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This system uses

neurobiological
principles to
accomplish the major
operations of
biological retinae:
continuous sensing,
local automatic
gain control,
spatiotemporal band-
Dpass filtering, and

adaptive sampling.
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he retina is an exquisitely evolved
I piece of neuronal wetware. It con-
tains about a hundred million black-
and-white photoreceptors, complemented
by three to four million color receptors. Its
output—about one million axonal fibers that
make up the optic nerve—conveys visual
information to the rest of brain using an all-
or-none pulse code. Compared to a state-of-
the-art  charge-coupled-device (CCD)
camera, the retina accomplishes many amaz-
ing feats.

Parallel processing of visual information
begins in the retina with the presence of sev-
eral channels specialized for such tasks as
nocturnal vision, color vision, spatial vision,
and motion. Under ideal conditions, these
channels allow us to detect reliably the
absorption of 10 photons in a pool of 5,000
rods; to perceive color in light wavelengths
ranging from 400 to 670 nm; to detect 0.5%
contrast; to resolve two lines subtending an
angle of 1/60 of a degree; and to tell the
onset order of two lines flashed 3 to 5 milli-
seconds apart. In addition, we can see well
both in dim starlight and in bright sunlight—
a dynamic range of over 10 decades!

In contrast, though an 8-bit CCD camera’s
0.4% full-scale amplitude resolution comes
close to matching the retina’s contrast sen-
sitivity, the electronic camera’s 1/5-degree
angular resolution and its 30-ms temporal
resolution are an order of magnitude worse.
Its 50-dB dynamic range is six orders of mag-
nitude short. We can therefore advance the
state of the art in focal-plane image pro-
cessing by studying the expanding body of
knowledge gathered by neurobiologists
about how the retina operates.!

In this article, I compare and contrast reti-
nal design principles with standard imager
design practice. I argue that neurobiological
principles are best suited to perceptive sys-
tems - that go beyond reproducing the

VISION SYSTEM

dynamic scene as conventional video cam-
eras do—to extract salient information in
real time.

Retinomorphic vision systems use neuro-
biological principles to accomplish at the
pixel level all four major operations of bio-
logical retinae: 1) continuous sensing for
detection, 2) local automatic gain control for
amplification, 3) spatiotemporal band-pass
filtering for preprocessing, and 4) adaptive
sampling for quantization. The retinomor-
phic system that I describe uses a random-
access communication channel to read out

‘asynchronous pulse trains from a 64x64-

pixel array on the retinomorphic chip, and
then transmits them to corresponding loca-
tions on a second chip that has a 64x64 array
of integrators.

What are retinal design
principles?

Table 1 outlines the retina’s design prin-
ciples, which retinomorphic systems bor-
row. For comparison, the table also lists
design principles employed by standard
imager technology. The following sections
elaborate these principles.

Detection. Integrating detectors—for
example, CCDs and photogates>—suffer
from blooming at high intensity levels and so
require a destructive readout, or reset, oper-
ation. The retinal approach uses continuous-
sensing detectors, such as photodiodes and
phototransistors. These do not bloom, and
can therefore operate over a much larger
dynamic range.? In addition, because we do
not need to reset such detectors, we can
eliminate redundant readout operations with
considerable power savings. Continuous-
sensing detectors have been shunned,
though, because they suffer from gain and
offset mismatches that produce salt-and-
pepper noise in the image. However, pre-
liminary results indicate that the learning

0272-1732/96/$5.00 © 1996 IEEE




Table 1. Retinal design principles.

Standard imager

Operation technology Retinal method
Detection Integrate/reset Continuous
Amplification Global AGC* Local AGC
Preprocessing Absent Band-pass filter
Quantization Fixed Adaptive

** Automatic gain control

capability of image recognition systems can easily compen-
sate for this fixed-pattern noise.* )

Amplification. Imagers that use global automatic gain
control (AGC) for amplification can operate only under uni-
form lighting, because the variation of intensity across a
scene exceeds their 8-bit dynamic range when shadows are
present. A CCD or photogate can achieve 12 bits (a four-
decade range),? and a photodiode or phototransistor can
achieve 20 bits (six decades)*>—but the phototransistor’s per-
formance in the lowest two decades is plagued by slow tem-
poral response. In addition to these capability limitations, a
system’s dynamic range is limited by the cost of precision
analog readout electronics and A/D converters, and by video
standards. These system-level constraints account for the
much lower dynamic range achieved by conventional
imagers.

