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Abstract—This paper presents an overview of the current-mode ap-

proach for designing analog VLSI neural systems in subthreshold
CMOS technology. Emphasis is given to design techniques at the device
level using the current-controlled current conveyor and the translinear
principle. Circuits for associative memory and silicon retina systems
are used as examples. Where appropriate, we draw analogies to the
physics and organization of information processing in the nervous sys-
tem.

I. INTRODUCTION

IOLOGICAL information processing systems are compact,

energy efficient, and excel at sensory perception and motor
control—areas in which modern digital computers falter. Thus,
it is not surprising that computer scientists and engineers in their
quest to endow present-day computers with perceptual process-
ing capabilities are studying the organization and physics of
computation in the nervous system. Cowan and Sharpe give an
excellent account of important developments in this field over
the last 30 years [1].

Such studies yield models of computation that can be tested
in several ways. However, Mead eloquently and convincingly
argues in favor of a synthetic approach using silicon VLSI tech-
nology and analog circuits [2]. His group [3] and colleagues at
Caltech [4] have demonstrated how an ‘‘opportunistic ap-
proach’’ using ‘‘garden variety’” CMOS technology can result
in effective electronic systems that solve difficult problems in
computer vision.

We believe that just as the study of biological neural net-

"works can be done at different levels [5], [6], the engineering
(synthesis) of neurally inspired computing hardware requires a
similar approach. In this paper we address the synthesis of an-
alog VLSI neural systems, focusing on the circuit level. The
physics and properties of silicon CMOS technology constrain
our design methodology from the bottom end; the nature of the
problem that we are solving imposes additional constraints from
the top. We will show that an opportunistic approach at this
level can yield circuits having complex functionality and small
area with designs at the transistor level.

The use of complex building blocks such as transconductance
amplifiers and of differential voltage signals is avoided. Thus,
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we emphasize the necessity for a design methodology that is
free from previous notions of analog integrated circuit design
and is tailored toward micropower analog collective computa-
tional systems. The design methodology presented here is based
on current-mode (CM) subthreshold MOS circuits and is in-
spired by the organizational principles of biological neural cir-
cuits.

The paper is organized into five sections. Section II intro-
duces the silicon CMOS technology. A subthreshold MOS
model suitable for hand calculations is described along with
three different bias arrangements for the device. Next we pre-
sent data from fabricated chips that display the matching prop-
erties of MOS transistors in typical CMOS technologies. The
current-mode approach in circuit design is described in Section
III, where a current-controlled current conveyor and translinear
circuits are introduced. In Section IV, we show how these can
be employed in systems for associative processing and com-
puter vision. A discussion of our design methodology and of
the way in which it relates to actual biological microcircuits
concludes the paper.

II. SUBTHRESHOLD MOS DEVICE OPERATION

Subthreshold CMOS technology has long been recognized as
the technology of choice for implementing micropower digital
and analog LSI circuits [7]. It offers the same advantages for
the implementation of synthetic neural systems: high integra-
tion density, low power dissipation, and useful parasitic bipolar
devices. In addition, it is easily accessible to engineers and sci-
entists through silicon foundry services such as MOSIS [8].

A. Device Model

In this section, we present background material necessary for
the understanding of the circuits described in later sections of
the paper. For an n-type MOS transistor, the subthreshold cur-
rent [3], [9] is given by

I = Ioe(l—x)Vm/VT epr:/Vr(l — e ValVT 4 Vi/Vo) (1)

where V is the gate-to-source potential,V,, is the drain-to-
source potential, ¥, is the substrate (or well)-to-source potential
(body effect), I, is the zero-bias current for the given device,
Vi = kT/q is 26 mV at room temperature, ¥, is the Early volt-
age (which is proportional to the channel length), and « mea-
sures the effectiveness of the gate potential in controlling the
channel current. All potentials are measured with respect to the
source potential and are sign reversed for a p-type device.
Typical parameters for minimum-size devices (4 um X 4 um)
fabricated in a standard digital 2 um n-well process are I, =
0.72 X 1078 A, x = 0.75, and V, = 15.0 V. Thus the current

1045-9227/91/0300-0205$01.00 © 1991 1EEE

- —



206

changes by a factor of 10 for an 80 mV change in V, or a 240
mV change in V,, (up to about 100 nA, which is the limit of the
subthreshold region). The model matches experimental data
reasonably well [10] and is adequate for design simulations.

