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Scalable architectures for the implementation of associative memories
that produce regular and dense designs are presented. A combination
of low power consumption and good performance is achieved by us-
ing Current-Mode MOS circuits operating in subthreshold conduction.
The design methodology and a 48-neuron memory chip are described.

1 Introduction

Biological information processing systems outperform modern digital
machines in problems that require processing large amounts of fuzzy,
noisy, real -world data, such as pattern recognition and classification.
The shortcomings of conventional approaches have forced computer
scientists and engineers to borrow paradigms from biology and cog-
nitive science to solve problems in sensory perception and machine
intelligence. One such paradigm is the assoctative memory that han-
dles noisy and even novel inputs, has fault-tolerant properties, and
the potential of a massively parallel implementation. Various forms of
this model have been investigated by Kohonen [1,2] and Hopfield [3].

The smart memories project, using an elegant five transistor mem-
ory cell design [4], and work by Jones et al [5] emphasized digital VLSI
content addressable memories for specialized computing engines. Fur-
thermore, new parallel- programming languages, such as Linda [6], use
assoctative lookup to create and coordinate processes. Digital imple-
mentations of more powerful associative memory models which search
for the best match instead of an exact match have been pursued [7].
However, digital electronic implementation cannot match the mas-
sive parallelism and truly concurrent processing possible with analog
circuitry, nor can they handle degraded signals [8].
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In this paper we present two Analog VLSI architectures for asso-
ciative memories that use current signals and employ native device
physics to implement area-efficier’t computational primitives. Sub-
threshold Current-Mode circuits are used to achieve high functional-
ity, density and performance. The design methodology is applicable
to analog neural systems [9] as well as digital systems [10] and mixed
analog/digital systems [8]. This approach offers a viable alternative
to bipolar designs when low voltage operation and low power con-
sumption are of prime concern.

The paper closes with a description of the chip that we fabricated
using the first architecture, its performance, and the new architecture
that evolved from that experience.

2 Associative Memory Models

Let X = (z1,%2,...,25)7 and ¥ = (y1,¥2,...,Ym)T Tepresent the
states of two neuron layers, of size n and m respectively '. A generic
associative memory operates as follows:

In the store mode, the current state of each layer is stored, forming
the association (A, B).

In the recall mode, the network converges to the stored state (A, B)
nearest to its initial state (X,Y).

If the patterns in each stored pair (A, B) are identical, the memory is
said to be autoassociative, otherwise it is heteroassociative.

Neurons receive inputs from neurons in another layer through
synapses. A neuron’s activation is the linear sum of these inputs
weighted by the synaptic efficacies. We make the following distinc-
tions:

e A thresholding neuron has two discrete states, £ = *1, deter-
mined by the sign of its activation, v. Thus z = sgn(v).

e A non-thresholding neuron’s output equals its activation.

The network we introduce is both bidirectional and symmetric:

e In a bidirectional network, neurons in the A layer determine the
states of those in the B layer, and vice versa. -

LColumn vectors will be denoted by capital letters and their components by
small letters with appropriate subscripts.
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* In a symmetric network, if the input to neuron ¢ from neuron j
is weighted by w;;, then wj; = w;;.

2.1 Three-Layer Model

This model has two input/output (I/O) layers, F4 and Fg, with n
and m thresholding neurons, respectively, and a hidden layer, Fy,
with s non-thresholding neurons (Figure 1). Our network stores up

Figure 1: Three-Layer Bidirectional Associative Memory
model. A middle-layer neuron (hidden unit) is assigned to
each association stored.

to s associations, labeled by the index set {2, which are programmed
as follows:

A hidden unit is assigned to each association. For asso-
ciation (A’, B?) the weights between the chosen hidden
unit (also labeled with the superscript p) and neurons in
F4 and Fp are simply set to the corresponding compo-
nent of A? or B*. Thus, for Fa, w, = w;, = af, and for
Fp, wy; = w;, = b,

A similar, non-bidirectional network, was studied by Baum et. al. [11].
During recall, the states of neurons in either F4 or Fj are initialized.
All the neurons are then allowed to update their states by threshold-
ing their activation. We shall show that if the stored vectors satisfy .
certain conditions the vector pair closest to the initial state is recalled.
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Formally, if the F4 neurons are initialized to A, then the recalled as-
sociation (A%, B?) has the property

