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Abstract

We present an experimental analog VLSI focal plane processor for the phototransduc-
tion, local gain control and edge enhancement of natural images. The single chip system
incorporates 590,000 transistors in 48,000 pizels, and it has been fabricated on a 9.5 x 9.3
mm die in a 1.2um n-well double metal, double poly, digital oriented CMOS technology.
The organization of the system abstracts from the structure and function of the vertebrate
distal retina. The adopted design style, current—mode subthreshold CMOS using circuits of
minimal complexity offers the possibility of ultra low power dissipation and area efficiency,
commensurate with VLSI integration.

1 Introduction

Over the last few years, new emerging opportunities in information technologies point
towards markets for portable systems where battery operation, light weight and small factor
will be in demand. From an economic perspective, miniaturization and high levels of system
integration, with an implicit potential for large markets are predicted to be the technology
drivers in the decades ahead [1]. From a technology and engineering perspective, the
development of these systems will be done with energetic efficiency as the prime engineering
constraint, taking a lead over other considerations. The cost and reliability of these portable
systems are also important factors.

A distinct characteristic of these information technologies is their direct interface to peo-
ple and real world environments. Undoubtly, portable operation and battery operation
imposes severe constraints and a tight energy budget. However, with the widespread de-
ployment of such technologies, there is another issue that is becoming increasingly more
important. Mobile operation implies that the speech and vision interfaces, much
like other communication interfaces, must be capable of operating under highly
variable environmental conditions. To make this point clear we consider an example
from vision.
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Image acquisition and early vision processing under naturally occuring illumination con-
ditions is a task typical in the fields of robotics, prosthetic devices for the blind, and
motor-vehicle navigation. Today this task is accomplished in two separate steps. First the
light intensity is recorded through a standard imager such as a CCD camera. This intensity
field is subsequently processed outside the camera to discard any absolute luminance infor-
mation and form a representation where only relative illumination, i.e. contrast, is retained.
Additional processing steps such as edge extraction or encoding may follow. However, even
though the precision necessary for these tasks rarely exceeds 8 bits, the signal itself has a
very large dynamic range, many orders of magnitude, which makes the problem difficult.
This issue becomes acute when the illumination in the scene varies dramatically within a
single frame (see Figure 1). The detrimental effects of non-uniform illumination in the per-
formance of a face recognition system have been experimentally investigated by Buhman,
Lades and Eeckman [2].
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Figure 1. (Bottom) “Mark” as captured by a conventional camera. (Top) Intensity
histogram at image line 110 (white line). The light source is positioned to the right
side of the image and it introduces a large gradient in illumination within a single
frame. This is clearly shown in the intensity histogram. The dynamic range of the
scene exceeds the dynamic range of the camera. Aperture control on the camera
provides a rudimentary global gain control mechanism. Information in this image is
lost at this very first step because there is no gain control (adaptation) at the pixel
level.

1.1 The Biological Paradigm

Yet, biological organisms excel at solving problems in sensory perception and motor
control, by sustaining high computational throughput with minimal energy dissipation.
These are “real” physical systems, highly mobile and thus constraint by size, weight, and
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the availability of energetic resources. They are also required to operate at temperatures
near 300K where favorable conditions exist for the development of life.

Unlike most known forms of computing/calculating activity, information processing in
biological organisms, has a rather well defined goal: the detection, decomposition, and
transformation of sensory inputs into suitable representations (memory maps). These are
useful for the ultimate goal of the organism, the interaction with the environment —in a
closed loop configuration where the environment is integral part of a loop—. This interaction
may involve only lower level functions such as early pereptual processing and sensorimotor
coordination or it may include the higher level task of communication through speech and
a natural language which is a unique characteristic to the human species.
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Figure 2. (Bottom) “Mark” as captured by our imager, a silicon model of the verte-
brate distal retina. (Top) Intensity histogram. The light source is again positioned
to the right side of the image and it introduces a large gradient in illumination within
a single frame. The image captured by the silicon retina discards absolute illumi-
nation and preserves only local contrast information through local gain control at
the pixel level. Unlike the image in Figure 1, the presence of a large illumination
gradient does not degrade image acquisition here.

