
Analog Integrated Circuits and Signal Processing, ??, 1?? (199?)
c
 199? Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Communicating Neuronal Ensembles between Neuromorphic Chips�

KWABENA A. BOAHEN

Physics of Computation Laboratory, MS 136-93, California Institute of Technology, Pasadena CA 91125

Received May 1, 1996. Revised ???? ?, 1996.

Editor: T. Lande

Abstract. I describe an interchip communication system that reads out pulse trains from a 64� 64 array
of neurons on one chip, and transmits them to corresponding locations in a 64� 64 array of neurons on a
second chip. It uses a random-access, time-multiplexed, asynchronous digital bus to transmit log2N -bit
addresses that uniquely identify each of theN neurons in the sending population. A peak transmission rate
of 2.5MSpikes/s is achieved by pipelining the operation of the channel. I discuss how the communication
channel design is optimized for sporadic stimulus-triggered activity which causes some small subpopulation
to �re in synchrony, by adopting an arbitered, event-driven architecture. I derive the bandwidth required
to transmit this neuronal ensemble, without temporal dispersion, in terms of the number of neurons, the
probability that a neuron is part of the ensemble, and the degree of synchrony.

Keywords: random-access channel, self-timed communication, event-driven communication, arbitration,
neuromorphic, retinomorphic, address-events

1. Time-division Multiplexing

The small number of input-output connections
available with standard chip-packaging technol-
ogy, and the small number of routing layers avail-
able in VLSI technology, place severe limitations
on the degree of intra- and interchip connectiv-
ity that can be realized in multichip neuromor-
phic systems. Inspired by the success of time-
division multiplexing in communications [1] and
computer networks [2], many researchers have
adopted multiplexing to solve the connectivity
problem [3], [4], [5]. Multiplexing is an e�ective
way of leveraging the 5 order-of-magnitude di�er-
ence in bandwidth between a neuron (hundreds
of Hz) and a digital bus (tens of megahertz), en-
abling us to replace dedicated point-to-point con-
nections among thousands of neurons with a hand-
ful of high-speed connections and thousands of
switches (transistors). This approach pays o� in
VLSI technology because transistors take up a lot
less area than wires, and are becoming relatively

� The author is presently at the University of Pennsyl-
vania, Dept of Bioengineering, 3320 Smith Walk, Philadel-
phia PA 19104-6392.

more and more compact as the fabrication process
scales down to deep submicron feature sizes.

Four important performance criteria for a com-
munication channel that provides virtual point-to-
point connections among arrays of cells are:
Capacity: The maximum rate at which samples
can be transmitted. It is equal to the reciprocal
of the minimum communication cycle period.

Latency: The mean time between sample gen-
eration in the sending population and sample
reception in the receiving population.

Temporal Dispersion: The standard deviation
of the channel latency.

Integrity: The fraction of samples that are de-
livered to the correct destination.

All four criteria together determine the through-
put, which is de�ned as the usable fraction of the
channel capacity, because the load o�ered to the
channel must be reduced to achieve more strin-
gent speci�cations for latency, temporal disper-
sion, and integrity.

As far as neuromorphic systems [6] are con-
cerned, a sample is generated each time a neu-
ronal spike occurs. These spikes carry information
only in their time of occurence, since the height

2 Boahen

and width of the spike is �xed. We must make
the time it takes to communicate the occurence of
each spike as short as possible, in order to maxi-
mize the throughput.

The latency of the sending neuron should not
be confused with the channel latency. Neuronal la-
tency is de�ned as the time interval between stim-
ulus onset and spiking; it is proportional to the
strength of the stimulus. Channel latency is an
undesirable systematic o�set. Similarly, neuronal
dispersion should not be confused with channel
dispersion. Neuronal dispersion is due to variabil-
ity between individual neurons; it is inversely pro-
portional to the strength of the stimulus. Channel
dispersion is additional variability introduced by
uneven access to the shared communication chan-
nel. Hence, channel latency and channel disper-
sion add systematic and stochastic o�sets to spike
times and reduce timing precision.

A growing body of evidence suggest that bio-
logical neurons have submillisecond timing preci-
sion and synchronize their �ring, making it im-
perative to minimize channel latency and disper-
sion. Although neuronal transmission has been
shown to be unreliable, with failure occuring at
axonal branches and synapses, it is most likely
that each spike changes the local state of the axon
or synapse|even if it is rejected|and thereby de-
termines the fate of subsequent spikes. So the fact
that communication in the nervous system is unre-
liable does not give us license to build an imperfect
communication channel, as the decision whether
or not to transmit a spike is not arbitrary.

There are several alternatives to using the tim-
ing of �xed-width/�xed-height pulses to encode
information, and several approaches to optimiz-
ing channel performance as shown in Table 1; the
choices I have made are highlighted. I attempt to
justify my choices by introducing a simple popula-
tion activity model in Section 2. I use this model
to quantify the tradeo�s faced in communication
channel design in Section 3. The model assumes
that the activity in the pixel array is whitened
(i.e. activity is clustered in space and in time).
Having motivated my approach to pixel-parallel
communication, I describe the implementation of
a pipelined communication channel, and show how
a retinomorphic chip is interfaced with another
neuromorphic chip in Section 4. The paper con-

cludes with a discussion in Section 5. Parts of this
work have been described previously in conference
proceedings [7], [8] and in a magazine article [9].

2. Population Activity Model

Although a fairly general purpose implementation
was sought, my primary motivation for developing
this communication channel is to read pulse trains
o� a retinomorphic imager chip [7]. Therefore, the
channel design was optimized for retinal popula-
tion activity, and an e�cient and robust solution
that supports adaptive pixel-parallel quantization
was sought.

2.1. Retinal Processing

The retina converts spatiotemporal patterns of in-
cident light into spike trains. Transmitted over
the optic nerve, these discrete spikes are converted
back into continuous signals by dendritic integra-
tion of excitatory postsynaptic potentials in the
lateral geniculate nucleus of the thalamus. For
human vision, contrast thresholds of less than 1%,
processing speeds of about 20 ms per stage, and
temporal resolution in the submillisecond range
are achieved, with spike rates as low as a few hun-
dred per second. No more than 10 spikes per
input are available during this time. The retina
achieves such high peprformance by minimizing
redundancy and maximizing the information car-
ried by each spike.

The retina must encode stimuli generated by
all kinds of events e�ciently, over a large range of
lighting conditions and stimulus velocities. These
events fall into three broad classes, listed in order
of decreasing probability of occurrence:
1. Static events: Generate stable, long-lived stim-

uli; examples are buildings or trees in the back-
drop.

2. Punctuated events: Generate brief, short-lived
stimuli; examples are a door opening, a light
turning on, or a rapid, short saccade.

3. Dynamic events: Generate time-varying, on-
going stimuli; examples are a spinning wheel,
grass vibrating in the wind, or a smooth-pursuit
eye movement.
In the absence of any preprocessing, the out-

put activity mirrors the input directly. Changes

Communicating Neuronal Ensembles 3

Table 1. Time-Multiplexed Communication Channel Design Options. The choices made in this work are highlighted.

Speci�cation Approaches Remarks

Activity Pulse Amplitude Long settling time and static power dissipation
Encoding Pulse Width Channel capacity degrades with increasing width

Pulse Code Ine�cient at low precision (< 6 bits)
Pulse Timing Uses minimum-width, rail-to-rail pulses

Latency Polling Latency / Total number of neurons
Event-driven Latency / Number currently active

Integrity Collision Rejection Collisions increase exponentially with throughput
Arbitration Reorder events to prevent collisions

Dispersion Dumping New events are given priority) No dispersion
Queueing Dispersion / 1/capacity, at constant throughput

Capacity Hard-wired Simple) Short cycle time
Pipelined Cycle time set by a single stage

in illumination, which in
uence large areas, are re-

ected directly in the output of every single pixel
in the region a�ected. Static events, such as a

stable background, generate persistent activity in

a large fraction of the output cells, which trans-

mit the same information over and over again.
Punctuated events generate little activity and are

transmitted without any urgency. Dynamic events

generate activity over areas far out of proportion
to informative features in the stimulus, when the

stimulus rapidly sweeps across a large region of

the retina. Clearly, these output signals are highly
correlated over time and over space, resulting in a

high degree of redundancy. Hence, reporting the

raw intensity values makes poor use of the limited

throughput of the optic nerve.

The retina has evolved exquisite �ltering and

adaptation mechanisms to improve coding e�-

ciency, six of which are described brie
y below[10],
[11]:

1. Local automatic gain control at the receptor

level eliminates the dependence on lighting|

the receptors respond to only contrast|
extending the dynamic range of the retina's in-

put without increasing its output range.

2. Bandpass spatiotemporal �ltering in the �rst
stage of the retina (outer plexiform layer or

OPL) attenuates signals that do not occur at

a �ne spatial or a �ne temporal scale, amelio-
rating redundant transmission of low frequency

signals and eliminating noisy high frequency

signals.