Introducing AGC locally—at the pixel level—increases
dynamic range and resolution in the darker parts of the
image without increasing the number of bits per sample.
Following retinal principles, we can set the gain to be
inversely proportional to the local intensity, discounting grad-
ual changes in intensity and producing an output that is pro-
portional to contrast.” This adaptation greatly extends the
dynamic range, because lighting intensity varies by six
decades from high noon to twilight, whereas contrast varies
by at most a factor of 20.

Preprocessing. The intensity pattern that falls on the
imager is highly redundant in space and time; that is, differ-
ences between adjacent samples in space or time are rare.
Band-pass spatiotemporal filtering is an optimal prepro-
cessing strategy for removing redundancy in the presence
of white noise.%” This filtering, absent in standard imager
technology, reduces the correlation among pixels by elimi-
nating low spatial and temporal frequencies. In addition, it
attenuates fluctuations in the photon flux and transistor cur-
rents by by rejecting high temporal and spatial frequencies.
Coupled with adaptive quantization, this efficient image rep-
resentation requires much less bandwidth for transmission
than the raw image intensity values. It also enhances fea-
tures at finer spatial and temporal scales, making recogni-
tion easier? and providing a spatial or temporal reference for
motjon computation.

Quantization. Converters that automatically adapt their
quantization in time and amplitude to the rate of change and
the amplitude probability distribution of the input signal max-
imize the information transmitted through the output chan-

- photocharge.

nel. In contrast, traditional A/D converters use quantization
set to match the maximum rate of change and the smallest
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How do we build the
pixels?
The primary difference between

< Vyeset retinomorphic and conventional
ScanOut  vision systems is that retinomorphic
imagers perform all four operations

H Scanin listed in Table 1 at the pixel level.

= Shrinking feature sizes in CMOS
technology are driving the migration
of more -sophisticated signal pro-
cessing down to the pixel level. The

Figure 1. Pixel circuit for retinomorphic imager. The outer-plexiform-layer (OPL)
circuit performs spatiotemporal band-pass filtering and local automatic gain
control. The pulse generator converts the OPL circuit’s output current to pulse fre-
quency, quantizing the signal. The diode-capacitor integrator adapts the quan-
tization process, making the step size and the sampling rate proportional to the
signal’s amplitude and rate of change. The logic circuit communicates the occur-
rence of a spike to the chip periphery, turns on /.., to terminate the spike, and
takes Vg, low to increment the integrator. The remaining circuitry scans out the

integrator’s output for display on a video monitor.

(a) (b)

Figure 2. Tiling hexagonally connected networks using
star elements (a) and delta elements (b). The star-based
network requires wires running along three axes, where-
as the delta-based network used in the retinomorphic
pixel requires wires running along only two axes. Thus,
the delta-based hexagonal grid is no more complicated
than a more traditional square grid, yet it achieves a 33%
improvement in peak sampling frequency for pixels of
equal area.

amplitude. This encoding produces many redundant sam-
ples, because changes in the signal are rare. Also, the large
amplitude codes are seldom used, since these signal ampli-
tudes rarely occur in natural scenes. Reassigning the codes
‘to more probable amplitudes increases the overall number

of signals that can be discriminated. Thus, information is

maximized when all codes are equally probable. If conver-
sion occurs in parallel at the pixel level, each converter can
adapt its quantization independently. In addition, this
arrangement avoids corruption of analog signals by the
switching noise that high-speed multiplexing produces.
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retinomorphic pixel circuit shown in
Figure 1 has a total of 32 transistors
and, fabricated in an outdated
process with a 2-um minimum fea-
ture size, occupies an area of 106x98
pm? As feature sizes are scaled
down, and the size of the active
devices becomes small compared to
the sensor area—typically about 5
um per side—it will become cost-
effective to shrink the detector area
and use lenslet arrays to focus the
light. This will free up area for additional image-processing
functions. With this approach, it will be possible to build a
380%380-pixel retinomorphic imager on a 1-cm? die in today’s
state-of-the-art, 0.4-micron CMOS process. In comparison,
the human fovea has only about 500x500 cones, but the den-
sity is much higher: These cones occupy an area of just 1.5
mmx1.5 mm!

