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Abstract—We consider the problem of automatic object recognition by small, light-weight, low-power, hardware
systems. We abstract from biological function and organization and propose hardware architectures and a design
methodology to engineer such hardware. Robust, miniature, and energetically efficient VLSI systems for AOR can
ultimately be achieved by following a path which optimizes the design at and between all levels of system integration,
i.e., from devices and circuit techniques all the way to algorithms and architectural level considerations. By way of
example, we discuss two experimental systems for image acquisition and pre-processing fabricated in standard
CMOS processes. The first one is a large scale analog system, a contrast sensitive silicon retina, with over 590,000
transistors operating in subthreshold CMOS. The second system is a mixed analog—digital system for image
acquisition and tracking compensation that incorporates a contrast sensitive silicon retina in the image sensing area.
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1. INTRODUCTION

Automatic target recognition (ATR) is the task of
automatic object recognition (AOR) within the
domain of Department of Defense (DOD) applica-
tions. AOR is defined as the process of detection,
classification, identification and recognition of
specific objects by autonomous human engineered
systems. More often than not, the specific objects are
not in isolation: rather, they exist in real world
environments that include both natural and human
made clutter. The recognition task must be per-
formed with a high probability of success while
maintaining a low probability of false alarms, and
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must be completed in real time, often within highly
constrained time limits.

Application considerations necessitate operation
from mobile vehicles and portable systems and thus
the hardware must be miniature, lightweight, low
power, and reliable. Aside from numerous DOD-
related applications, AOR has applications in
machines for face recognition in security systems,
automatic fingerprint classification and identification,
and autonomous robot operation in “real” world
environments as well as collision avoidance systems
for vehicles and aircraft.

AOR often involves different sensing modalities
and data sources such as natural electromagnetic
radiation emitted by the objects (infra-red), reflected
electromagnetic radiation (synthetic aperture radar),
reflected pressure waves (sonar), etc. In this paper we
focus our attention on systems that employ image
forming devices such as visible spectrum (VS),
polarization vector (PV), and forward looking infra-
red (FLIR) imagers.

Despite many years of research and significant
contributions in this field, it is widely accepted that
ATR as defined above, i.e., performed robustly by
truly autonomous, highly mobile and portable
hardware systems, is still an open problem (U.S.
Army ATR Report, 1994). The inherent challenges
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within AOR can be appreciated if it is placed within
the canonical model of a communication channel and
contrasted with traditional communication devices
and systems for which we see a plethora of small size,
light weight, and low power hardware solutions.

In most human engineered communication systems
where the goal is the precise restitution of information,
more often than not the engineers have at their
disposal the freedom to design a system which is
heavily asymmetric in the computational require-
ments of the encoder and decoder. For example,
consider the one way distribution of video over a
wireless channel from a client to a multimedia portable
server, such as the Infopad (Sheng et al., 1992). This
particular task is one with numerous DOD and
civilian applications. In this case, the system engineers
have the freedom of tailoring the communication
channel (radio link) as well as an appropriate source
coding to achieve the channel bit-rate requirements.
Furthermore, since encoding of the stored informa-
tion can be done in an environment of almost
unlimited computational resources, algorithms that
are asymmetric in the complexity of the encoding—
decoding process can be selected. Clearly algorithms
with high computational demands in the encoder but
with simple decoders are preferable. Thus, the overall
power dissipation in the system can be heavily skewed
towards the fixed station where there are no power
constraints. It is therefore not surprising at all to see
reports in the literature of low-power, custom
integrated circuits/systems developed to address this
problem (Chandrakasan et al., 1994).

Within the same canonical formulation of a
communication channel, an AOR system can be
viewed as the decoder aimed at decoding a message
(identifying the target) from signals that were
received by the sensor(s). The signature/image is
generated through a process that involves the
interaction between the physical structure of the
target with some form of electromagnetic energy.
Signals are propagated through the atmosphere
where they are distorted and noise is added.
Distortion and noise are also added to the scene
during the “‘encoding” so as to hinder the function of
the decoder (through camouflage, target-like clutter,
and other measures). At the sensor subsystem, energy
signals are transduced, amplified, and processed to
decode the original message (recognize the target). It
should be noted that at the point where the signals
impinge upon the transducer arrays, the signals are
further degraded by two kinds of noise. The first is
noise in a thermodynamic sense, which is always
present in electronic systems and therefore must be
taken into account. The second source of noise is
related to the structural variability in the transducers
and signal processing electronics.

We can see why, unlike the former case, the latter
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scenario describes a much more difficult class of
problems of which automatic object/target recogni-
tion is a subset. The designers of the system do not
have at their disposal the freedom to optimize the
encoding or the channel and therefore they are
“stuck” with the hard task of decoding a message
whose encoding process may be largely unknown and
which has been communicated through a channel
possessing a great deal of variability. An optimal
decoder for automatic object recognition can be
designed using statistical methods (Duda & Hart,
1973) and information theory, much as is done for
other sensory modalities such as speaker-indepen-
dent, robust speech recognition (Roe & Wilpon,
1994). In voice communication between human and
machine, language modeling is employed to exploit
prior knowledge in the design of the decoder (speech
recognizer). In the case of AOR, models of the target
and the environment are much harder to construct.
Furthermore, the space over which such knowledge
spans is enormous, thereby making a full search for
specific patterns an impossible task. Ironically, the
AOR problem in mobile systems is computationally
harder because the extra mobility introduces varia-
bility in the environment that may have not been
accounted for in its internal models. Thus, the system
has to deal with this variability through real-time
adaptation.

Despite the aforementioned obstacles, biological
systems excel at object recognition and other sensory
communication tasks by sustaining high computa-
tional throughput with minimal energy dissipation.
These are “real” physical systems which are highly
mobile and thus constrained by size, weight, and the
availability of energetic resources. The effectiveness
and energetic efficiency of natural systems suggest
that it may be a worthwhile endeavor to try to
understand the principles of function and organization
in biological information processing systems, using
these characteristics as a guide for the development of
VLSI systems (Mead & Ismail, 1989; Ramacher &
Ruckert, 1991; Sanchez-Sinencio & Lau, 1992).

This approach has been pioneered by Carver
Mead and his colleagues at Caltech (Mead, 1989,
1990) and pursued independently by other groups
(Andreou, 1990; Andreou & Boahen, 1994b; Vittoz,
1994). The neuromorphic/anthropomorphic ap-
proach to the engineering of high performance, low
power, light weight AOR hardware is the subject of
this paper, with the focus being on analog VLSI
image acquisition and pre-processing.

The paper is organized into seven sections. The
neuromorphic/anthropomorphic approach to the
problem is discussed in Section 2. Motivated by the
organization of neural systems, we provide a blue-
print for system ‘‘micro-architecture” in Section 3,
where we see the emergence of a hierarchical system
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organization that evolves around computational
sensorsfactuators and computational memories. The
technology and design methodology for these systems
is outlined in the following section. In Section 5, we
discuss analog VLSI systems for adaptive sensing,
amplification and feature extraction. Section 6 offers
a discussion and Section 7 concludes the paper.

2. THE NEUROMORPHIC APPROACH

Unlike most known forms of computing/calculating
activity known to humans, information processing in
biological organisms has a rather well defined goal:
the detection, decomposition, and transformation of
sensory inputs into suitable representations (memory
maps). These maps are useful for the ultimate goal of
the organism, which is interaction with the environ-
ment in a “closed loop” configuration where the
environment is an integral part of a loop. This
interaction may involve only lower level functions
such as early perceptual processing and sensorimotor
coordination or it may include a higher level task
such as communication through speech which is a
unique characteristic to the human species. Recogni-
tion and identification of specific objects, tasks within
the framework of AOR, are clearly activities that are
intimately related to the interaction between an
organism and the environment.

The effectiveness of biological systems stems partly
from exploiting prior knowledge about the problems
that they encounter (Barlow, 1989). Such informa-
tion, in the form of internal models, reflects the
structural properties of the natural environments in
which the systems function. Classical information
and communication theory formalisms can be
employed to develop theories of how such internal
models help to “optimaly” encode signals in the
limited capacity neural structures [see for example
Srinivasan et al. (1982), Buchsbaum and Gottschalk
(1983), Linsker (1986), Li and Atick (1994)].

Further complications arise because both the
environment and the physical structures (computa-
tional substrate) that process information in the
biological organism are not fixed. This necessitates
adaptation through self-organization, to compensate
for the variability. Thus, an essential aspect of neural
computation is adaptation (Kohonen, 1988; Mead,
1990; Gorin et al., 1991; Haykin, 1994).

Adaptation (see Figure 1) is indeed pervasive in
neural systems and is found at many different levels
of a hierarchical organization. For example, adapta-
tion can be found in the electromechanical properties
of sensory transducers, in the network properties of
neurons, and even in the abstraction of high level
cognitive processes. The importance of adaptation in
biological systems has been long recognized by
Stephen Grossberg and colleagues; a sample of their
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FIGURE 1. An adaptive system and its interaction with the
environment. External sensory inputs to the system are
compared with its internal state (model), to produce an output.
Information from the input and from the comparison process
may be used to adjust the parameters of the internal model.
[Adapted from Mead (1989).]

early work can be found in the edited volume
(Grossberg, 1988).