AT A° = max AT A?
pEN

Since the activation, v;, of the jth neuron in Fp is

n
P T . s
vj = Z WjpU" = z wzpzwmaﬂ

pEN pEN i=1

N Y P
and w;, = b, w, = af, we have

v = Z bfZafa.- = Zb;ATAp (1)

pEN  i=1 PEN

Rewriting this equation as

v; =bIATA” + Y bIATAP
pEfl, p#0

we find that y; = sgn(v;) = b7 if

1. The inner product AT A between the input vector A and the
target vector A? is positive, and

2. The sum of the inner products between the input vector and
the other stored vectors is less than AT A°.

Under these conditions the jth neuron’s state becomes b and the
closest vector BY is recalled. Feeding B° back through the network
yields A if the above conditions hold for the B vectors as well. The
condition AT A° > 0 guarantees that the complement of the target
vector is not recalled. If these conditions fail, the recalled vector will
be a combination of the stored vectors.

2.2 Equivalent Networks

This three layer network is equivalent to Kosko’s two layer Bidirec-
tional Associative Memory (BAM) [12].

Indeed, a two-layer BAM with n neurons in ¥4 and m neurons in
Fp has an n X m connection matrix M (= [m;;]) which is the sum of
outer products ABT :

m;_,‘ = Z Gfb? (2)

ari)
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During recall, the activation of the jth neuron in Fgis
n
Ui =) mia (3)
=1
Using Equation 2 and reversing the order of summation, we find

n n
v :Za;Zafbfz Eb‘;Za,'af

=1 pEN peN i=1

which is Equation 1.

Kosko proved that every real matrix M is a bidirectionally stable
associative memory [12]. Therefore, the three layer BAM also has
convergent trajectories for any set of stored vectors.

From Equation 2, it should be obvious that if A — B? for all p,
the connection matrix is symmetric as in a Hopfield net [3] with n
neurons.

2.3 Hardware Requirements

Of the two BAM models, the three layer one has the highest storage
and computational efficiency, making it the best candidate for VLSI.

An n X n two layer BAM has n? weights which take on integer
values, |m;;| < s (Equation 2), where s is the number of associations
stored. These weights require log, s bits and a sign bit. Hence, a total
of n?(log, s + 1) bits are required to store s associations. Dividing the
hardware bits required by the number of information bits stored, we
obtain the storage inefficiency. In this case it is

bar = n(logss + 1) /2s

With s = n = 32, for example, by;, = 3.

A three-layer BAM of the same size has 2n + s neurons and 2ns
bipolar weights, each represented by a single bit. Thus, the s vector
pairs (2n bits each) are stored using the optimal number of bits, that
iS, b3}_’, =

The three-layer BAM is essentially a pair of two-layer BAMs.
Therefore, the threedayer model requires twice as much hardware for
the recall operation. However, in the two-layer model, stored binary
representations for the weights must be adjusted by

1
my; = my; + a;b;
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(See Equation 2) for each new association (A, B), whereas synapses
in the three-layer BAM are programmed by storing the vectors A and
B directly. ®

It should be pointed out that the analysis would be different if the
weights could be stored and manipulated in analog form. Clearly, our
choice to implement the three-layer model was influenced by the lack
of a compact nonvolatile analog memory element in VLSI technology.

2.4 Architecture

Our architecture is based on a regular array of BAM cells. Each
BAM cell consists of two synapses and a one-bit memory. This pair
of synapses provides two-way communication (bidirectionality) be-
tween neurons in the I/O layers and the hidden layer. The mem-
ory bit determines the state of both synapses (symmetry). Figure 2
shows a 3 X 3 BAM that stores up to four associations (one vector
pair per row). This figure illustrates how neurons in the three layers

DATA IN/OUT (A Side) DATA IN/OUT (B Side)

- ET f ty 1ty

WB

- -3
I/“I
o

Thresholding Neuron Synapse Non-thresholding Neuron BAM Cell

Figure 2: Three-Layer BAM Chip Architecture. The BAM
cell is replicated to produce networks of any size. |

communicate through the BAM cells. The input and output lines of
the thresholding neurons at the top run vertically, while those of the
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nonthresholding neurons in the middle run horizontally. In general,
communication in a BAM with n neurons in each I/O layer and 2s
hidden-layer neurons is supported by two n x s BAM cell arrays.
However, the number of neurons in the I/O layers need not be the
same.