In general terms, the circuit’s principles of operation are
as follows. The transducer is a vertical bipolar transistor; its
emitter current is proportional to the incident light intensity.?
V0 and W0, the two nodes in the outer-plexiform-layer (OPL)
circuit, which models the retina’s first layer, connect to their
six nearest neighbors by delta-connected transistors on a
hexagonal grid, as shown in Figure 2, to form two current-
spreading networks.>® These networks diffuse the currents
over space, and their node capacities diffuse signals over
time. Thus, these two networks form low-pass filters for spa-
tial and temporal frequency.

When there is a transition from black to white—an edge
crosses the pixel or a light turns on—the photocurrent increas-
es. The excess current discharges node VO, turning on the
device whose gate connects to node V0. The excess current in
this device discharges node WO0. Thus, node WO is also excit-
ed, turning on the device whose gate connects to it. The excess
current in this second device balances the excess photocur-
rent, and tends to restore node V0. Thus, the second device
inhibits the effect of the photocurrent. These two devices make
the first network (VO) excite the second and make the second
network (W0) reciprocate by inhibiting the first, in close anal-
ogy to excitatory and inhibitory synapses between cones and
horizontal cells in the outer retina.” When the inhibitory net-
work is biased such that its time and space constants are longer
than those of the excitatory network, signals that change rapid-
ly over time or space will escape inhibition, resulting in a high-
pass frequency response. However, the frequency response
will start to roll off when the period approaches the time and




space constants of the excitatory net-
work, resulting in an overall band-
pass response in spatial and temporal
frequency.’

The low-pass-filtered version of the
image from the inhibitory layer serves
as a measure of the local intensity
level and controls the circuit’s gain.
As it turns out, the gain is inversely
proportional to the coupling strength
in the excitatory layer’ We can
increase this coupling strength glob-
ally by increasing the common gate
voltage on the internode transistors
(g), or we can change it locally by
decreasing the node voltages (V0).
The latter adjustment happens natu-
rally as the light level increases,
because the voltage on WO drops as
the inhibition increases to balance the

increased photocurrent. As W0 drops,
VO drops as well to maintain a rela-
tively constant current in the device
between VO and W0. The result is
local automatic gain control.®

Figure 3 shows the OPL circuit
outputs (data from a chip I described previously?®) and images
of the same scenes acquired with a CCD camera. The
retinomorphic front end pulls out information in the shad-
ows, whereas the CCD camera output has hit its lower limit.
Local AGC indeed increases the dynamic range.

The spatiotemporal band-pass filtering removes gradual
changes in intensity and enhances edges and curved surfaces.
Unfortunately, the retinomorphic chip’s output is noisier in
the image’s darker parts. This undesirable side effect of the
gain control mechanisms arises because the space constant
becomes shorter as the coupling strength in the excitatory net-
work is reduced to increase the gain. When the space con-
stant decreases, the chip can no longer attenuate
salt-and-pepper noise, because the cutoff frequency shifts
upward. At these intensity levels, the dominant noise source
is the poor matching among the small (4L X3.5L) transistors
operating in the subthreshold region—it is not fluctuations in
the photon flux. Nevertheless, when the retinomorphic imager
replaced a CCD as the front end of a face recognition system,
this 90x90-pixel OPL chip improved the recognition rate from
72.5 t0 96.3% (5% false positives) under variable illumination.

A pulse generator converts analog currents from the OPL cir-
cuit into pulse frequency. The diode-capacitor integrator com-
putes a current proportional to the short-term average of the
pulse frequency, and this currentis subtracted from the pulse
generator’s input. Hence, the more rapidly the input changes,
the more rapidly the pulse generator fires. Adding a fixed-
charge quantum to the integrating capacitor produces a mul-
tiplicative change in current—this is due to the exponential
current-voltage dependence in the subthreshold region.
Hence, the higher the current level (for a brighter region), the
larger the step size. The result is adaptive quantization. In the
postprocessor, the diode-capacitor integrator also integrates

band-pass filtering.

Figure 3. CCD camera (a) versus OPL imager chip (b) under variable lighting. The
CCD camera performs global AGC, whereas the OPL chip performs local AGC and

the pulses and reconstructs the encoded current level.
Figure 4 (next page) shows the response of the adaptive
neuron circuit to a 14% change in its input current; these
data also demonstrate the integration of pulse trains by the
diode-capacitor integrator and the adaptive step size. It is
preferable to keep the integrator’s output current below the
input current at all times: This ensures that the membrane
voltage stays close to the threshold, making the latency short-
er and less variable and keeping the integrator’s output
device in saturation. The circuit operates in this regime if
small step sizes are used. In that case, however, adaptation
occurs slowly, and the process generates many spikes.