With the aforementioned characteristics in mind,
neural computation is, from an engineering perspec-
tive, fundamentally concerned with the processing of
signals in the presence of noise. Noise can be
exogenous, due to the variability in the natural
environment (problem related) or endogenous to the
system due to internal sources of structural variability
and fluctuations (in a thermodynamic sense) in the
actual physical hardware. Thus it could be argued
that the effectiveness and energetic efficiency of
biological systems can be associated with their
ability to:

1. exploit prior knowledge, in the form of internal
models,

2. deal effectively with both endogenous and
exogenous sources of variability,

3. process information in a hierarchical and parallel
manner.

However, the question of how such sophisticated
processing is actually carried out by the *‘real”
system, and how information is extracted at the
different layers of a hierarchical organization still
remains open. “Real” computing structures must
satisfy strict constraints of size, weight, utilization of
energetic resources, and the ability to operate at
temperatures where favorable conditions exist for the
development of life as ‘“‘we” know it, ~ 300K.
Algorithms based on statistical methods and self-
organizing techniques are notorious for their en-
ormous computational requirements when implemen-
ted on digital computers. How is such sophisticated
processing done in neural structures?
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Carver Mead (Mead, 1989, 1990) has eloquently
argued that an answer to this question can perhaps be
found if one concentrates on the algorithms and
information processing structures that emerge from
the physical properties of the computational sub-
strate. Furthermore, Mead and coworkers propose
an analysis by synthesis approach, where analog
methods and VLSI technology can be used to
prototype such “not-so-conventional” information
processing systems.

From the perspective of science, analog VLSI
technology can be viewed as a modeling tool (Mead,
1989; Mahowald & Douglas, 1991) aimed at
capturing the behavior of neurons, networks of
neurons, or the complex mechanical-electrical-
chemical information processing in biological sys-
tems. Computationally, analog VLSI models can be
more effective than software simulations. More
important, analog VLSI systems are “real”” models,
constrained by fundamental physical limitations and
scaling laws. Constraints such as power dissipation,
physical extent of computing hardware, density of
interconnects, gain-bandwidth product limitations in
the gain elements, precision and noise characteristics
of the basic elements, signal dynamic range, and
robust behavior and stability may force the develop-
ment of more realistic models (Andreou, 1991). This
work (Andreou & Boahen, 1994b) follows a similar
line of thought.

From an engineering viewpoint, such ideas have
shown promise towards the development of VLSI
systems that are more effective in solving sensory
communication problems. In the next section, we will
introduce an architectural framework for autonomous
object and target recognition systems.

3. AOR SYSTEM MICRO-ARCHITECTURE

Developing an information processing system'’s
architecture for sensory communication (of which
AOR is one modality) requires careful considera-
tion. Calculating/computing activity as we know
it today is aimed at solving particular problems—
for instance, doing a spreadsheet calculation or
drawing a picture using one’s favorite drawing
program. The correct answer is the ultimate goal
and computation is continued until the problem
is solved. The availability of results in a timely
fashion is necessary but the perfect answer is rarely
traded off for quick response.

Information processing for AOR has rather
different objectives. The value of the computation
resides in the availability of results in a timely
fashion. Severe time constraints impose a mode of
operation where one does not seek the perfect answer
but an answer that will be available when it is needed.
Advances in information technologies have resulted
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in computing systems with enormous capabilities and
certainly one should aim at getting the perfect
answer. However, this goal may not be achievable
as fundamental limitations due to power dissipation,
communication bandwidth constraints, as well as
system complexity and reliability are important issues
that must be dealt with when assuming the
availability of unlimited computational resources.

Abstracting on biological organization, the
adopted computer architecture takes the form shown
in Figure 2. The proposed organization evolves
around three different types of subsystems and
enforces a parallel distributed processing paradigm
by incorporating only the essential local computation
at each stage in the system hierarchy. Locality of
reference and, associated with it, a minimal amount
of long distance communication follows directly from
this organization. We will now briefly discuss each
subcomponent of this architecture.

3.1. Computational Memories

Sensory communication problems (including AOR)
are inherently memory intensive as a priori informa-
tion (internal models) must be stored in the system. In
a typical recognition problem, searching large spaces
for pattern matching is one of the most common
operations.

Given that vision problems can be mapped nicely
on parallel hardware, it is natural to consider parallel
processing architectures and in particular the ultimate
SIMD example, a memory based associative processor.
Experimental systems with digital storage but analog
processing, designed and optimized for low power
dissipation, have been reported in the literature
(Boahen & Andreou, 1993; He et al., 1993; Pouliquen
et al., 1993). Computational memories with analog
storage capabilities have also been reported in the
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literature (Holler et al., 1989; Boser et al., 1991,
Cauwenberghs et al., 1992; Horio & Nakamura, 1992;
Yanget al., 1992). Unfortunately, the technologies for
prototyping such large scale memory based systems
are not readily available for experimentation and
therefore the capabilities of reported systems are
limited and have not yet been able to address the
complexity of real world problems.

3.2. Asynchronous Communication

Since events in the real world are by their nature
asynchronous, computation for AOR can also be
naturally asynchronous. As new data are received
and processed, evidence for the presence or absence
of a target must be re-evaluated. Thus, the
communication between system subcomponents can
be asynchronous, thereby offering savings in terms of
power and available bandwidth. One could take the
view that the architecture for AOR will resemble a
modern ATM (asynchronous transfer mode) packet
switching network.

Other forms of asynchronous communication in
vision and speech systems have been pursued by the
research group at Caltech as a means of exchanging
information between different chips and minimizing
communication costs [please see Lazzaro et al. (1993)
and references therein]. Information thus can be
transferred in a multiresolution fashion on an as-
needed basis. Depending on the particular problem,
asynchronous communication can be done within a
single chip, between single chip systems, or as part of
a client-server computing paradigm.

3.3. Computational Sensors/Actuators

At this level the role of these subsystems is to provide
the essential processing at the interface between the
machine and the environment. Computational
actuators is an emerging field of research since only
recently the technologies for the manufacture of truly
integrated micro-electro-mechanical systems have
become available. These mechanical elements will
not be further discussed here.

In the field of computer vision, computational
sensors can be associated with what are commonly
known as silicon retinas, early vision processors or
signal preprocessors. In the field of speech recogni-
tion, one could view the processing at this level as
representing the silicon cochleas or the acoustic
processors of the system. Essential components of
this interface are:

e adaptive transduction/amplification,
e adaptive quantization (encoding).

Transduction is where the physical stimuli are
converted into electrical signals and amplified to the
required signal to noise ratio levels. This conversion
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is determined by the physical structure of the
transducer, frequency response, dynamic range, and
noise characteristics. Adaptation at this level is
necessary for two reasons, both related to sources
of variability.

First we consider “‘endogenous’™ sources, i.c., the
structural variability in the components. During
fabrication, the different steps required to produce a
functional device are themselves random processes
(for example, ion implantation), and therefore no two
devices can be fabricated with identical character-
istics. The problem becomes more important in
transducer arrays, especially those fabricated in
technologies not as advanced as silicon VLSI, for
example infra-red detector technology (Scribner et
al,, 1993, 1994).

The second source of variability that requires
adaptation is exogenous to the system and is
problem related. If the physical signals from the
environment have a dynamic range larger than
the transducer can handle, some form of adaptation
(gain control) is necessary to match the properties
of the stimulus to the characteristics of the
transducer themselves.

Gain control is a form of encoding aimed at
throwing away what is redundant; therefore, it is a
process of data reduction. This is an essential
requirement for alleviating the burden on both
communication resources and subsequent processing
stages. A well established technique for data encoding
at this level is that of predictive coding (Shrinivasan
et al., 1982).

A fixed encoding scheme, often having the goal of
reducing redundancy, has the disadvantage that
properties of the signal that are context-dependent
may be lost. An adaptive encoding scheme is thus
necessary to avoid data loss.

It is clear that computing for AOR systems poses
some challenging problems. Substantial computa-
tional resources are necessary for robust operation,
while at the same time signal and information
processing must be done on a tight power budget
and severe time limitations. We believe that robust,
miniature, and energetically efficient hardware VLSI
systems for AOR can ultimately be achieved by
following a methodology which optimizes the design
at and between all levels of system integration. This
approach is applicable from the device and circuit
technique levels all the way to algorithmic and
architectural level considerations. This is the subject
of discussion in the next section.