For devices in saturation (that is V,,, = 4¥;), neglecting the
Early effect and the body effect,

I

.= Ioeng\/Vl
ds .

(2)
This simplified equation, containing only the dependence on
V... is sufficient for most circuit designs. On the other hand,
(1) shows an explicit V,, dependence that underlies the role of
the substrate as another terminal which can control the drain-
source current.

In the saturation region, the MOS transistor is a voltage-con-
trolled current source with transconductance

o = e = £l (3)
an\ Vr
output conductance
al:l\ I(I\
w = T = 4
8tsu v, Ve (4)

The MOS transistor itself can perform several useful circuit
functions:
e In the common-source mode, it is an inverting amplifier
with high voltage gain: A = g,,/84.. (see Fig. 1(a)). For
our process A = «V,/Vy = 430.
e In the common-drain mode, it is a voltage follower with
low output resistance: 1/g,, (see Fig. 1(b)).
* In the common-gate mode, it is a current buffer with low
output conductance: g, (see Fig. 1(c)).

B. Device Matching

Traditional analog integrated circuits depend on good match-
ing between components. Therefore, large devices operating
above threshold are used to reduce mismatch to very low levels.
In contrast, to achieve VLSI densities we must employ transis-
tors that have small geometries, typically (4 um X 4 um). This
together with their operation in the subthreshold region, makes
the drain current strongly dependent on variations of fabrication
process parameters, in particular /. Characterization of the fab-
rication process and the matching properties of the basic de-
vices is thus of paramount importance because it provides the
ncessary information foi designing working systems.

In the following section we summarize our work in this area.
and present experimental data applicable to n-well and p-well
standard industrial processes. We have characterized large,
dense transistor arrays in the subthreshold region of operation
[11], [12]. More than 150 000 transistors have been tested using
an automated data acquisition system. Measurements exposed
three factors affecting matching: edge effects, striation effects,
and random variations (Fig. 2).

The edge effect manifests itself as a dependence of the tran-
sistor current on its position with respect to the surrounding
structures. N-type transistors surrounded by other n-type tran-
sistors have a larger drain current than identically designed and
biased transistors on the edges of the arrays. The opposite is
true for p-type transistors. Variations in transistor currents
caused by the edge effect typically range from 5% to 15% for
n-type transistors and from 20% to 50% for p-type transistors.

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2.

NO. 2. MARCH 1991

" Vout

(a) (b) ()
Fig. 1. The three modes of operation of a transistor: (a) high gain inverting
amplifier (common source). (b) voltage follower (common drain), and (c)
current buffer (common gate).
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Fig. 2. Density plot of currents in a 32 X 32 array of 16 yum X 16 um
n-channel transistors fabricated in a p-well process. Each transistor is rep-
resented by a square: the current is coded by the shade of gray where the
minimum and maximum values are represented by black and white, re-
spectively.

The striation effect exhibits itself as a sinusoidal spatial vari-
ation in transistor current. The amplitude is about 30% of the
average current and the spatial period varies slowly from 100
um to 200 um for p-type devices in the p-well process.

The random variation follows a Gaussian distribution (Fig.
3). Fig. 4 shows the dependence of its normalized standard de-
viation on transistor size. Each data point represents measure-
ments from approximately 1000 transistors. The standard de-
viation of the current is proportional to the current and inversely
proportional to the length of square devices (i.e., devices whose
length and width are the same):

1y
0; = 0y f (5)
where o, is the proportionality constant for the given device
type, I, is the nominal device current, and L is the length of

the device (square geometry).
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Fig. 3. Histogram for the subthreshold current of 1024 n-channel MOS-
FET’s fabricated in an n-well process.
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Fig. 4. Dependence of normalized standard deviation of subthreshold drain
current on transistor size. They all have square geometries with channel
length L and were fabricated in the same process as those of Fig. 2.
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Edge effects and striation effects present significant problems
in large-scale analog computational systems, since they cannot
be reduced by increasing transistor area. The striation effect is
especially damaging, since the orientation of the striations is
not known a priori. The edge effect can be cancelled by sym-
metrical placement of transistors.

