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Abstract

Retinomorphic chips may improve their spike-coding
efficiency by emulating the primate retina’s parallel
pathways. To this end, I recreated retinal microcir-
cuits in a chip, Visiol, that models the four predomi-
nant ganglion-cell types. It has 104 x 96 photoreceptors,
4 x 52 x 48 ganglion-cells, a die size of 9.25 x 9.67mm?
in 1.2um 5V CMOS, and consumes 11.5mW at 5
spikes/second/neuron. Visiol includes novel subthresh-
old current-mode circuits that use horizontal-cell aut-
ofeedback to decouple spatiotemporal bandpass filtering
from local gain control and use amacrine-cell loop-gain
modulation to adapt highpass and lowpass temporal fil-
tering. Different ganglion cells respond to motion in a
stereotyped sequence, making it possible to detect edges
of one contrast or the other moving in one direction or
the other. I present results from a multichip 2-D mo-
tion architecture, which implements Watson and Ahu-
mada’s model of human visual-motion sensing.

1. Parallel Pathways in the Retina

The presence of visual pathways specialized for spa-
tial and temporal resolution—called parvocellular and
magnocellular pathways in primates has been con-
firmed both physiologically and anatomically [27, 23,
17]. Neurons in these pathways pool signals over ei-
ther space or time to average out quantum fluctua-
tions, maintaining the same noise level as they trade
poor resolution in one domain for good resolution in
the other [15]. As the light intensity drops, pooling oc-
curs over larger distances or longer times to maintain
the signal-to-noise ratio [6].

There is a continuum of spatial and temporal res-
olutions within each pathway, however, due to the
variation of spatiotemporal characteristics of midget
and parasol retinal ganglion cells with eccentricity [14].

They range from small and sustained in the fovea,
where fine details of an object stabilized by tracking are
resolved, to large and transient in the periphery, where
sudden motion in the surroundings is captured. At a
given eccentricity, parasols (also called « cells) cover
two to three times longer distances and respond more
transiently than midgets (also called 3 cells) [38, 14].
In terms of actual numbers and sampling densities,
midgets and parasols make up 90% of the total ganglion
cell population and occur in a ratio of about 9:1 [34].
Nine times fewer parasols are required to tile the retina
because their dendritic fields are three times larger.
The remaining 10% of the cells form a heterogencous
group and project mainly to the midbrain [34].
Activity in each pathway is encoded by a pair
of complementary channels, served by ON- and OFF-
midgets or by ON- and OFF-parasols. The ON chan-
nel signals increases in amplitude by increasing vesicle-
release or spike-discharge rates; the OFF channel signals
decreases in amplitude in a similar fashion [26]. Com-
plementary signaling overcomes three shortcomings of
using a single channel to transmit both increases and

decreases: !

e Elevated spike-discharge rates and vesicle-release
rates must be maintained in the quiescent state.

e Decreases are transmitted with lower fidelity, be-
cause quantum fluctuations (i.e., shot noise) de-
crease only as the square root of the mean rate.

e Decreases are transmitted with lower speed, be-
cause quanta are infrequent and membrane repo-
larization and transmitter removal are passive.

Except prior to the very first synapses, found in rod
and cone terminals, complementary signaling is used
throughout the retina to transmit information effi-
ciently using vesicles or spikes.

1The rod pathway does fine with a single channel because its
baseline activity is virtually zero.
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Figure 1. Retinal Operations
The visual signal is bandpass filtered spatially, then lowpass

and highpass filtered temporally (first panel, numbering clock-
wise). These analog signals are half-wave rectified, then
quantized. Spatial filters adapt to light intensity—their gain
is inversely proportional. Temporal filters adapt to stimu-
lus speed—their time-constant is inversely proportional (i.e.,
T = M/v, where X\ is the wavelength selected by the spa-
tial filter). And spiking neurons adapt to their input’s rate of
change—their firng rate is linearly proportional. Four channels
provide a quadrature representation: increasing (-4 or yellow),
positive (++ or green), decreasing (4- or blue), and nega-
tive (-- or red), as demonstrated by a moving edge (second
panel). Reversing the direction reverses the temporal contrast,
interchanging the yellow and blue responses (third panel). Re-
sponses occur in the same order in time, at a given location,
as they do in space, at a given time (fourth panel).

