RETINOMORPHIC VISION SYSTEMS II: COMMUNICATION CHANNEL DESIGN

Kwabena Boahen

Physics of Computation Laboratory
California Institute of Technology
MS 136-93, Pasadena, CA 91125, USA
buster@pcmp.caltech.edun

ABSTRACT

I discuss the tradeoffs faced when asynchronous pulse trains
are transmitted among large, two-dimensional, arrays of
neurons on different chips, using time-division multiplex-
ing, and present an implementation of an arbitered, ran-
dom-access, channel. The long cycle time that plagues
arbitered channels is addressed in the implementation de-
scribed here by pipelining. Cycle times ranging from 420ns
to 730ns were achieved, for 64 x 64 arrays, in a 2um CMOS
process, yielding a peak throughput of 2.38M spikes/second.

1. CHANNEL-DESIGN TRADEOFFS

The two-chip neuromorphic system shown in Figure 1 uses
an interchip communication channel to transmit spike-
trains between neurons at corresponding locations on each
chip. The channel performance may be rated according to
the following criteria:

Capacity: The maximum rate at which spikes can be
transmitted. It is equal to the reciprocal of the mini-
mum communication cycle period.

Latency: The mean time a spike spends in transit be-
tween a neuron in the sending population and a neuron
in the receiving population.

Temporal Dispersion: The standard deviation of the
channel latency.

Integrity: The fraction of spikes that are delivered to the
correct destination.

All four criteria together determine the throughput, which
is defined as the usable fraction of the channel capacity, be-
cause the load offered to the channel must be reduced to
achieve more stringent specifications for latency, temporal
dispersion, and integrity. I discuss tradeoffs between adap-
tive quantization versus fixed quantization, and between
arbitration versus free-for-all in Sections 2 and 3, respec-
tively. Then, I describe an implementation for a pipelined,
arbitered, random-access channel in Section 4, and present
test results from a working multichip neuromorphic system
that uses this communication channel in Section 5. My
conclusions are in Section 6.

2. ADAPTIVE VERSUS FIXED

We are given a desired sampling rate fnyq and an array of N
signals to be quantized. We use adaptive, 1-bit, quantizers
that sample at fnyq when the signal is changing, and sample
at fnyq/Z when the signal is static. Let the probability
that a given quantizer samples at fnyq be a. That is, a is

0-7803-3073-0/96/$5.00 ©1996 IEEE

14

ConrTicaL

PRrocessinG

RETINOMORPHIC CHIP INTERCHIP COMMUNICATION NEUROMORPHIC CHIP

Figure 1. System concept. The retinomorphic chip
quantizes the image, locally adapting its sampling
rate. The resulting digital pulses (spike trains) are
read out from the pixel, transmitted to another neu-
romorphic chip, and recreated at the corresponding
location, by the interchip-communication channel.

the fraction of the quantizers whose inputs are changing.
Then, each quantizer generates bits at the rate

fbits - fNyq(a' + (1 - a)/Z) 10g2 N:

because a percent of the time, it samples at fyyq; the re-
maining (1 — a) percent of the time, it samples at fiyq/2.
Furthermore, each time that it samples, log, N bits are sent
to encode the location. On the other hand, if we simply
sample each location sequentially at the desired rate fnyq,
and do not locally adapt the sampling rate, we obtain a bit
rate of fnyq per quantizer, because there is no distinction
between active and passive quantizers, and there is no need
to encode location explicitly—the location may be inferred
from the position of the sample in the sequence. Therefore,
adaptive quantization is more efficient if

a <(Z/(Z -1))(1/log, N - 1/2)

For example, in a 64 x 64 array with sampling-rate at-
tenuation, Z, of 40, the active fraction, a, must be less
than 6.1 percent. In a retinomorphic system, the adaptive
neuron circuit performs sampling-rate attenuation, and the
spatiotemporal bandpass filter makes the output activity
sparse [1, 2].

Given a certain fixed channel throughput (Fechan), in sam-
ples per second, we can ask what effective sampling rate
fnyq each strategy achieves. For adaptive quantization,
channel throughput is allocated dynamically in the ratio
a : (1~a)/Z between the active and passive fractions of the
user population. Hence,

fNyq = fchan/(a + (1 - a)/Z)

where fehon = Fehan/N is the throughput per user. In con-
trast, fixed quantization achieves only fehan. For instance, if

Ireset

Vreset)_.| TI"(Vpu
» Vadpt PixACkPU
Ax
Rx
Ry 1S 5 Rx Apix
VSpk V;p—k
Ry
—CAy

Sender
ReqOrPU

R}pix xge Rarb
Wired Or
Ack
Rdset Aarb
Ac
Apix D
Driver C-element

Q
5 i HPHH
Latch
T
Req» Apix)
C-element

Figure 2. Pipelined, random-access, interchip-communication channel with a single sender and a single
receiver. The circuits shown, proceeding counter-clockwise from top-left, read out spikes from the sending
pixel and reset it; synchronize the sending pixel and the arbiter with the bus; latch the addresses at the
receiver; synchronize the receiving pixel with the bus; and recreate the spike in the receiving pixel.

fehan = 100 Hz, adaptive quantization achieves fnyq = 1.36
KHz, with an active fraction of § percent and a sampling-
rate attenuation factor of 40. Thus, a two-decade increase
in temporal bandwidth is achieved under these conditions;
the channel latency is also reduced by the same factor.