At the system level, random variations are addressed by dis-
tributing computations over a large number of elements. We
can reduce the normalized standard deviation of the currents
from matched current sources by a factor of vN by using N
small devices for each current source. Furthermore, we can po-
sition our N small devices in a way that minimizes the edge and
striation effects. Finally, we can take advantage of this distri-
bution of the signal over many devices to implement parallel
computation. Thus, our systems are carefully designed to
simultaneously perform parallel distributed processing and re-
duce matching problems.

~—
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At the circuit level, we bias the transistors at a constant I
rather than a constant ¥ [7]. This is so because the variability
of I, is much larger than the variability of x [11]. Biasing at a
constant current and thinking in terms of current-domain [10}
signals is the essence of the current-mode approach in circuit
design.

III. CircuiT TECHNIQUES: THE CURRENT-MODE
APPROACH

There is no widely accepted definition for the current-mode
approach in circuit design [13]. By current-mode, we shall refer
to circuits that use both currents and voltages (like every elec-
tronic circuit) but where signals are represented as currents and
voltages play only an incidental role.

Translinear circuits [14] form a large subclass of current-
mode circuits, [13, ch. 2]. Designs based on the translinear
principle enable complex computations to be performed in the
analog domain without the explicit use of differential voltage
signals.

A. The Translinear Principle

The translinear principle can be stated as follows:

In a closed loop containing an equal number of oppositely
connected translinear elements, the product of the current
densities in the elements connected in one direction is equal
to the corresponding product for elements connected in the
opposite direction.

Using this principle, computationally powerful current-mode
circuits can be synthesized. A translinear element is simply a
physical device with a linear relationship between transcon-
ductance and current. Traditionally, translinear circuits have
been built using bipolar transistors. However, the MOS transis-
tor is also a translinear element when operated in the subthresh-
old region (see (3)); the absence of a base current makes it an
ideal one! The resulting translinear circuits can perform both
linear and nonlinear operations on current inputs, including
products, quotients, and power terms with fixed exponents [14].
The current mirror is a trivial example of a translinear circuit,
and our silicon optical motion detector [15] uses the translinear
multiplier/divider in Fig. 5 to compute the correlation I, be-
tween two signals, Iy and /,. By applying the translinear prin-
ciple around the loop indicated by the arrows, we find

Il
Iyl = Iy or I, = %f
w

(6)

where I, normalizes the result.
The above relation can also be derived by summing the volt-
ages around the loop GND-A-B-C-GND (conservation of en-

ergy):
Vi+Va+ Vs + V=0

Replacing the gate-source voltages for M,, M,, M,, and M,
with their respective drain-source currents through (2) and as-
suming the same « and J, for all devices, we obtain

Ve (L\ Ve [\ Ve [L\ Ve (L
T (Z) + T (2) - T (2) - T (2) =0
p "<10> ) TR TG
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Fig. 5. A simple translinear circuit that performs a normal product com-
putation.
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from which (6) readily follows.

Yet another way of looking at the function of the circuit in
Fig. 5 is as a log-antilog block. Transistor M, does the log-ing
and M, the antilog-ing. The other two transistors serve as volt-
age level shifters; this is equivalent to normalization in the cur-
rent domain.

The translinear property of subthreshold MOS transistors is
also useful for analyzing the dynamics (temporal response) of
large-scale collective computational systems [16].

or

B. The Current Conveyor

Smith and Sedra introduced the concept of a current conveyor
as an ingenious hybrid voltage/current three-port device. It is a
versatile building block for analog signal processing applica-
tions designed to replace the operational amplifier [17].

Although the original implementation used five bipolar tran-
sistors, the current conveyor can perhaps be most easily ex-
plained by considering a single device. A transistor can transfer
a current from a high-conductance to a low-conductance node
(see Fig. 1(c)) or a voltage from a high-impedance to a low-
impedance node (see Fig. 1(b)). These two characteristics can
be exploited simultaneously (see Fig. 6(a)) such that the device
acts as a voltage follower (node X will follow voltage changes
at node Y) and conveys the current at X to the low-conductance
node Z. This dual role, obtained in this case using only a single
transistor, captures the essence of the current conveyor.