How do we transmit the pulses?

Having quantized the signal in the pixel, we need to read
out these asynchronous pulse trains from the array and trans-
mit them off chip. For this purpose, my design uses a ran-
dom-access communication channel. Random access is an
alternative to the more common sequential-access protocol,
which polls all the users sequentially and allocates a fixed
fraction of the channel capacity to each user. That protocol’s
efficiency degrades as the fraction of active users decreases,
because the polling of inactive users ties up bandwidth. In
contrast, random access makes it possible to service only the
active users, a more efficient use of channel capacity.
However, this enhancement comes at the cost of sending
log, N-bit addresses to identify one out of N users, instead of
using just 1 bit to indicate whether a user is active.

Nevertheless, a random-access channel better serves
retinomorphic pixels for two reasons. First, activity is sparse,
because band-pass spatiotemporal filtering attenuates signals
that change slowly over time or space. Second, sampling is
sporadic, because neurons fire rapidly when their inputs are
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changing and reduce their sampling rates drastically when
the signal is steady. Typically, only about 5% of the neurons
are firing rapidly; the rest are quiescent, and fire at extreme-
ly low rates. If the active neurons fire 40 times faster than the
quiescent ones, random access will allocate the channel
capacity in a ratio of 0.05 x 40:0.95 x 1—or 2 to 1—between
the active and quiescent subpopulations. In contrast, sequen- e Tree locality. My system exploits locality in the arbiter
tial polling allocates the channel capacity according to numer-
ical strength—that is, in the ratio 0.05:0.95, or 1 to

Figure 4. Adaptive neuron’s step response: the neuron’s input current and the
integrator’s output current (a); input voltage ramping up between the reset (1.5
V) and threshold levels (2.2 V) (b); and the spike train(c). The difference between
the input current and the integrator’s output ramps up the input voltage as it

19—between the active and quies-
cent subpopulations. Hence, assum-
ing equal channel capacity, the firing
rate of active neurons must be 13.3
times lower in the sequential chan-
nel, because they can use only 5% of
the channel capacity. The random-
access channel, on the other hand,
dynamically allocates 66.7% of its
capacity to the active neurons.

The pixels must not transmit puls-
es at will, because that approach
results in collisions when two or more
pixels attempt to transmit at the same
time. Instead, the communication
channel includes an arbiter to deal
with contention and a queue where
unsuccessful contenders wait. This
architecture was proposed and devel-
oped by Sivilotti® and Mahowald:* It
allows graceful information degrada-
tion in the face of the heavy, but spo-
radic, demands on bandwidth caused
by synchronous firing triggered by
events occurring in the scene.

The arbiter scheme incurs some
temporal dispersion of the burst of
spikes when the channel capacity is
exceeded briefly, but it scales lin-
early with the load. That is, a burst
of duration Tj., that offers a peak
channel load of £, will be dis-
persed over an interval no longer
than Tburerburst/Fcham where Fchan is
channel capacity. In contrast, the
number of collisions increases expo-
nentially as the probability of spike
occurrence rises.!! Hence, introduc-
ing arbitration allows us to trade an
exponential spike loss for a linear
temporal dispersion, resulting in
more graceful degradation.

The downside of arbitration is that
it increases the length of the com-
munication cycle, reducing the chan-
nel capacity, which is defined as the
reciprocal of the cycle time. I have
adopted three strategies to improve
the throughput:

e Pipelining. There can be several addresses in various
stages of transmission at the same tithe. This well-known
approach to increasing throughput, called pipelining,
involves breaking the communication cycle into a series
of steps and overlapping the execution of these steps as
much as possible.

tree. That is, it does not arbitrate among all the inputs
every time; doing so would require spanning all log,(N)




levels of the tree. Instead, it
finds the smallest subtree that
has a pair of active inputs, and
arbitrates between those inputs. B

] i, T (.w
Handshaking
A

This approach minimizes the
number of levels spanned.