In addition to reducing quiescent firing rates by us-
ing complementary channels, I postulate that further
savings in spikes and vesicles are achieved by adapt-
ing the baseline both at the ganglion-cell level and at
the network-level. At the ganglion-cell level, the base-
line is set by calcium-dependent pottasium channels,
which shunt the input current [7, 9]. At the network-
level, it is set by presynaptic inhibition from amacrine
cells, which terminate vesicle release at ON and OFF
bipolar-cell terminals [30]. Behaving like leaky inte-
grators, these amacrine cells follow the signal’s tem-
poral average. To ensure signal fluctuations are not
masked by a dynamic baseline, a long time-scale aver-
age must be computed when change is slow. And, to

ensure the signal crosses the baseline when its deriva-
tive changes sign, a short time-scale average must be
computed when change is rapid. Thus, spikes and vesi-
cles are conserved, as frequent quanta produced by fast
signals are discharged for short durations while infre-
quent quanta produced by slow signals are discharged
for long durations.

Retinomorphic chips, which perform adaptive pixel-
parallel quantization [7, 9], may improve their spike-
coding efficiency by emulating parallel pathways in the
retina. To this end, I have recreated retinal microcir-
cuits serving the magnocellular and parvocellular path-
ways in a chip, Visiol, that models the four predom-
inant ganglion cell types. Visiol performs the opera-
tions shown in Figure 1 at the pixel-level. Anatomically
identified neural microcircuits that perform these op-
erations and their CMOS neuromorphs are described
in the Section 2 and 3. These current-mode circuits
operate in the subthreshold region [31], where small-
signal conductances and transconductances are propor-
tional to the current level [2], current-spreading diffu-
sor networks are linear [12, 37, 4], and the generalized
translinear principle holds [5]. Visiol’s design and per-
formance are described in Section 4, and its application
in a multichip, real-time, 2-D motion-sensing system is
described in Section 5. Section 6 concludes the paper.

2. Outer Retina Model

The outer retina performs spatiotemporal bandpass
filtering and adapts its gain locally  both at the recep-
tor level [16, 29] and at the network level. My previous
attempts to make these two functions coexist in one
network produced undesirable side-effects [12, 3]. In
particular, while attempting to attenuate redundant
low-frequency temporal and spatial signals, T found
that the high loop-gain required in a negative-feedback
circuit resulted in temporal instability. And, while at-
tempting to extend dynamic range, I found that con-
trolling sensitivity by changing the cone to cone con-
ductance caused the receptive field to expand alarm-
ingly.

The shortcomings of my high-gain negative-feedback
outer retina circuit model inspired me to search for a
retinal mechanism that could decouple spatiotemporal
filtering, local gain control, and temporal stability.

Horizontal-cell autofeedback, which was demon-
strated by Kamermans and Werblin a few years ago
in the tiger salamander [22], is a promising neural
mechanism. Horizontal cells, which are known to use
the inhibitory neurotransmitter GABA, also express
GABA-gated Cl-channels. These channels have a re-
versal potential of -20mV and therefore depolarize the
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Figure 2. Morphing the Quter Retina
(a) Cones receive a photocurrent that is proportional to inci-
dent light intensity, I, from their outer segments. Horizontal
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cells, whose activity is proportional to the local spatiotempo-
ral average light intensity, (/), modulate gap junctions be-
tween cones and modulate their membrane conductances as
well by making inhibitory synapses. They also modulate the
excitatory synapses they receive from cones, giving rise to a
positive-feedback loop. As a result, the cone's activity be-
comes proportional to spatiotemporal contrast (i.e., 1/{I)).
(b) A pMOS transistor, with its source tied to V. and its gate
tied to V}, produces a current proportional to the product of
the cone and horizontal cell activities, which are represented
by the currents I. and I. This current is shunted from the
cone node, V., to model horizontal-cell inhibition, and dumped
on the horizontal-cell node, V},, to model cone excitation and
horizontal-cell autofeedback.

cell when they are opened, forming a positive-feedback
loop. Kamermans and Werblin showed that this aut-
ofeedback loop accounted for the extremely slow dy-
namics of horizontal cells, increasing their time con-
stant from 65ms to 500ms. My analysis of the trade-
offs involved in outer-retina design has yielded two new
hypotheses about the role of autofeedback [8].