Current conveyors can easily interact with one another as
shown in Fig. 6(b). Here, node X follows the greatest input
voltage Vy,, turning off all other current conveyors. The tail
current Iy is then entirely conveyed to the output node Z; iden-
tifying the ith input voltage as being the greatest.

A two-transistor current-controlled current conveyor is shown
in Fig. 7(a). The authors first proposed its use in a scheme for
two-way communication over a single line [10], [18], [20] (see
Section IV) and as a nonthresholding neuron in an earlier as-
sociative memory design [19]. As with the standard current
conveyor [171, the current-controlled current conveyor has a
communication node X, a control node Y, and a supply node Z.
However, the potential at node X is determined by the control
current Iy. Thus, the current-controlled current conveyor’s op-
eration can be described by two simple relationships:

9(Vx) = Iy (7

L=1I

v Y, 2 z, z
' ‘l'zy 1'22 "l'zn
Vy Yy, Vy2 von VWn
X
(a) (b)

Fig. 6. (a) A single transistor current conveyor circuit. In this configura-
tion, Y is a voltage input node, Z is a current output node, and X is a hybrid
voltage/current node. (b) N single-transistor current conveyors interact
through a single line to perform a voltage input winner-takes-all function.
The two-transistor version of this circuit is the well-known differential pair.

(a) (b)

Fig. 7. (a) The two-transistor current-controlled current conveyor. (b) Ap-
plication of the current-controlled current conveyor to fan-out copies of the
current /.

where the 9( ) is the function that relates the output Vx to the
control current I,. For subthreshold operation this function is
the logarithm but it continuously transforms into a square root
as the current increases and the device operates above thresh-
old.

When node Z is connected to the power supply, the two-tran-
sistor current-controlled current conveyor is the simplest form
of a trans-resistance amplifier—a single transistor is the sim-
plest form of a trans-conductance amplifier.

At the system level it is important to note that, by using tran-
sistors identical to M,, we can mirror the control current /y by
collecting their gates to node X (see Fig. 7(b)). This facilitates
fan-out, distribution of an output signal (current) in the form of
a voltage, as well as fan-in, the aggregation of input signals
which are currents; both can be done simultaneously over a sin-
gle physical line.

IV. SYSTEM APPLICATIONS

Let us now consider the concepts and circuits described ear-
lier in the context of larger systems—associative memories and
silicon vision chips with a focus at local circuits.

The bidirectional associative memory (BAM) model was
chosen as a test-bed for silicon associative processing ideas. It
is a good example of an analog VLSI system whose organiza-
tion can be *‘loosely’’ related to some neural computation. On
the other hand, the model for outer-plexiform retinal processing
is truly biologically inspired. This distinction is necessary be-
cause the definitions for synthetic ‘‘neurons’’ and ‘‘synapses’’
in the two systems refer to very different structures.

The discussion of the BAM circuits is more quantitative, em-
phasizing the circuit properties of the current-controlled current
conveyors. The discussion of the silicon vision system, pro-
vides on the other hand, a more *‘gentle’” transition from cir-
cuits to systems.



ANDREOU ef al.. CURRENT-MODE SUBTHRESHOLD MOS CIRCUITS

A. Associative Memory

Two different BAM architectures have been implemented.
Both use unary signal representations (‘‘grandmother cells’’)
and have been discussed in detail elsewhere [18], [19]. The cir-
cuit techniques that follow have been employed in the second
generation, four-layer BAM architecture [18] to realize pro-
grammable reciprocal connections and lateral inhibition at
nearly static RAM densities. They also serve as examples of
three types of interactions between assemblies of current-con-
trolled current conveyors.

1) Bidirectional Junction: In a neuronal circuit, the inter-
action between neurons is mediated by specialized structures
called synapses [21]. A neuron receives its inputs from other
neurons through synaptic junctions which may have different
efficacies. In a typical VLSI implementation the synapses are
implemented as a two-dimensional array with neurons on the
periphery [18], [19]. This is because O(N?) synapses are re-
quired in a network with N neurons.