* Row-column locality. My system
exploits locality in the row-
column architecture as well.
That is, it does not rearbitrate
both rows and columns for each
address transmitted. Instead, it
services all requesting pixels in
a selected row, rearbitrating
only the columns; it rearbitrates
rows only when no more

requests remain in the selected
row. Lazzaro et al. have also
improved on the original
design, and have used their
improved channel to interface a
silicon auditory model].*?

Figure 5 shows the pipelined
design. Like the first generation, this
interface is completely self-timed,;
thus, every communication must be
acknowledged by a feedback signal,
as shown in Figure 6. These
acknowledge signals also implement (@)

Figure 5. Pipelined address-event interchip communication channel. The arbiter
consists of a tree of two-input arbiter cells that send a request signal to, and
receive a select signal from, the next tree level. The row and column arbiter circuits
are identical; the row and column handshake circuits (labeled C) also are identical.

the queue: They make a pixel wait
just by refusing to acknowledge it.
At the beginning of a communication
cycle, the request and acknowledge
signals are both low. Figure 7 (next
page) shows the complete set of
steps involved in the communication cycle.

On the sender side, spiking neurons first make requests to
the Y arbiter, which selects only one row at a time. All spik-
ing neurons in the selected row then make requests to the X
arbiter. Concurrently, the Y address encoder drives the address
of that particular row onto the bus. When the X arbiter selects
a column, the pixel in that particular column, and in the row
selected earier, withdraws its column and row requests. At the
same time, the X address encoder drives the addresses of that
particular column onto the bus, and takes Req high. When
Ack goes high, the select signals that propagate down the
arbiter tree are disabled by the AND gates at the top of the X
and Yarbiter trees. As a result, the arbiter inactivates the select
signals sent to the pixels and to the address encoders.
Consequently, the addresses and the request signal, Req, are
widthdrawn. When it is necessary, the handshake circuit (also
known as a C element'®) between the arbiters and the rows
or columns delays inactivation of the select signals that drive
the pixel, and the encoders, and thus gives the sending pixel
sufficient time to reset. The sender’s handshake circuit is
designed to stall the communication cycle by keeping Req
high until the pixel withdraws its row and column requests,
confirming that it has reset. The exact sequencing of these

Figure 6. Self-timed data transmission protocol using a four-phase handshake:
data bus (Data) and data-transfer control signals (Req and Ack) (a) and handshake
cycle on control lines (b).

events is shown in Figure 7. On the receiver side, as soon as
Req goes high, the address bits are latched and Ack goes high.
Concurrently, the address decoders are enabled and, while
the sender chip is deactivating its internal request and select
signals, the receiver decodes the addresses and selects the
corresponding pixel. When the sender takes Req low, the
receiver responds by taking Ack low, disabling the decoders
and making the latches transparent again, at the same time.
When necessary, the handshake circuit, which monitors the
sender’s Req and the receiving pixel’s Ack, delays disabling the
address decoders to give the receiving pixel sufficient time to
read the spike and to generate a postsynaptic potential. The
receiver’s handshake circuit is designed to stall the commu-
nication cycle by keeping Ack high until the pixel acknowl-
edges receiving the spike.

The arbiter works in a hierarchical fashion, using a deci-
sion tree built out of two-input cells.>!® Thus, arbitration
between N inputs requires only log,(V) two-way decisions.
The two-input arbiter cell is essentially a flip-flop with negat-
ed inputs and outputs. That is, both the set and reset controls
of the flip-flop are normally active, forcing both the flip-flop’s
outputs to be active. When one of the two requests becomes
active, the corresponding control (either set or reset) is inac-
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Figure 7. Pipelined communication cycle sequence for
arbitration in one dimension, showing four-phase mini-
cycles among five elements. The boxes indicate the dura-
tion of the current cycle, which may overlap with the
reset phase of the preceding cycle and the set phase of
the succeeding cycle. (Dashed lines in each phase indicate
steps associated with preceding and succeeding cycles.)
The cycle consists of three smaller interwoven minicycles:
pixel to C element, C element to C element, and C ele-
ment to pixel. Each pair of minicycles is synchronized by
handshake circuits, also known as C elements. These cir-
cuits ensure that transitions occur in pairs.

tivated, and that request is selected when the correspond-
ing output becomes inactive. First, however, a request signal
is sent up the tree, and the select signal propagates down
the tree only when a select signal is received from the next
level. When both requests become active simultaneously,
both the set and reset controls are inactivated, and the flip-
flop randomly settles into one of its stable states, with one
output active and the other inactive. Hence, only one request
is selected.

