo-) |I}; [{"gxi &}]; g-;]
*[[g & 11; b-; ["g & "11; b+;] # sense column lines #

[1*[["b & 1]; lo+ [~11; lo-;] *[[b & {1ix |}]; 1+; [{"lix &}1; 1-;]

T included 1 in the wait before 1o+ in control because it is 1mp0881ble to tell which half
of the sequence we are in without checking 1; it also eliminates interference between the
production rules. I also postponed the [“b] wait in clear bits till just before bx-, giving
the request to the arbiter a head start. It is safe because we do not clear the bit when the
arbiter acknowledges—we wait till g is set and b is cleared. As you will see shortly, this
reshuffling reduces the gxo gate to a wire and eliminates interference in the bx gate.

After strengthening and weakening a few guards, these sequences are realized by the
following PRS:

{b & lix -> bx+ } { bx -> gxo+ } 1 & "b -> lot
{"b & gxi -> bx- } {"bx -> gxo- } "1 (I b) -> lo-
{bx I} (l {gxi I}) —> gt g & 71 -> bt {lix |} & b -> 1+
{“gxi &} (& {"bx &}) > g- g & 1 ->b- {"lix &} -> 1-

I strengthened the guard of g- to eliminate interference with g+, and I weakened the guard
of g+ to obtain a OR gate. T also weakened the guard of 1o- to make it an OR gate as well.
The gates are shown in Figure 4; {1ix |} is labeled 1p.

Finally, let us expand the subprocess that communicates with the column arbiter and
the column encoder by exploiting its similarity to the row process. We can reuse the HSE
sequence we designed to coordinate the row with the row arbiter and the row encoder.
Making the substitutions G, = L., C, = R, and A, = C, we obtain
*x[[gxo]; co+; [ci & ~“ail; gxi+,ao+; [“gxo & ail; co-; [“ci]; gxi-,ao-;]

The acknowledge to the latch also serves as the request to the address encoder, as we dis-
cussed in Section 3.1. The circuit is thus the same as the one in Figure 2b.

4: Simulation Results

We performed TSPICE (Tanner Research, Inc.) simulations to verify the behavior of the
design; the netlist was extracted from the layout of a 4 x 4-pixel imager. However, model
parameters for an 0.8um process were used, whereas the chip was fabricated in a 1.2um
process. We made the interface run freely by tying the request to the acknowledge and
feeding current to the neurons.

11

—]v(U40_0_3/ro)
)

V(U13_0_0//p)

5.0i- —— - TR o S e 5.0 T =

1.924205 1.924215 1.924225 1.924235 1.924245 1.9242! 1.92425 1.92427 1.92429 1.92431
Time (ms) Time (ms)

(a) (b)
Figure 5: TSPICE Simulation Results

(a) Signals for interface circuit between neuron's (its input voltage is Vmem) row request (p) and select
(y) lines, and its column data line (/cox). Each major division on the time axis is 5ns, and each minor
division is 1ns. (b) Signals for interface circuit between a latch cell's request and acknowledge lines (p
and y), the column arbiter’s request and acknowledge lines (ro and /ri), and the acknowledge from
the address encoder (/ci), which passes along the receiver's acknowledge. Each major division on the
time axis is 10ns, and each minor division is 2ns.

Figure 5a shows the simulated waveforms at the interface between the neuron, the latch
cell, and the row’s interface circuit—which sends a request to the row arbiter and returns
its acknowledge. The communication cycle begins when the neuron’s input voltage, Vmem
(labeled Iin in Figure 2a), charged up by analog current from the photodetector, exceeds
the threshold, which is about 1.2V. The neuron then makes a request (i.e., /p goes low),
and, 10ns later, its row is selected (i.e., y goes high). The neuron takes 3ns to drive data
onto the column line (i.e., /cox goes low) and 10ns to withdraw its request. The row-select
signal is withdrawn 4ns later, and the neuron takes 3ns to clear its column signal after
that.

The rate-limiting steps are selecting a row and clearing the neuron’s request; both take
10ns. Selecting a row is slow because it involves arbitration; 6.5ns is spent waiting for the
arbiter, to respond. Clearing the row request is slow because of the current-starved nMOS-
style inverter. Indeed, the latch controller acknowledges data transfer on the column lines
a full 3ns before the row clears its request. However, these slow processes do not impact
the cycle-time of the address-event bus because several spikes may be read out in parallel.
Thus, the average cycle-time is determined by the column-data transfer cycle-time divided
by the number of spikes that were read from the row. And part of the 10ns delay between
the neuron’s request and row selection may overlap with the previous cycle, since requests
may propagate up the arbiter tree while it is selecting another row.