As such, neural computation is fundamentally concerned with the processing of signals
in the presence of noise. Noise can be ezogenous, due to the variability in the natural
environment (problem related) or endogenous to the system, due to internal sources of
structural variability and fluctuations —in a thermodynamic sense- in the actual physical
hardware. One could argue, that the effectiveness of biological systems stems from their
ability to deal effectively with the sources of variability. This suggest that an understanding
of the organizing and functionial principles in biological information processing systems may
be beneficial in the design of human engineered systems for performing similar tasks |3,
4]. This has been pursued over the last ten years by Carver Mead and his colleagues at
Caltech [3]. Our work follows similar lines of thought {5].
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In this paper, we discuss how such an approach has led to the development of an analog
VLSI silicon system, a second generation, contrast sensitive, silicon retina. The architec-
ture [6] is inspired by the processing performed at the outer plexiform layer of the vertebrate
retina. It is mapped onto silicon using minimal complexity current-mode circuits that ex-
ploit native properties of subthreshold MOS transistors. High computational throughput
at low levels of energy dissipation is achieved by employing analog processing in a massively
parallel architecture. We begin with a discussion of technology and circuit techniques that
are central to the implementation of the system.

2 Technology and Circuit Techniques

CMOS technology and, in particular, subthreshold MOS operation has long been rec-
ognized as the technology of choice for implementing digital VLSI and analog LSI circuits
that are constrained by power dissipation requirements (8, 7]. The advantages of using
standard digital CMOS processes for cost-effective engineering solutions to analog signal
processing problems are surveyed in [8] and are also discussed in [9]. CMOS has the highest
integration density attainable today, making it especially attractive for analog VLSI models
of neural computation [3]. Moreover, the physical properties of silicon and its native ox-
ides, together with recent advances in micromachining of electromechanical elements make
silicon-based technologies the prime candidate for highly integrated, truly complex, analog
computational systems. A final advantage is that CMOS silicon technologies are readily
available for experimentation and rapid prototyping through foundry services at relatively
low cost. This advantage of CMOS technologies accelerates the research and evolution of
complex systems.

2.1 Current—Mode MOS Circuits

Computation when must be performed at the focal plane of an imager using circuits that
are constrained to exist in essentially two dimensions, poses a challenging problem:

e First, the area that otherwise could be used to collect light, is now used by associated
processing circuitry and therefore the spatial resolution as well as the light sensitivity
of the system is compromised.

e Second, active circuits other than phototransducers, produce heat which can increase
the dark current of the phototransducing devices and the system performance can
again be compromised.

However, we believe that even with a two dimensional implementation medium, it is
possible to tradeoff light sensitivity and spatial resolution, for some essential processing at
the focal plane. This is exactly what it has been done in the system discussed in this paper
and the processing performed is that of robust local gain control.

The adopted design style, is current—-mode subthreshold CMOS, using circuits of minimal
complexity [10] offers the possibility of ultra low power dissipation with minimal complexity
circuitry commensurate with VLSI integration. Subthreshold operation offers the highest
processing rates per unit power. Current-mode (CM) operation yields large dynamic range,
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simple and elegant implementations of both linear and nonlinear computations, and low
power dissipation without sacrificing speed.

Our choice of subthreshold operation is based on the principle: “Active devices should
be used in the region where their transconductance per unit current is maxi-
mized.”. Because, this is the way to minimize the energy per operation and maximize the
speed per unit power consumed:

speed 1/ gm/C _i(g_,,,)z
power IAV ~ I%/g, C\ I

A squared factor is obtained because both voltage swings (AV') and propagation delays
(7) are inversely proportional to the transconductance for a given current level. However,
only a linear factor is realized if the power supply voltage is not reduced to match the voltage
swings ~ I/gm. The transconductance per unit current increases as the current decreases—
throughout the above-threshold and transistion regions—and reaches a maximum in the
subthreshold region.