3. Highpass temporal and spatial �ltering in the
second stage of the retina (inner plexiform layer
or IPL) attenuates signals that do not occur at
a �ne spatial scale and a �ne temporal scale,
eliminating the redundant signals passed by the
OPL, which responds strongly to low temporal
frequencies that occur at high spatial frequen-
cies (sustained response to static edge) or to low
spatial frequencies that occur at high temporal
frequencies (blurring of rapidly moving edge).

4. Half-wave recti�cation, together with dual-
channel encoding (ON and OFF output cell
types), in the relay cells between the OPL and
the IPL (bipolar cells) and the retina's out-
put cells (ganglion cells) eliminates the ele-
vated quiescent neurotransmitter release rates
and �ring rates required to signal both positive
and negative excursions using a single channel.

5. Phasic transient{sustained response in the gan-
glion cells avoids temporal aliasing by transmit-
ting rapid changes in the signal using a brief,
high frequency burst of spikes, and, at the same
time, avoids redundant sampling, by transmit-
ting slow changes in the signal using modula-
tion of a low sustained �ring rate.

6. Foveated architecture, together with actively di-
recting the gaze (saccades), eliminates the need
to sample all points in the scene at the highest
spatial and temporal resolution, while provid-
ing the illusion of doing so everywhere. The
cell properties are optimized: smaller and more
sustained in the fovea (parvocellular or X cell
type), where the image is stabilized by tracking,

4 Boahen

and larger and more transient in the periphery
(magnocellular or Y cell type), where motion
occurs.
The resulting activity in the ganglion cells,

which convert these preprocessed signals to spikes,
and transmit the spikes over the optic nerve, is
rather di�erent from the stimulus pattern. For
relatively long periods, the scene captured by
the retina is stable. These static events produce
sparse activity in the OPL's output, since the OPL
does not respond to low spatial frequencies, and
virtually no activity in the IPL's output, since the
IPL is selective for temporal frequency as well as
spatial frequency. The OPL's sustained responses
drive the 50,000, or so, ganglion cells in the fovea,
allowing the �ne details of the stabilized object to
be analyzed. While the vast majority of the gan-
glion cells, about 1 million in all, are driven by the
IPL, and �re at extremely low quiescent rates of
10S/s (spikes per sec), or less, in response to the
static event.

When a punctuated event (e.g. a small light

ash) occurs, the IPL responds strongly, since
both high temporal frequencies and high spatial
frequencies are present, and a minute subpopula-
tion of the ganglion cells raise their �ring rates,
brie
y, to a few hundred spikes per second. A
dynamic event, such as a spinning windmill, or
a
ash that lights up an extended region, is ef-
fectively equivalent to a sequence of punctuated
events occurring at di�erent locations in rapid suc-
cession, and can potentially activate ganglion cells

� �+ 2��� 2�

1p
2��

t

s

N�

0
t

��� 2� �+ 2�

1

2
p
3�

2
p
3�

0

Probability Density

(a) (b)

Fig. 1. The hypothetical distribution, in time, of samples
generated by a subpopulation of neurons triggered by the
same stimulus at t = 0: (a) Normalized poststimulus time
histogram with Gaussian �t: s is the number of samples
per bin, � is the bin-width, and N is the total number of
samples; � and � are the mean and standard deviation of
the �tted Gaussian. (b) Rectangular distribution with the
same mean and standard deviation as the Gaussian. After
redistributing samples uniformly, the sampling rate is only
72% of the peak rate reached in the original distribution,
yielding the minimum capacity required to transmit the
burst without dispersion.

over an extended region simultaneously. This is
indeed the case for the OPL-driven cells but is
not true for the IPL-driven cells, which cover most
of the retina, because the low spatial frequencies
produced in the OPL's output by such a stimulus
prevent the IPL from responding.

In summary, the activity in the optic nerve is
clustered in space and time (whitened spectrum),
consisting of sporadic short bursts of rapid �r-
ing, triggered by punctuated and dynamic events,
overlaid on a low, steady background �ring rate,
driven by static events.

2.2. The Neuronal Ensemble

We can describe the activity of a neuronal popu-
lation by an ordered list of locations in spacetime

E = f(x0; t0); (x1; t1); : : : (xi; ti); : : :g;
t0 < t1 < � � � ti < � � � ;

where each coordinate speci�es the occurrence of
a spike at a particular location, at a particular
time. The same location can occur in the list sev-
eral times but a particular time can occur only
once|assuming time is measured with in�nite res-
olution.

There is no need to record time explicitly if the
system that is logging this activity operates on
it in real-time|only the location is recorded and
time represents itself. In that case, the represen-
tation is simply

E = fx0; x1; : : : xi; : : :g; t0 < t1 < � � � ti < � � � :
This real-time representation is called the address-
event representation (AER) [5], [4]. I shall present
more details about AER later. At present, my
goal is to develop a simple model of the probabil-
ity distribution of the neuronal population activity
described by E .
E has a great deal of underlying structure that

arises from events occurring in the real world, to
which the neurons are responding. The elements
of E are clustered at temporal locations where
these events occur, and are clustered at spatial lo-
cations determined by the shape of the stimulus.
Information about stimulus timing and shape can
therefore be obtained by extracting these clusters.
E also has an unstructured component that arises

Communicating Neuronal Ensembles 5

from noise in the signal, from noise in the sys-
tem, and from di�erences in gain and state among
the neurons. This stochastic component limits the
precision with which the neurons can encode in-
formation about the stimulus.

We can use a much more compact probabilis-
tic description for E if we know the probability
distributions of the spatial and temporal compo-
nents of the noise. In that case, each cluster can
be described explicitly by its mean spatial con�g-
uration and its mean temporal location, and the
associated standard deviations.

E ' f(x0; �x0; t0; �t0); (x1; �x1; t1; �t1);
: : : ; (xi; �xi; ti; �ti); : : : ; g;
t0 < t1 � � � ti < � � � :

I shall call these statistically-de�ned clusters neu-
ronal ensembles. The ith neuronal ensemble is
de�ned by a probability density function pi(x; t)

INPUTS

E
N
C
O
D
E
R3

2

1 D
E
C
O
D
E
R

1

2

3

OUTPUTS

INPUTS

3

2

1 1

2

3

OUTPUTS

Two-Layer Network

Two-Chip Implementation

time

321 3 2 21 2 3 1

LAYER 1 LAYER 2

CHIP 1 CHIP 2

DIGITAL BUS

LAYER 1 LAYER 2

Fig. 2. Two-chip implementation of a two-layer spiking
neural network (Adapted from [4]). In the two-layer net-
work, the origin of each spike is infered from the line on
which it arrives. This parallel transmission uses a labeled-
line representation. In the two-chip implementation, the
neurons share a common set of lines (digital bus) and the
origin of each spike is preserved by broadcasting one of
the labels. This serial transmission uses an address-event

representation (AER). No information about the height or
width of the spike is transmitted, thus information is car-
ried by spike timing only. A shared address-event bus can
transparently replace dedicated labeled lines if the encod-
ing, transmission, and decoding processes cycle in less than
�=n seconds, where � is the desired spike timing precision
and n is the maximum number of neurons that are active
during this time.

with parameters xi; �xi; ti; �ti: The probability
that a spike generated at location x at time t is a
member of the ith ensemble is then obtained by
computing pi(x; t):

In what follows, I will assume that the distri-
bution of the temporal component of the noise
is Gaussian and the latency (the mean minus
the stimulus onset time) and the standard devi-
ation are inversely proportional to the stimulus
strength. We can measure the parameters of this
distribution by �tting a Gaussian to the normal-
ized poststimulus time histogram, as shown in Fig-
ure 1a. Here, latency refers to the time it takes
to bring a neuron to spiking threshold; this neu-
ronal latency is distinct from the channel latency
that I de�ned earlier. The Gaussian distribution
arises from independent random variations in the
characteristics of these neurons|whether carbon
or silicon based|as dictated by the Central Limit
Theorem.

The ratio between the standard deviation and
the latency, which is called the coe�cient of vari-

ation (cov), is used here as a measure of the vari-
ability among the neurons. Other researchers have
used the cov to measure mismatch among transis-
tors and the variability in the steady �ring rates
of neurons; I use it to measure variability in la-
tency across a neuronal ensemble. As the neuronal
latency decreases, the neuronal temporal disper-
sion decreases proportionally, and hence the cov
remains constant. The cov is constant because the
characteristics that vary between individual neu-
rons, such as membrane capacitance, channel con-
ductance, and threshold voltage, determine the
slope of the latency versus input current curves|
rather than the absolute latency or �ring rate.

3. Design Tradeoffs

Several options are available to the communica-
tion channel designer. Should he preallocate the
channel capactiy, giving a �xed amount to each
node, or allocate capacity dynamically, matching
each nodes allocation to its current needs? Should
she allow the users to transmit at will, or imple-
ment elaborate mechanisms to regulate access to
the channel? And how does the distribution of
activity over time and over space impact these
choices? Can he assume that nodes act randomly,

6 Boahen

or are there signi�cant correlations between the
activities of these nodes? I shed some light on
these questions in this section, and provide some
de�nitive answers.