4. TECHNOLOGY AND DESIGN
METHODOLOGY

At the most basic level, VLSI technology and analog
models offer the possibility of experimentally
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exploring computation by truly complex, real systems
which lie beyond digital computing and the symbolic
processing paradigm. In other words, there is no
fundamental reason to believe that the systems that
will ultimately solve the AOR problems will be
entirely digital. It is likely that successful AOR
systems will involve both CMOS analog and digital
components as well as non-traditional forms of
analog processing blocks such as integrated micro-
electromechanical parts.

The adopted design style, current-mode subthres-
hold CMOS using circuits of minimal complexity
(Boahen et al., 1989; Andreou et al., 1991a; Andreou
& Boahen, 1994b) offers the possibility of ultra low
power dissipation and area density commensurate
with the high level of VLSI system integration.

CMOS technology and, in particular, subthreshold
MOS operation has long been recognized as the
technology of choice for implementing digital VLSI
and analog LSI circuits that are constrained by power
dissipation requirements (Vittoz & Fellrath, 1977,
Vittoz, 1985a, 1985b). The advantages of using
standard digital CMOS processes for cost-effective
engineering solutions to analog signal processing
problems are surveyed in Vittoz (1985a) and are also
discussed in Tsividis (1987). CMOS has the highest
integration density attainable today, making it
especially attractive for analog VLSI models of
neural computation (Mead, 1989; Vittoz, 1994).

It is appropriate at this point to ask the question:
what kind of computational primitives does one
have? In CMOS silicon, these are continuous
functions (analog) of time, space, voltage, current
and charge. To help manage the complexity in VLSI
systems, these functions will be considered at three
hierarchical levels: the device level, the circuit level,
and the architectural level.

The understanding of complex information pro-
cessing in neural systems through a discussion at
different levels is an approach that was first
introduced by Marr and Poggio (1977) and also
discussed extensively in (Marr, 1982).

4.1. Device Level

The current in an MOS transistor operating in a
subthreshold ohmic regime is an exact difference of
exponential functions of the drain and source
voltages (Vittoz & Fellrath, 1977; Vittoz, 1985b;
Mead, 1989; Andreou & Boahen, 1994b) so that for
an NMOS the current is given by:

Ip = Ips = 1,8 exp(Kave ) lexp(—vsg) — exp(—vpp)] (1)

and for a PMOS
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Ip=1Isp = I,,oSe)Cp(—KpVGB)[exP(VSB) - exp(ng)]. (2)

The terminal voltages vgp, vsp, vpp are reference to
the substrate and are normalized to the thermal
voltage V, = (kT/q). The constants Iy and Iy
depend on mobility (1) and other silicon physical
properties; S is a geometry factor, the width W to
length L ratio of the device. The constant « takes
values between 0.6 and 0.9. The above equations do
not model drain conductance modulation or other
short channel phenomena.

For NMOS devices that are biased with vps >4
(saturation), the drain current is given by:

Ips = SIigexp(l — k,vps) exp(KavGs)- (3)

Equation (3) explicitly shows the current’s depen-
dence on vgs and the role of the bulk as a back-gate
that underlies this relationship. This equation, having
only the dependence on vgs and vpg, is used for
circuit designs where devices operate in saturation as
a transconductance amplifier. A similar expression
can be written for PMOS transistors.

Channel-length modulation (Early effect), which
we have ignored completely, becomes significant in
saturation. Thus, the device equations must be
augmented with terms that model the Early effect to
accurately predict the output conductance.

The transfer characteristics of MOS transistors are
plotted in Figure 3 for both the above- and
subthreshold regime (Pavasovic & Andreou, 1994).
The transconductance per unit current increases as
the current decreases through-out the above-thresh-
old and transition regions and reaches a maximum in
the subthreshold region. The MOS transistor has
excellent circuit properties as a voltage-input,
current-output device (transconductance amplifier)
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FIGURE 3. Measured drain current /p versus gate-source voliage
Vgs for 32 small geometry NMOS transistors (4 x 4 um)
fabricated in a 2 um) n-well CMOS process; drain-source
voltage of Vps = 1.5 V. The fuzziness in the current (mismatch
between devices), is constant in subthreshold [on a log(/) scale]
and decreases as the device enters the transition and above
threshold regime.
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with good fan-out capabilities (high transconduc-
tance gm = 0Ips/0Vs and good fan-in capability
(almost zero conductance at the input).

In highly integrated VLSI systems, small geometry
transistors must be used, typically 4 um x 4 um or
6 um x 6 um, to achieve high densities. Furthermore,
as we have seen, it is preferable to operate the devices
in the region where the transconductance per unit
current is highest, ie., the subthreshold and
transition regions. Unfortunately, small device
geometries and high transconductance per unit
current also make the drain current strongly
dependent on spatial variations of process-depen-
dent parameters. The effect is especially true for I
and 9, which is the source of the variability observed
in the drain currents of Figure 4. The apparent
improvement in device matching for higher values of
gate-source voltage is simply a manifestation of
reduced transconductance per unit current as the
device enters the above-threshold regime.

Our preference for subthreshold/transition region
operation (despite what seem to be worse matching
characteristics) is based on the observation that:
Active devices should be used in the region where their
transconductance per unit current is maximized. In this
way, one can minimize the energy per operation and
maximize the speed per unit power consumed, i.e.,
minimize the power-delay product:

where C is the load capacitance.

30
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FIGURE 4. Density plots of currents In a 32 x 32 array of
4um x 4um—NMOS transistors. Each transistor is represented
by a square pixel. Current level is coded by the shade of gray,
where the minimum and maximum values are represented by
black and white, respectively. The current Is measured at a
nominal level of 100 nA by setting Vgs to be the same for all
transistors in the array. The devices are biased in saturation.
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A squared factor is obtained because both voltage
swings (A V) and propagation delays (1) are inversely
proportional to the transconductance for a given
current level. However, only a linear factor is realized
if the power supply voltage is not reduced to match
the voltage swings AV ~ I/g,. When the device is
operated in subthreshold, the drain-source conduc-
tance saturates at a few (k7/q) (see Figure 5). Power
supplies of a few (kT/q) are also possible and thus
power supplies can theoretically match the voltage
swing levels.

The gate capacitance is also lowest when the device
is operating at subthreshold. The effective mobility in
the channel of MOS transistors exhibits a broad peak
in the transition region (Yang et al., 1994). Since
mobility is higher, losses in the channel are small, the
channel conductance is high, and thus the noise of the
transistors is low.

The maximum useful frequency of operation
possible with an MOS transistor, when operating at
subthreshold is determined by its transition frequency
fr which has an upper limit fryax of:

pkT/q)
xl?

meu < (5)

where u is the effective carrier mobility and L is the
device channel length. The transition frequency of a

(a) Ip [a]
Ves=0.7v
1n
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100p
Ves=0.5v
10p
VGs=0.4v
T 1 2 3 4 5
Vps [V]
(b) Io [pal
300 Ves=0.6V
2501
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100
50 VGs=0.5V
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Vps V]

FIGURE 5. Measured output characteristics of NMOS transistors
in subthreshold. Device dimensions are W = L = 16 um. The two
sets of data emphasize the good saturation characteristics (a)
and the non-linear ochmic behavior at low drain source voltages
{b).
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device is essentially the bandwidth (as determined by
the internal gain and parasitic capacitances of the
transistor). For 6-10 um length devices (typical in
analog VLSI today), functional systems in the
hundreds of kHz processing rate per node are
possible while for submicron devices, the limit
extends to the MHz range.

4.2. Circuit Level

The synthesis of computational structures begins at
the circuit level, the focus of this section, and
manifests itself as the emergence of networks. At the
circuit level, conservation laws, i.e., the conservation
of charge (Kirchhoff’s current law), }°,1; = 0 and the
conservation of energy (Kirchhoff’s voltage law),
>, Vi=0, are used to realize simple constrain
equations. The important concept of negative feed-
back is also exploited to trade the gain in the active
elements for precision and speed in circuits.

Aside from the benefits of a device with a large
gain, the exponential relationships between the
controlling voltages and the current depicted in eqns
(1) and (2) endow the MOS transistor with some
interesting circuit properties. There exists a powerful
synthesis (and analysis) procedure which can be used
to generate a wide variety of circuits that perform
linear and non-linear operations in the current
domain. The methodology relies on the exponential
form of current—voltage non-linearities. This proce-
dure is based on what is known as the translinear
principle (Gilbert, 1975, 1984), which was originally
used in the context of bipolar transistors. The
synthesized circuits are called translinear and may
involve operations of one or more variables, such as
products, quotients, power terms with fixed expo-
nents, and scalar normalization of a vector quantity.

The application of the translinear principle to
circuits implemented with MOS devices operating in
subthreshold saturation, and an extension to the
subthreshold ohmic regime, can be found in Andreou
and Boahen (1994b, 1996). One fascinating aspect of
translinear circuits is that, while the currents in its
constitutive elements (the transistors) are exponen-
tially dependent on temperature, the overall input/
output relationship 1s insensitive to isothermal
temperature variations. The effect of small local
variations in fabrication parameters can also be
shown to be temperature independent.