By taking advantage of the high subthreshold transconductance per unit current, volt-
age swings are kept to a few thermal voltages, and reasonable processing bandwidths are
achieved. Dynamic power dissipation and supply noise are also reduced as a result of the
smaller voltage swings. Smaller voltage swings eliminate the current that is wasted in
charging and discharging parasitic capacitances, thereby allow us to use smaller current
signals and cut quiescent power dissipation as well. Thus, this approach yields relatively
fast analog circuits with power dissipation levels compatible with future trends in system
integration. Fast digital circuits can also be designed using source-coupled logic gates and
current steering (ECL-like circuits).

There also exists a powerful synthesis (and analysis) procedure which can be used to
generate a wide variety of circuits that perform linear and non-linear analog operations in
the current domain, and relies on the exponential form of current-voltage non-linearities.
This procedure is based on what is known as the Translinear Principle [14] originally used
in the context of bipolar transistors. The synthesized circuits are called translinear and
may involve operations of one or more variables, such as products, quotients, power terms
with fixed exponents, as well as scalar normalization of a vector quantity.

The application of the translinear principle to circuits implemented with MOS devices
operating in subthreshold saturation, and an extension to the subthreshold ohmic regime,
can be found in [5]. One fascinating aspect of translinear circuits is that while the currents
in its constitutive elements (the transistors) are exponentially dependent on temperature,
the overall input/output relationship is insensitive to isothermal temperature variations.
The effect of small local variations in fabrication parameters can also be shown to be
temperature independent.

To demonstrate how computational primitives emerge at the network level from device
physics of the underlying technology, let us consider an example of a summing operation,
local aggregation. We take a close look at diffusion, the physical process that underlies
local aggregation in the nervous system, contrast it with the process of diffusion in MOS
transistors and come up with a novel network design technique {6].
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2.2 The Diffusor

The current in an MOS transistor operating in subthreshold ohmic regime is an exact
difference of exponential functions of the drain and source voltages [7, 3, 5] and for an
NMOS the current is given by:

I =1Io S exp(x Vop) lexp(—Vsp) — exp(—Vpa)] (1)

substrate and are normalized to the thermal voltage (kT'/q). The constant Iy depends on
mobility (1) and other silicon physical properties. S is a geometry factor, the width W to
length L ratio the device. The constant & takes values between 0.6 and 0.9.

The exponential functions of voltage in the square brackets of Equation 1, correspond
to Boltzmann distributed charges at the source and drain. A charge based representation
of the current in an MOS transistor was presented by Maher and Mead in [11] and in [3].
Our Equation 2 corresponds to the second term (diffusion term) in the R.H.S of Equation
11 in Reference [11].

I < [Qs— Qp] (2)

The charge-based representation depicted in Equation 2, suggests that the MOS transistor
in subthreshold is a highly linear device in the charge domain; a property that finds many
uses in analog circuit design. Such view of an MOS transistor in subthreshold as a basic
diffusive element allows for the effective implementation of systems that exploit properties
of elliptic partial differential equations. With the appropriate logarithmic loads connected
to the source and drain, linear networks can be obtained. The same idea was more recently
revisited by Vittoz and Arreguit [12].

2.3 Local Aggregation Networks

Local gain control, an ultimate goal in the design of our system, necessiates the com-
putation of a current representing a local spatial average of the incident illumination. Lo-
cal aggregation (averaging), the addition of signals over a confined region of space occurs
throughout the nervous system. Aggregation was discussed in Chapter 6 of (3], (also in {13]),
and it is the basis for many neuromorphic silicon VLSI systems described therein.