The two transistor circuit' shown in Fig. 8(a) allows two-way
interaction between synthetic neurons (current-controlled cur-
rent conveyors) connected to nodes n, and n, (as in Fig. 8(b)).
Each node receives a voltage input and produces a current at
the other node; each transistor behaves like a synaptic junction.
Interaction is turned on by grounding S, turned off by pulling §
up to V,.

If the interaction is turned off (S is at V) and V,, is greater
than V,,, M, is shut off, and M, sources the current:

L = Ioex(Vn.—Vnz)/Vr = Ihe

Thus, the current leakage /,4is proportional to €, the dynamic
range of the current signals. For signals in the range of 100 pA
to 100 nA, for instance, e = 10%, and I,z = 1 fA in the worst
case.

In our bidirectional communication scheme, synthetic neuron
B (on the right in Fig. 8(b)) receives the current signal /,, from
neuron A as f,,. Simultaneously, synthetic neuron A receives
the current signal J,, from neuron B as [;,. Small changes in the
current signal /,, causes slight changes in the received current
I,,. These variations are related by

Aby _ gau _

1
Al 8m Al

as before. Hence, bidirectional communication is possible with
less than —50 dB cross-talk.

If the two transistors forming the bidirectional junction are
fabricated in an isolated well, the well voltage can be used to
modulate the interaction between neurons. The circuit of Fig.
8(b) was fabricated in a standard, 2 um CMOS process using
4 um X 4 pm transistors. Experimental data, including the
modulation of the well voltage (V,,), are shown in Fig. 9.

Well modulation has also been successfully employed in a
current-mode implementation of the Herault-Jutten neural net-
work model [22]. This system separates, in real time, unknown
mixed signals such as speech, through a Hebbian-like unsuper-
vised learning algorithm.

The bidirectional junction communication scheme is by itself
also a two-input, two-output translinear circuit!

'In one of our previous papers [10], this was referred to as a reciprocal
junction. For reasons that will become clear in the discussion of the retina
circuits, this naming convention is not used anymore.

——
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neuron B

@ ' )

Fig. 8. (a) Bidirectional junction. A voltage signal applied to node n, is
converted to a current signal at node n,, and vice versa. (b) Two synthetic
neurons communicate through a bidirectional junction. They send current
signals /;, and I, and receive signals [, and I,,.

2) Winner-Takes-All: In the current-mode winner-takes-all
(WTA) circuit, shown in Fig. 10, N current conveyors compete
for current supplied to a common line. The current, ., is steered
to the output of the conveyor with the largest input current; all
other outputs are zero. This is an adaptation of Lazzaro and
Mead’s original circuit [23) to provide current outputs. Input
currents are supplied to the control nodes Y, output currents are
obtained from the supply nodes Z, and the communication nodes
X are connected together.

Each conveyor sees a voltage Vy at its communication node.
Consequently, for each conveyor, if I}, < 9(Vy) (see (7)), M,
enters the linear region ( V,;, < 4V7), turning M, off. Otherwise,
M, adjusts Vy to set 9(Vx) = Iy. Thus the conveyor with the
largest input sets the voltage on the common line and conveys
the current Iy to its supply node.

When two input currents are very similar ( for instance I, =
Iy,), the conversion from input to output is exponential. In this
case, M, stays in saturation and M, remains on. Iy, develops a
voltage signal across M,’s drain conductance g,,,, which is
converted exponentially to current by M, and similarly for Iy,.
The sum of the output currents (I, + I, ) is equal to Iy. The
differential gain for small signals is

Al _ gn _ &

Aly - 8dsat B Iy

where Iy = Iy + Aly, Iy, = Iy — Aly, I, = I; + Al and I,
= I, — Al;. Hence, the small-signal differential gain is 430 for
normalized inputs and outputs—a 1% input difference produces
a voltage difference of 0.15 V, so the corresponding outputs
differ by a factor of 75.

3) Pyramidal Neurons: This local circuit arrangement from
the middle neuron layer of the BAM is chosen as an example
to address two issues. First, we show how complementary cur-
rent-controlled current conveyors (employing n-type and p-type
transistors) can be connected; second, we discuss a metastabil-
ity problem associated with such connection and our solution to
it.