3.1. Allocation: Dynamic or Static?

We are given a desired sampling rate fNyq; and
an array of N signals to be quantized. We may
use adaptive, 1-bit, quantizers that sample at fNyq

when the signal is changing, and sample at fNyq=Z
when the signal is static. Let the probability that
a given quantizer samples at fNyq be a: That is, a
is the fraction of the quantizers whose inputs are
changing. Then, each quantizer generates bits at
the rate

fbits = fNyq(a+ (1� a)=Z) log2N;

because a percent of the time, it samples at fNyq;
the remaining (1� a) percent of the time, it sam-
ples at fNyq=Z: Furthermore, each time that it
samples, log2N bits are sent to encode the loca-
tion, using the aforemention address-event repre-
sentation (AER) [5], [4]. AER is a fairly general
scheme for transmitting information between ar-
rays of neurons on separate chips, as shown in
Figure 2.

On the other hand, we may use more conven-
tional qunatizers that sample every location at
fNyq; and do not locally adapt the sampling rate.
In that case, there is no need to encode location
explicitly; we simply cycle through allN locations,
according to a �xed squence order, and infer the
origin of each sample from its position in the se-
quence. For a constant sampling rate, the bit rate
per quantizer is simply fNyq:

Adaptive sampling produces a lower bit rate
than �xed sampling if

a < (Z=(Z � 1))(1= log2N � 1=Z):

For example, in a 64 � 64 array with sampling-
rate attenuation, Z, of 40, the active fraction, a;
must be less than 6.1 percent. In a retinomor-
phic system, the adaptive neuron circuit performs
sampling-rate attenuation (Z will be equal to the
�ring rate attenuation factor
) [10], and the spa-
tiotemporal bandpass �lter makes the output ac-

tivity sparse [10], resulting in a low active fraction
a.

It may be more important to minimize the
number of samples produced per second, instead
of minimizing the bit rate, as there are usually
su�cient I/O pins to transmit all the bits in each
sample in parallel. In that case, it is the number
of samples per second that is �xed by the channel
capacity.

Given a certain �xed channel throughput
(Fchan); in samples per second, we may compare
the e�ective sampling rates, fNyq; acheived by the
two strategies. For adaptive quantization, chan-
nel throughput is allocated dynamically in the ra-
tio a : (1 � a)=Z between the active and passive
fractions of the node population. Hence,

fNyq = fchan=(a+ (1� a)=Z) (1)

where fchan � Fchan=N is the throughput per
node. In contrast, �xed quantization achieves only
fchan: For instance, if fchan = 100S/s, adaptive
quantization achieves fNyq = 1:36KS/s, with an
active fraction of 5 percent and a sampling-rate
attenuation factor of 40. Thus, a fourteen-fold in-
crease in temporal bandwidth is achieved under

Communicating Neuronal Ensembles 7

these conditions; the channel latency also is re-
duced by the same factor.

3.2. Access: Arbitration or Free-for-All?

If we provide random access to the shared com-
munication channel, in order to support adaptive
pixel-level quantization [9], we have to deal with
contention for channel access, which occurs when
two or more pixels attempt to transmit simultane-
ously. We can introduce an arbitration mechanism
to resolve contention and a queueing mechanism
to allow nodes to wait for their turn. However,
arbitration lengthens the communication cycle pe-
riod, reducing the channel capacity, and queuing
causes temporal dispersion, corrupting timing in-
formation. On the other hand, if we simply allow
collisions to occur, and discard the corrupted sam-
ples so generated [12], we may achieve a shorter
cycle period and reduced dispersion, but sample
loss will increase as the load increases.

We may quantify this tradeo� using the follow-
ing well-known result for the collision probabil-
ity [1]:

pcoll = 1� e�2G; (2)

where G is the o�ered load, expressed as a frac-
tion of the channel capacity.1 For G < 1; G is the
probability that a sample is generated during the
communication cycle period.

If we arbitrate, we will achieve a certain cycle
time, and a corresponding channel capacity, in a
given VLSI technology. An arbitered channel can
operate at close to 100-percent capacity because
the 0.86 collision probability for G = 1 is not a
problem|users just wait their turn. Now, if we do
not arbitrate, we will achieve a shorter cycle time,
with a proportionate increase in capacity. Let us
assume that the cycle time is reduced by a factor
of 10, which is optimistic. For the same o�ered
load, we have G = 0:1; and �nd that pcoll = 18
percent. Thus, the simple nonarbitered channel
can handle more spikes per second only if colli-
sion rates higher than 18 percent are acceptable.
For lower collision rates, the complex, arbitered
channel o�ers more throughput, even though its
cycle period is 1 order of magnitude longer, be-

cause the nonarbitered channel can utilize only 10
percent of its capacity.

Indeed, the arbiterless channel must operate
at high error rates to maximize utilization of the
channel capacity. The throughput is Ge�2G [1],
since the probability of a successful transmission
(i.e., no collision), is e�2G. Throughput reaches
a maximum when the success rate is 36 percent
(e�1) and the collision rate is 64 percent. At max-
imum throughput, the load, G, is 50 percent and,
hence, the peak channel throughput is only 18 per-
cent. Increasing the load beyond the 50% level
lowers the channel utilization because the success
rate falls more rapidly than the load increases.

In summary, the simple, free-for-all design of-
fers higher throughput if high data-loss rates are
tolerable, whereas the complex, arbitered design
o�ers higher throughput when low-data loss rates
are desired. And, due to the fact that the maxi-
mum channel untilization for the free-for-all chan-
nel is only 18 percent, the free-for-all channel will
not be competitive at all unless it can achieve a
cycle time that is �ve times shorter than that of
the arbitered channel.

Indeed, the free-for-all protocol was �rst devel-
oped at the University of Hawaii in the 1970s to
provide multiple access between computer termi-
nals and a time-shared mainframe over a wire-
less link with an extremely short cycle time; it is
known as the ALOHA protocol [1]. In this appli-
cation, a vanishingly small fraction of the wireless
link's tens of megahertzs of bandwidth is utilized
by people typing away at tens of characters per
second on a few hundred computer terminals, and
hence the error rates are negligible. However, in
a neuromorphic system where we wish to service
hundreds of thousands of neurons, e�cient uti-
lization of the channel capacity is of paramount
concern.

The ine�ciency of ALOHA has been long rec-
ognized, and researchers have developed more ef-
�cient communication protocols. One popular ap-
proach is CSMA (carrier sense, multiple access),
where each user monitors the channel and does not
transmit when the channel is busy. The Ethernet
protocol uses this technique, and most local-area-
networks work this way. Making available infor-
mation about the state of the channel to all users
greatly reduces the number of collisions. A colli-

8 Boahen

sion occurs only when two users attempt to trans-
mit within a time interval that is shorter than the
time it takes to update the information about the
channel state. Hence, the collision rate drops if the
time that users spend transmitting data is longer
than the round trip delay; if not, CSMA's perfor-
mance is no better than ALOHA's [1]. Bassen's
group is developing a CSMA-like protocol for neu-
romorphic communication to avoid the queueing
associated with arbitration [13].

What about the timing errors introduced by
queueing in the arbitered channel? It is only
fair to ask whether these timing errors are not
worse than the data-loss errors. The best way
to make this comparison is to express the chan-
nel's latency and temporal dispersion as frac-
tions of the neuronal latency and temporal dis-
persion, respectively. If the neuron �res at a rate
fNyq; we may assume, for simplicity, that its la-
tencies are uniformly distributed between 0 and
TNyq = 1=fNyq: Hence, the neuronal latency is
� = TNyq=2; and the neuronal temporal dispersion
� = TNyq=(2

p
3): For this
at distribution, the co-

e�cient of variation is c = 1=
p
3; which equals 58

percent.
To �nd the latency and temporal dispersion in-

troduced by the queue, we use a well-known result
from queueing theory which gives the moments of
the time spent waiting in the queue, wn; as a func-
tion of the moments of the service time, xn [14]:

w =
�x2

2(1�G)
;

w2 = 2w2 +
�x3

3(1�G)
;

where � is the arrival rate of the samples.2 An
interesting property of the queue, which is evi-
dent from these results, is that the �rst moment of
the waiting time increases linearly with the second
moment of the service time. Similarly, the second
moment of the waiting time increases linearly with
the third moment of the service time.

In our case, we may assume that the service
time, �; is �xed; hence xn = �n. In that case,
the mean and the variance of the number of cycles
spent waiting are given by

m � w

�
=

G

2(1�G)
; (3)

�2m =
w2 � w2

�2
= m2 +

2

3
m: (4)

For example, at 95-percent capacity, a sample
spends 9:5 cycles in the queue, on average. This
result agrees with intuition: As every twentieth
slot is empty, one must wait anywhere from 0 to
19 cycles to be serviced, which averages out to 9.5.
Hence the latency is 10.5 cycles, including the ad-
ditional cycle required for service, and the tempo-
ral dispersion is 9.8 cycles|virtually equal to the
latency. In general, the temporal dispersion will
be approximately equal to the latency whenever
the latency is much larger than one cycle.