Figure 3. Local aggregation using conductances and voltage/current variables (left)
or diffusors and charge/current variables (right).
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Two alternative analog implementations of this process on a discrete grid are shown in
Figure 3. The first network uses voltages and currents (Figure 3a). Its node equation is
av, 4G (1
—==— - (V;+ Vi + Vi + Vi) -V, 3
dt C<4(]+ r Vit m) n) ()
Note that term in large parenthesis is a first-order approximation to the Laplacian. How-
ever, this solution is not amenable to VLSI integration because transconductances (G) with
a large linear range consume large amounts of area and power.
The second network uses charges (positive) and currents (Figure 3b). Its node equation
dQy

5 =4D G(Qj +Qk+ Qi+ Qm) — Qn> 4)

Note that dQ,/dt is the same as the current supplied to node n by the network. This solu-
tion is easily realized by exploiting diffusion in subthreshold MOS transistors. It was shown
earlier that in the MOS transistor, the current is linearly proportional to the charge differ-
ence across the channel (See Equation 2). Therefore, the diffusion process may be modeled
using devices with identical geometry S and identical gate voltages. The former guarantees
they have the same diffusivity and the latter guarantees that the charge concentrations at
all the source/drains connected to node n are the same and equal Q.

In both of these networks, the boundary conditions may be set up by injecting current
into the appropriate nodes. In the voltage-mode network, the solution is the node voltages.
They are easily read without disturbing the network. On the otherhand, the network in
Figure 4 represents the solution by charge concentrations Qg and Qp at source/drains—not
the charge on the node capacitance. The source/drain charge cannot be measured directly,
it can be inferred from the node voltage.

is

2.4 Loaded Networks

The silicon implementation of a retina model also requires circuits for “loaded” networks.
This is the case were high conductances are attached to the nodes where currents are
injected. To observe the behaviour of a loaded network, we begin with a small segment of
a one dimensional network (Figure 4).

A voltage mode circuit model for a loaded network is shown in Figure 4(left) for which:

Ipqg = (G1/G2)(Ig — Ip)

This is a lumped parameter model where G; and Gy correspond to resistances per unit
length. The voltages on nodes P and @ referenced to ground, represent the state of the
network and can be read out using a differential amplifier with the negative input grounded.

The equivalent circuit using idealized non-linear conductances is shown in Figure 4(right).
The difference in currents through the diodes Dy and Dg are linearly related to the cur-
rent through the diffusor MOS transistor. This relationship can be derived from Equa-
tion 1 describing subthreshold conduction, and the ideal diode characteristics where Ip =
IsexplgVp/(kT)]. An expression can be derived for the current Ipg in terms of the currents
Ip and I, the reference voltage V, and the bias voltage Vi, where:
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Figure 4. Building blocks for linear networks using ideal (left) linear and (right) non-
linear elements.

tra= () e[ 2 1 - 1 e

The current I,, and S is the zero intercept current and geometry factor respectively for the

Figure 5. Current-mode CMOS building blocks for linear networks using (left) PMOS
transistor implementation, (right) NMOS single transistor current-conveyor imple-
mentation.

diffusor transistor My. Is is the reverse saturation current for the diode that is assumed
to be ideal. The currents in these circuits are identical if

G] _ Slm KVc—Vr
G (?)e"p[ (RT70) ]

Increasing Vo or reducing V, has the same effect as increasing (G; or reducing Gy. The
state of this network is represented by the charge at the nodes P and Q. Since the anode
of a diode is the reference level (zero negative charge), the currents Ip and I represent the
result. When diodes are not explicitely available in the process, diode connected PMOS
or NMOS transistors can be used as shown in Figure 5. With PMOS loads, the current
current Ipq is:

Ipg = <Shfmh> [ﬁhVC — Ko Vi

Sylony (kT'/q)
Unfortunately the anode of a diode or the drain terminal of a diode connected transistor is
not a good current source. When NMOS transistors are used as loads, there is the additional

[ (zattme - a1 ©)
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benefit, that of exploiting the current conveying properties of a single transistor [5], to
obtain the current outputs /p and Ig, on nodes that are low conductance (the drain terminal
are now excellent outputs for the currents). Using Equations 8.45 in [5] for the single
transistor current conveyor, the current Ipq is given as:

where Sh, Ionh, kn and Sy, Iony, Ky are geometry, zero bias intercept current and subthreshold
slope parameters for transistors M}, and M,, respectively.

The two node network segments discussed above can be used to construct models of
electrical conduction in biological networks. One such mode! for a loaded network is shown
in Figure 6.