Cortical pyramidal neurons are arranged in layers with pro-
jections from one layer to the next. Their apical dendrites re-
ceive incoming signals while their axons carry outgoing sig-
nals. Pyramidal cell axons have collaterals that branch back and
contact basal dendrites of neighboring cells; these lateral inter-
actions are mainly inhibitory (see Fig. 11(a)).

Fig. 11(b) shows our pyramidal cell circuit. The circuit con-
sists of an n-type synthetic neuron (M,, M,), a p-type WTA
cell (M3, M,), and an extra transistor (Ms) to keep the circuit
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Fig. 9. (a) Experimental data for the bidirectional communication scheme
obtained by stepping /;, from 5 nA to 100 nA, with /,, held at 50 nA, for
V,, values: 0, =50 mV, and —100 mV. I,, is directly proportional to I,
the slopes are 0.93, 0.57, and 0.33. (b) Simultaneously, I, remained con-
stant; the slopes are less than —0.004. [, /I, equals 1.04, 0.59, and 0.33,
showing that the modulation is symmetric.

v, y

Z 2 Z2
llYl lIZw l“/'z l‘h
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|
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N |
jes

Fig. 10. Winner-takes-all (WTA) circuit. N current signals are applied to
N current-controlled current conveyors. The conveyor that has the largest
input conveys the current Iy supplied to the common line; the other con-
veyors have zero output.

in the proper mode of operation when it is first turned on. This
is necessary, because when an n-type and a p-type current-con-
trolled current conveyor feed each other, their current buffering
devices (M, and M;) can act as common-source amplifiers. This
creates an undesirable positive feedback loop causing these de-
vices to enter the linear region, thus driving X, and X, to the
power supply rails. M prevents this by keeping the conveyor’s
buffer (M, ) in saturation. Although My shunts part of the in-
coming current, a fixed fraction of the input is always passed
to the WTA celi [18].

Apical
Dendrites

Basal
Dendrites

Ax
Collaterals

(@) (b)

Fig. 11. Pyramidal neuron circuit of the bidirectional associative memory.
Demonstrates how current-controlled current conveyors of different tran-
sistor type can interact vertically through their control and output nodes.

The circuit has two communication nodes, Xy and X;. Xy is
analogous to both the apical dendrites and the axon of a cortical
pyramidal neuron in that it carries both the incoming and out-
going excitatory signals. X; mediates lateral inhibitory inter-
actions, mimicking the cortical cell’s basal dendrites and re-
current axon collaterals.

A pyramidal neuron contributes a unit current /y, to the WTA
competition and also has a quiescent current of I, Therefore,
its outgoing signal 9(Vy,) is Iy in the quiescent state but in-
creases to (m + 1)1, (where m is the number of competing
cells) when it is winning (that is, when the input current at X,
exceeds all other input currents).

B. Silicon Vision

Our device-level design methodology and current-domain
signal representations can also be used for implementing analog
VLSI silicon retinas [3, ch.15]. However, unlike the circuits
for associative memory, here there is a direct analogy between
the actual biological circuits and the silicon counterparts.

Fig. 12(a) illustrates interactions [24] between cells in the
outer-plexiform layer of a retina. No attempt is being made here
to reverse-engineer the retina of any particular species; the tur-
tle retina, though, has similar connections in the outer-plexi-
form. This simple structure, consisting of just two types of neu-
rons, gives the well-known center/surround receptive field. In
engineering terms, this system can be thought as a linear spatial
band-pass filter, whose impulse response is the difference of
two Gaussians (DOG) or the Laplacian [6]. However, both the
biological and the silicon systems are nonlinear and do much
more than that!

The photoreceptors are activated by light; they produce ac-
tivity in the horizontal cells through excitatory chemical syn-
apses. The horizontal cells, in turn, suppress the activity of the
receptors through inhibitory chemical synapses. The receptors
and horizontal cells are electrically coupled to their neighbors
by gap junctions. These electrical synapses allow ionic currents
to flow from one cell to another, and are characterized by a
certain conductance per unit area.