Each association (A?, B*) is stored in the BAM arrays, such that
bit af (or bf) of vector A? (B*) is stored in the BAM cell at row p and
column a; (b;).

In the recall mode, the input vector is presented to one side, for
example the A side, and WA is asserted. This initializes the state of
the A neurons (refer to Figure 2). At the same time, the feedback
is decoupled, allowing the A neurons to launch the network toward
the desired stable state. After WA is deasserted, the network relaxes,
converging towards the recalled association.

3 Technology

Analog electronic implementations of associative memory models re-
quire high degrees of connectivity, that is, large fan-in and fan-out.
Our implementation uses transconductances as coupling elements to
achieve large fan-out. These transconductances are simply MOS tran-
sistors operating in subthreshold conduction. Small voltage signals
are applied to the isolated gate of the transistor to obtain low con-
ductance current outputs at the drain. The fan-in problem is solved
by using neurons with current inputs and obtaining the sum of all
these currents on a single input line.

Although our circuits operate with very small subthreshold cur-
rents, reasonable speeds are achieved by keeping voltage swings small
to reduce slewing time. This is possible because of the logarithmic
dependence of the gate voltage on the channel current in the sub-
threshold region [9]. On the other hand, when delivering a current
signal to a circuit, both voltage swings and propagation delays are
inversely proportional to the input conductance. Thus, by taking ad-
vantage of the high transconductance of MOSFET’s in subthreshold
conduction [13], we obtain a good pmfver/speed trade- off.

Dynamic power dissipation and supply noise are reduced as a re-
sult of the smaller capacitive charging/discharging currents produced
by the voltage swings. Concurrently, quiescent dissipation is low be-
cause small current signals are used. This technology yields rela-
tively fast analog circuits with power dissipation levels compatible
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with wafer-scale integration.

3.1 Subthreshold MOSFET Operation

We operate the MOS transistor in the “off” region, characterized by
Vys < Vin. This is referred to as the weak-inversion or subthreshold
conduction region. In this region MOS devices are barrier controlled
with transconductance similar to that of BJTs [13].

The transfer characteristics are shown in Figure 3. Notice that the
channel current I, is exponentially dependent on the gate voltage V,,

9% MMOS Transfer Characteristics (W=6um, L=6um) Uds=g.5 U

Ubs= 0.0V
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Figure 3: Subthreshold Characteristics for an N-type MOS
transistor. The variation of the channel current with the

substrate voltage is included to point out that the MOS
transistor is a four terminal device.

and bulk (local substrate) voltage Vi, over nearly stz decades. In the
saturation region, the drain current in an n-type transistor is given

by

Idsat — (%) Ioe(%Vy"‘l‘%V&ﬂ)/UT Vds - Va‘.sat e 4UT (4‘.) |

W, L are the effective channel width and length, respectively.

I, is a process-dependent parameter.
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+,n measure the ineffectiveness of the gate and substrate potentials
in reducing the barrier. The values v = 1.9 and n = 3.4 for the
characteristics shown are typical for digital-oriented CMOS.

Ur (= L) is the thermal voltage. It is 26mV at room temperature.

Typically, I, changes by a decade for a 120mV change in Vs or a
280mV change in V;,. From Equation 4, the transconductance is

6Idaat Idsat
o = = 5
R 7 (5)

An empirical relationship for the drain conductance is

Idsat
sat — TH = 6
Jdsat Vot Vo ( )

where V; is the Early voltage (typically about 55V'). This relation cap-
tures the slope in the output characteristic caused by the dependence
of L on Vy, [14]. These equations sacrifice accuracy for simplicity;
they are only meant for rough design calculations.

The fact that g,, >> g4,.¢ makes the MOS transistor a versatile

circuit element:

e In the common-source configuration, it is a transconductance
amplifier, with a low-conductance current output at the drain

terminal.

e In the common-drain configuration, it is a voltage follower, with
a low-impedance voltage output at the source terminal.

e In the common-gate configuration, it is a fast current buffer,
with a low-conductance current output at the drain.