If there are a total of N neurons, the cycle time
is � = G=(Nfchan); where G is the normalized
load, and the timing error due to channel latency
will be

e� � (m+ 1)�

�
= 2G

fNyq

fchan

m+ 1

N

Using the expression for the number of cycles
spent waiting (Equation 3), and the relationship
between fNyq and fchan (Equation 1), we obtain

e� =
2G

N

1

a+ (1� a)=Z

1�G=2

1�G
:

For example, at 95 percent load and at 5 percent
active fraction, with a sampling rate attenuation
of 40 and with a population of size 4096 (64�64),
the latency error is 7 percent. The error intro-
duced by the temporal dispersion in the channel
will be similar, as the temporal dispersion is more
or less equal to the latency.

Notice that the timing error is inversely propor-
tional to N: This scaling occurs because channel
capacity must grow with the number of neurons.
Hence, the cycle time decreases, and there is a pro-
portionate decrease in queueing time, even though
the number of cycles spent queueing remains the
same|for the same normalized load. In contrast,
the collision rate remains unchanged for the same
normalized load. Hence, the arbitered channel
scales much better than the nonarbitered one as
technology improves and shorter cycle times are
achieved.

Communicating Neuronal Ensembles 9

Req
Ack

Req
Ack

Data Data

Sender Receiver

Data

Req

Ack

(a) (b)

Fig. 3. Self-timed data-transmission protocol using a four-phase handshake. (a) Data-bus (data) and data-transfer control
signals (Req and Ack). (b) Handshake protocol on control lines. The sender initiates the sequence by driving its data onto
the bus and taking Req high. The receiver reads the data when Req goes high, and drives Ack high when it is done. The
sender widthdraws its data and takes Req low when Ack goes high. The receiver terminates the sequence by taking Ack

low after Req goes low, returning the bus to its original state. As data is latched on Ack ", the designer can ensure that
the setup and hold times of the receiver's input latch are satis�ed by delaying Req ", relative to the data, and by delaying
widthdrawing the data after Ack ".

3.3. Traffic: Random or Correlated?

Correlated spike activity occurs when external
stimuli trigger synchronous activity in several
neurons. Such structure, which is captured by
the neuronal ensemble concept, is much more
plausible than totally randomized spike times|
especially if neurons are driven by sharply de-
�ned object features (high spatial and temporal
frequencies) and adapt to the background (low
spatial and temporal frequencies). If there are cor-
relations among �ring times, the Poisson distribu-
tion does not apply to the spike times, but, mak-
ing a few reasonable assumptions, it may be used
to describe the relative timing of spikes within a
burst.

The distribution of sample times within each
neuronal ensemble is best described by a Gaussian
distribution, centered at the mean time of arrival,
as shown in Figure 1a. The mean of the Gaussian,
�; is taken to be the delay between the time the
stimulus occurred and the mean sample time, and
the standard deviation of the Gaussian, �; is as-
sumed to scale with the mean, i.e. the coe�cient
of variation (cov) c � �=�; is constant.

The minimum capacity, per quantizer, required
to transmit a neuronal ensemble without temporal
dsipersion is given by

fburst � Fburst

Nburst

=
1

2
p
3c�

;

using the equivalent uniform distribution shown
in Figure 1b. This simple model predicts that

shorter latencies or less variability can be had only

by paying for a proportionate increase in channel

throughput. For instance, a latency of 2ms and a

cov of 10% requires 1440 S/s per quantizer. This

result assumes that the neurons' interspike inter-

vals are large enough that there is no overlap in

time between successive bursts; this is indeed the

case if c < 1=
p
3 or 58%.

There is a strong tendency to conclude that

the minimum throughput speci�cation is simply

equal to the mean sampling rate. This is the

case only if sampling times are totally random.

Random samples are distributed uniformly over

the period T = 1=f; where f is the quantizer's

mean sampling rate, assumed to be the same for

all nodes that are part of the ensemble; the la-

tency is � = T=2; and the temporal dispersion is

� = T=(2
p
3): Hence, the cov is c = 1=

p
3 =58%

and Equation 3.3 yields fburst = 1=T; as expected.

For a latency of 2ms and a cov of 58%, the required

throughput is 250 S/s per quantizer compared to

1440 S/s when the cov is 10%.

The rectangular (uniform) approximation to

the Gaussian, shown in Figure 1b, may be used

to calculate the number of collisions that occur

during a burst. We simply use Equation 2, and

set the rate of the Poisson process to the uniform

sampling rate of the rectangular distribution. The

result is plotted in Figure 9.

10 Boahen

Rx
Ax

Ry

Ay

Vpu
Vreset

Vadpt

Vspk

Ireset

Sender

C

Receiving
Neuron

Receiver Chip

C

Sending
Neuron

Handshaking

Arbiter Tree

Sender Chip

X

Y

Req
Ack

Apix

Vspk

Rx

Ry

PixAckPU

Apix

Rpix
ReqOrPU

Reset Set Aarb

Rarb

Wired Or

Driver C-element

Q

Qb

Latch

Ack

Ack

D

Req Apix

Set

Ack Ack

Reset

C-element

Fig. 4. Pipelined addess-event channel. The block diagram describes the channel architecture; the logic circuits for each
block also are shown. Sender Chip: The row and column arbiter circuits are identical; the row and column handshaking
circuits (C-elements) are also identical. The arbiter is built from a tree of two-input arbiter cells that send a request signal
to, and receive a select signal from, the next level of the tree. The sending neuron's logic circuit (upper-left) interfaces
between the adaptive neuron circuit, the row C-element (lower-left: Ry ! Rpix; Apix ! Ay), and the column C-element
(lower-left: Rx ! Rpix; Apix ! Ax). The pull-down chains in the pixel|tied to pull-up elements at the right and at
the top of the array|and the column and row request lines form wired-OR gates. The C-elements talk to the column
and row arbiters (detailed circuit not shown) and drive the address encoders (detailed circuit not shown). The encoders
generate the row address (Y), the column address (X), and the chip request (Req). Receiver Chip: The receiver's C-element
(lower-right) acknowledges the sender, strobes the latches (lower-middle), and enables the address decoders (detailed circuit
not shown). The receiver's C-element also monitors the sender's request (Req) and the receiving neuron's acknowledge
(Apix). The receiving neuron's logic circuit (upper-right) interfaces between the row and column selects (Ry and Rx) and the
post-synaptic integrator, and generates the receiving neuron's acknowledge (Apix). The pull-down path in the pixel|tied
to pull-up elements at the left of the array|and the row acknowledge lines form wired-OR gates. An extra wired-OR gate,
that runs up the left edge of the array, combines the row acknowledges into a single acknowledge signal that goes to the
C-element.

3.4. Throughput Requirements

By including the background activity of the neu-
rons that do not participate in the neuronal en-
semble, we obtain the total throughput require-
ment

ftotal = afburst + (1� a)f�re=Z;

where a is the fraction of the population that par-
ticipates in the burst; f�re=Z is the �ring rate of
the remaining quantizers, expressed as an atten-
uation, by the factor Z; of the sampling rate of
the active quantizers. Assuming f�re = 1=(2�),
we have f�re=fburst =

p
3c; and

ftotal =
a+

p
3c(1� a)=Z

2
p
3c�

;

Communicating Neuronal Ensembles 11

per quantizer. For a 2ms latency, a 10 percent cov,
a 5 percent active fraction, and an attenuation fac-
tor of 40, the result is ftotal = 78:1S/s per quan-
tizer. For these parameter values, a 15.6 percent
temporal dispersion error is incurred, assuming a
channel loading of 95 percent and a population
size of 4096 (64 by 64 array).

This result is only valid if samples are not de-
layed for more than the duration of the burst
(i.e. errors less than 1=

p
3 = 58%). For larger

delays, the temporal dispersion grows linearly|
instead of hyperbolically|because the burst is
distributed over an interval no greater than
(F̂burst=Fchan)=Tburst; when the sample rate F̂burst

exceeds the channel capacity, Fchan; where Tburst
is the duration of the burst.

4. Pipelined Communication Channel

In this section, I describe an arbitered, random-
access communication channel design that sup-
ports asynchronous pixel-level analog-to-digital
conversion. As discussed in the previous sec-
tion, arbitration is the best choice for neuromor-
phic systems whose activity is sparse in space
and in time, because it allows us to trade an
exponential increase in collisions for a linear in-
crease in temporal dispersion. Furthermore, for
the same percentage channel utilization, the tem-
poral dispersion decreases as the technology im-
proves, and we build larger systems with shorter
cycle times, whereas the collision probability re-
mains the same.

The downside of arbitration is that this pro-
cess lengthens the communication cycle, reducing
channel capacity. I have achieved improvements in
throughput over previous arbitered designs [4] by
adopting three strategies that shorten the average
cycle time:
1. Allow several address-events to be in various

stages of transmission at the same time. This
well-known approach to increasing throughput
is called pipelining; it involves breaking the
communication cycle into a series of steps and
overlapping the execution of these steps as
much as possible.

2. Exploit locality in the arbiter tree. That is, do
not arbitrate among all the inputs every time;
doing so would require spanning all log2(N)

levels of the tree. Instead, �nd the smallest
subtree that has a pair of active inputs, and
arbitrate between those inputs; this approach
minimizes the number of levels spanned.

