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ABSTRACT

I present and analyze test results from circuits that per-
form all four major operations performed by biological reti-
nae using neurobiological principles: (1) continuous sensing
for detection, (2) local automatic gain control for ampli-
fication, (3) spatiotemporal bandpass filtering for prepro-
cessing, and (4) adaptive sampling for quantization. In the
retinomorphic system that I describe, all these operations
are performed at the pixel level, to eliminate redundancy,
to reduce power dissipation, and to make efficient use of the
capacity of the output channel.

1. SYSTEM CONCEPT

The primary difference between retinomorphic imagers and
conventional ones is that retinomorphic imagers perform
all operations at the pixel level [1]. The migration of more
sophisticated signal processing down to the pixel level is
driven by shrinking feature sizes in CMOS technology, al-
lowing higher levels of integration to be achieved [2]. The
retinomorphic approach uses the architecture and neuro-
circuitry of the nervous system as a blueprint for building
low-level vision systems—systems that are retinomorphic in
a literal sense [1]. This approach results in integrated sys-
tems that offer enriched functionality, by performing several
functions within the same structure, and enhanced system-
level performance using minimal-area devices (3L x 3L), by
distributing computation across several pixels.

The retinomorphic system described in this paper con-
sists of two chips: a focal-plane image processor and a post-
processor with a two-dimensional array of integrators. Both
chips are fully functional; specifications and die photos are
shown in Table 1 and in Figure 1. I describe the pixel design
in Section 2, and the circuits that perform spatiotemporal
bandpass filtering, local AGC, temporal integration, and
adaptive quantization in Sections 3 through 6. My conclud-
ing remarks are in Section 7. The communication channel
used to transmit asynchronous pulse streams between these
two chips is described in the companion paper [3].

2. RETINOMORPHIC PIXEL DESIGN

The circuitry in each pixel of the retinomorphic processor is
shown in Figure 2. In general terms, the principles of oper-
ation are as follows: A CMOS-compatible, vertical bipolar
phototransistor performs continuous sensing; its emmiter
current is proportional to the incident light intensity [4].
Two current spreading networks [5, 6, 7] diffuse the pho-
tocurrent signals over time and space; the first layer (node
VO0) excites the second layer (node W0), which reciprocates
by inhibiting the first layer. The result is a spatiotempo-
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f Imager | Postprocessor
Technology 2pm 2-poly 2-metal pwell
Number of Pixels 64 x 64
Pixel Size (L?) 53 x 49 31.5 x 23
Transistors/pixel 32 8
Die Size (mm?) 81x74 5.1 x 4.0
Supply 5V
Dissipation (0.2 MHz) 230 mW (total)
Throughput 2 MHz

Table 1. Specifications of two-chip retinomorphic
system. L is the minimum feature size which is
2pm for the CMOS process used.

ral bandpass filter {8, 9, 10]. The second layer computes
a measure of the light intensity, and feeds this informa-
tion back to the input layer, where it is used to control
light sensitivity. The result is local automatic gain con-
trol (AGC) [5]. A pulse generator converts analog currents
from the excitatory layer into pulse-frequency. The diode-
capacitor integrator computes a current that is propor-
tional to the short-term average of the pulse frequency and
this current is subtracted form the pulse generator’s input.
Hence, the more rapidly the input changes, the more rapidly
the pulse generator fires. Adding a fixed charge quantum to
the integrating capacitor produces a multiplicative change
in current—due to the exponential current-voltage depen-
dence in subthreshold. Hence, the larger the current level,
the larger the step size. The result is adaptive quantiza-
tion in amplitude and time. The diode-capacitor integrator
is also used in the postprocessor to integrate the pulses and
reconstruct the current level encoded.