Using voltage signals as well as current signals makes it possible to
employ MOS transistors in all three configurations.

Current mirrors are the primary computational element used in
current-mode circuits. In addition to replicating currents, the mir-
roring operation is used to invert and scale currents. Thus, the current
mirror is a trivial example of a translinear circuit, from which more
general algebraic (non-linear) functions can be designed using the
Translinear Principle [15]. However, variations in substrate voltage,
geometry, or doping can produce variations in the output current [16].
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4 Circuits

Using the technology previously*described, we designed the circuits
required to implement associative memories.

4.1 Neurons

Thresholding neurons are simple MOS inverters which receive bipo-
lar current inputs from the synapses. These currents are integrated
over time by the interconnect capacitance, so that the input voltage
represeﬁts activation. Neurons switch to the +1 state (or the —1
state) when this voltage exceeds (falls below) the inverter’s thresh-
old (Viny = V44/2), and remain in the same state when the net input
current is zero.

Thresholding neurons drive the synapses through the bias circuit,
which performs two key functions: It allows the synaptic current lev-
els to be externally programmed, and provides an interface between
the thresholding neuron and the synapses. Given the state a of the
thresholding neuron and a programmed current level, the bias circuit
generates a voltage V, (Figure 4a). An identical circuit generates V;
using @. These voltages produce copies of the programmed current in

a>— }D——) Ils-[x:l

zlul i} - Ifsl@ L
(b)

Figure 4: Circuit diagrams for (a) the bias circuit and (b) a
non-thresholding neuron. All transistors are minimum-size
(3um x 6um).

the synapses. The circuit operates as follows: When @ is high, My is
switched on and My sources the programmed current, or 2I,, where
I, is the desired unit synaptic current. The gate voltage of My is set
appropriately by feedback through Mz which senses and corrects any
current imbalance. This produces a low-impedance voltage output at
V.
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Nonthresholding neurons accept a bipolar input current I, and
generate an output voltage V, which drives the synapses directly. The
circuit used is shown in Figure 4b. An identical circuit is fed —I, to
produce Vz. These circuits operate like the bias circuit. Iy, is simply a
DC shift introduced to guarantee that there is always current in My;
it is set to the full-scale current input. The output voltages are used
to produce copies of the current in My (I, & I,) elsewhere.

4.2 Synapses

The output current of a synapse is given by
Iaut = CIt'n (7)

where ¢ = *£1 is the state of the synapse. The input current I;, may
have either sign. Thus the synapse performs a four-quadrant multi-
plication by a one-bit weight. The circuit used is shown in Figure 5.
Instead of supplying the input current I;,, directly to the synapses it is

|

Vin P " Vi

=

lout

Figure 5: Circuit diagram for a synapse. All transistors are
minimum size.

encoded as a pair of voltages V;, and Vi that are applied to the gates
of transistors M; and M;. They &re set to obtain a drain currents of
Ity — L and Ip, + Iy, respectively. I, is removed at the output by
M5 which is biased with Vj;,,. This scheme allows I;,, to be replicated
in several synapses using the same lines.

The state c of the synapse is represented by a voltage at GND(—1)
or at Vyz (+1) in the memory cell. In the former case, M3 is on and
My is off so that M; and M; together supply Iy, — I, to the output
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node. In the latter case, the reverse is true, hence M, and M, supply
Ity + L. Clearly, if My subtracts I ss the desired operation is obtained
(Equation 7). R
When the thresholding neurons drive the synapses we have I, =
al, and Iy, = I, so that
Iy = cal, (8)

where a and ¢ are the states of the thresholding neuron and the
synapse, respectively. On the other hand, when the synapses are
driven by the nonthresholding neuron we find I, = I, and

Iout =cl, (9)

where I, is the input current to the nonthresholding neuron. In the
former case the synapses compute the scalar products which give the
activation of the nonthresholding neurons while in the latter they com-
pute weighted sums to determine the activation of the thresholding
neurons. Refer to Equation 1.