Mapping of outer-plexiform retina processing onto silicon can
be done in several ways [25]. In a design that does not employ
differential voltage signals [20], chemical synapses may be im-
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Gap pd Synapses
J i
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Fig. 12. (a) Illustration of cells and synapses in the outer-plexiform layer
of a retina. Light excites the photoreceptors. (b) Current-mode electronic
implementation of outer-plexiform retinal processing.

- plemented using nonlinear transconductances while gap junc-
tions are realized using resistances (Fig. 12). Nodes (equipo-
tential regions) in the top layer correspond to receptors R while
those in the lower layer represent the horizontal cells H. The
two layers are coupled vertically using our two-transistor cur-
rent-controlled current conveyor circuit and laterally using two
resistive networks. A parasitic bipolar transistor is used to
transduce light into current. It sources current to the receptor
nodes while M, sinks current from those nodes; these opposing

~ effects correspond to excitation and inhibition. M, sources cur-
rent (excites) the horizontal cell nodes. The bias current Iy at
the source of device M, sets its transconductance. For sub-
threshoid operation, the voltages encode photocurrents loga-
rithmically, allowing a large dynamic range.

Fig. 13 shows experimental data from a fabricated circuit that
verifies its function and robustness in individual transistor mis-
match. The appearance of the on-center/off-surround organi-
zation is evident. The activation neighborhood can be con-
trolled by adjusting the space constants to the two resistive
networks (conductance of gap junctions). When GR = 0 (ab-
sence of gap junctions between receptors), the system looses its
ability to develop a truly ‘‘Mexican-hat’’ response and has a
local winner-takes-all behavior, i.e., activation of a single node,
with a small neighborhood of inhibition.

This system is used as a front end in a number of different
applications. Depending on the application, the output of the
circuit can be taken from different points. For example, a cur-
rent-output signal is provided at the drain of device M,. This
encodes the difference between the activation in the two resis-
tive networks and is independent of the light intensity. The out-
put of the circuit can also be taken as the voltage at the receptor
terminals; this, however, provides a signal that is dependent on
the absolute light intensity.

If a current output signal is required, it may be advantageous
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Fig. 13. Experimental results from one-dimensional 17 node outer-plexi-
form silicon retina. This circuit has been prototyped out of large MOS
transistor arrays (W: L = 800:4 pm). Thus the coupling conductances and
the currents are appropriately scaled, but the circuit still operates in
subthreshold (GH = 2 mS and GR = 40 uS). The bias currents Iy are set
to a nominal value of 30 xA and under uniform illumination the receptors
are supplied with 10 pA currents. The two sets of data correspond to *‘uni-

- form’’ illumination (diamonds) and ‘‘delta function’’ excitation (filled
dots). In the latter case, receptor node 9 is excited with an additional cur-
rent of 20 pA.

Fig. 14. Alternative output circuit that employs the translinear principle
to convert a floating differential voltage signal to one referenced to GND.
Transistor M, encodes the same current signal as M,. This circuit is repli-
cated in a two-dimensional array.

to use the alternative scheme (Fig. 14) that couples the outer-
plexiform to other circuitry, such as inner-plexiform neurons.
This provides for a better current signal and prevents undesir-
able interactions between two subsystems. It also demonstrates
how the translinear principle is employed to convert a differ-
ential voltage signal Vg, not referenced to the ground, to one
that is referenced to ground, V. The operation of this circuit
follows the discussion of the translinear multiplier/divider in
Section III.

V. DISCUSSION

Our design methodology is based on a few important princi-
ples. These are summarized below, where we also attempt to
justify our earlier statement that these principles were drawn as
analogies from known physics and organization of information
processing in the nervous system.
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o Computations are carried out in the analog domain. This
results in simpler, more effective, and more compact functional
blocks that interact comfortably with the ‘‘real world.”” Outer-
plexiform retinal processing is a good example of how simple
analog primitives can perform a massively parallel vision com-
putation.

o Systems are designed with power dissipation and area ef-
ficiency as prime engineering constraints. The high level of
parallelism attainable with VLSI analog computation imposes
serious limits on the amount of power that each subcircuit can
be allowed to dissipate. This is why we operate devices with
current in the nA and even in the pA range. Subthreshold MOS
currents are comparable to ionic currents in cell membranes,