In order to use adaptive quantization, we must perform
quantization at the pixel level, provide random access to the
shared communication channel, and allow pixels to trans-
mit at will. We also need to guarantee that pixels behave
intelligently and, in particular, deal with the collisions that
occur when two or more pixels attempt to transmit simul-
taneously.

3. ARBITRATION VERSUS FREE-FOR-ALL

The original implementation of a random-access (RA) pro-
tocol included arbitration and queuing mechanisms [4] to
guarantee that no spikes are lost. Queuing causes tempo-
ral dispersion when the channel is overloaded briefly, due
to a burst of activity generated by external stimuli that
trigger synchronous firing. Also, the arbitration procedure
lengthens the communication cycle period, and reduces the
channel capacity. On the other hand, if we simply allow
collisions to occur and discard the corrupted addresses so
generated [5], we may achieve a shorter cycle period but
spike loss will increase as the load increases.

We can quantify this tradeoff using the following well-
known result for the collision probability [6):

—-2G
Peonn=1—¢ s

where G is normalized channel load (i.e., the probability
that a spike occurs during a time interval equal to the com-

15

munication cycle period).’ If we arbitrate, we will achieve a
certain cycle time, and a corresponding channel capacity, in
a given VLSI technology. An arbitered channel can operate
at close to 100-percent capacity because the 0.86 collision
probability for G = 1 is not a problem—users just wait their
turn. Now, if we do not arbitrate, we shall achieve a shorter
cycle period, with a proportionate increase in capacity. Let
us assume that the cycle period is reduced by a factor of
10, which is optimistic. For the same offered load, we have
G = 0.1, and find that p.o = 18 percent. Thus, the simple,
nonarbitered channel can transmit more spikes per second
if collision rates higher than 18 percent are acceptable. For
lower collision rates, the complex, arbitered channel offers
more throughput, even though its cycle period is 1 order
of magnitude longer. More reasonable failure probabilities
of 5 percent require the nonarbitered channel to operate at
only 2.5 percent of its capacity.

Indeed, the arbiterless channel must operate at high er-
ror rates to maximize utilization of the channel capacity.
The channel throughput is Ge ¢ [6], since the probabil-
ity of a successful transmission (i.e., no collision), is e 2C.
Throughput reaches a maximum of 0.5¢™! = 0.18 when
G = 0.5. These figures yield a loss of 64 percent of the in-
put data. We conclude that there is no point in providing
unfettered access to the channel unless this simplification
reduces the cycle time by at least a factor of five.

But what about the temporal dispersion that occurs when

1We obtain this result by assuming independent ﬁring prob-
abilities and approximating the resulting binomial distribution
with the Poisson distribution.

users are queued? Queuing theory tells us that [6]
Tovg = A(1-G/2)/(1 - G),

where A is the communication-cycle period. For example,
at 95-percent capacity, the wait is 10.5A, on average. This
result makes sense because every twentieth slot is empty,
therefore one must wait anywhere from 1 to 20 cycles to
gain access, which averages out to 10.5. For a submicrosec-
ond cycle time, this queuing time is 2 orders of magnitude
less than the 1ms resolution of a typical neuron. Therefore,
throughputs close to to 100 percent of the channel capac-
ity may be achieved without significant increases in latency
or temporal dispersion. Indeed, the channel’s capacity can
be exceeded briefly with only a linear degradation in tem-
poral dispersion, compared to the exponential increase in
collisions that occurs when there is no arbitration.

4. CIRCUIT IMPLEMENTATIONS

The design of the pipelined, random access, communication
channel is shown in Figure 2. Like the original design [4],
which was called an address-event (AE) channel, this im-
plementation is completely self-timed; thus, every commu-
nication must be acknowledged by a feedback signal. We
also use these acknowledge signals to implement a queu-
ing mechanism: it makes a pixel wait simply by refusing to
acknowledge that pixel. At the beginning of a communi-
cation cycle, the request and acknowledge signals are both
low. The communication cycle proceeds as follows.