Figure 6. One-dimensional loaded network. The lateral diffusors model gap junc-
tions between cells and the vertical ones model the membrane leakage. (a)
Schematic representation. (b) MOS transistor implementation.

The network shown in Figure 6 may be analyzed with the help of a diffusor model. The
node equation is

Li* = L+ Lj + I; = Do(Qo — Q) + Dn(Qs + Qx — 2Q5) (8)

where (Dp, and D,) are the effective diffusivities. This is a discrete approximation to the
differential equation:

: @
1) = D@~ Q@) + Dt LD

Compared to the Laplacian, there is an extra term that arises from the vertical diffu-
sors which shunt charge to ground. This equation yields the solution to the following
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optimization problem: Find the smooth function Q(z) that best fits the data I*(z) with
the minimum energy in its first derivative. The ratio Dy/D, is the cost associated with
the derivative energy—relative to the squared-error of the fit. Note that in this example
Qo > Q(z) and thus the extra term is positive.

The vertical elements afford us the opportunity to read the solution, i. e. the source/drain
charge @Q;. This is directly proportional to the vertical current /; if Qo is zero. Equation 1
predicts that Qo is negligibly small if V; is a few thermal voltages above V; (saturation).
Therefore, we can measure Q; by setting Vo at a high voltage and measuring the current
there. The actual value used does not matter because o only serves to set the quiescent
(zero input) drain/source charge.

For circuit analysis, it is convenient to use the Translinear Principle together with channel
current decomposition [5] to analyze these diffusor circuits:

~(Ve—Vr)
Ig, = Ije ¥
assuming I;’s drain-driven component is zero, i. e. M, is in saturation. Similar results are
obtained for Ig, and Io,; simply replace I; with I; and I, respectively.

This is immediately obvious if we observe that M}, and M, are a differential pair operating
subthreshold. These devices act as a current-divider for current driven by the charge at
their common node. The divider ratio is set by their effective widths which depend on the
geometrical width as well as the surface potential. Here, we have used the s approximation
to relate the surface potential to the gate-bulk voltage. The surface potential is constant
as long as the gate and bulk voltages are fixed—assuming the mobile charge is negligible.
Therefore, the divider ratio is constant and linear division occurs. However, as we enter
the transistion and above-threshold regions this assumption fails and the surface potential
starts to follow the source voltage. Consequently, the divider-ratio is no longer independent
of the current level. This limits the dynamic range of the diffusor.

The node equation may be rewritten as

LY=L+ Ly+1; =1 — Ig; + g, —Ig; +1;
and substituting the expressions for the current components, we get
A(Ve—Vr)
Ij*ZIj+€ kT/q ([,;“}‘Ik—Q[j) (9)

This is identical to Equation 8 if we replace I; with D,Q;, Ir with D,Qy, etc, and
exp(rq(Ve — V2)}/kT) by Dy/D,. The area efficiency and controlled coupling strength avail-
able using the diffusor this circuit particularly attractive for implementing the local aggre-
gation.

The network in Figure 6 was recently described in terms of “pseudo-conductances” [12].
We prefer the charge/current mode description as this provides an intuitive understanding
of the device and yielded the insight that enabled us to extend the translinear principle to
subthreshold MOS transistors in the ohmic region and diffusors.

In this section, we have provided a comprehensive view for current-mode approach in
subthreshold MOS circuits. The essence of this approach is the representation of variables
and parameters by charge, current, and diffusivity. Voltages and conductances are not used
explicitly. In the next section, we show how these techniques have been used at the system
level.
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3 System Organization

We will now discuss the organization of the contrast sensitive silicon retina. The archi-
tecture of the system is shown in Figure 7. There are two functional components in this
organization. The core, and the support circuitry.

Y - scan circuits

B\ Video Preamplitier
I X - scan circuits I

Figure 7. Fioorplan and system organization. Focal plane processing is performed
in the core area.

Support circuitry in the periphery extracts the data from the core and interfaces with
the display. The chip incorporates a video pre-amplifier and some digital logic for scanning
the processed images out of the array. This circuitry is discussed in detail in the paper
by Mead and Delbriick [17]. Standard NTSC video is produced off-chip using an FPGA
controller and a video amplifier.