As another example of how computational
primitives emerge at the network level from the
device physics of the underlying technology, let us
consider a summing operation, local aggregation. The
linear addition of signals over a confined region of
space occurs throughout the nervous system. Aggre-
gation was discussed in Chapter 6 of Mead (1989),
[also in Koch (1989)], and is the basis for many
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neuromorphic silicon VLSI systems described there-
in. Here we take a close look at diffusion, the physical
process that underlies local aggregation in the
nervous system, contrast the neural mechanism with
the process of diffusion in MOS transistors, and come
up with a novel network design technique.

4.2.1. Linear MOS Transistor-only Networks. The
exponential functions of voltage in the square
brackets of eqns (1) and (2) correspond to
Boltzmann distributed charges at the source and
drain diffusing through the channel. The exponentials
can be conveniently represented as dimensionless
quantities of charge 2 ) = exp[-v( ] and diffusivity

D(ves) = Sexp(vga) (6)
so that egn (1) becomes:
Ips = Lo 2"[25s — 2p]. (M

The charge-based representation depicted in eqn (7)
suggests that the MOS transistor in subthreshold is a
highly linear device in the charge domain; a property
that has been exploited not only in neuromorphic
analog VLSI (Boahen & Andreou, 1992) but also in
more traditional forms of analog circuit design
(Furth & Andreou, 1995). Viewing an MOS
transistor in subthreshold as a basic diffusive
element (Boahen & Andreou, 1992) allows for the
effective implementation of systems that exploit
properties of elliptic partial differential equations.
The same idea was more recently revisited by Vittoz
and Arreguit (1993).

We will now contrast the operation of traditional
voltage/conductance based networks with diffusive
networks. The network depicted in Figure 6a employs
voltages and currents. Its node equation is

L=G(V;+Vi+ Vi + V,,—4V)) =GV*V.  (8)

Note that the RHS term can be recognised as a first-
order approximation to the Laplacian operator
V% = 9?/0x> + 0% /8y* with the internode distance
normalized to unity. This model is not amenable to
VLSI integration because conductances (G) with a
large linear range consume large amounts of area and
power.

The second network uses charges (positive) and
currents through NMOS ftransistors operating in
subthreshold (Figure 6b). Its node equation is

L= 102"(2 + 2% + 2 + 2, — 42) = 1,,9"V?2. (9)

Note that J; is the same as the current supplied to
node i by the network. By using devices with identical
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FIGURE 6. Discrete approximation to the Laplacian operator with
(a) conductances and voltage/current variables or (b) diffusors
and charge/current variables.

S = (W/L) ratios, the transistors are guaranteed to
have the same diffusivity while using identical gate
voltages guarantees that the charge concentrations at
all the source/drains connected to node i are the same
and equal 2.

In both of these networks, the boundary condi-
tions may be set up by injecting current into the
appropriate nodes. In the voltage-mode network, the
solution is the node voltages. They are easily read
without disturbing the network. On the other hand,
the second (MOS) network represents the solution by
charge concentrations 25 and 2y at source/drains—
not the charge on the actual nodes. The source/drain
charge cannot be measured directly without disturb-
ing the network. The solution charge may be inferred
from the node voltage and measured with the
appropriate “‘sense amplifiers”.

Diffusive media in biological cell syncytia are
hardly ever isotropic like our simple initial example.
Nerve cells make gap junctions of varying area.
Neuromodulators like dopamine can vary the pore
permeability. Thus, nerve cells can control the
diffusivity to neighboring cells or the extracellular
fluid. We can control the diffusivity of the MOS
network by exploiting the factorization property for
the drain and source charges, with the result that they
can be written as explicit products of two terms, one
of which includes only the gate voltage and the source
or drain voltages [see eqns (6) and (7)].
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To summarize, the properties of the MOS
transistor-only network depend on:

1. some actual physical parameter J,,o that is material
dependent and is related to the diffusion coefficient
of the carriers in silicon;

2. a design parameter S that is fixed prior to
fabrication;

3. a variable parameter 2 which is a function of the
gate voltage and can be controlled during circuit
operation.

4.2.2. Linear MOS Transistor-only Loaded Networks.
Often, models of neural computation necessitate the
realization of loaded networks. We begin with
networks that employ linear conductances, voltages
and currents and then compare them with translinear
current-mode (Andreou & Boahen, 1994b) networks.

A voltage-mode circuit model for a loaded
network is shown in Figure 7(a) for which:

Irg = (G1/Gy)(Ig — Ip).

This is a lumped parameter model where G; and G,
correspond to resistances per unit length. The
voltages on nodes P and Q are referenced to ground
and represent the state of the network which can be
read out using a differential amplifier with the
negative input grounded.

(a)
(b) vr v
Ve
D1 ilp l iq i D2
VP \ Va
M| —>
PQ

FIGURE 7. Building blocks for linear networks. Using segments
that employ ideal (a) linear and (b) non-linear elements.
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The equivalent circuit using idealized non-linear
conductances is shown in Figure 7(b). The difference
in currents through the diodes D, and D; is linearly
related to the current through the diffusor MOS
transistor. This relationship can be derived from eqn
(1), describing subthreshold conduction, and the ideal
diode characteristics where Ip = Igexp(vp). An
expression can be derived for the current Ipp in
terms of the currents I» and I, the reference voltage
v,, and the bias voltage v¢, where:

tro = () exploare — vlg ~ 1) (10

The current 7,9 and S are the zero intercept current
and geometry factor respectively for the diffusor
transistor My Is is the reverse saturation current for
the diode that is assumed to be ideal. The currents in
these circuits are identical if

ﬂ— S["O)ex KnVe = V)
GZ_ ls p(n( rl-

Increasing v¢ or reducing v, has the same effect as
increasing G, or reducing G;. The state of this
network is represented by the charge at the nodes P
and Q. Since the anode of a diode is the reference
level (zero negative charge), the currents 7p and Iy
represent the result.

When diodes are not explicitly available in the
process, diode connected PMOS or NMOS transis-
tors can be used as shown in Figure 8. When the
loads are PMOS, the current current Ipg is given by:

S ]n ' K,
Irg = (S:I,,z) exp(n,,vc - var) (IQI/ .o IPl/ ,,)' (11)

Unfortunately, the anode of a diode or a diode
connected transistor is not a good current source.
When NMOS transistors are used as loads, there is
the additional benefit of exploiting the current
conveying properties of a single transistor (Andreou
& Boahen, 1994b). In so doing, we can obtain the
current outputs /p and Jp on nodes that are low
conductance (the drain terminals are now excellent
outputs for the currents). Using eqn (8.45) in
Andreou and Boahen (1994b), the current Ipp is
given as:

S .
Ipp = (:S‘l) exp(kave kv, ) (fp —~ Ip), (12)

where S, and S, are geometry parameters for
transistors M, and M,, respectively.

In summary, we have provided a comprehensive
overview of the current-mode approach for analyzing
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(a)

(b)

FIGURE 8. Current-mode building blocks for linear MOS
transistior-only networks using (a) PMOS transistor implementa-
tion, (b) NMOS single transistor current-conveyor implementa-
tion.

and synthesizing subthreshold MOS transistor-only
linear networks. The essence of this approach is the
representation of variables and parameters by charge,
current, and diffusivity. Voltages and conductances
are not used explicitly.

4.3. Architectural Level

At this level, differential equations from mathema-
tical physics can be employed to implement useful
signal processing functions which nonetheless retain
the form of constraint equations. For example, the
biharmonic equation

)\V2V2(I> +&= ‘I)l'm (13)

where V?=§?/0x> + 8 /9y* is the Laplacian
operator, constrains the sum of the fourth deriva-
tive, of ®, and ® itself to be equal to a fixed input ¢;,.
From a statistical signal processing view-point,
solutions to this equation could represent an optimal
estimation ® of the underlying smooth continuous
function given a set of noisy, spatially sampled
observations ®;,. The solution is optimal in the
sense that it simultaneously minimizes the squared
error and the energy in the second derivative. Here,
the parameter A is the relative cost associated with the
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FIGURE 9. Discrete approximation to the Helmholiz equation
using MOS transistor-only network to perform the local spatial
averaging.

derivative term. A large value of A favors smooth
solutions while a small value favors a closer fit.

As an example of small system synthesis using the
design methodology presented in this section, we will
create a minimal, MOS transistors-only realization of
the classical silicon retina architecture proposed by
Mead and Mahowald (1988) and Mead (1989), and
analyzed in detail by Taylor (1990).

The one dimensional MOS transistor-only net-
work corresponding to the Helmholtz equation is
shown in Figure 9 and models the averaging that
occurs at the horizontal cell layer of the outer
plexiform.