On the sender side, spiking neurons first make requests
to the Y arbiter, which selects only one row at a time. It
does so in a hierarchical fashion, using a decision tree that is
built from two-input arbiter cells [4, 3]. All spiking neurons
in the selected row then make requests to the X arbiter.
The address encoders drive the addresses of the selected
row and column onto the bus, and Req goes high. When
Ack goes high, the select signals are disabled by the AND
gate at the top of the arbiter tree, and Req is taken low. If
necessary, the C-elements [7] between the arbiters and the
rows and columns will delay inactivating the selects (and
the Req signal) until the pixel has withdrawn its row and
column requests, confirming that it has reset.

On the receiver side, as soon as Req goes high, the ad-
dress bits are latched and Ack goes high immediately. So,
while the sender chip is deactivating its internal request
and select signals, the receiver decodes the addresses and
selects the corresponding pixel. When the sender takes Req
low, the receiver responds by taking Ack low immediately.
If necessary, the receiver’s C-element will delay inactivation
of the decoders (and the Ack signal) until the pixel activates
the wired-OR circuit, confirming that it got the spike. The
following paragraphs describe the logic-circuit designs used.

The logic in the sending neuron is shown in the upper-left
corner of Figure 2; it is similar to that described in [4, 3].
The neuron takes Vspk high when it spikes, and pulls the
row request line Ry low. The column request line Rx is
pulled low when the row select line Ay goes high. Finally,
Ireset is turned on when the column select line Ax goes high,
and the neuron is reset. Vadpt is also pulled low to dump
charge on an integrator in order to adapt the firing rate [2]. 1
added a third transistor, driven by Vspk, to the reset chain
to make the width of the reset pulse independent of the
communication-cycle period

The sender’s C-element circuit is shown in the lower-left
corner of Figure 2. There are two differences between this
circuit and the handshaking circuit of Lazzaro et. al. [3].

16

First, Lazzaro et. al. reset all the arbiter’s inputs, to pre-
vent the arbiter from granting another request while Ack is
high. By using the AND gate at the top of the arbiter tree
to disable the arbiter’s outputs (Aarb) when Ack is high, my
design leaves the arbiter’s inputs undisturbed, preserving its
state, and thereby reducing the time and power required to
arbitrate. This approach also allows all spiking neurons in
a selected row to be serviced without redoing the Y arbi-
tration. Second, Lazzaro et. al. assume that the pixel will
withdraw its request before the receiver acknowledges. This
assumption may not hold if the receiver is pipelined; when
the assumption fails, the row or column select lines may be
cleared before the pixel has been reset.

The receiver’s C-element (it is slightly different from the
sender’s) is shown in the lower-right corner of Figure 2. This
C-element’s output signal drives the Ack signal, strobes the
latches, and activates the address decoders. The address-bit
latch and the logic inside the receiving pixel are also shown
in the figure (middle of lower row and upper-right corner,
respectively). The latch is opaque when Ack is high, and
is transparent when Ack is low. The pixel logic produces
an active low spike whose duration depends on the delay
of the wired-OR and the decoder, and on the duration of
the sender’s reset phase. Circuits for the blocks that are
not described here—namely, the arbiter cell, the address
encoder, and the address decoder—are given in [4, 3).

5. SYSTEM PERFORMANCE ANALYSIS

Timing measurements for the AE channel are shown in Fig-
ure 3. By analyzing the timing measurements to determine
critical paths, I have found architectural modifications that
can reduce the cycle period significantly: (i). Moving the
AND gate that disables the arbiter’s selection signal to the
bottom of the tree would shave off a total of 144ns, but re-
quires an AND gate for each row and each column. (ii). Re-
moving the input to the column-wired-OR from the arbiter
would allow Rpix to go back up immediately after Apix goes
high, but this requires redesigning the sender’s C-element.
(iii). Doubling the drive of the two series devices in the pixel
that pull down the column line would reduce the delay to
60ns, and allow us to hide reseting these lines in the 59ns
it takes for Apix = Req T = Ack 1T = Xsel |, shaving
off a total of 120ns, when arbitration occurs in only the X
dimension, and 180ns when arbitration occurs in both di-
mensions. These changes, together, will reduce the cycle
time to 156ns with arbitration in one dimension, and to
406ns with arbitration in both dimensions.