Horizontal-cell autofeedback can improve temporal
stability by amplifying the cone signal, allowing us
to decrease the strength of the cone—to—horizontal-cell
synapse. Thus, we can attenuate low-frequency signals
while maintaining temporal stability. A lower cone to
horizontal-cell synaptic transconductance extends the
cone’s dynamic range as well.

Autofeedback can also make receptive-field size in-
dependent of sensitivity by modulating the effective
strength of the cone—to—horizontal-cell synapse. More
activity in the horizontal cells provides a larger boost to
synaptic input from cones. Therefore, if horizontal cell
activity is proportional to intensity, then the cone—to—
horizontal-cell transconductance becomes proportional
to intensity as well, compensating for the increase in
the cone to cone conductance with intensity.

A novel current-mode CMOS circuit, that uses
horizontal-cell autofeedback to decouple spatiotempo-
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Table 1. Negative versus Positive Feedback

1. is the mean cone activity and [ is the mean horizontal
cell activity, which is proportional to light intensity. Ideally,
the attenuation, a measure of low-frequency signals’ relative
amplitude, should be zero; the Q-factor, a measure of temporal
stability, should be less than one; the sensitivity, a measure of
photosignal amplification, should be inversely proportional to
In; and the space constant, a measure of receptive field size,
should be independent of [},.

ral filtering, local gain control, and temporal stability—
and the hypothetical neural microcircuit it is based
on is shown in Figure 2. Tts small-signal (i.e., linear)
behavior is described by the equations:

. (ycc]—h, 2. _ . CcOU'T d%c Ih .
tot == Viie = dnt ==t e
ChOUT d?h

%Z'c + apy Vi = I dar

in the continuum limit. Currents represent signals in-
stead of voltages, as this is a current-mode circuit.
The subscripts ¢ and h denote cone and horizontal-
cell; a pair of letters denotes coupling between cells or
to ground, which is denoted by 0. Upper case sym-
bols represent the mean signal value, while lower case
ones represent small instantaneous deviations from the
mean. Thus, it is evident how the absolute signal lev-
els modulate the transistors’ small-signal conductances
and transconductances, which model membrane con-
ductances, gap junctions, and chemical synapses. ¢
and «pp, are determined by the relative size of the
transistors coupling the cone nodes together and the
bias voltage applied to the transistors coupling the
horizontal-cell nodes together. Ur = kT/q is the ther-
mal voltage.

In contrast, my earlier design [12, 3], which relied on
high-gain negative feedback, is described by the equa-
tions:
ceoUr di, Iy,
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Figure 3. Adapting Temporal Dynamics

The narrow-field amacrine cell (NA) feeds inhibition back onto
the bipolar-cell terminal (BT) and forward onto the ganglion
cell (GC). Feedback inhibition is modulated (MS) by a wide-
field amacrine cell (WA). WA is excited by BTs and inhibited
by NAs in both ON and OFF pathways (double lines). It pools
these signals over a large area and equalizes their average am-
plitudes by adjusting the loop gain. If the BC signal changes
too rapidly, NA inhibition falls and BT excitation increases,
causing WA to turn up the gain and boost NA inhibition.
Conversely, if it changes too slowly, NA inhibition increases
and BT excitation decreases, causing WA to turn down the
gain and cut NA inhibition.
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where e = Uy /Vy is the ratio between the ther-
mal voltage (25mV at room temperature) and the
Early voltage (typically about 25V). In comparison, the
horizontal-cell-to—cone synaptic gain, A., = di./dip,
is a thousand (i.e., 1/€g) times smaller in the new cir-
cuit, while the cone to horizontal-cell synaptic gain,
Ape = dip/di., is infinite for zero temporal and
spatial frequencies (i.e., DC) due to 100% positive
feedback.?  For mnonzero frequencies, the cone—to—
horizontal-cell synaptic gain is proportional to Iy, (and
hence to light intensity) in the new circuit, due to the
modulatory effect of horizontal-cell autofeedback. The
intensity-dependencies of the characteristics of these
two circuits are compared in Table 1.