The core of the silicon retina is an array of pixels with a six-neighbour connectivity (see
Figure 7). The wiring is included in the layout of the cell (see Figure 10) so that they
may be tiled in a hexagonal tesselation to form the focal plane processor. This is a mesh
processor architecture where two layers of processors, C and H, communicate both intra
and inter layer through local paths. This parallel processing scheme features locality of
reference and thus minimizes communication costs. We now proceed with the discussion of
the core circuitry.

3.1 Biological Organization

The analog silicon system in the core of the array is modeled after neurocircuitry in the
distal part of the vertebrate retina—called the outer-plexiform layer. Figure 8 illustrates
interactions between cells in this layer [15]. The well-known center/surround receptive field
emerges from this simple structure, consisting of just two types of neurons. Unlike the
ganglion cells in the inner retina and the majority of neurons in the nervous system, the
neurons that we model here have graded responses (they do not spike); thus this system is
well-suited to analog VLSI.

The photoreceptors are activated by light; they produce activity in the horizontal cells
through excitatory chemical synapses. The horizontal cells, in turn, suppress the activity
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Photo-receptors

Chemical
Synapses

Horizontal Cells

Figure 8. One-dimensional model of neurons and synapses in the outer-plexiform
layer. Based on the red-cone system in the turtle retina.

of the receptors through inhibitory chemical synapses. The receptors and horizontal cells
are electrically coupled to their neighbors by electrical synapses. These allow ionic currents
to flow from one cell to another, and are characterized by a certain conductance per unit
area.

In the biological system, contrast sensitivity —the normalized output that is proportional
to a local measure of contrast— is obtained by shunting inhibition. The horizontal cells
compute the local average intensity and modulate a conductance in the cone membrane
proportionately. Since the current supplied by the cone outer-segment is divided by this
conductance to produce the membrane voltage, the cone’s response will be proportional
to the ratio between its photoinput and the local average, i. e. to contrast. This is a very
simplified abstraction of the complex ion-channel dynamics involved. The advantage of
performing this complex operation at the focal plane is that the dynamic range is extended
(local automatic gain control).

3.2 Silicon Implementation

The basic analog MOS circuitry for a one dimensional pixel with two neighbor connec-
tivity is shown in Figure 9. We begin with the non-linear aspects of system operation, its
contrast sensitivity. The non-linear operation that leads to a local gain-control mechanism
in the silicon system is acheived through a mechanism that is qualitatively similar to the
biological counterpart, but quantitatively different (see discussion in [6]). Refering to Fig-
ure 9, the output current I.(xm, yn) at each pixel, can be given (approximately) in terms
of the input photocurrent I(Zm,¥y,) and a local average of this photocurrent in a pixel
neighborhood (M, N). This region may extend beyond the nearest neighbor. The fixed
current I, supplied by transistor M3 normalizes the result.

I(wm>y")
(I@m,ya) + Ty I(1,95)

At any particular intensity level, the outer-plexiform behaves like a linear system that
realizes a powerful second-order regularization algorithm [16] for edge detection. This can
be seen by performing an analysis of the circuit about a fixed operating point. To simplify
the equations we first assume that § = (I)g, where (I},) is the local average. Now we treat
the diffusors (devices My) between nodes C and C’ as if they had a fixed diffusitivity g.

Ia(zmy yn) =1 (10)
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Figure 9. One-dimensional implementation of outer-plexiform retinal processing.
There are two diffusive networks implemented by transistors M, and M;, which
model electrical synapses. These are coupled together by controlled current-
sources (devices M; and M;) that model chemical synapses. Nodes H in the upper
layer correspond to horizontal cells while those in the lower layer (C) correspond to
cones. The bipolar phototransistor (), models the outer segment of the cone and
M; models a leak in the horizontal cell membrane. Note that the actual system has
a six neighbor connectivity.