We have implemented these functions using simple circuit configu-
rations and minimum-size transistors. Consequently, their accuracy is
highly dependent on the fabrication process, i.e. variations of g,y,, Tdsat,
and Iy. The rationale behind this approach is that by studying the
short-comings of these simple circuits we can justify any additional
complexity and thereby develop an efficient design methodology.

5 Chip

5.1 Design

An experimental chip was designed and fabricated through MOSIS
(production run M8AV-VERDEAN 3um p-well CMOS) using the
neural circuits and the architecture presented in the previous sections.
A microphotograph of the die is shown in Figure 6.

There are two 8 x 16 BAM cell arrays, 16 thresholding neurons
on either side, and 16 nonthresholding neurons in the middle. The
BAM cell size was limited by the large number of global interconnects
running between the synapses and neurons. There are six vertical
lines carrying V,, Vi, Vi, Toui, Vaa, and GN D, and four horizontal lines
carrying V;, Vz, Iw: and Vy;. The former were run in metal-2 while the
latter were run in metal-1.

We used shift registers to store the vectors, transferring data with
polysilicon lines between registers while making it available to the
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T

Figure 6: Die Microphotograph. The die size is
2.3mm X 3.4mm with 4.8mm? of active area and 7900 tran-
sistors.

synapses. A thirteen-transistor complementary static-dynamic shift
register cell design was used. Data shifts downwards, the top shift
register gets data from the bus and the data in the bottom register
is lost. The final BAM cell had twenty-three transistors (five in each
synapse) and a layout of size 104 x 48).

The current design incorporates some important improvements
over the original version. The first chip had sized-up output devices in
the bias circuits and nonthresholding neurons to provide the necessary
fan-out capability. However, testing showed that recall rates were
limited by the slewing time of the synapses which had to drive inputs
of the thresholding neurons from the rails to Viny- In the new designs,
minimum-size devices are used throughout. This reduced the power
consumption and allowed an eighth row of BAM cells to be added and
the bias circuits to be redesigned fo reduce the voltage swings at the
output.

5.2 Performance

We evaluated recall performance not only for eight different vector
pairs, but two and four as well, simply by storing multiple copies of
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each vector. As we increased the number of (different) stored vectors,
recall degraded, i.e. when presented with a vector that is actually
stored, the BAM would recall a different vector pair (not necessarily
one that was stored).

When we stored two vectors that differed in 12 or 14 bits, present-
ing either vector resulted in the complement of the other vector being
recalled. However, the complements of these vectors were recalled
correctly. This problem did not occur with vectors that differed in
8 or 10 bits: The actual vectors and their complements were always
exactly recalled. This supported our suspicion that in the synapses
which computed scalar products, the magnitude of the output current
was larger for a mismatch than for a match. Our results indicate that
a mismatch is 1.7 to 2.2 times stronger than a match. Similarly, when
we presented a vector that was exactly midway between the stored
vectors, recalls were biased towards 1’s. It is possible that the extra
mirroring operations required to drive M, and M; (see Figure 5) in-
troduce these errors. This can be avoided by using a design that is
symmetric in this respect.

We also observed that when both stored vectors had the same
number of 1’s, and the presented vector was midway between the
two, the chip recalled the vector that was closest to the bottom of the
BAM arrays (ie in the eighth storage location). This behavior may
be due to a gradation in the transistor parameters.

Recall performance was good for two stored vectors when they
differed by at least four bits, but was significantly better when they
differed by at least six bits. When more than two vectors were stored,
the chip performed well only if the vectors were orthogonal. Storing
eight vectors reliably required choosing them such that they all had
the same number of ones. Under these circumstances, the chip had
sixteen stable states, all of which were within a Hamming distance of
four from the actual stored vectors.