3. SPATIOTEMPORAL BANDPASS FILTER

Using the small-signal equivalent model of the OPL circuit
shown in Figure 3, we find that

L+ VVefree = gooVe+cooVe+ganVa, (1)
gheVe+ VVi/ran = gnoVh + choVa, 2

in the continuum limit. Here, V. is the voltage in the exci-
tatory network, which models retinal cones; V is the volt-
age in the inhibitory network, which models retinal hori-
zontal cells (HC); and I, is the photocurrent [10]. These
functions are now continuous functions of space, (z,y), and
time, t; V?f is the Laplacian of f (i.e., 0" f/0z 4+0°f/0y®)
and f is the temporal derivative of f (i.e.,8f/8t). Models
similar to this one were proposed and analyzed in [8, 9, 11].
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Figure 1. Die photos of (a) Retinomorphic focal-plane processor and (b) Postprocessor.
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Figure 2. Pixel circuit for retinomorphic imager. The outer-plexiform—layer (OPL) circuit performs spa-
tiotemporal bandpass filtering and local AGC. Nodes V0 and W0 are connected to their six nearest neighbors
on a hexagonal grid by the delta-connected transistors. The logic circuit communicates the occurrence of
a spike to the chip periphery, turns on Ireset, and takes Vadapt low. The pulse-generator and the diode-
integrator capacitor form an adaptive neuron circuit.
integrator’s output. Details of the logic circuit are revealed in the companion paper.

Assuming infinite spatial extent and homogeneous initial
conditions, we can take Fourier transforms in space and
time. Transforming the equations and solving, we find that

Ao 1 0% +imhw + €n
© 7 gon (29 +iTow +€)(€2p +iThw + en) + 17

where H.(p,w) = Vo/I,. f(pz,py,w) denotes the Fourier
transform of f(z,y,t); p = /(p3 + p3) is spatial frequency,
and w is temporal frequency (both in radians) {10]. Here,
Te = €c0/gen and 7, = cro/gnc are the time constants associ-
ated with the HC-to-cone coupling and the cone-to-HC cou-
pling, respectively; £e = (reegen) ™ Y/2 and £y, = (Fhnghc) /2
are the space constants of the decoupled networks, with
transconductances replaced by conductances to ground; and
€c = gco/gcr and €n, = gro/gh are the ratios of leakage con-
ductance to the transconductance. The reciprocals of e
and ¢ are the open-loop voltage gains from the HC to the
cone, and vice versa.

10

The remaining circuitry is used to scan out the

The spatiotemporal frequency response of the excita-
tory cone network obtained from this analysis is plotted
in Figure 4. The set of parameters values used was: £,
0.05°, £, = 0.2°, 7. = 30ms, 74 = 200ms, ¢, = 0.3, € =
0.1, ger = 0.2pA/mV. Observe that the temporal frequency
response is bandpass at low spatial frequencies (flicker sen-
sitivity), and the spatial frequency response is bandpass at
low temporal frequencies (grating sensitivity). However, the
overall response is not linearly separable; that is, it is not
simply the composition of a bandpass spatial filter and a
bandpass temporal filter. The spatial tuning becomes low-
pass at high temporal frequencies and the temporal tuning
becomes lowpass at high spatial frequencies [10].

4. LOCAL AGC

‘We achieve local AGC by making the intercone conductance

(1/rcc) proportional to the local average of the photocur-
rent, since

Ve(z) = recloLe "X sin(jz| /L — 7 /4)/(2/2),



Figure 3. Linear circuit model of the retina’s outer
plexiform layer (OPL). Two resistive networks
model the inter-cone and the inter-horizontal cell
electrical synapses (gap junctions) and transcon-
ductances model the reciprocal chemical synapses
between cones and horizontal cells. The circuit is
analyzed in the continuum limit where ¢ — 0.

in one-dimensional space, when gco = gro = 0 [12]. This
can be shown by taking the inverse Fourier transform of
H.. The effective space constant of the coupled, dual-layer
network is therefore L = v/Zo8y, = (fecgenThnghe) /4. Gain
adaptation is realized in the circuit simply by the fact that
(Vdd — V0) equals the sum of the gate-source voltages of
two devices. The currents passed by these devices represent
the activity in the inhibitory network, I, which is equal to
the local average of the intensity, and the activity of the
excitatory network, I., which is equal to the Laplacian of
the smoothed intensity profile (see Equation 2). Hence, by
the translinear principle [13, 7], the current that spreads in
the excitatory network is proportional to the product, I./4,
of these currents. Since I scales with the intensity, the
internode conductance in the excitatory cone network will
scale accordingly [5].