Summing the currents at node j we get:

I =1; - L+ 1 (14)

The results from the previous section for the currents
I;; and Iy, which are given by eqn (12), can be
substituted in eqn (14) to obtain:

S,
L. =1+ (3,5) exp(knve + KaV,) 2L — I — It).  (15)

By normalizing internode distances to unity, the
above equation can be approximated on the
confinuum as:

d?I(x)

I"(x) = I(x) + A= 5%

This equation yields the solution to the following
optimization problem: find the smooth function 7(x)
that best fits the data /*(x) with the minimum energy
in its first derivative. The inputs are the currents J*(x)
and the outputs are the currents /(x). Since input
signals and outputs (network average) are currents
flowing in the same direction, they can be subtracted
by first inverting one through a mirror and then
adding the output of a mirrored signal to a replica of
the input. The latter circuitry is not shown in Figure
9. The parameter

v

S
A= (?h) exp(KnVe — KpVy)
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is the cost associated with the derivative energy—
relative to the squared-error of the fit.

We have already seen how a diffusive grid can be
used to compute a discrete approximation of the
Laplacian and of the Helmholtz equation. In a
subsequent section, we show how a model of early
visual processing is related to the biharmonic
equation and how to realize the model using
diffusive networks.

5. NEUROMORPHIC FOCAL PLANE
PROCESSORS

Computational sensors, i.e., information processing
at the focal plane by intimately coupling detection
and signal processing, as well as the use of novel
sensing modalities, are areas that could ultimately
contribute to the performance, compactness, and
miniaturization of AQR systems. The visual systems
of many biological species are existing proof that
sensor specialization and integration of signal
processing with sensing may be beneficial. The
vertebrate regina (Dowling, 1987) is an even more
impressive example of system integration and efficient
processing.

However when computation must be performed at
the focal plane of an imager using hardware that are
constrained to exist in essentially two dimensions,
two issues must be addressed first:

I. A portion of the area that otherwise could be used
to collect light is now used by associated
processing circuitry and therefore the spatial
resolution, as well as the light sensitivity, of the
system i$ compromised.

2. Active circuits other than phototransducers
produce heat which can increase the dark current
of the phototransducing devices and the system
performance will be compromised.

Yet, we believe that even with a two dimensional
implementation medium (such as single-plane VLSI
circuitry), it is possible to trade off light sensitivity
and spatial resolution for some essential processing at
the focal plane.

In this section, we present a detailed discussion of
two focal plane processing systems. The first is a
contrast sensitive silicon retina, an edge enhancing
imager that includes a rudimentary, yet effective local
gain control mechanism at the transducer level. The
second addresses the problem of feature extraction,
where an embedded algorithm extracts position and
motton information at the focal plane. These local
signals are useful for tracking and robust image
acquisition. A brief overview of other analog VLSI
systems that provide local gain control through
temporal adaptation will also be discussed.
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5.1. A Contrast-Sensitive Silicon Retina

Image acquisition and early vision processing under
naturally occurring illumination conditions is a
common task in the fields of robotics, prosthetic
devices for the blind, and motor-vehicle navigation
and thus relevant to AOR. Today this task is
accomplished in two separate steps (Rosenfeld,
1988). First the light intensity is recorded through a
standard imager such as a CCD camera. The
intensity field is subsequently processed outside the
camera to discard any absolute luminance informa-
tion and form a representation where only relative
illumination, i.e., contrast, is retained. Additional
processing such as edge extraction and/or low bit-rate
encoding may follow. However, even though the
precision necessary for these tasks rarely exceeds
eight bits, the signal itself has a very large dynamic
range-many orders of magnitude-which makes the
problem difficuit. This issue becomes acute when the
illumination varies widely within a single frame, a
common occurrence in natural scenes (see Figure 10).
The detrimental effects of non-uniform illumination
in the performance of a face recognition system have
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been investigated experimentally by Buhmann et al.
(1994).

In contrast to the above approach, the same
problem can be addressed by abstracting from the
known organization and function of the distal retina
(Dowling, 1987). Our method not only attempts to
account for the physics of image formation in natural
scenes but also attempts to address the problem of
limited dynamic range in the actual hardware. This is
an important issue since the performance of “real”
physical computing systems are ultimately limited by
fundamental limitations of the computational sub-
strate.

During the design of the silicon retina, the
architectural decision can be made to integrate some
low-precision analog processing with the transducer
elements and thus extract contrast information at the
focal plane (Boahen & Andreou, 1992; Andreou &
Boahen, 1994a). The resultant image that is captured
with such a system is shown in Figure 11. The
biologically motivated solution is attractive from a
computational perspective because contrast, an
invariant representation of the visual world, has
been obtained with a front-end that is robust, small,
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FIGURE 10. (Bottom) “Mari’’ as captured by a conventional camera. (Top) Intensity histogram at image line 110 (white line). The light
source is positioned to the right side of the image and it introduces a large gradient in illumination within a single frame. This is clearly
shown in the intensity histogram. The dynamic range of the scene exceeds the dynamic range of the camera. Aperture control on the
camera provides a rudimentary global gain control mechanism. Information in this image is lost at this very first step because there is

no gain control (adaptation) at the pixel level.
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FIGURE 11. (Bottom) “Mark” as captured by a experimental imager, an analog VLS| model of the vertebrate distal retina. The light
source is positioned to the right side of the image and it introduces a large gradient in illumination within a single frame. The image
captured by the silicon retina discards absolute illumination and preserves only local contrast information through local gain control at
the pixel level. Unlike the image in Figure 10, the presence of a large illumination gradient does not degrade image acquisition here.

and extremely low power (a few mW). There is also
an engineering benefit, the output of the system is
“encoded” in a representation with limited range and
therefore  subsequent processing/communication
stages are not burdened with handling and proces-
sing signals of wide dynamic range. A performance
comparison between a contrast sensitive silicon retina
front end (Boahen & Andreou, 1992) and a
conventional camera in a face recognition experi-
ment is reported in Buhmann et al. (1994).

5.1.1. Biological Organization. The analog silicon
system in the core of the array is modeled after
neurocircuitry called the outer-plexiform layer, which
is located in the distal part of the vertebrate retina.
Figure 12 illustrates interactions between cells in this
layer (Dowhling, 1987). The well-known center/
surround receptive field emerges from this simple
structure that consists of just two types of neurons.
Unlike the ganglion cells in the inner retina and the
majority of neurons in the nervous system, the
neurons that we model here have graded responses
(they do not spike); thus this system is well-suited to
analog VLSI. The original architecture (Boahen &
Andreou, 1992) was inspired by the linear model and
numerical simulations of Yagi et al. (1989).

The photoreceptors are activated by light: they
produce activity in the horizontal cells through
excitatory chemical synapses. The horizontal cells,
in turn, suppress the activity of the receptors through
inhibitory chemical synapses. The receptors and
horizontal cells are electrically coupled to their
neighbors by electrical synapses. These allow ionic
currents to flow from one cell to another, and are
characterized by a certain conductance per unit area.

In the biological system, contrast sensitivity—the
normalized output that is proportional to a local
measure of contrast-is obtained by shunting inhibi-
tion. The horizontal cells compute the local average

Photo-receptors

Electrical
Synapses
/ ——
\ Chemical

Synapses

Horizontal Celis

FIGURE 12. One-dimensional model of neurons and synapses in
the outer-plexiform layer. Based on the red-cone system of the
turtle retina.
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“JH\ Video Preamplifier

FIGURE 13. Floorplan and system organization. it comprises two functional components, the core, and the support circuitry. Focal plane

processing is performed in the core area.

intensity and modulate a conductance in the cone
membrane proportionately. Since the current sup-
plied by the cone outer-segment is divided by this
conductance to produce the membrane voltage, the
cone’s response will be proportional to the ratio
between its photoinput and the local average, i.e., to
contrast. This is a very simplified abstraction of the
complex ion-channel dynamics involved.

5.1.2. Silicon System. The analog architecture that
attempts to abstract the processing performed at the
outer plexiform layer of the vertebrate regina is
shown in Figure 13. The architecture is mapped onto
silicon using circuits of minimal complexity that
exploit native properties of subthreshold MOS
transistors. High computational throughput at low
levels of power dissipation is achieved by employing
low precision analog processing in a massively parallel
architecture.

Support circuitry in the periphery extracts the data
from the core and interfaces with the display. The
chip incorporates a video pre-amplifier and some
digital logic for scanning the processed images out of
the array. This circuitry is discussed in detail in the
paper by Mead and Delbriick (1991). Standard
NTSC video is produced off-chip using an FPGA
controller and a video amplifier.

The core of the silicon retina is an array of pixels
with a six-neighbor connectivity (see Figure 13). The
wiring is included in the layout of the cell (see Figure
14) so that they may be tiled in a hexagonal
tesselation to form the focal plane processor. This is
a mesh processor architecture where two layers of
processors, C and H, use both intra- and inter-layer
communication through local paths. This parallel

processing scheme features the locality of reference
and thus minimizes communication costs.