However, no matter what was stored in the chip, or what was pre-
sented for recall, the chip always relaxed rapidly. A test structure
was used to measure the speed of the circuits: Two neurons were con-
nected through two synapses with different states. This asymmetrical
connection made the circuit oscillate at approximately 1 MHz with a
bias current of 0.54A. Therefore a generalized BAM structure should
relax in about 2u.S.
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6 Improvements

To reliably recall large numbers of patterns the nonthresholding neu-
rons must perform a nonlinear ezpansion. That is, small inputs must
be attenuated while large inputs are amplified. This reduces the in-
terference between the stored patterns. We investigated exponen-
tial functions for this purpose. Although results from simulations
were encouraging, we found that simple current-domain circuits were
not suitable for their implementation. A more natural solution is a
« “winner-take-all” network that picks the hidden unit with the largest
input and shuts off all others. The nice feature of this network is that
the maximum output can be normalized whereas an exponential is
not well-behaved for large inputs. This network may be implemented
with a current steering circuit using a single global line [17]. In this
section we introduce the circuits required to implement this improved
architecture.
To reach levels of density comparable to CAMs and SRAMs we
need to reduce the number of interconnects required drastically. This
Is possible using the two-transistor synapse shown in Figure 7. The

ml | a
M1 &

1 i

Figure 7: Two-transistor synapse circuit and its symbol.
This circuit provides two-way communication between neu-
rons connected to nodes n; and n;. The connection is
turned off by setting s high.

idea is to use a single line to send information to and from the
synapses. Voltage signals are sent down the line while current sig-
nals are fed back. When s is low the voltages are transformed into
currents at the synapse to provide two-way communication. If the
voltages applied exceed Vy,,; &~ 100mV, the transistors are in satura-
tion so that small voltage swings do not change the current. When
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s is high, |V,,| is the difference between the voltages at nodes n; and
ny for both transistors. Both transistors turn off if this difference is
small. The symbol for the synapse, which is basically a bidirectional
transconductance, is also shown in Figure 7.

The neurons at n; and nz communicating through the synapse
apply voltages to the gates of M; and M, while sensing the currents
I, and I, respectively. A neuron may communicate through several
synapses. Currents from these synapses simply sum onto the neuron’s
I/0 line, while the voltage on this line is transformed to a current at
each synapse. This neuron is realized by the four-transistor circuit
shown in Figure 8. It consists of a current buffer (M), indicated

Figure 8: Four-transistor neuron circuit and its symbol.
This circuit drives the synapses while buffering current sig-
nals feeding into the neuron. The neuron has a spontaneous

level of activity determined by I, and is inhibited by low-
ering V,,,.

by the black triangle in the symbol, and a thresholding input circuit
(M3, Ms). The current in M3 determines the output voltage, feedback
through M keeps the output impedance low. My shuts off M; if
Iin does not exceed the saturation current in M. Thus, V,, sets the
threshold at which the current I, from the global line is dumped into
M;. The neuron has a spontaneous level of activity 7,,.

The new architecture is shown in Figure 9. The BAM cell has
two complementary synapses—one is off while the other is on. The
I/O unit has two neurons that compete to recall a zero or a one.
The winning neuron sinks Im = I,. This current is mirrored in the
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Figure 9: Improved architecture showing organization of
I/0O units, hidden units and the BAM cells. The two neu-
rons in the I/O units compete to recall a one or a zero. The
hidden units are organized as a “winner-take-all” network.

BAM cell if its state matches the state of the I/O unit. Currents
from the BAM cells sum into neurons in the hidden units. These
neurons compete to sink I, = Iy,. The neuron in the row with the
most matches wins and mirrors I, in the BAM cells on the other side.
If Iy, is sufficiently large the I/O unit is forced to match the state of
the BAM cell in the winning row.

7 Conclusion

We have designed and fabricated a dense, repeatedly programmable,
neural model for a heteroassociative memory. We obtain high density
by using local storage at the expense of fault tolerance. However, we
can store two or three copies of each vector and still use less digital
memory than a distributed matrix scheme.

Current-mode circuits operating in the subthreshold region are
used to achieve large fan-in and fan-out and low power dissipation.
A scalable architecture results from employing coupling elements in
a highly regular structure and avoiding the use of resistors. The
speed of our network is limited by the ability of each synapse. to
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charge/discharge its local parasitic load and not by the size of the
network. By keeping voltage swings small we obtain fast operation.
Using current inputs allows the interconnects to perform useful com-
putation, and thus permits more efficient use of the silicon.

The system described in this paper has evolved around a simple
principle: “Communication ts Computation.” Perhaps that is how
biological information processing systems circumvent the bottlenecks
of traditional computing.
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