During testing, I found that the sender occasionally gen-
erates illegitimate addresses, i. e. outside the 1 to 64 range
of pixel locations. In particular, row (Y) addresses higher
than 64 were observed. This occurs when row 64 and one,
or more, other row are selected simultaneously, and the en-

“coder ORs their addresses together. I traced this problem
to the sender’s C-element (Refer to Figure 2). After Ack
goes high and Aarb goes low, the arbiter sees Rpix go low,
and it selects another row, but Rpix does not get below the
threshold for resetting the flip-flop, so the flip-flop remains
set and keeps the previous row selected. This scenario is
plausible because the threshold of the inverter that drives
Rarb is lower than that of the flip-flop’s reset input; I calcu-
lated 2.83V and 3.27V, respectively. If any neuron in that
row spikes while Rpix is between the two values, the wired-
OR line (Rpix) will be pulled back low, and the flip-flop will
not be reset, but the arbiter’s input will go low. Rpix spends
about 0.44/2.5 x 120ns = 21ns in this critical window. At
a total spike rate of 100KHz, we expect a collision rate of

bey

4 o
5
opex

Sender Timing

opeA [LIT7Y

lesx

bey

Figure 3. Communication channel timing, with measurements of time intervals between succeeding transi-
tions. (a). Timing of the acknowledge signals from the receiving pixel (Apix) and the receiver chip (Ack), and
the X-address (Xad0), relative to the request signal (Req). Pipelining the receiver reduces the cycle period
by 113us, the total time difference between Ack and Apix. (b). Timing of the select signals fed into the top
-of the arbiter trees (Ysel and Xsel), and the Y-address bit (Yad0), relative to the request signal (Req). The
cycle period is 730ns for the first cycle, where arbitration occurs in both dimensions, and is 420ns for the
second cycle, where arbitration occurs in only the X dimension.

0.05Hz, just for row sixty-four alone. I observed a rate of
0.06Hz; the higher rate observed may be due to correlations
in firing times. To eliminate these collisions, we should dis-
able neurons from firing while their row is selected, i. e., Ay
is high. That way, Rpix will remain low until Apix goes low,
ensuring that the flip-flop is reset.

6. CONCLUSIONS

A theoretical analysis of the tradeoffs involved in designing
a time-division multiplexed communication channel for neu-
romorphic systems was presented. The theory showed that:
(1) A random-access channel offers higher temporal resolu-
tion and shorter latencies when activity is sparse, especially
if the channel capacity is allocated dynamically by adapt-
ing the sampling rates locally. (2) An arbiterless channel
achieves a maximum throughput of 18 percent of the chan-
nel capacity, with a collision rate of 64 percent, whereas an
arbitered channel can operate at 95 percent of the channel
capacity, with a latency of 10 times the cycle period. Thus,
unless the cycle time of the arbiterless channel is 5 times
shorter, the arbitered channel will offer higher performance
in terms of spikes transmitted per second.

Test results from a pipelined, arbitered, random-access
channel were presented and analyzed. The 420ns to 730ns
cycle periods this design achieved represent a threefold to
fourfold improvement in the 2us rate reported in the origi-
nal work [4], for an identical array size of 64 x 64, fabricated
in the same 2um technology. Lazzaro et. al. have made sim-
ilar improvements to the original design [3] and report cycle
times in the 100-140ns range, but the array size and the chip
size are a lot smaller.

7. ACKNOWLEDGMENTS

I thank my advisor, Carver Mead, for sharing his insights
into the operation of the nervous system. I thank Misha
Mahowald for making available layouts for the arbiter, the
address encoders, and the address decoder; John Lazzaro,

17

Alain Martin, and Jose Tierno for helpful discussions on
address-events and asynchronous VLSI; Tobi Delbruck for
help with the Mac address-event interface; and Jeff Dickson
for help with PCB design.

This work is supported in part by the Office of Naval
Research, by ARPA, by the Beckman Foundation, by the
Center for Neuromorphic Systems Engineering as a part
of the National Science Foundation Engineering Research
Center Program, and by the California Trade and Com-
merce Agency, Office of Strategic Technology.

REFERENCES

[1] K. A. Boahen. Retinomorphic vision systems. In Mi-
croNeuro’96: Fifth Int. Conf. on Neural Networks and
Fuzzy Systems, Los Alamitos, CA, February 1996. IEEE
Computer Soc. Press.

K. A. Boahen. Retinomorphic vision systems i: Pixel
design. In IEEE Int. Symp. on Circuits and Systems,
Piscataway, NJ, July 1996. IEEE Circuits and Systems
Soc., IEEE Press.

J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti,
and D. Gillespie. Silicon auditory processors as com-
puter peripherals. IEEE Trans. on Neural Networks,
4(3):523-528, 1993.

M. Mahowald. An Analog VLSI Stereoscopic Vision
System. Kluwer Academic Pub., Boston, MA, 1994.

A. Mortara, E. Vittoz, and P. Venier. A communication
scheme for analog visi perceptive systems. IEEE Trans.
Solid-State Circ., 30(6):660-669, 1995.

M. Schwartz. Telecommunication Networks: Protocols,
Modeling, and Analysis. Addison-Wesley, Reading, MA,
1987.

1. E. Sutherland. Micropipelines. Communications of
the ACM, 32(6):720-738, 1989.

[2]

3l

(4]

]

[7

—t