The basic analog MOS circuity for a one
dimensional pixel with two neighbor connectivity is
shown in Figure 15. We begin with the non-linear
aspect of the system’s operation, its contrast
sensitivity. The non-linear operation that leads to a
local gain-control mechanism in the silicon system is
achieved through a mechanism that is qualitatively
similar to its biological counterpart, but quantita-
tively different [see discussion in Boahen and
Andreou (1992)]. Refering to Figure 15, the output
current I.(x,,y,) at each pixel, can be given
(approximately) in terms of the input photocurrent
I(x,, yn) and a local average of this photocurrent in a
pixel neighborhood (M, N). This region may extend
beyond the nearest neighbor. The fixed current I,
supplied by transistor M3 normalizes the result and ¥
1s a parameter.

1%, y1) . Q6)

L (X, yn) = I,
(I(xm’yn) + ‘I’ZM,NI(xivyi)

At any particular intensity level, the outer-plexiform
behaves like a linear system that realizes a powerful
second-order regularization algorithm (Poggio et al.,
1985) for edge detection. This operation can be seen
by performing an analysis of the circuit about a fixed
operating point. To simplify the equations, we first
assume that g = (I,)g, where (I;;} is the local average.
Now we treat the diffusors (devices Mj4) between
nodes C and C’ as if they had a fixed diffusivity g.
The diffusivity of the devices M5 between nodes H
and H' in the horizontal network is denoted by A.
Thus, the simplified equations describing the full two
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FIGURE 14. (a) Photomicrograph of the chip. The surface is
covered by second metal except where there are openings for
the phototransistors (the dark square areas). Note the hexagonal
connectivity between the pixels. (b) Layout of the basic cell.

dimensional circuit on a square grid are:

I},(X,,,,y,,) = I(xmvyn) +g § {It(xn_vj) - lc(xm)yn)}
i=m+1
t=ntl

Ic(xmyyn) = ]u +h 5 {lh(xmayn) - Ih(xhyj)}

i=m+}
J=nt1
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FIGURE 15. One dimensional implementation of outer-plexiform
retinal processing. There are two diffusive networks implemen-
ted by transistors M, and Ms, which model electrical synapses.
These are coupled together by controlled current-sources
(devices My and M;) that model chemical synapses. Nodes H
in the upper layer correspond to horizontal cells while those in
the lower layer (C) correspond to cones. The bipolar
phototransistor Q; models the outer segment of the cone and
M3 modeis a leak in the horizontal cell membrane. Note that the
actual system has a six neighbor connectivity.

Using the second-difference approximation for the
Laplacian, we obtain the continuous versions of these
equations:

In(x,y) = I(x,y) + §V*1(x, ) (17)
Ic(xvy) = [u - hvzlh(xvy) (18)

with the internode distance normalized to unity.
Solving for I,(x, y), we find:

ghVIVAL(x, ) + In(x,y) = I(x;, ). (19)

This is the biharmonic equation used in computer
vision to find an optimally smooth interpolating
function I(x, y) for the noisy, spatially sampled data
I(x;,y;); it yields the function with minimum energy
in its second derivative (Poggio et al., 1985). The
coefficient A = gh is called the regularizing parameter
which determines the trade-off between smoothing
and fitting the data.

A one dimensional solution to this equation can be
obtained (see eqn 20) using Green’s functions valid
for vanishing boundary conditions at plus and minus
infinity; this has the characteristic mexican hat shape
(see Figure 16).

e = e/ V) s (5,

(20)

5.1.3. Layout Considerations. The two-layer architec-
ture for the silicon retina can be accommodated in a
cell area of 80X x 94\ using a single poly, two metal
technology. In the implementation reported in
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FIGURE 16. Plot for the one dimensional solution of the

biharmonic equation; A = 1, and input is a delta function at the
origin.

Boahen and Andreou (1992) and here, a double poly,
double metal technology is used and the cell area is
66X x 73). First metal and polysilicon wires are used
for interconnects; second metal is used to cover the
entire array, shielding the substrate from undesirable
photogenerated carriers. Transistors are implemented
using both polysilicon layers.

The system has been fabricated with 230 x 210
pixels on a 9.5x 9.3 mm die in a2 1.2 um n-well
double metal, double poly, digital oriented CMOS
technology. The chip incorporates 590,000 transistors
in the 48,000 pixels and support circuitry, with the
core operating in subthreshold/transition region.

A conservative estimate for the energetic efficiency
can be obtained by assuming that a total of 18 low
precision operations (OP) are performed per pixel.
Six operations are necessary for the convolution with
bandpass kernel of eqn (20), six for the Laplacian
operator [eqn (18)], and six for the local gain control
computation [eqn (16)]. If the system is biased so that
at the pixel level the frequency response is 100 kHz,
approximately 1 x 10! low precision calculations per
second are performed in the 210 x 230) pixels. The
power dissipation under the above biasing conditions
is about 50 mW when operating from 5 V power
supplies. This is equivalent to 0.5 pW/OP.

5.2. A Silicon Retina with Embedded 2-D Motion and
Position Estimation

Spatiotemporal processing, such as local gain control
implemented either spatially or temporally, is only a
first step, albeit a vital one, in extracting meaningful
information from a scene. For tracking and for
providing temporal cues, image motion information
i1s important. In the case of tracking, the motion
signals can be used either to direct the “attention” of
the focal plane imager, or for motion compensation
within the object/target recognition algorithm. It is
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important to note that we will be discussing global
image motion rather than determining a collection of
local velocity vectors, i.e., an optical flow field.
Computation of a complex optical flow field
(Hildreth, 1983), while potentially of great use, is a
difficult focal plane task. As such the computation
that will be performed on a chip will be employed
locally to compensate for the motion of the image
acquiring device.

A number of global motion computing chips have
been fabricated to data [see, for example, Delbriick
(1993), Andreou et al. (1991b) and Etienne-Cum-
mings et al. (1992)] and a comparison of several
approaches is contained in Horiuchi et al. (1992). The
common characteristic underlying the aforemen-
tioned implementations is the use of correlation to
compute the image’s velocity or displacement. This
general class of algorithms is biologically inspired,
being based on Reichardt’s original work on the
visual system of the fly (Reichardt, 1961). Since both
biological systems and analog VLSI rely on parallel
computations with low-precision components, it is
not surprising that these correlation algorithms map
very well onto current-mode analog VLSI circuitry.
This was the motivation for pursuing this approach
by Andreou and co-workers (1989). In contrast, chips
using local gradient algorithms such as those of
Tanner and Mead (1986), were hampered by the
necessity of explicitly computing spatial and temporal
derivatives and as a result suffered in terms of pixel
size and robustness. A search of the literature reveals
that virtually all recent chip designs have utilized
correlation algorithms, indicating the suitability of
this approach for analog VLSI.

The following sections will describe the design and
operation of a chip which capitalizes on analog
VLSI's effectiveness to provide concurrent image
centroid and displacement motion information
(Meitzler et al.,, 1995). The centroid and displace-
ment computations are each performed by two one
dimensional linear arrays [earlier versions of which
are detailed in Andreou et al. (1991b) and Meitzler et
al. (1993)] oriented at 90° angles to each other. Thus,
the chip provides fully two dimensional information
on the image’s global movement and centroid.
Furthermore, the output of the 50 x 50 pixel
contrast sensitive retina (Boahen & Andreou, 1992)
(described earlier) can be viewed on an NTSC-
compatible monitor with the addition of an external
resistor, transistor, and oscillator. Thus, this highly
integrated system provides three forms of informa-
tion (normalized image, centroid, motion) with a
minimum of external support circuitry.

5.2.1. System Architecture and Design. Figure 17
shows the architecture for the entire chip. Incident
photons are first detected using a vertical pnp
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FIGURE 17. Functional organization of the motion/centroid/
retina chip.

phototransistors. A corresponding microphotograph
is shown in Figure 18. Subsequently, the raw image is
passed through the contrast sensitive retina circuit
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described in the previous section and denoted by
“CSR” in the diagram. By enhancing edges and
removing gradients, the retina computes a version of
the image which yields a more robust motion signal for
tracking. In addition, removal of average illumination
information greatly improves the invariance of the
motion output to changes in ambient light.

Prior to any other computation, each of the retina
pixel outputs is replicated and fed through a bank of
amplifiers (one per column as shown in Figure 17) to
an output driver. An on-chip state machine (NTSC
sequencer) then generates the appropriate scanner
clocks, synchronization, and blanking signals to
produce an NTSC-compatible signal. The sequencer
is a digital circuit that was compiled from a high level
description of its function. The video amplifier circuit
combines the blanking, sync, and pixel data and
drives the composite video signal off the chip. As
mentioned previously, a single transistor and resistor
are all that is required to drive a standard NTSC
monitor. In addition to the potential of possibly using
this information as part of a larger, multi-chip
system, the ability to view what the chip is “seeing”
is an invaluable aid in aligning and focusing the

FIGURE 18. Photomicrograph of the motion/centroid/retina chip.
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FIGURE 19. Centroid computation circuit.

image. Also, adjusting the retina’s spatial bandpass
characteristic to optimize the motion and centroid
response is greatly simplified.