The diffusitivity of the devices M5 between nodes H and H’ in the horizontal network is
denoted by h. Then the simplified equations describing the full two—dimensional circuit on
a square grid are:

In(@m,yn) = I(@m,yn) +§ Z {Ic(xi, y5) — Ie(@m; yn)}

i=mt1
j=mnt1

I(@m,yn) = Luth Z {Un(@m, yn) — In(zi, y5)}
i=m+t1
j=ntl

Using the second—difference approximation for the laplacian, we obtain the continuous
versions of these equations

Inz,y) = Iy +§Vii(z,y) (11)
I(z,y) = L.—hV’In(2,v) (12)

with the internode distance normalized to unity. Solving for I} (z,y), we find

GhVAVEIn(@,y) + In(z, y) = I(zi,9;) (13)

This is the biharmonic equation used in computer vision to find an optimally smooth
interpolating function Iy (xz,y) for the noisy, spatially sampled data I(z;,y;); it yields the
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function with minimum energy in its second derivative [16]. The coefficient A = gh is called
the regularizing parameter; it determines the trade—off between smoothing and fitting the
data.

A one dimensional solution to this equation can be obtained using Green’s functions valid
for vanishing boundary conditions at plus and minus infinity; this has the characteristic
mexican hat shape.

1 |z} m

In(z,\) = DV exp(—|az|/v2A %) cos (W — Z) (14)

3.3 Layout Considerations

The two-layer architecture for the silicon retina can be accomodated in a cell area of
80\ x 94 using a single poly two metal technology. In the implementation reported in (6]
and here, a double poly, double metal technology is used and the cell area is 66\ x 73A. First
metal and polysilicon wires are used for interconnects; second metal is used to cover the
entire array, shielding the substrate from undesirable photogenerated carriers. Transistors
are implemented using both polysilicon layers.
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Figure 10. (Left) Photomicrograph of the chip. The surface is covered by second
metal except where there are openings for the phototransistors (the dark square
areas). Note the hexagonal connectivity between the pixels. (Right) Layout of the
basic cell.

The system has been fabricated with 230 x 210 pixels on 2 9.5 x 9.3 mm die in a 1.2um
n—well double metal, double poly, digital oriented CMOS technology. The chip incorporates
590,000 transistors in the 48,000 pixels and support circuitry, with the core operating in
subthreshold/transition region.
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4 Discussion

The analog VLSI system presented in this paper is essentially an analog floating point
processor. As a first step, the system computes the range (the voltages in the horizontal
cell synthycium correspond to the value of the exponent). This is the operating point of
the system; that is also how the automatic gain control is achieved. At an operating point,
sophisticated spatial filtering is performed to smooth the sampled data and enhance the
edges. Having separated the problem of precision and dynamic range, the signal processing
within the range can be done with low precision analog hardware. The issue of precision
versus dynamic range in analog circuits was addressed by Barrie Gilbert, 10 years ago
with his elegant implementation of an “array normalizer” that used bipolar transistors and
current-mode translinear circuits [14]. The system presented here is similar in two ways to
Gilbert’s array normalizer. First there is local normalization of the input current signals.
Second, all processing is done in the current domain where the translinear properties of
MOS subthreshold devices are exploited to implement the required functions. For a detail
discussion on Translinear circuits in subthreshold MOS please refer to [5].

A conservative estimate for the energetic efficiency can be obtained by assuming that
a total of 18 low precision operations (OP) are performed per pixel. Six operations are
necessary for the convolution with with bandpass kernel of Equation 14, six for the Laplacian
operator (Equation 12) and six for the local gain control computation (Equation 10). If the
system is biased so that at the pixel level the frequency response is 100Khz, approximately
1 x 10'2 low precision calculations per second are performed in the (210 x 230) pixels. The
power dissipation under the above biasing conditions is about 50mW when operating from
5 Volt power supplies. This is equivalent to 0.05 pW/OP.

This performance is a result of an optimization done at the system level, rather than
trying to optimize the energetic efficiency of an individual gate. The biological inspired
architecture resulted a system capable of dealing well with the both the variability in the
problem that is solving (data acquisition under variable illumination conditions) {2| and
at the same time enabling robust operation in the presence of structural variability and
mismatch present in MOS transistors [18].
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