Figure 5b shows simulated waveforms at the interface between the latch cell, the column
arbiter, and the column address-encoder—which sends a request to the receiver on the
address-event bus and returns its acknowledge. The first two transitions are the request
received from the latch cell (labeled p) and the request sent to the arbiter (labeled ro). The
arbiter acknowledges 17ns later (downward transition on /ri), and the interface circuit
passes the acknowledge on 10ns later (upward transition on y). The wait is extended
because the arbiter picks another cell first, as you can see from the encoder’s active-low
acknowledge signal (labeled /ci). And the interface circuit waits until /ci goes back up
before it selects our cell and activates the encoder. When the latch cell is selected, it
withdraws its request 1.5ns later. But the interface circuit waits for the encoder to clear
its acknowledge before clearing its request to the arbiter 4ns later. The arbiter responds
by clearing its acknowledge 1ns later, causing the interface circuit to do the same 1ns later.

12

0 22 | b I

(b)

Figure 6: Timing Measurements from 104 x 96-neuron Transmitter
These data were measured with a Tektronix TLA704 Logic Analyzer. In both panels, the top trace is
the request, the middle trace is the column address, and the bottom trace is the row address. (a) The
first and second address-events shown in this screen-shot are from different rows, whereas the second
and third events are from the same row. The cycle time is 362ns in the first case, but it is only 72ns in
the second case. (b) Expanded time-scale showing the timing between the second and third event.

These simulation results predict a minimum cycle-time of 18ns (transmitter only); the
first event in the burst takes 28ns.

5: Chip testing

Signals measured from a 104 x 96-pixel retinomorphic imager with the throughput-on-
demand address-event transmitter interface are shown in Figure 6. The chip was fabricated
in a 1.2pum CMOS process; it is 9.4mm by 9.7mm. The cycle time is 300-400ns when the
event is from a different row that the preceeding one, and it is 30-70ns when it is from the
same row. Thus, by reading out an entire row concurrently with sequential transmission
of events from the previous row, we were reduced the cycle time by an order of magnitude.

Surprisingly, analysis of the cycle-times between 30ns and 70ns (see Figure 7) revealed
no correlation with the number of levels spanned in the arbiter tree:

e When all 6 levels of the arbiter tree were spanned, the distribution was strongly (but
not purely) unimodal; it peaked at 66ns.

e When only the first level of the arbiter tree was spanned, the distribution was strongly
(but not purely) unimodal; it peaked at 36ns.

e And when an intermediate number of levels where spanned, the distribution was
multimodal, with peaks at these two times as well as intermediate ones—mnamely
36ns, 46ns, 61ns and 66ns.

This anomalous behavior may arise because the second event in a burst always takes longer
than latter events, irrespective of how many levels are spanned.

In particular, first-to-second-event cycles were unimodally distributed with a peak at
66ns—clustered extremely tightly between 64ns and 72ns. Since this delay is independent
of the number of levels of arbitration involved, we surmised that it arose from the latch.
In particular, we must wait for the controller to make the latch opaque (by taking b low)
before we clear any of the bits. This delay extends the first-to-second-event cycles. We
also observed that the cycle-time for subsequent events in a burst were sometimes as long
as the first-to-second event cycle-time. In particular, the distributions of cycle times for
the third-to-fourth and fourth-to-fifth events in a burst had peaks that fell in the 64-72ns
range. Another curious observation we made was that adjacent events with the same row
and column addresses occur much more frequently than chance allows—giving rise to a
peak in the cycle-time distribution around 80ns.

13

Count Hi stogram of Cycle Tines Count i stogram of Cycle Tinmes

5000 5000
4000 4000
3000 3000
2000 2000
1000 1000
100 200 300 400 oo "™ MS 1673673040 50 60" 70 80 90 100" "™ "

(a) (b)
Figure 7: Histograms of Cycle Times
For a train of 131,071 events recorded over 93.93ms—a 1.39MHz mean rate—and time-stamped with
0.5ns resolution (bin size is 1ns). (a) There are three distinct clusters: (i) Cycles demarcated by a pair
of events with different row and different column addresses cluster around 330ns. (i) Cycles demarcated
by a pair of events with the same row and the same column addresses cluster around 80ns. (iii) Cycles
demarcated by a pair of events with the same row address but different column addresses are clustered

below 70ns. (b) The time-scale is expanded to resolve multiple peaks in the third cluster, which occur
at 66.5ns, 60.6ns, 46.0ns, and 36.0ns.

We suspect the latch controller reads data from several rows while b is low, because,
seeking simplicity, we mistakenly used a simple NOR gate to sense the column lines instead
of the aC-element shown in Figure 4b. The sequence:

x[[{lix 1}]; 1+; ["b & 1]; lo+; [{"1lix &}1; 1-; ["1]; lo-;1,

obtained by concatenating the sense column lines subsequence and the second control
subsequence (see Section 3.3), and deleting the b term, confirms this. As the latch is
opaque, all the information read from the rows would be lost. The only evidence would
be an extended cycle time due to waiting for 1 to go low before we take b high when the
latch becomes empty. A plausible explanation why we observe longer cycle times around
the fourth event, since (4 x 70)ns is close to 300ns lower-limit of the row-read cycle.