3. Inner Retina Model

The inner retina performs lowpass and highpass
temporal filtering and adapts its dynamics locally.
Midget and parasol ganglion cells receive synaptic in-
puts from both bipolar and amacrine cells, but para-
sol cells receive more amacrine input (i.e., feedfor-
ward inhibition) [20, 13, 25], which accounts for their
more transient response. Parasols also have larger den-
dritic fields and are driven by bipolar cells with larger
dendritic and axonal fields than those that drive the

2These synaptic gains are obtained by setting the temporal
and spatial derivatives equal to zero and differentiating the first
and second equation, respectively.

midgets [33, 34], which accounts for their larger re-
ceptive fields. Presumably, both midget and parasol
bipolar cells receive presynaptic amacrine input (i.e.,
feedback inhibition) at their terminals.

I postulate that the dynamics of the amacrine cell
that feeds inhibition forward to ganglion cells and back
to bipolar cells is adapted by a second amacrine cell,
which modulates the feedback-loop gain. Figure 3 illus-
trates this novel mechanism for adapting temporal dy-
namics. The wide-field amacrine cell (WFA) is excited
by ON and OFF bipolars and inhibited by ON and OFF
narrow-field amacrine cells (NFA). All these synaptic
interactions have been found in an anatomically iden-
tified amacrine cell type, called A19 [24]. These cells
have thick dendrites, a large axodendritic field, and are
coupled together by gap junctions. Hence, they can in-
tegrate and distribute signals rapidly over a large area.

The NFA produces a lowpass-filtered version of the
bipolar-cell signal while the bipolar terminal (BT) pro-
duces a highpass-filtered version these filters have the
same corner frequency, 1/74. A frequency-domain
small-signal analysis, using Laplace transforms, yields
the following responses:

€ . . TAS + €. . TAS .
— i, U = —————1p, by = —————1p;
Tas+1" Tas+1 78 ras+ 1

for the NFA, the BT, and the parasol ganglion cell,
respectively. Where,

Ta =€y, € = 1/(Iy/Two + 1),

Tn 18 the time-constant of the NFA cell and I /Iyo
is the modulation of its response by the WFA cell,
whose response is I for zero frequency (i.e., static
input). Hence, the corner frequency is proportional to
the WFA cell’s response, through the dependence of
the closed-loop time-constant on the modulation level.

Feedforward inhibition produces a purely transient
response in parasol cells, whereas midgets, which do
not receive feedforward inhibition, have a sustained
component. This residual activity, €(Iy )i, increases as
the loop gain is reduced to lower the corner frequency—
and thus the BT response asymptotically approaches
an allpass filter. However, the NFA cell’s residual grows
in the same way, and cancels out the BT’s residual in
the ganglion cell, irrespective of the gain setting. Thus,
a purely highpass response is achieved—this is impos-
sible with a finite-gain negative feedback loop.

The WFA cell centers the corner frequencies of the
highpass and lowpass filters on the input spectrum.
Setting gains of the BT-to-WFA and NFA-to-WFA
synapses equal and normalizing them to unity, and ne-
electing the leakage conductance, the WFA’s activity
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Figure 4. Morphing the Inner Retina
(a) Bipolar cells (BC) excite both narrow- and wide-field amacrine cells (AC) and excite ganglion cells (GC) as well. Narrow-field
amacrines (NFA) inhibit BCs and wide-field amacrines (WFA), and drive GCs as well. WFAs modulate the NFA-to-BC synapses.
ON and OFF pathways are served by two sets of circuits, but they drive a single WFA-cell syncytium. (b) Unlike the neural circuit,

complementary signaling is not used for BCs and NFAs and modulation occurs before lowpass filtering. The NFA signal, I,,, is

subtracted from the unrectified cone signal, I., to obtain the BT signal I;. Four-transistor rectifiers produce ON and OFF NFA

(In+) and BT (Ip+) signals. Copies made by a transistor connected in parallel are sunk from or mirrored onto the WFA node

(Vi) to excite or inhibit it, respectively. A four-transistor subtractor takes the difference between ;4 and I;— and supplies it to
the NFA node (Vn)—Vs: modulates the current level in the subtractor.

is given by
9. . Iv ..
CywViw+ Jit] —— [in =0
IWO

where oy i8 the coupling strength between WFAs and
147 is the full-wave-rectified version of 7. For low
spatial frequencies (i.e., on average), the Laplacian is
close to zero, and we have

Lo Qi) il _
Tvo  (Tinl)  lin]

assuming w > 1/7,; (i) is the local spatial average of
i. Consequently, 74(w) ~ 1/w—the corner frequency
matches the input frequency. For the low-frequency
extreme, w < 1/7,, we have, I, &~ I,o and 74 = 7,/2.