The pixel outputs of the retina’s center row and
column are also fed to the periphery of the array and
are used for the motion and centroid computations.
The image centroid is calculated using a scheme by
DeWeerth (1992) which is shown in Figure 19. In this
circuit, the centroid is computed using a series of
transconductance amplifiers with the position en-
coded by a resistive divider across the array. The
amplifier tail current, Ioenwoid, 1S proportional to the
retina’s output. Interestingly, the raw retina output,
being contrast sensitive and having a fixed average
value, does not contain adequate DC information to
generate a strong centroid signal. Thus, an inter-
mediate stage (see Figure 20) was added which
effectively computes the absolute difference of a
retina pixel’s output and twice the average retina
output current, J,yg (s€t by Vretina_bias). In addition, an
offset current controlled by Vet can also be added
for a total amplifier tail current of:

Icemroid -~ ]Ipixel - 21avg| + loﬂ'ser (21)

This change effectively reintroduces DC information
and allows the centroid circuit to operate properly
when using the output of the contrast sensitive retina.

Simultaneous with the centroid computation,
image motion in the form of displacement with
respect to a fixed reference is also computed on the
chip. The motion computation is performed using a
rather direct implementation of the Reichardt
detector (Andreou et al., 1989) except that the usual
delay is replaced with a sample and hold circuit. The
modified architecture for a single detector unit is
shown in Figure 21. To summarize the operation, one
can calculate that if the filtered image I(x) is moving
with a time varying displacement s(z), then the
detector’s response can be found:

2
(1) [(g;i) —zgzx—ﬁ} dx (22)

where the pixel separation, dx, approaches 0 (Meitzler
etal., 1993). The output can be seen to be proportional
to s(¢), which is the distance from the point at which
the image is sampled. In the one-dimensional arrays

vlmagc _p

! centroid

H il—i""‘ BE iy (R

FIGURE 20. Centroid DC-restoring bias circuit.
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Filtered Image, Filtered Image,

Pixel | Pixel net
Sample Sanﬁple
and and
Hold Hold
Absolute Absolute
Difference Difference
l Left Motion
Right Motion

FIGURE 21. Modified Reichardi-Hassenstein motion computa-
tion architecture. This sub-block employs discrete lime circuits
and sampled data.

used on the chip, each pixel is shared by two detectors,
one to the left and one to the right. Since only nearest
neighbor interactions are taken into account, the
displacement is assumed to always be less than one
pixel. Thus, this architecture is best suited for use in a
closed-loop tracking system in which the image’s
range of movement will be limited. Finally, note that
in reality, the motion computation is performed by a
large number of these detectors whose current outputs
are aggregated and normalized to yield a robust
estimate of the motion signal.

The sample and hold circuit is taken from a
design by Vittoz et al. (1991) and is shown in
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FIGURE 22. Sample and hold circuit (analog memory).

+
Vin _

Vswitc

Figure 22. Instead of a simple capacitor and switch,
two transconductance amplifiers are used to obtain
a much slower decay of the held voltage, Fjou-
This improvement is accomplished by using the
amplifiers to form a virtual ground across the
leakage diode formed by the bulk and right source/
drain terminal of the switch transistor M,.
Although the circuit is more complex, the longer
hold time is necessary for this architecture. With a
faster decay of the held image, it would be
necessary to resample frequently; therefore, since
image motion cannot be calculated during resam-
pling, the effective duty cycle of the system would
be greatly diminished.

From Figure 21, it can be seen that the standard
Reichardt architecture has been altered in another
way. The multiplication operation originally pro-
posed by Reichardt and used in earlier motion chips
(Andreou et al.,, 1991b) has been replaced with a
simpler absolute difference circuit, shown in Figure
23. In this circuit, although the inputs are voltages,

Sample and Hold
Output (Vi o1q)

e

vlmage_n

Y
out
(= Il hoid ~ Ilmagel)

=

FIGURE 23. Absolute difference circuit.
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they nonetheless encode the instantaneous and held
currents from the retina array. Since the remainder of
the circuit is composed of current mirrors, the
absolute difference is a current-mode computation.
The opponent currents are then normalized and
passed off-chip where they are converted to voltages
and subsequently differenced and amplified with an
instrumentation amplifier.

5.2.2. Chip Performance. The chip was fabricated in a
standard 2 pym double-poly CMOS process on a
6.8 mm x 6.9 mm die. Note that the NTSC sequen-
cer and video amplifier can be disabled along with the
on-chip digital circuits to reduce power consumption
when video output is not needed. Even with the
internal video external support circuitry, this system’s
power dissipation is tens of mW, which is orders of
magnitude below what would be required to perform
similar computations on a more traditional digital
computer vision system.

Some results replicated from Meitzler et al. (1995)
are shown in the following figures. The displacement
computation circuitry was tested using an input
image of six, three pixel wide stripes perpendicular
to the motion-sensitive axis. The x- and y-axes DC
response curves for a total image motion of one pixel
are shown in Figure 24. Note that the response is
normalized to partially compensate for variations
caused by the image dependent terms in eqn (1);
however, variation in the retina’s phototransistor and
bias transistor and in the output mirrors causes
additional distortion in signal fed to the x- and y-axis
displacement circuitry. It is therefore not surprising
that the response curves do not have identical shapes.
In addition, non-idealities in the circuitry and the
nature of the algorithm make a linear response
unlikely as well. The displacement circuit’s AC
response, shown in Figure 25, has a 3-dB point at
approximately 70 Hz. Thus, the chip seems to have
adequate bandwidth for a variety of image tracking
applications.

Another factor affecting the utility of the motion
circuitry is the performance of the on-chip analog
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FIGURE 24. Displacement circuitry DC response.
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FIGURE 25. Displacement circuitry AC response.

memory (sample and hold circuit). Measurements of
the chip’s output, taken by sampling an image and
then shifting it one pixel, are shown in Figure 26 for
an average over ten trials. The output decay rate is
approximately 19%/min and therefore should not be
a problem so long as the image does not need to be
continuously held for over a minute. Note that the
displacement circuit’s output decay and frequency
response were almost completely independent of the
sample and hold’s overall biasing levels. Thus, the
sample and hold could be biased in subthreshold for
increased power savings.

In summary, from the standpoint of autonomous
image acquisition and pre-processing, the integration
of both centroid and image displacement computa-
tions on a single chip resulted in a compact and low
power solution to several problems. The chip could
potentially find application in a large number of
tracking/location systems, especially those in which
power consumption and physical size are limiting
factors. When stabilizing an image, displacement is a
potentially more useful control variable than velocity
because offset errors may not be integrated [see
Meitzler et al. (1993)].

As an indicator of the practicality of these types of
processors, please note that the design of this system
was motivated by the need to stabilize an image of the
sun in the Flare Genesis project being conducted in
part by the Johns Hopkins Applied Physics Labora-
tory. Because the instrument platform will be carried
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FIGURE 26. Displacement circuitry output decay.
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by balloon to an altitude of 35,000 m, size and weight
are of critical importance. Thus, the highly integrated
analog VLSI system presented in this paper is an
ideal solution. The chip is inserted in a control loop
to compensate for image motion, resulting in higher
resolution photographs showing the fine structure of
the sun’s surface and is in place for the upcoming
scientific mission.

5.3. Other Analog VLSI Systems

One of the most fundamental functions that is found
in the early vision of biological systems, is temporal
adaptation to changes in the image level that are
below the bandwidth of interest. This capability can
also be built into subthreshold focal-plane circuitry to
effectively generate a temporally high-passed version
of the input. One such circuit is the adaptive
photoreceptor design by Delbriick, shown in Figure
27 (Delbriick & Mead, 1994a, b).

The operation of this circuit centers on the
amplification of the difference between the DC state
of the system and the instantaneous value of the
input. The pixel’s bias point is stored on the gate of
M, which can be considered fixed for small signal,
high frequency changes due to C,. Thus, when the
input photocurrent moves from the bias point, the
source voltage of M, will be forced to change
(dropping for increasing photocurrent and vice
versa) a very small amount to compensate. This
change is then amplified by M,, M;, and M.

The key to the temporal differentiation and
adaptation lies in the combination of Ms, C;, and
C,. As shown in Figure 27, Ms and C,; operate as a
low-pass filter; however, M5 is configured as a non-
linear conductance. The circuit uses the lateral bipolar
mode for Ms when the gate voltage of M, is greater
than the drain of M3. As a result, the Ms structure is
effectively two parallel opposing diodes. Thus, for
small excursions from the DC bias point, the voltage
across M is small and the gate of M, is charged very
slowly. A strong temporal high-pass response is the
net result. For larger input changes, charging occurs

Pixel Adaptive Element
FIGURE 27. Delbriick’s adaptive pixel circuit.
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more quickly, allowing the gate of M4 to adapt to the
new input level and set new bias conditions. A more
thorough discussion of the circuit’s subtleties is
contained in Delbriick and Mead (1994b). For our
purposes, it is most important to note that this design
is a low power solution to the problem of detecting
temporal transients.