We also suspect the latch controller sends the same spike several times while 1 is low,
because, seeking simplicity, we mistakenly NORed 1 and g to obtain b instead of using a
C-element shown in Figure 4b. The sequence:

*[[b & 1ix]; bx+; [bx]; g+; [g | 11; b-;..; [b & gxil; bx—;..; g—; [Tg & "11; b+;]
obtained by concatenating the set bits subsequence, the clear bits subsequence, and

the first control subsequence (see Section 3.3), and replacing [g & 1] with [g | 1] con-

firms this. If the time it takes for 1 to go high when data is placed on the column lines

is longer than the time it takes to read and send one spike—but less than the time to

send two—the data lines would be read again when only one data bit is set. A plausible

explanation for the frequent occurrence of adjacent events with the same row and column

addresses separated by 80ns.

And we discovered a race condition in the neuron’s interface circuit, caused by elimi-
nating the staticizers in the pixel’s aC-elements to save space.® It occurs when the row is
selected and the first aC-element is disabled (see Figure 2). At this point, if “1ix has not
discharged all the way to ground, the pull-down continues to pass current and resets bx.
Failure occurs if bx is reset before the output of the gate it drives has transitioned. And
even if it has, we have an unstable request (i.e., “p) that can disappear at any time. We
can fix this problem by introducing another inverter stage to produce a faster transition.
We can avoid adding transistors by making the fourth gate in the chain an aC-element and

3Charles Higgins discovered this race condition and brought it to my attention.

14

the second one a simple inverter.

6: Conclusions

I have described a scalable 2-D address-event transmitter interface that was designed to
take advantage of the high integration densities available with advanced submicron tech-
nology. To sustain throughput, it exploits the linear increase in the number of active
neurons per row with increasing array size by reading spikes in parallel. T synthesized an
asynchronous implementation starting from a high level specification, and I presented test
results from a 104 x 96-neuron interface fabricated in a 1.2pum process. Reading the state
of all neurons in a selected row in parallel reduced the cycle time from 300-400ns to 40-
70ns—six to ten times shorter than the 420ns minimum cycle time reported previously [2].

7: Acknowledgments

This work begun while I was a doctoral student at the California Institute of Technology,
in Carver Mead’s lab, where it was funded by the Office of Naval Research; DARPA; and
the National Science Foundation Engineering Research Center Program. It is currently
funded by start-up funds provided by the Schools of Engineering and Medicine (through
the Institute of Medicine and Engineering) at the University of Pennsylvania. I thank
Chuck Higgins and Tim Horiuchi for their invaluable help beta-testing this interface, and
fishing out and documenting bugs.

References
[1] K A Boahen. The retinomorphic approach: Pixel-parallel adaptive amplification, filtering, and quan-
tization. Analog Integr. Circ. and Sig. Proc., 13:53—68, 1997.

[2] K A Boahen. Communicating Neuronal Ensembles between Neuromorphic Chips, chapter 11, pages
229-262. Neuromorphic Systems Engineering: Neural Networks in Silicon. Kluwer Academic Pub.,

Boston MA, 1998.

[3] K A Boahen. Massive connectivity between neuromorphic chips using address-events. To appear in

IEEE Trans. Circ. € Sys., VVV:xxx—yyy, 1999.

[4] C M Higgins and C Koch. Multi-chip motion processing. In Conference on Advanced Research in
VLSI, Los Alamitos, CA, 1999. IEEE Computer Society Press.

[6] J Lazzaro, J Wawrzynek, M Mahowald, M Sivilotti, and D Gillespie. Silicon auditory processors as
computer peripherals. I[EEE Trans. on Neural Networks, 4(3):523-528, 1993.

[6] J P Lazzaro. Low-power silicon spiking neurons and axons. In IEEE International Symposium on

Circuits and Systems. IEEE Press, 1992.

[7] M Mahowald. An Analog VLSI Stereoscopic Vision System. Kluwer Academic Pub., Boston, MA,
1994.

[8] A Martin. Programming in vlsi: From communicating processes to delay-insensitive circuits. Technical
Report CS-TR-89-01, California Institute of Technology, Pasadena CA, 1989.

[9] C A Mead. Analog VLSI and Neural Systems. Addison Wesley, Reading MA, 1989.

[10] A Mortara, E Vittoz, and P Venier. A communication scheme for analog vlsi perceptive systems.
IEEE Trans. Solid-State Circ., 30(6):660-669, 1995.

[11] A Murray and L. Tarassenko. Analogue Neural VLSI: A Pulse Stream Approach. Chapman and Hall,
London, England, 1994.

[12] M Sivilotti. Wiring considerations in Analog VLSI Systems, with application to Field-Programmable
Networks. PhD thesis, California Institute of Technology, Pasadena CA, 1991.

15