3. Exploit locality in the row{column architecture.

That is, do not redo both the row arbitration
and the column arbitration for each address-
event. Instead, service all requesting pixels in
the selected row, redoing only the column arbi-
tration, and redo the row arbitration only when
no more requests remain in the selected row.
This work builds on the pioneering contribu-

tions of Mahowald [4] and Sivilotti [5]. Like their
original design, my implementation is completely
self-timed: Every communication consists of a
full four-phase handshaking sequence on a pair
of wires, as shown in Figure 3. Self-timed op-
eration makes queueing and pipelining straight-
forward [15]: You stall a stage of the pipeline or
make a pixel wait simply by refusing to acknowl-
edge it. Lazzaro et.al. have also improved on the
original design [16], and have used their improved
interface in a silicon auditory model [17].

4.1. Communication Cycle Sequence

The operations involved in a complete communi-
cation cycle are outlined in this subsection. This
description refers to the block diagram of the
channel architecture in Figure 4; the circuits are
described in the next two subsections. At the be-
ginning of a communication cycle, the request and
acknowledge signals are both low.

On the sender side, spiking neurons �rst make
requests to the Y arbiter, which selects only one
row at a time. All spiking neurons in the selected
row then make requests to the X arbiter. At the
same time, the Y address encoder drives the ad-
dress of the selected row onto the bus. When the
X arbiter selects a column, the neuron in that par-
ticular column, and in the row selected earier, re-
sets itself and withdraws its column and row re-
quests. At the same time, the X address encoder
drives the addresses of the selected column on to
the bus, and takes Req high.

When Ack goes high, the select signals that
propagate down the arbiter tree are disabled by
the AND gates at the top of the X and Y arbiters.
As a result, the arbiter inactivates the select sig-

12 Boahen

nals sent to the pixels and to the address-encoders.
Consequently, the sender withdraws the addresses
and the request signal Req.

When it is necessary, the handshake circuit
(also known as a C-element [15]) between the ar-
biters and the rows or columns will delay inacti-
vating the select signals that drive the pixel, and
the encoders, to give the sending pixel enough
time to reset. The sender's handshake circuit is
designed to stall the communication cycle by keep-
ing Req high until the pixel withdraws its row and
column requests, con�rming that the pixel has re-
set. The exact sequencing of these events is shown
in Figure 10.

On the receiver side, as soon as Req goes high,
the address bits are latched and Ack goes high. At
the same time, the address decoders are enabled
and, while the sender chip is deactivating its inter-
nal request and select signals, the receiver decodes
the addresses and selects the corresponding pixel.
When the sender takes Req low, the receiver re-
sponds by taking Ack low, disabling the decoders
and making the latches transparent again.

When it is necessary, the receiver's handshake
circuit, which monitors the sender's request (Req)
and the acknowledge from the receiving pixel
(Apix), will delay disabling the address-decoders
to give the receiving pixel enough time to read the
spike and generate a post-synaptic potential. The
reciever's handshake circuit is designed to stall the
communication cycle by keeping Ack high until the
pixel acknowledges, con�rming that the pixel did
indeed recieve the spike. The exact sequencing of
these events also is shown in Figure 10.

4.2. Arbiter Operation

The arbiter works in a hierarchical fashion, using
a tree of two-way decision cells [5], [4], [16], as
shown in Figure 4. Thus, arbitration between N
inputs requires only N � 1 two-input cells. The
N -input arbiter is layed out as a (N�1)�1 array
of cells, positioned along the edge of the pixel ar-
ray, with inputs from the pixels coming in on one
side and wiring between the cells running along
the other side.

The core of the two-input arbiter cell is a
ip-

op with complementary inputs and outputs, as

shown in Figure 5; these circuits were designed
by Sivilotti and Mahowald [5], [4]. That is, both
the set and reset controls of the
ip-
op (tied to
R1 and R2) are normally active (i.e., low), forc-
ing both of the
ip-
ops outputs (tied to Q1 and
Q2) to be active (i.e., high). When one of the two
incoming requests (R1 or R2) becomes active, the
corresponding control (either set or reset) is inac-
tivated, and that request is selected when the cor-
responding output (Q1 or Q2) becomes inactive.
In case both of the cell's incoming requests become
active simultaneously, the
ip-
op's set and reset
controls are both inactivated, and the
ip-
op ran-
domly settles into one of its stable states, with one
output active and the other inactive. Hence, only
one request is selected.

Before sending a select signal (A1 or A2) to the
lower level, however, the cell sends a request signal
(Rout) up the tree and waits until a select signal
(Ain) is received from the upper level. At the top
of the tree, the request signal is simply fed back
in, and becomes the select signal that propagates
down the tree.

As the arbiter cell continues to select a branch
so long as there is an active request from that
branch, we can keep a row selected, until all the
active pixels in that row are serviced, simply by
ORing together all the requests from that row to
generate the request to the Y arbiter. Similarly,
as the request passed to the next level of the tree
is simply the OR of the two incoming requests, a
subtree will remain selected as long as there are ac-
tive requests in that part of the arbiter tree. Thus,
each subtree will service all its daughters once it is
selected. Using the arbiter in this way minimizes
the number of levels of arbitration performed|the
input that requires the smallest number of levels
to be crossed is selected.

To reset the select signals fed into the array|
and to the encoder|previous designs removed the
in-coming requests at the bottom of the arbiter
tree [5], [4], [16]. Hence, the state of all the
ip-

ops were erased, and a full log2(N)-level row ar-
bitration and a full column arbitration had to be
performed for every cycle. In my design, I reset
the row/column select signals by removing the se-
lect signal from the top of the arbiter tree; thus,
the request signals fed in at the bottom are undis-
turbed, and the state of arbiter is preserved, al-

Communicating Neuronal Ensembles 13

Q1

Rout

R1
Arbvdd

R2

R1

Arbvdd Arbvdd

R2

Q2

Q1

A1 A2

Q2

Ain

Arbvdd

Steering CircuitOR Gate Flip-Flop

Fig. 5. Arbiter cell circuitry. The arbiter cell consists of an OR gate, a
ip-
op, and a steering circuit. The OR gate
propagates the two incoming active-high requests, R1 and R2, to the next level of the tree by driving Rout. The
ip-
op is
built from a pair of cross-coupled NAND gates. Its active-low set and reset inputs are driven by the incoming requests, R1
and R2, and its active-high outputs, Q1 and Q2, control the steering circuit. The steering circuit propagates the incoming
active-high select signal, Ain, down the appropriate branch of the tree by driving either A1 or A2, depending on the state
of the
ip-
op. This circuitry is reproduced from Mahowald 1994 [4].

lowing locality in the array and the arbiter tree to
be fully exploited.

I achieve a shorter average cycle time by
exploiting locality; this opportuinistic approach
trades fairness for e�ciency. Instead of allow-
ing every active pixel to bid for the next cycle,
or granting service on a strictly �rst-come{�rst-
served basis, I take the travelling-salesman ap-
proach, and service the customer that is clos-
est. Making the average service time as short
as possible|to maximize channel capacity|is my
paramount concern, because the wait time goes to
in�nity when the channel capacity is exceeded.

4.3. Logic Circuits and Latches

In this subsection, I describe the address-bit
latches and the four remaining asynchronous logic
gates in the communication pathway. Namely,
the interfaces in the sending and receiving neu-
rons and the C-elements in the sender and receiver
chips. The interactions between these gates, the
neurons, and the arbiter|and the sequencing con-
straints that these gates are designed to enforce|
are depicted graphically in Figure 10.

The logic circuit in the sending neuron is
shown in Figure 4; it is similar to that described
in [4], [16]. The neuron takes Vspk high when it
spikes, and pulls the row request line Ry low. The

column request line Rx is pulled low when the row

select line Ay goes high, provided Vspk is also high.
Finally, Ireset is turned on when the column select
line Ax goes high, and the neuron is reset. Vadpt

is also pulled low to dump charge on the feedback
integrator in order to adapt the �ring rate [18].

I added a third transistor, driven by Vspk, to
the reset chain to turn o� Ireset as soon as the
neuron is reset, i.e. Vspk goes low. Thus, Ireset

does not continue to discharge the input capaci-
tance while we are waiting for Ax and Ay to go
low, making the reset pulse width depend on only
the delay of elements inside the pixel.

The sender's C-element circuit is shown in the
lower-left corner of Figure 4. It has a
ip-
op
whose output (Apix) drives the column or row se-

lect line. This
ip-
op is set when Aarb goes high;
which happens when the arbiter selects that par-
ticular row or column. The
ip-
op is reset when
Rpix goes high, which happens when two condi-
tions are satis�ed: (i) Aarb is low, and (ii) all the

pixels tied to the wired-OR line Rpix are reset.
Thus the wired-OR serves three functions in this
circuit: (i) It detects when there is a request in
that row or column, passing on the request to the
arbiter by taking Rarb high; (ii) it detects when

the receiver acknowledges, by watching for Aarb

to go low; and (iii) it detects when the pixel(s) in
its row or column are reset.