Since the arbiter cell continues to select an input as long
as its request stays active, we can keep a row selected until
all that row’s active pixels are serviced. We do this simply
by ORing together all its pixels’ requests to generate the
request to the Y arbiter. Similarly, since the request passed
to the next level of the tree is simply the OR of the two
incoming requests, a subtree remains selected as long as
there are active requests in that part of the arbiter tree. Thus,
once selected, each subtree will service all of its daughters.
Using the arbiter in this way minimizes the number of lev-
els of arbitration performed—the next input selected is
always the one that requires the smallest number of levels to
be crossed. To exploit the locality in the array and the arbiter,
however, we must preserve the state of the flip-flops from
cycle to cycle.

To reset the select signals fed into the array and to the
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Figure 8. System concept. The retinomorphic chip ac-
quires, conditions, prefilters, and quantizes the image—
performing all these operations at the pixel level. The
interchip communication channel reads out digital pulses
from the pixels by transmitting the location of pulses as
those pulses occur. A second neuromorphic chip decodes
these addresses and recreates the pulses.

encoder, previous designs removed the requests fed in at
the bottom of the arbiter tree, and therefore did not preserve
the arbiter’s state.>'%* Hence, these designs performed full
log,(W)-level row and column arbitration for every cycle. In
my design, I reset the select signals by removing the select
signal from the top of the arbiter tree; thus, the request sig-
nals fed in at the bottom are undisturbed, and the arbiter
state is preserved. This allows the design to fully exploit

“locality in the array and the arbiter tree.

This channel design achieves a peak throughput of 2.5
Mspikes/s, for a 64x64 array in 2-micron CMOS technology.
The cycle time is 730 ns if arbitration takes place in both
dimensions and 420.ns when arbitration takes place in only
the X dimension (that is, when the pixel sent is from the
same row as was the previous pixeD). These cycle times rep-
resent a three to fivefold improvement over the 2-its cycle
times reported in the original work," and are comparable to
the shortest cycle time of 500 ns reported for a much small-
er, 10x10-pixel nonarbitered array fabricated in 1.6-micron
technology. !




Pipelining the receiver shaves off
113 ns of the cycle time—the time

Table 2. Specifications of the two-chip retinomorphic system.

saved by latching the address event Specification

instead of waiting for the receiving Element Imager Postprocessor
pixel to acknowledge. Pipelining the

sending pixel’s reset phase is not Technology 2-um, two-poly, two-metal p-well
effective in this case, because most Number of pixels 64x64

of the delay arises from resetting the Pixel size (12) 53x49 31.5x23
row and column wired-OR lines. Transistors/pixel 32 8
However, these lines are not allowed Die size (mm?) 8.1x7.4 5.1x4.0
to reset until the receiver’s acknowl- Supply 5V

edge disables the select signals that Dissipation (0.2 MHz) 230 mW (total)

propagate down the arbiter tree. Throughput 2 MHz

Propagating these high- and low-
going select signals down the six-
level arbiter tree (110 ns + 40 ns) and

Specifications listed between imager and postprocessor apply to both. (Z = 2 um)

resetting the column and row request
lines (120 ns) adds 270 ns to the cycle
time, when arbitration is performed
in only the X dimension, and adds
400 ns when arbitration is performed
in both the X and Y dimensions.
Thus, we could improve the perfor-
mance considerably by doubling the
width (3L) of the devices in the pixel
that pull down the wired-OR row or
column lines, by allowing these lines
to reset as soon as the pixel resets,
and by disabling the select signals at
the bottom of the arbiter tree, instead
of disabling those at the top. (Tobi
Delbruck suggested this change to

me.) These changes, implemented
together, will reduce the cycle time
to 150 ns, for a full six-level arbitra-
tion in one dimension, or to 400 ns
for a full six-level arbitration in both
dimensions.

How does the chip fit into
the system?

Figure 8 shows how my retinomor-
phic chip fits into a larger neuromor-
phic system. I've replaced the neurons
in the neuromorphic chip with a two-

Figure 9. Die photos of retinomorphic focal-plane processor (a) and postprocessor (b).

dimensional array of diode-capacitor
integrators. These integrate the pulse
trains, producing slowly changing
analog signals that model postsynap-
tic activity. Displaying these signals on
a video monitor helps us visualize the
retinomorphic chip’s activity. Table 2 lists these chips’ specifi-
cations, and Figure 9 shows their die photos.