Temporal adaptation accounts for the variation of
ganglion cells’ temporal dynamics with eccentricity.
Both midgets and parasols become more transient as
they adapt to higher frequencies, and the midget’s sus-
tained component decreases. Hence, given that the in-
put spectrum shifts to higher temporal frequencies with
increasing eccentricity [18], the observed variation in
temporal characteristics with eccentricity follows.

A novel current-mode CMOS circuit that imple-
ments retinomorphic temporal adaptation—and the
hypothetical neural microcircuit it is based on—is

2,2
Tiw® + 1~ 1w,

shown in Figure 4. It does not include feedforward
NFA inhibition onto transient GCs and feedforward BC
excitation onto sustained GCs. Nevertheless, like the
retina, it produces a highpass response by placing a
lowpass filter in a negative feedback loop. Thus, cor-
ner frequencies of the highpass and lowpass responses
are automatically matched. It compares their energy
by full-wave rectifying, taking the difference, and in-
tegrating it over space using the WFA cell. Spatial
integration is rapid since for a moving stimulus all
phases of the response are available at different loca-
tions at the same instant. It is also robust due to the
collective nature of the computation.

In contrast, a similar time-constant adaptation
scheme proposed by Liu uses separate highpass and
lowpass filters, integrates the difference between their
peak responses over time, and adjusts their time-
constants directly by changing the amplifiers’ bias cur-
rents [28]. This scheme—implemented with a voltage-
mode circuit requires the amplifiers’ transconduc-
tances to be matched and adapts on a time-scale sev-
eral times the period of a response cycle. Since the edge
moves on after a single response cycle, it is imperative
that adaptation occur instantaneously and this infor-
mation propagates quickly to neighboring cells. Both
objectives are achieved by my retinomorphic circuit.
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Figure 5. Chip Architecture and Pixel Layout
(a) Bipolar cells, which connect 7 photoreceptors to 4 ganglion
cells (one of each type), subsample the image by a factor of 4.
A receptor either supplies its two identical output currents to
one bipolar cell or to two neighboring cells. Starting with an
N x N receptor array, we end up with 4 X N/2x N/2 ganglion-
cell arrays. (b) The pixel has 39 MOS transistors: 8 in the
outer retina, 6 in the inner retina, and 16 in the neuron, plus 9
transistors in three delta-structures (with a common T-shaped
gate) that connect receptor (C), horizontal-cell (H), and wide-
field-amacrine cell (WA) nodes to their six nearest neighbors.
Unlike the schematic in Figure 2b, the phototransistor's cur-
rent is mirrored first. The inner-retina circuit is spread across
four pixels, with 6 transistors in two of them and 5 in the other
two, for a total of 22. The subcircuit shown here produces the
I+ in Figure 4b).
pixels, a polyl-poly2 capacitor—attached to the narrow-field

on-sustained output (i.e., In two of the
amacrine node (NA)—replaces the well-transistor above the
current-mirror integrator. Pixels are tiled hexagonally by flip-
ping those in every other column vertically.

4. Chip Design and Testing

I designed and fabricated a 4 x 52 x 48 ganglion-cell
chip, called Visiol, in a 1.2pm (A = 0.6pum) double poly,
double metal, n-well CMOS process (AMTI’s fab, avail-
able through MOSIS); it is 9.25 x 9.67mm?2. Visiol’s
architecture and pixel layout are described in Figure 5.
It includes an asynchronous address-event transmitter
interface, which reads out spikes generated inside the
pixels [11]. Ganglion-cell type is determined by decod-
ing the L.SB’s of row and column addresses. Visiol was
used in a real-time motion processing application, as
described in Section 5.

Visiol models cone-to—bipolar convergence, which
makes the receptive-field center more Gaussian-
like [35]. According to my simulations, the steeper fre-
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quency roll-off that results produces 60dB attenuation
at 3.75 times the peak spatial frequency compared to
32 times the peak without convergence. High spatial
frequencies must be eliminated to preserve the signal—
to—noise ratio after highpass temporal filtering, as these
components produce proportionately high temporal
frequencies when the stimulus moves. Further signal
to noise enhancement may be realized by convergence
at the ganglion-cell level, which I am yet to include—it
would also reproduce the parasol cells’ larger receptive
fields.