14 Boahen

Fig. 6. Recorded address-event streams for small (queue empty) and large (queue full) channel loads. X and Y addresses
are plotted on the vertical axes, and their position in the sequence is plotted on the horizontal axes. Queue Empty (top
row): The Y addresses tend to increase with sequence number, but the row arbiter sometimes remains at the same row,
servicing up to 4 neurons, and sometimes picks up a row that is far away from the previous row. Whereas the X addresses
are distributed randomly. Queue Full (bottom row): The Y addresses tend to be concentrated in the top or bottom half
of the range, or in the third quarter, and so on, and the column arbiter services all 64 neurons in the selected row. The
X addresses tend to decrease with sequence number, as all the neurons are serviced progressively, except for transpositions
that occur over regions whose width equals a power of 2. Note that the horizontal scale has been magni�ed by a factor of
30 for the X addresses.

There are two di�erences between my hand-

shaking circuit and the handshaking circuit of

Lazzaro et.al. [16].

First, Lazzaro et.al. disable all the arbiter's in-

puts to prevent it from granting another request

while Ack is high. By using the AND gate at the

top of the arbiter tree to disable the arbiter's out-

puts (Aarb) when Ack is high, my design leaves

the arbiter's inputs undisturbed. As I explained

in the previous subsection, my approach enables

us to exploit locality in the arbiter tree and in the

array.

Second, Lazzaro et.al. assume that the selected
pixel will withdraw its request before the receiver
acknowledges. This timing assumption may not
hold if the receiver is pipelined. When the as-
sumption fails, the row or column select lines may
be cleared before the pixel has been reset. In my
circuit, the row and column select signals (Apix)
are reset only if Aarb is low, indicating that the
receiver has acknowledged, and no current is be-
ing drawn from Rpix by the array, indicating that
the pixel has been reset.

Mahowald's original design used a similar trick
to ensure that the select lines were not cleared

Communicating Neuronal Ensembles 15

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
-7

-5

0

5

10

15

Time(s)

A
m

pl
itu

de
(V

)

 R
eq

 A
ck

 A
pix

 X
ad0

Receiver Timing

 18ns

 57ns 56ns

19ns

 94ns 170ns

2 4 6 8 10 12 14

x 10
-7

-5

0

5

10

15

Time(s)

A
m

pl
itu

de
(V

)

Sender Timing

 190ns

 120ns

 48ns

 120ns

 49ns

 49ns

 200ns

 45ns

 45ns

 130ns

 42ns

 42ns

 Y
sel

 Y
ad0

 X
sel

 R
eq 200ns

(a) (b)

Fig. 7. Measured address-event channel timing. All the delays given are measured from the preceding transition: (a) Timing
of Req and Ack signals relative to X-address bit (Xad0) and receiver pixel's acknowledge (Apix). Pipelining shaves a total of
113ns o� the cycle time (twice the duration between Ack and Apix). (b) Timing of Req signal relative to the select signals
fed into the top of the arbiter trees (Ysel and Xsel, disabled when Ack is high), and the Y-address bit (Yad0). Arbitration
occurs in both the Y and X dimensions during the �rst cycle, but only in the X dimension during the second cycle; the
cycle time is 730 ns for the �rst cycle and 420 ns for the second.

prematurely. However, her handshaking circuit

used dynamic state-holding elements which were
susceptible to charge-pumping and to leakage cur-

rents due to minority carriers injected into the

substrate when devices are switched o�. My de-

sign uses fully static stateholding elements.

The receiver's C-element (it is slightly di�er-

ent from the sender's) is shown in the lower-right

corner of Figure 4. The C-element's output sig-

nal drives the chip acknowledge (Ack), strobes the

latches, and activates the address decoders. The

ip-
op that determines the state of Ack is set if

Req is high, indicating that there is a request, and

Apix is low, indicating that the decoders' outputs

and the wired-OR outputs have been cleared. It is

reset if Req is low, indicating that the sender has

read the acknowledge, and Apix is high, indicating

that the receiving neuron got the spike.

The address-bit latch and the logic inside the

receiving pixel are also shown in the �gure (middle

of lower row and upper-right corner, respectively).

The latch is opaque when Ack is high, and is trans-
parent when Ack is low. The pixel logic produces

an active low spike whose duration depends on

the delay of the wired-OR and the decoder, and

on the duration of the sender's reset phase.

Circuits for the blocks that are not described
here|namely, the address encoder and the ad-
dress decoder|are given in [4], [16].

4.4. Performance and Improvements

In this subsection, I characterize the behavior of
the channel and present measurements of cycle
times and the results of a timing analysis in this
section. For unacessible elements, I have calcu-
lated estimates for the delays using the device
and capacitance parameters supplied by MOSIS
for the fabrication process.

Figure 6 shows plots of address-event streams
that where read out from the sender under two
vastly di�erent conditions. In one case, the load
was less than 5% of the channel capacity. In the
other case, the load exceeded the channel capac-
ity. For small loads, the row arbiter rearranges the
address-events as it attempts to scan through the
rows, going to the nearest row that is active. Scan-
ning behavior is not evident in the X addresses
because no more than 3 or 4 neurons are active
simultaneously within the same row. For large
loads, the row arbiter concentrates on one half, or
one quarter, of the rows, as it attempts to keep

16 Boahen

up with the data rate. And the column arbiter
services all the pixels in the selected row, scan-
ning across the row. Sometimes the addresses are
transposed because each arbiter cell chooses ran-
domly between its left branch (lower half of its
range) or its right branch (upper half of its range).

Figure 7a shows the relative timing of Req, Ack,
the X-address bit Xad0, and the acknowledge from
the pixel that received the address-event Apix.
The cycle breaks down as follows. The 18ns delay
between Req # and Ack # is due to the receiver's
C-element (8.9ns) and the pad (9.1ns); the same
holds for the delay between Req " and Ack ". The
57ns delay between Ack # and Apix # is due to the
decoder (13ns), the row wired-OR (41ns), and the
second wired-OR that runs up the left edge of the
array (3.4ns). The 57ns delay between Ack " and
Apix "; breaks down similarly: decoder (38ns), row
wired-OR (14ns), left-edge wired-OR (3.4ns). The
94ns and 170ns delays between Apix and Req are
due to the sender. The X-address bits need not
be delayed because the C-element's 8.9ns delay is
su�cient set-up time for the latches.

Figure 7b shows the relative timing of Req, the
Y-address bits Yad0, and the select-enable signals
(Xsel, Ysel) fed in at the top of the arbiter trees;
Xsel and Ysel are disabled by Ack. The �rst half
of the �rst cycle breaks down as follows. The 48ns
delay between Req # and Ysel " is due to the re-
ceiver (18ns) and the AND circuit (30ns)|it is
a chain of two 74HC04 inverters and a 74HC02
NOR gate.3 The 120ns delay between Ysel " and
Yadr0 " is due to the arbiter (propagating a high-
going select down the six-level tree takes 19ns
per stage and 6.7ns for the bottom stage), the
row/column C-element (5.2ns), the address en-
coder (3.2ns), and the pad (7ns). The same ap-
plies to the delay between Xsel " and Req ": The
190ns delay between Yad0 " and Xsel " is due to
the column wired-OR (120ns), the arbiter (prop-
agating a high-going request up the six-level tree
takes 4.8ns per stage and 11ns for the top stage),
the pad (7ns), and the AND circuit (30ns). The
slow events are propagating a high-going select
down the arbiter (100ns total) and propagating a
request from the pixel through the column wired-
OR (120ns).

The second half of the �rst cycle breaks down as
follows. The 49ns delay between Req " and Xsel #

; Ysel # is identical to that for the opposite transi-
tions. The 200ns delay between Xsel #;Ysel # and
Req # is due the arbiter (propagating a low-going
select signal down the six-level tree takes 6.8ns per
stage and 2.5ns for the bottom stage), the column
and row wired-ORs (120ns), the handshake circuit
(5.2ns), the encoder (32ns), and the pad (7ns).
The slow events are propagating a low-going se-
lect down the arbiter (36ns total), restoring the
wired-OR line (120ns), and restoring the address-
lines (32ns).

The second cycle is identical to the �rst one ex-
cept that there is no row arbitration. Hence, Xsel
goes high immediately after Req goes low, elim-
inating the 310ns it takes to propagate a select
signal down the Y-arbiter, to select a row, to get
the column request from the pixel, and to propa-
gate a request up the X-arbiter.

This channel design achieves a peak through-
put of 2.5MS/s (million spikes per second), for a
64�64 array in 2�m CMOS technology. The cycle
time is 730ns if arbitration is performed in both di-
mensions and 420ns when arbitration is performed
in only the X dimension (i.e., the pixel sent is from
the same row as was the previous pixel). These
cycle times represent a threefold to �vefold im-
provement over the 2�s cycle times reported in
the original work [4], and are comparable to the
shortest cycle time of 500ns reported for a much
smaller 10 � 10 nonarbitered array fabricated in
1:6�m technology [12]. Lazzaro et.al. report cycle
times in the 100-140ns range for their arbitered
design, but the array size and the chip size are a
lot smaller.