. which range from a few picoamperes to a few microamperes.
We also employ transistors of minimum size to achieve high
integration density.

e Random variations in transistor characteristics do not af-
fect system performance. Subthreshold MOS operation and
small geometry devices result in poor matching in the charac-
teristics of individual transistors. However, we are not con-
cerned with accuracy or matching in the basic elements because
our design methodology at both the circuit and the system level
compensates for that. This is true for biological systems; they
perform well despite the much poorer precision of their neurons

" and synaptic connections. The better matching in the basic sil-
icon elements also implies that one needs to be eclectic at the
local circuit level on how far the neural paradigm can be used.

e Economize on interconnects: Both at the local circuit level
and at the architectural level, we are concerned with intercon-
nects. Global communications are expensive not only in space
but also in energy. Where possible, computation must be done
with the smallest amount of global interactions. The biologi-
cally inspired outer-plexiform system is a good example of how
complex parallel processing can be achieved through only near-
est neighbor interactions. )

e Exploit the physics of basic devices: In our silicon circuits,
we have exploited the translinear property of subthreshold MOS
transistor for synthesis and analysis. Unlike traditional analog
design, optimizing circuits by careful sizing of the devices is
not necessary. This is because the transconductance is deter-
mined by the current signals and does not depend on the ge-
ometry. Longer channels are used to avoid the Early effect and
large devices are employed in a few critical parts of the system
to improve accuracy in the computation (current matching), for
example, devices M, in the WTA circuit. Translinear circuits
are a classical example of how a rich form for circuit design
emerges from the properties of the basic units. There is also a
direct analogy between the device physics of voltage-gated ionic
channels in excitable membranes and that of the MOS transistor
in the subthreshold region [3], [27]. Their operation is based
on Boltzmann’s law; thus both exhibit the same exponential de-
pendence of current on voltage, although this dependence is
sometimes steeper in ionic channels because of correlated charge
control [26].

o Local negative feedback: The current-controlled current
conveyor is a circuit that depends strongly on local negative
feedback for its function. It is interesting to note that in the
biological outer-plexiform circuit, the local coupling of the two
jonic channels, the excitatory on the horizontal cells and the
inhibitory on the receptors, also form a local negative feedback
loop that determines the temporal properties in the outer-
plexiform. This coupling between two cells through an excita-
tory and an inhibitory synapse is referred to as a reciprocal junc-

tion or reciprocal arrangement [21]. However, one should be
careful in making such analogies; it is highly unlikely that there
exist a single biological structure that performs the function of
transistor M, in the current-controlled current conveyor.

e Current-domain signal representation: The circuits de-
scribed in this paper employ unidirectional current signals. Our
previous experience with bidirectional current mode circuits for
associative memories [9] was not very encouraging. There were
systematic mismatches in currents because of extra mirroring
operations in devices of different type [18]. This mirroring op-
eration not only consumes more space; it also makes the archi-
tecture less fault tolerant (it includes unnecessary circuitry). Of
course, differential current signal representations require an ex-
tra communication line; the bidirectional communication
scheme described earlier was employed to solve the problem on
silicon.

The dynamics in our circuits, an important topic, have not
been discussed in this paper. A systematic methodology for
compensating the circuits and ensuring for stability, much like
the techniques suggested by Wyatt and Standley [28], would
help the designer of these systems.

We have used the two-layer retina as an example of how to
map biological microcircuits directly into silicon. Chemical
synapses do not present a problem; they are nicely implemented
with transconductances. The ‘‘Mexican-hat>’ response is ob-
tained using only nearest neighbor interactions, which mini-
mizes wiring in an analog VLSI implementation. Its response
is robust over a wide range of operating conditions. The im-
portance of this receptive field is evident from the fact that it is
used in the very first brain tissue, the outer-plexiform of the
retina. Similar receptive fields have been found in other parts
of the brain. Through evolution, nature has discovered the sim-
plest, most reliable, and most efficient architectures to accom-
plish the task at hand—properties that anyone wishing to build
large-scale analog information processing systems treasures.
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