The receptive field contracts as we increase r.. to increase
the gain, since the space constant L also depends on the in-
tercone conductance. This undesirable side-effect is evident
in the images produced by this OPL circuit that are shown
in Figure 5; this data is from the chip described in [5]. Im-
ages of the same scenes acquired with a CCD camera are
included for comparison [14]. The retinomorphic front-end
pulls out information in the shadows whereas the output
of the CCD camera has hit its lower limit, demonstrat-
ing that local AGC indeed increases the dynamic range.
The spatiotemporal bandpass filtering also removes grad-
ual changes in intensity and enhances edges and curved
surfaces. Unfortunately, the retinomorphic chip’s output
is more noisy in the darker parts of the image. When
the space constant decreases, salt-and-pepper noise is no
longer attenuated because the cutoff frequency shifts up-
wards. The dominant noise source is the poor matching
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Figure 4. Spatiotemporal sensitivity of linear OPL
model. Three-dimensional plots showing (a) mag-
nitude and (b) phase versus spatial frequency (p)
and temporal frequency (w).

among the small (4L x 3.5L) transistors used which oper-
ate in subthreshold [15]—not shot noise in the photon flux.
Nevertheless, when it replaced the CCD as the front-end of
a face-recognition system, the OPL chip reduced the error
rates by 50% [14].

5. DIODE-CAPACITOR INTEGRATOR

This integrator is based on the well-known current mirror
circuit. A large capacitor at the input of the mirror in-
tegrates charge, and the diode-connected transistor leaks
charge away. In subtbreshold, the current has an expo-
nential dependence on the gate voltage and therefore the
small-signal conductance of the diode-connected transistor
is proportional the current. Hence, the time-constant will
change as the current level changes. This circuit’s temporal
behavior is described by a nonlinear differential equation

dI, out
Qr—;

= Iout(t)(Iin(t) - hout(t))’

where Ur = kT/q is the thermal voltage, A = exp(V /Ur)
is the current gain of the mirror, and Qr = CUr/k is the
charge required to e-fold the current [4, 16].

The output produced by a periodic sequence of current



Figure 5. CCD Camera (top row) versus OPL
imager chip (bottom row) under variable lighting.
The CCD camera performs global AGC whereas
the OPL chip performs local AGC and bandpass-
filtering.

pulses is

I t(t) _ Iout(to + nT)
ou - Iout i +nT — ’
——ﬁ;—l(t (to+nT)) +1

immediately after the (n + 1)th pulse, and decays like
Low(to + nT) = {1/Ir + (1/Louws(to) — 1/Fr)(1 + a) ™"} 1

during the interspike interval, to + nT < t < ty + (n+ 1)T,
where I+ = aAQr/T, and a = (exp(go/QT) —1) is the per-
centage by which the output current is incremented by each
spike [16]. The fixed quantity of charge ¢, supplied by each
current pulse multiplies the current by exp(g. /Qrt), since it
takes Q to e-fold. The peak output current levels attained

immediately after each spike converge to Ir = aAQr/T

when (1 4+ a)™™ & 1. Therefore, the equilibrium output
current level is proportional to the pulse frequency.