A raster plot of spike trains recorded from neurons
in a single column is shown in Figure 6. Unfortu-
nately, crosstalk tended to make all the neurons fire
when a certain activity level was exceeded, so I had to
keep their mean firing rates extremely low—an order
of magnitude less than in the real retina. Neverthe-
less, the sequence in which the four types fire is as pre-
dicted in Figure 1. There is considerable variability
especially among the sustained cells—due to transistor
mismatch, which was systematic, producing striations
oriented at about 30 degrees from vertical, like those
described in [32]. Transient cells are more synchro-
nized than sustained ones, indicating that their inputs
are larger—temporal adaptation does not appear to be
working as expected. Also, the second half of the re-
sponse sequence is delayed indicating either a refrac-
tory period (unlikely) or blurring in the outer retina,
which occurs when its temporal bandwidth is exceeded.

Testing revealed a low-frequency oscillation in the
inner retina circuit, which arose because the WFA cell
does not modulate the loop-gain as intended. A MOS
transistor’s drain conductance and transconductance
are both linearly proportional to its channel current in
the subthreshold region, and hence their ratio is inde-
pendent of the current level [2]. Therefore, the voltage
gain and the normalized-current gain are fixed. That
is, in/In = Agii/ I, where Ag = Vi/Ur is about one
thousand. As the average current levels I, and I; do
not change, modulation cannot change the loop gain—
but it does change the time-constant directly by chang-
ing the drain conductance, as in Tiu’s approach [28].

Oscillations occur because balanced WFA excita-
tion and inhibition is unstable in the presence of high-
gain NFA negative feedback. Balance is achieved when
the sustained and transient paths split the cone signal
equally (e.g., Iy = Ing = (Ic — Leq)/2, if I. > Ioq)
which requires a BT-to—NFA synaptic gain of unity.
However, high synaptic-gain zeroes mismatch between
the NFA and the cone at DC, creating an imbalance
between excitatory and inhibitory inputs to the WFA
cell (e.g., Iny = Io — Iq, L1+ = 0, if I. > I.4). Conse-
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Figure 6. Spike Rasters and Histograms
Spike trains produced in response to vertical bars moving at
12° /s (equals 32 pixels/s) were recorded from 4 x 45 neurons
in the same column. During this 2.65s recording, each neuron
fired 13 spikes, on average. The histogram combines all the
spike trains from this single-trial multiple-neuron recording.

quently, the WFA’s input is given by

<Iit I> o <Izn I> X |Ic - In| - ‘In - Icq|

for I, = Iyg. Tt is inhibited whenever the DC cone cur-
rent deviates significantly from the baseline, and hence
V4w increases, reducing current levels in the subtractor
to zero—and leakage currents take over.

At DC, inhibition overwhelms excitation in the
WFA cell, producing either permanent hyperpolariza-
tion or slow, leakage-current driven oscillation. As-
suming leakage from Vyq to V, dominates, it charges
the capacitor, reducing I,. If I, = I. > I, initially,
inhibition decreases while excitation increases. Con-
sequently, V,, eventually repolarizes, restoring current
levels in the subtractor, which discharges V;, and ini-
tiates another cycle. Else, if I, = I, < I, both
excitation and inhibition increase, but inhibition re-
mains dominant. Hence, V;, never repolarizes. Assum-
ing leakage to ground dominates, on the other hand,
V. still either oscillates or is permanently inhibited—
it is just that the inequalities for I, are reversed. For
nonstatic images, we would expect the instability to

disappear it did not show up in simulations. This
was indeed the case.

5. Detecting Motion Direction

The four ganglion-cell types respond to a moving
edge in stereotyped sequences, which make it possible
to distinguish edges of one contrast or the other moving
in one direction or the other. Hence, using Visiol as a
frontend, direction-selective (DS) cells can be built sim-
ply by wiring up these four distinct receptive fields
no delays are required [10]. An example is shown in
Figure 7—swapping red and green or yellow and blue
produces the other three receptive fields, as explained
in Figure 1. What exactly do such DS cells compute?
And what is the effect of temporal adaptation?