Another design is the temporal differentiator
circuit by Chong et al. (1992). The underlying
principle is much the same as in the previous case,
i.e., delayed negative feedback caused by integrating
output-supplied charge on a capacitor. In this
particular case (see Figure 28 for the circuit) the
delay is accomplished using the transconductance of
M, and C, with M; as a bias. Since M>’s
transconductance is effectively set by Vi, the
sensitivity of the circuit to temporal changes can be
manually adjusted.

If one compares these two circuits, one can see that
Chong et al.’s circuit is nearly a one-sided differ-
entiator, i.e., there is a large response only to positive
increases in the input current. This behavior arises
from the fact that C; can be charged arbitrarily
slowly through M; but is discharged very rapidly
through M,. Therefore, the negative feedback
experiences only a very small delay for decreases in
the input current which greatly reduces the temporal
differentiation. Such one-sided behavior may, how-
ever, be desirable depending on the nature of
subsequent processing.

Finally, note that the transistor count for Chong et
al’s pixel is at least as good as Delbriick’s, even
without a cascading operation to speed up the
response.

6. DISCUSSION

On the approach: In the previous sections, we have
seen how an analysis-by-synthesis methodology
(Mead, 1989) using analog computation and VLSI
technology has led to the development of energeti-
cally efficient analog VLSI systems for early vision.
Crucial to the success of our endeavour is a
hierarchical view of information processing as



1344

A. G. Andreou et al.

Computational
Computational Theory
Theory
AN
L Physics of the \ | Representation )
Representation Computational » and @ Ph)ésrf;g,fnthe
and Substrate Algorithms
Algorithms
< Physical
(a) Hardware (b) Implementation
Implementation

FIGURE 29. (a) Marr’s three levels of looking at complex information processing systems. (b) An alternative view.

discussed in Chapters 1 and 7 of Marr (1982). Marr
strongly believed, however, that computational
theory should be at the top of the hierarchy and
play the most important role, while the particulars of
the implementation have only a peripheral role (see
Figure 29a).

Our work suggests that it may be beneficial to view
the different levels from a slightly different perspec-
tive, which is depicted in Figure 29b. We begin with
the physics of the problem and the physical properties
of the computational substrate. Good algorithms and
representations emerge as a result of constraints
imposed at this level.

This perspective is directly applicable to the
problem at hand. It is well established that in the
back-end of an ATR system, the physics electro-
magnetic radiation in the atmosphere (energy flow),
and the physical properties of the imaged structures
must all be considered to accurately model the scene,
the target, and the process of signal degradation in
the environment. A similar approach must be taken
at the front end, where the physical properties of
signal transducers (for example, the FLIR sensor or
other infra-red sensing arrays) must be taken into
account. Therefore, research aimed at understanding
what are the ultimate performance limitations in
AOR systems and their engineering must include a
discussion of fundamental limitations in microelec-
tronics technology (Keyes, 1987).

On algorithms and architectures: We have experi-
mentally demonstrated that, in considering possible
algorithms and architectures for solving sensory
communication problems, one need not be restricted
to a particular model of computation. The a priori
assumption should be made that a structure exists
(within a well defined set of “‘real” constraints
consistent with the computational substrate). This
approach incorporates the best possible model of
computation. The particular mapping of a model to a
computational substrate is thus guided by funda-
mental limitations of the basic elements, the proper-

ties that make the solution scalable, and the existence
of a synthesis procedure that enables the emergence
of a complex structure.

For example, it is easier today to write software
that implements a filter function on a digital
computer, than to implement the filter function
using ASIC digital circuits, than to design and
implement analog filters as analog integrated
circuits, than to design and manufacture a filter
based on the physical properties of some mechanical
silicon micro-structure. Given the subject matter of
this paper, there is no reason to believe that the las
solution is not the preferred solution given adequate
research resources to solve “algorithm” and techno-
logical problems.

On physical models: The charge-based formulation
and analog VLSI implementation of the silicon retina
presented here is an example of a physical model that
could be cast in the dynamical systems framework (a
relaxation network). Our method is mathematically
interesting, and at the same time perhaps practical.
Indeed, by judiciously employing ‘‘physical models”
of computation such as a detailed biophysical model
of a retina (Boahen & Andreou, 1992) the inherent
parallelism and nature of physical laws (Hillis &
Boghosian, 1993) is exploited in the computational
process.

It can be argued that the analog VLSI retina
model has an a priori internal model of the world—
one that assumes that the intensity is either uniform
or, in the case of non-uniform illumination, is a linear
function of space. The output of the system is the
difference between the input intensity field and the
model. As such, the output is a measure of the second
spatial derivatives (or the Laplacian) of the intensity
field. In the field of computer vision, linear methods
based on regularization theory are used to impose
smoothness constraints (Poggio et al., 1985) on the
discretely sampled and noisy real world data. These
computationally demanding algorithms are run on
general purpose digital hardware.
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In the physical realization of a computational
systems, the same “‘regularization” benefits could be
beneficial in dealing with the “noise™ introduced by
the variability in gain of MOS transistors (see Figure
3).! Thus, we see how in the organization of the
system one could account for the properties of the
computational substrate at the architectural level.
Such properties are irrelevant when implementing
algorithms on general purpose, digital computers. In
digital computers and symbolic processing machines,
structural variability and noise in the basic elements
is handled at a much lower level, at the gate level.
Switching levels are chosen so that adequate noise
margin is introduced for large scale reliable computa-
tion [see further discussion in Andreou (1994) and
references therein).

In the context of the biological model, the function
of the horizontal cells (corresponding to nodes H) is
to “optimally” compute a smoothed version of the
image (through a convolution with the kernel shown
in Figure 20) while the cones (corresponding to nodes
C) perform edge enhancement by taking the
Laplacian of the smoothed image as given by eqn
(18). The space constant of the solutions is A!/4 or
(gh)l/ % The model suggests that specialized struc-
tures in biological systems could effect some type of
“wet-ware regularization” to compensate for the
inherent random variations in the neuronal char-
acteristics. Such a property could in turn lead to
robust performance in the presence of “noise”. The
latter statement is just a hypothesis subjected to
experimental verification.

The notion of an “optimal’”’ computation step has
been introduced by Bialek and Owen (1990). They
have considered the signal and noise characteristics of
the photoreceptors in the outer retina and they have
derived “optimal” temporal filters to further process
the receptor signals. Our work (Boahen & Andreou,
1992) addresses a similar problem in the space
domain where “noise” is introduced by the structural
variability in the gain of the individual elements and
spatial smoothing is needed to increase the informa-
tion capacity of the system.

The contrast sensitive silicon retina is an archi-
tecture that yields the ON-center/OFF-surround
response at the level of the cone (photoreceptor)
network. Even though from an engineering perspec-
tive one can employ this function for edge enhance-
ment (as we have done), the question of why such a
structure exists in the neural system is still open. To
put it more succinctly; is edge enhancement the goal
or is it simply an emerging property from a
computational function that is aimed at dealing with

! Noise here denotes structural varability, as opposed to
thermodynamic noise.
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signals of large dynamic range using imprecise
components?

On large scale analog computation: The analog
VLSI system presented in this paper is essentially
an analog floating point processor. As a first step,
the system computes the range (the voltages in the
horizontal cell synthycium correspond to the value
of the exponent). This level is the operating point
of the system. Note that the automatic gain control
is also achieved via this computation. At a given
operating point, sophisticated spatial filtering is
performed to smooth the sampled data and enhance
the edges. Having separated the problem of
precision and dynamic range, the signal processing
within the range can be done with low precision
analog hardware. The issue of precision versus
dynamic range in analog circuits was addressed by
Barrie Gilbert 10 years ago with his elegant
implementation of an “array normalizer” that used
bipolar transistors and current-mode translinear
circuits (Gilbert, 1984). The system presented here is
similar in two ways to Gilbert”s array normalizer.
First, there is Jocal normalization of the input
current signals. Second, all processing is done in the
current domain where the translinear properties of
MOS subthreshold devices are exploited to imple-
ment the required functions.

7. CONCLUSIONS

Our research was aimed at exploring different ideas
on neuromorphic computations and their VLSI
implementations for image acquisition and prepro-
cessing in AOR. The results of our investigation
are encouraging. It has been demonstrated that
analog circuits of limited precision, when assembled
in large networks following an appropriate design
methodology, can successfully perform linear and
non-linear computation with an energetic efficiency
unmatched by their digital counterparts. The
590,000 transistor analog VLSI, contrast sensitive,
silicon retina and the integrated tracking systems
are small steps towards the engineering of truly
intelligent machines.

NOTE: A small number of the two analog VLSI
systems that were discussed in this paper can be made
available for experimentation by researchers that are
interested in autonomous object[target tracking[recog-
nition systems.
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