6. ADAPTIVE NEURON CIRCUIT

We build an adaptive neuron circuit by taking a pulse gen-
erator and placing a diode-capacitor integrator around it,
in a negative feedback configuration. The pulse-generation
circuit has a high-gain amplifier (two digital inverters) with
positive feedback around it (capacitive divider) [17]. (See
Figure 2). The high-gain amplifier serves as a threshold-
ing device and the positive feedback provides hysteresis.
Positive feedback also increases the slew rate of the input
and reduces the rise and fall times of the output pulse.
This is especially important when the neuron has to drive
global column and row lines to communicate the occurrence
of a pulse [3], since the 0.1V/ms rate at which its input
charges (determined by the desired firing rate), translates
to a 10mV/us rate at the output (with a voltage gain of
100 from two inverters). Transmission speed is limited by
this slow slew rate—not by drive capacity—which length-
ens the communication cycle period. The neuron also has
a reset current (Ireset), produced by the logic circuit, that
terminates the spike. Other designs for adaptive neurons
are described in [18, 19)].
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Figure 6. Adaptive neuron’s step response. Top:
The neuron’s input current and the integrator’s out-
put current. Middle: Input voltage ramping up be-
tween the reset and threshold levels. Bottom: The
spike train.

The complete adaptive neuron circuit is described by two
coupled differential equations:

deem
dt

dI;
QT_th = IK(qaa(Vmem - Vth) - %IK),

Cmem = Iin - IK - ch‘s(vmem - Vth)) (3)

(4)

where Iin is the current supplied to node Vmem by the OPL
circuit, and Cnem is the total capacitance connected to that
node; Ik is the current subtracted from node Vmem by
the integrator; Cca is the integrator’s capacitance; Qr =
CoaUt/k; and Quy is the repolarization charge; that is, the
charge we must supply to Vmem to bring it from the reset
level to the threshold level (Ven). For a constant input
current, we can integrate these equations and obtain

Qth = IinAn — AQrIn Ik, An/AQT + 1),

where A, = tn41 — t, is the interspike interval. This
analysis ignores the parasitic coupling capacitance between
Vmem and the integrator’s input node, and that capacitance
can have a large influence on the circuit’s behavior [16]. In
this particular design, the cascode device betwéen the in-
tegrator’s output and the pulse generator’s input (tied to
Vreset) eliminates virtually all coupling.



Figure 7. Video frames from AE postprocessor chip
showing real-time temporal integration of pulses.
The stimulus is a windmill pattern (left) that ro-
tates counterclockwise slowly (middle) and quickly
(right).

‘When adaptation is complete, the interspike intervals be-
come equal, and the integrator’s output current converges
to Ix, = aAQr/A,. Hence,

Ap = (ch + Aqa)/lin = Zch/Iin

(remember that qo = Qrln(1 + «)). This result is under-
stood as follows. During the interspike interval, A,, the
input current must supply the charge Qun to the capacitors
tied to Vmem and supply the charge Aqo. removed by the
integrator, where g, is the quantity of charge added to the
integration capacitor by each spike. Notice that adaptation
reduces the firing rate by a factor of Z = 1 + Aqa/Qun.
The response of the adaptive neuron circuit to a 14 per-
cent change in its input current is shown in Figure 6; this
data also demonstrates the integration of pulse trains by
the diode-capacitor integrator and the adaptive step-size.

7. CONCLUSIONS

The output of the postprocessor that integrates the spike
trains—after transduction, local AGC, bandpass filtering,
adaptive quantization, and interchip communication—is
shown in Figure 7. The sparseness of the output repre-
sentation is evident. When the windmill moves, neurons
at locations where the intensity is increasing (white region
invades black) fire more rapidly; hence, the leading edges of
the white vanes are more prominent. The mean spike rate
was 30Hz per pixel, and the two-chip system dissipated 190
mW at this spike rate.

Taking inspiration from biology, I have described an ap-
proach to building machine vision systems that perform so-

phisticated signal processing at the pixel level. Such sys-

tems can be maximally adaptive to their inputs and thereby
optimize their information gathering capacity. Specific im-
plementations of all the circuit functions required were pre-
sented. The interchip communication system used is de-
scribed in a companion paper [3].
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