Pipelining the receiver shaves a total of 113ns
o� the cycle time|the time saved by latching the
address-event, instead of waiting for the receiv-
ing pixel to acknowledge. Pipelining the sending
pixel's reset phase did not make much di�erence
because most of the time is spent waiting for the
row and column wired-OR request lines to reset,
once the pixel itself is reset. Unfortunately, I did
not pipeline reseting these request lines: I wait
until the receiver's acknowledge disables the select
signals that propagate down the arbiter tree, and
Arb goes low, before releasing the column and row
wired-OR request line. Propagating these high-
going and low-going select signals down the six-
level arbiter tree (110ns+ 40ns) and resetting the

Communicating Neuronal Ensembles 17

column and row request lines (120ns) adds a to-
tal of 270ns to the cycle time, when arbitration
is performed in only the X dimension, and adds
400ns when arbitration is performed in both the
X and Y dimensions.

The imapct of the critical paths revealed by
my timing analysis can be reduced signi�cantly
by making three architectural modi�cations to the
sender chip:

1. Moving the AND gate that disables the ar-
biter's select signals to the bottom of the tree
would shave o� a total of 144ns; this change
requires an AND gate for each row and each
column.4

2. Removing the input to the column and row
wired-OR from the arbiter would allow the col-
umn and row request lines to be cleared as soon
as the pixel is reset; this requires adding some
logic to reset the
ip-
op in the sender's C-
elemet when Rpix is high and Aarb is low.

3. Doubling the drive of the two series devices in
the pixel that pull down the column line would
reduce the delay of the wired-OR gate to 60ns.

These modi�cations, taken together, allow us to
hide reseting the column and row select lines in the
59ns it takes for Apix") Req") Ack") Xsel#,
shaving o� a total of 120ns, when arbitration oc-
curs in only the X dimension, and 180ns when
arbitration occurs in both dimensions. These
changes, together, will reduce the cycle time to
156ns with arbitration in one dimension, and to
406ns with arbitration in both dimensions. Fur-
ther gains may be made by optimizing the sizes
of the devices in the arbiter for speed and adding
some bu�ers where necessary.

4.5. Bugs and Fixes

In this section, I describe the bugs I discovered in
the channel design and propose some ways to �x
them.

During testing, I found that the sender occa-
sionally generates illegitimate addresses, i.e. out-
side the 1 to 64 range of pixel locations. In partic-
ular, row (Y) addresses higher than 64 were ob-
served. This occurs when row 64 and one other
row, or more, are selected simultaneously. I traced

this problem to the sender's C-element (lower-left
of Figure 4).

After Ack goes high and Aarb goes low, the pull-
up starts charging up Rpix. When Rpix crosses the
threshold of the inverter, Rarb goes low. When
the arbiter sees Rarb go low it selects another row.

However, if Rpix has not crossed the threshold for
resetting the
ip-
op, the
ip-
op remains set and
keeps the previous row selected. Hence, two rows
will be selected at the same time, and the encoder
will OR their addresses together.

This scenario is plausible because the threshold
of the inverter that drives Rarb is lower than that
of the
ip-
op's reset input; I calculated 2.83V
and 3.27V, respectively. If any neuron in the pre-
viously selected row spikes while Rpix is between
these two values, Rpix will be pulled back low, and
the
ip-
op will not be reset. Rpix spends about

0:44=2:5�120ns = 21ns in this critical window. At
a total spike rate of 100KHz, we expect a collision
rate of 0.05Hz, just for row sixty-four alone. I ob-
served a rate of 0.06Hz; the higher rate observed
may be due to correlations in �ring times. To
eliminate these collisions, we should disable neu-
rons from �ring while their row is selected (i.e.,
Ay is high). That way, Rpix will remain low until

Apix goes low, ensuring that the
ip-
op is reset.5

I also had to redesign the receiver pixel to
eliminate charge-pumping and capacitive turn-on,
which plagued the �rst pixel I designed, and to

reduce cross-talk between the digital and analog
parts by careful layout. Two generations of re-
ceiver pixel circuit designs are shown in Figure 8.

The pair of transistors controlled by the row

and column select lines, Ry and Rx, pump charge
to ground when non-overlapping pulses occur
on the select lines. In my �rst design, this
charge-pump could supply current directly to the
integrators|irrespective of whether or not that
pixel had been selected. The pump currents are
signi�cant as, on average, a pixel's row or column
is selected 64 times more often than the pixel it-

self. For a parasitic capacitance of 20fF on the
node between the transistors, an average spike
rate of 100Hz per pixel, and a voltage drop of 0.5V,
the current is 64pA. This current swamps out the
subpicoamp current levels we must maintain in
the diode-capacitor integrator to obtain time con-

18 Boahen

ScanOut

Apix

ScanIn

Iw

Rx

Ry

A

PixAckPU

Rx

Ry Iw

Vspk

Apix

A

Arbvdd

ScanIn

ScanOut

IntegratorNAND Gate

(a) (b)

Fig. 8. Comparison between my (a) �rst and (b) second circuit designs for a receiver pixel. The second design eliminated
charge-pumping and capacitive turn-on which plagued the �rst design, as explained in the text.

stants greater than 10ms using a tiny 300fF ca-

pacitor.

I solved this problem in my second design by

adding a pull-up to implement an nMOS-style

NAND gate. The pull-up can supply a fraction

of a milliamp, easily overwhelming the pump cur-

rent. The NAND gate turns on the transistor

that supplies current to the integrator by swing-

ing its source terminal from Vdd to GND. As

demonstrated by Cauwenberghs [19], this tech-

nique can meter very minute quantities of charge

onto the capacitor. In addition to eliminating

charge-pumping, this technique circumvents an-

other problem we encounter when we attempt to

switch a current source on and o�: capacitive

turn-on.

Rapid voltage swings on the select line are

transmitted to the source terminal of the current-

source transistor by the gate-drain overlap capaci-

tor of the switching transistor. In the �rst design,

where this terminal's voltage was close to GND,

these transients could drive the source terminal a

few tenths of a volt below GND. As a result, the

current source would pass a fraction of a picoamp

even when Iw was tied to GND. In the new design,

the pull-up holds this node up at Vdd and supplies

the capacitive current, preventing the node from

being discharged.

Communicating Neuronal Ensembles 19

5. Discussion

Since technological limitations precluded the use
of dedicated lines, I developed a time-multiplexed
channel that communicates neuronal ensembles
between chips, taking advantage of the fact that
the bandwidth of a metal wire is several orders
of magnitude greater than that of a nerve axon.
Thus, we can reduce the number of wires by shar-
ing wires among neurons. We replaced thou-
sands of dedicated lines with a handfull of wires
and thousands of switches (transistors). This ap-
proach paid o� well because transistors take up
much less real estate on the chip than wires do.

I presented three compelling reasons to pro-
vide random access to the shared channel, using
event-driven communication, and to resolve con-
tention by arbitration, providing a queue where
pixels wait their turn. These choices are based
on the assumption that activity in neuromorphic
systems is clustered in time and in space.

First, unlike sequential polling, which rigidly
allocates a �xed fraction of the channel capacity
to each quantizer, an event-driven channel does
not service inactive quantizers. Instead, it dy-
namically reallocates the channel capacity to ac-
tive quantizers and allows them to samples more
frequently. Despite the fact that random access
comes at the cost of using log2N wires to trans-
mit addresses, instead of just one wire to indicate
whether a polled node is active or not, the event-
driven approach results in a lower bit rate and a
much higher peak sampling rate when activity is
sparse.

Second, an arbiterless channel achieves a max-
imum throughput of only 18% of the channel ca-
pacity, with an extremely high collision rate of 64
percent. Whereas an arbitered channel can op-
erate at 95% capacity without any losses due to
collisions|but its latency and temporal disper-
sion is 10 times the cycle period. Thus, unless
the cycle-time of the arbiterless channel is 5 times
shorter, the arbitered channel will o�er higher per-
formance in terms of the number of spikes that get
through per second. Furthermore, the cycle-time
of the arbiterless channel must be even shorter if
low error rates are desired, as failure probabilities
of 5 percent require it to operate at only 2.5 per-
cent of its capacity. A comparable error in tim-

ing precision due to temporal dispersion in the
arbitered channel occurs at 84.8% of the channel
capacity, using the numbers given in Section 3.3.

And third, the arbitered channel scales much
better than the nonarbitered one as the technol-
ogy goes to �ner feature sizes, yielding higher lev-
els of integration and faster operation. As the
number of neurons grows, the cycle time must
decrease proportionately in order to obtain the
desired throughput. Hence, there is a propor-
tionate decrease in queueing time and in tem-
poral dispersion|even though the number of cy-
cles spent queueing remains the unchanged when
the same fraction of the channel capacity is in
use. Whereas the collision probability remains un-
changed under the same conditions.

I described the design and operation of an
event-driven, arbitered interchip communication
channel that reads out pulse trains from a 64� 64
array of neurons on one chip and transmits them
to corresponding locations on a 64 � 64 array of
neurons on a second chip. This design acheived
a threefold to �vefold improvement over the �rst-
generation design [4] by introducing three new en-
hancements.