Translating the bandpass-filtered image A/4 in the
negative x direction yields the spatial derivative—
scaled by A/2m. An approximate result obtained by
assuming that the filter passes the spatial frequency
2 /A and rejects all other frequencies. In that case,
the derivative is

y_i' 27T_x_t _2_71', 2—x7>\/4_t
5.17_5.rsm 3 vt | = 3 sin | 27 3 v

where the z-axis is perpendicular to the edge, which
moves in the positive x direction with velocity v.
Passing the translated image through a lowpass tem-
poral filter and the untranslated image through a high-
pass temporal filter yields the temporal derivative
scaled by 7/27. On condition that these filters have
the same corner frequency 2 /7, since multiplying the
lowpass’ transfer function by (7/2m)s yields the high-
pass’. And hence, the result is exact if we replace the
original image with the lowpass filtered one.
Summing these spatial and temporal derivatives
yields the projection of the gradient in spacetime onto
the vector (A, 7)—or (—A,7), when the lowpass and
highpass temporal filters are swapped. That is,
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as shown in Figure 7. Hence, when A and v have the
same sign (the preferred direction), the projection’s
amplitude is large. And when A and v have the op-
posite signs (the null direction), the projection’s am-
plitude is small.

And temporal adaptation, which equalizes the out-
put, amplitudes of the lowpass and highpass temporal
filters, makes (A, 7) point along the gradient. That is,

207
21 Ox

—— e
21 Ot T

T 0J A |oJ/ot
0J/ox




Hence, adaptation maximizes the spacetime-gradient’s
projection onto the sustained and transient channels
by matching inner retina time-constants to the edge’s
time-of-flight across outer-retina receptive fields. In
so doing, it also maximizes the amplitude of prefered-
direction cells making them independent of speed
and zeroes the amplitude of null-direction cells.
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Figure 7. Direction-Selective Neurons

Retinal operations—bandpass spatial filtering and highpass
temporal filtering—compute the gradient in spacetime, assum-
ing the bandpass passes only the wavelength A and the low-
pass temporal filter compensates for the highpass' finite band-
width, 1/7 (upper-left panel). The amplitude of the gradient’s
projection onto the vector (A, 7) is obtained by summing sig-
nals from four types of ganglion cells A/4 apart—two cells in
our case (lower-left). These 90°-multiple spatial phase-shifts
match the ganglion cells’ 90°-multiple temporal phase-shifts
when a black—white edge moves in the direction shown, and
hence all four responses peak simultaneously. Measurements
reveal a clear preference for contrast polarity and motion di-
rection in a target cell with this receptive field, for speeds from
4 to 40° /s—equivalent to 10.7 to 107 pixels/s (right panel).
At the best speed, its direction-tuning is broad and centered
around —60°.

This retinomorphic motion algorithm is a practical
version of Watson and Ahumada’s Hilbert-transform-
based model of human visual-motion sensing [39]. In
their model, the spatially and temporally bandpass fil-
tered image is Hilbert-transformed spatially and tem-
porally, and summed with itself. A Hilbert transform

phase-shifts each frequency component by 90°  its am-
plitude remains unchanged. 1 approximate a spatial
Hilbert transform by translating by A/4—a phase dif-
ference of exactly 90° for the peak frequency. And 1
approximate a temporal Hilbert transform by equal-
izing the highpass and lowpass output amplitudes
which have a phase difference of exactly 90°. Etienne-
Cummings et al’s implementation of Adelson and
Bergen’s closely-related spatiotemporal energy model
is quite similar [1, 19]—but it lacks the adaptive tem-
poral dynamics provided by the Hilbert transform.

6. Conclusions

I reverse-engineered outer and inner retina microcir-
cuits and morphed them into CMOS circuits to imple-
ment parallel visual pathways on a silicon chip. These
micropower current-mode retinomorphic circuits are
fairly compact, allowing several levels of processing
to be performed at the focal plane. By going a step
further than previous retinomorphic chips [7, 9] and
including inner-retina processing, I modeled the four
predominant ganglion-cell types in the primate retina.

In addition to improving spike-coding -efficiency,
these specialized visual channels provide more robust
primitives for computing optical flow than differenti-
ation and division, which most gradient-based algo-
rithms call for [21, 36]. Adaptive inner-retina temporal
dynamics extend the dynamic range for motion—just
like adaptive outer-retina amplification extends the dy-
namic range for intensity. Unfortunately, my present
design failed to modulate the loop-gain; T am redesign-
ing it to rectify this. Nevertheless, and despite ex-
tremely limited mean firing rates of 5Hz, T demon-
strated direction-selectivity over one decade of speed.
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