Figure 10 shows the postprocessor output after image
acquisition, analog preprocessing, quantization, address
encoding, interchip communication, address decoding, and
integration of charge packets in the receiver’s diode-capac-
itor integrators. I culled these frames from a video sequence
that provides a more vivid display of the system; the entire

Figure 10. Video frames from diode-capacitor integrator chip showing real-time
temporal integration of pulses. The stimulus is a windmill pattern (a) that rotates
counterclockwise slowly (b) and quickly (c).

sequence is available at http://www.pcmp.caltech.edu/
~buster/.

The sparseness of the output representation is evident.
When the windmill moves, neurons at locations where the
intensity is increasing (white region invades black) become
active; hence, the leading edges of the white vanes are more
prominent. These neurons fire more rapidly as the speed
increases, because the temporal derivative increases.
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The time constant of the receiver’s diode-capacitor inte-
grator is shorter than that of the sender, so temporal inte-
gration occurs only at high spike rates. This mismatch wipes
out DC information, and results in an overall high-pass fre-
quency response that enhances the response to motion. The
mean spike rate is 30 Hz per pixel; at this spike rate, the two-
chip system dissipates 190 mW.

We can add a second set of neurons that encode an invert-
ed version of the OPL circuit’s output current to transmit
decreases in intensity. This dual-rail encoding is analogous
to the retina’s on and off pathways, different kinds of gan-
glion cells that respond preferentially to light increase or light
decrease.

THIS SYSTEM REPRESENTS an early attempt to build
machine-vision systems that exploit regularities in’ natural
scenes to optimize their information-gathering capacity. The
retinomorphic approach reported here mimics both the struc-
ture and function of the biological retina. The system per-
forms sophisticated signal processing at the pixel level to
make the sensor maximally adaptive to inputs. The result is
a sparse-output representation in time and space that uses

the capacity of the output channel efficiently, and that

achieves substantial power savings by eliminating redundant
sampling operations and performing computations locally.

The retinomorphic imager I designed includes three reti-
nal mechanisms to improve its information coding efficien-
cy: local automatic gain control, band-pass spatiotemporal
filtering, and phasic transient-sustained response. In addi-
tion to these mechanisms, the retina employs several other
strategies to improve its coding efficiency. The following are
three important ones, from which future retinomorphic
imagers would benefit enormously.

e High-pass temporal and spatial filtering in the second
stage of the retina (inner plexiform layer or IPL). This
attenuates signals that do not occur at a fine spatial scale
and temporal scale, eliminating the redundant signals
passed by the OPL. The OPL responds strongly to low
temporal frequencies that occur at high spatial fre-
quencies (sustained response to static edge) or to low
spatial frequencies that occur at high temporal fre-
quencies (blurring of a rapidly moving edge).

e Half-wave rectification, together with dual-channel

encoding (on and off output cell types), in the relay
cells between the OPL and IPL (bipolar cells) and the
retina’s output cells (ganglion cells). This eliminates the
elevated quiescent neurotransmitter release and firing
rates required to signal both positive and negative excur-
sions using a single channel.

e - Foveated architecture, together with actively directing
the gaze. This strategy eliminates the need to sample all
points in the scene at the highest spatial and temporal
resolution, while providing the illusion of doing so
everywhere. The cell properties are optimized: smaller
and more sustained at the fovea (parvocellular or X cell
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type), where the image is stabilized by tracking; and
larger and more transient in the periphery (magno-
cellular or Y cell type), where motion occurs.

The compact adaptive neuron circuit described here and
the enhanced connectivity provided by the address event
interchip communication. channel will make it possible to
build large-scale neuromorphic systems. This effort will
require extending the communication interface to support
programmable convergent (many-to-one) and divergent (one-
to-many) virtual connections between neurons. It will also
require the addition of routing capability so that several neu-
romorphic chips may communicate with each other over a
network of point-to-point connections. These enhancements
will allow us to build neuromorphic systems that model the
awesome parallel processing capabilities of the visual cortex,
giving us the capability to compute three-dimensional shape,
depth, and motion, at full motion video rates. Such compu-
tational power will make it possible, for the first time, to build
compact autonomous biomorphs that interact purposefully
with the environment in real time. [0 '
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