First, the channel used a three-stage pipeline,
which allowed up to three address-events to be
processed concurrently. Second, the channel ex-
ploited locality in the arbiter tree by picking the
input that was closest to the previously selected
input|spanning the smallest number of levels in
the tree. And third, the channel exploited local-
ity in the row-column organization by sending all
requests in the selected row without redoing the
arbitration between columns.

I identi�ed three ine�ciencies and one bug in
my implementation, and I suggested circuit mod-
i�cations to address these issues. First, to reduce
the propagation delay of the acknowledge signal,
we must remove the AND gate at the top of the
arbiter tree, and disable the select signals at the
bottom of the arbiter tree instead. Second, to re-
set the column and row wired-OR lines while the
receiver is latching the address-event and activat-
ing the acknowledge signal, we must remove the
input to the wired-OR from the arbiter and re-
design the row/column C-element. Third, to de-
crease the time the selected row takes to drive its
requests out on the column lines, we must double

20 Boahen

the size of the pull-down devices in the pixel. And
fourth, to �x the multiple-row{selection bug, we
must guarantee that the row request signal is sta-
ble by disabling all the neurons in a row whenever
that row is selected.

These modi�cations will provide error-free op-
eration and will push the capacity up two and a
half times, to 6.4MS/s. According to my calcu-
lations, for neurons with a mean latency of 2ms,
a coe�cient of variation of 10%, and an �ring-
rate attenuation factor of 40, this capacity will
be enough to service a population of up to 82,000
neurons.

However, as the number of neurons increases,
the time it takes for the pixels in the selected
row to drive the column lines increases proportion-
ately. As this interval is a signi�cant fraction of
present design's cycle time (38% in the modi�ed
design), the desired scaling will not be acheived
unless the ratio between the unit current and the
unit capacitance increases linearly with integra-
tion density. SRAM and DRAM scaling trends
indicate that this ratio increases sublinearly, and
hence the present architecture will not scale well.
We need to develop new communication channel
architectures to address this issue.

Acknowledgements

This work was partially supported by the O�ce
of Naval Research; DARPA; the Beckman Foun-
dation; the Center for Neuromorphic Systems En-
gineering, as part of the National Sceince Founda-
tion Engineering Research Center Program; and
the California Trade and Commerce Agency, Of-
�ce of Strategic Technology.

I thank my thesis advisor, Carver Mead, for
sharing his insights into the operation of the ner-
vous system. I also thank Misha Mahowald for
making available layouts of the arbiter, the ad-
dress encoders, and the address decoders; John
Lazzaro, Alain Martin, Jose Tierno, and Tor
(Bassen) Lande for helpful discussions on address
events and asynchronous VLSI; Tobi Delbr�uck for
help with the Macintosh address-event interface;
and Je� Dickson for help with PCB design.

Notes

1. This result is derived by assuming independent �ring
probabilities and approximating the resulting binomial
distribution with the Poisson distribution.

2. This result is also based on the assumption that samples
arrive according to a Poisson process.

3. Xsel does not go high at this point because the X-arbiter
has not received any requests, as a row has not yet been
selected.

4. This modi�cation was suggested to me by Tobi
Delbr�uck.

5. This solution was suggested to me by Jose Tierno.

References

1. M Schwartz. Telecommunication Networks: Proto-

cols, Modeling, and Analysis. Addison-Wesley, Read-
ing, MA, 1987.

2. A S Tanenbaum. Computer Networks. Prentice-Hall
International, 2 edition, 1989.

3. A Murray and L Tarassenko. Analogue Neural VLSI:

A Pulse Stream Approach. Chapman and Hall, Lon-
don, England, 1994.

4. M Mahowald. An Analog VLSI Stereoscopic Vision

System. Kluwer Academic Pub., Boston, MA, 1994.
5. M Sivilotti. Wiring considerations in Analog VLSI

Systems, with application to Field-Programmable

Networks. PhD thesis, California Institute of Tech-
nology, Pasadena CA, 1991.

6. C A Mead. Neuromorphic electronic systems. Proc.

IEEE, 78(10):1629{1636, 1990.
7. K A Boahen. Retinomorphic vision systems. In Mi-

croneuro'96: Fifth Intl. Conf. Neural Networks and

Fuzzy Systems, pages 2{14, Los Alamitos CA, Feb
1996. EPFL/CSEM/IEEE, IEEE Comp. Soc. Press.

8. K A Boahen. Retinomorphic vision systems ii: Com-
munication channel design. In Proc. IEEE Intl. Symp.

Circ. and Sys., volume Supplement, Piscataway NJ,
May 1996. IEEE Circ. & Sys. Soc., IEEE Press.

9. K A Boahen. A retinomorphic vision system. IEEE

Micro, 16(5):30{39, October 1996.
10. K A Boahen. The retinomnorphic approach: Pixel-

parallel adaptive ampli�cation, �ltering, and quanti-
zation. Analog Integr. Circ. and Sig. Proc., 13:53{68,
1997.

11. K A Boahen. Retinomorphic Vision Systems: Re-

verse Engineering the Vertebrate Retina. PhD the-
sis, California Institute of Technology, Pasadena CA,
1997.

12. A Mortara, E Vittoz, and P Venier. A communica-
tion scheme for analog vlsi perceptive systems. IEEE
Trans. Solid-State Circ., 30(6):660{669, 1995.

13. A Abusland, T S Lande, and M Hovin. A vlsi commu-
nication architecture for stochastically pulse-encoded
analog signals. In Proc. IEEE Intl. Symp. Circ. and

Sys., volume III, pages 401{404, Piscataway NJ, May
1996. IEEE Circ. & Sys. Soc., IEEE Press.

14. L Kleinrock. Queueing Systems. Wiley, New York
NY, 1976.

15. I E Sutherland. Micropipelines. Communications of

the ACM, 32(6):720{738, 1989.

Communicating Neuronal Ensembles 21

16. J Lazzaro, J Wawrzynek, M Mahowald, M Sivilotti,
and D Gillespie. Silicon auditory processors as com-
puter peripherals. IEEE Trans. on Neural Networks,
4(3):523{528, 1993.

17. J Lazzaro, J Wawrzynek, and A Kramer. Systems
technologies for silicon auditory models. IEEE Mi-

cro, 14(3):7{15, 1994.
18. K A Boahen. Retinomorphic vision systems i: Pixel

design. In Proc. IEEE Intl. Symp. Circ. and Sys.,
volume Supplement, pages 9{13, Piscataway NJ, May
1996. IEEE Circ. & Sys. Soc., IEEE Press.

19. G Cauwenberghs. A micropower cmos algorithmic
a/d/a converter. IEEE Transactions on Circuits and

Systems I, 42(11), 1995.

Kwabena A. Boahen is an Assistant Professor in

the Bioengineering Department at the University of

Pennsylvania, Philadelphia PA. He received a PhD

in Computation and Neural Systems from the Cal-

ifornia Institute of Technology, Pasadena, CA. He

earned BS and MSE degrees in Electrical Engineering

from the Johns Hopkins University, Baltimore MD, in

the concurrent masters{bachelors program. His cur-

rent research interests include mixed-mode multichip

VLSI models of biological sensory systems, and asyn-

chronous digital interfaces for interchip connectivity.

0 10 20 30 40 50

Bandwidth/Minimum

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty

Coll i s i on Probab i l i ty vs Bandw i dth

Fig. 9. Theoretical collision probability versus channel ca-
pacity (bandwidth) for Gaussian bursts. Actual capacity is
normalized to the minimum capacity requirement. Thus,
the numbers on the Bandwidth/Minimum axes are the re-
ciprocal of the o�ered channel load G. For collision proba-
bilities below 18 percent, capacities ten or more times the
minimum are required. The dots represent results of a nu-
merical computation based on the Gaussian and binomial
distributions for sample occurrence within a burst, and the
number of samples in each time-slot, respectively. The line
represents results of a simpli�ed, analytically tractable, ap-
proximation based on the equivalent rectangular and Pois-
son distributions, respectively. The simpli�ed model over-
estimates the collision probability by no more than 8%; the
estimation error drops below 4.4% for capacities greater
than 10 times the theoretical minimum.

Sending
Pixel

Sender
C-Element Arbiter

Reciever
C-Element

Recieving
Pixel

Set Phase Reset Phase

Fig. 10. Pipelined communication cycle sequence for ar-
bitration in one dimension, showing four-phase minicycles
among �ve elements. The boxes indicate the duration of
the current cycle, which may overlap with the reset phase
of the preceding cycle and the set phase of the succeed-
ing cycle. (Steps associated with the preceding and suc-
ceeding cycles are shown with dashed-lines.) Thus three
address-events may be at di�erent stages in the commu-
nication channel at the same time. The cycle consists
of three smaller interwoven minicycles: sending pixel to
C-element, C-element to C-element, and C-element to re-
ceiving pixel. The C-elements|also known as handshake
circuits|ensure that the minicycles occur in lock-step, syn-
chronizing the activity of the sending pixel, the arbiter, and
the receiving pixel.

