A l-change-in-4 Delay-Insensitive Interchip Link

Anand Chandrasekaran and Kwabena Boahen
Bioengineering Department
Stanford University
{anandc boahen } @stanford.edu

Abstract—We present a 1-change-in-4 (1c4) link for interchip
communication that extends level-encoded dual-rail (LEDR).
LEDR transmits a bit on every transition by using all four 2-
bit codewords, with the bit encoded by the current codeword
(level-encoding) rather than the difference between it and the
previous codeword (transition signaling). 1c4 transmits two bits
on every transition by using all sixteen 4-bit codewords, preserv-
ing LEDR’s level-encoding property. Delay-insensitive I/O pad
implementations for 1c4 encoding and decoding are described.
Measurements of this chip-to-chip link, fabricated in a 0.18um
CMOS process, yielded a peak data-rate of 315 Mb/s at 1.8V
and an energy efficiency of 89.8pJ/bit.

I. DELAY-INSENSITIVITY

Delay-insentivity (DI) requires every transition to be ac-
knowledged. Therefore, another transition must make it back
before the next transition can be sent out. Thus, round-trip
delays, determined by the speed of light, the dielectric’s
permittivity, and the interconnect’s length, set the maximum
signaling rate—Iless than a gigahertz for traces longer than a
few centimeters.! With this round-trip limit, maximizing the
bit-rate comes down to minimizing the number of transitions
used to transmit each bit.

Dual-rail (DR), the most widely used DI coding, uses
four transitions to transmit each bit. One line is raised to
send a 1; the other is raised to send a 0. Receipt is ac-
knowledged by raising a third line. Two additional transitions
are made to lower these lines before the next cycle starts.
Thus, DR (aka 1-in-2) sends one bit per 4 transitions us-
ing a total of 5 pins—including two for power—delivering
only 0.05 bits/transition/pin. 1-change-in-4 (1c4), first imple-
mented in an CPLD in [1], improves this performance to
0.14 bits/transition/pin by extending Level Encoded Dual Rail
(LEDR), first proposed in [2].

LEDR transmits a bit with two transitions—one for data
and one for acknowledge —instead of four. This efficiency is
achieved by using all four 2-bit codewords, and assigning them
such that each is a bit-flip away from words for both bit-values.
In odd phases, 01 encodes a 0 and 10 encodes a 1 (just like
DR). In even phases, 00 encodes a 0 and 11 encodes a 1. The
first line (MSB) always corresponds to the bit’s value while
the second line (LSB) ensures the correct parity. This line is
toggled if the bit’s value does not change; the other line is
toggled if it changes.

By extension, 1c4 transmits two bits with two transitions by
using all sixteen 4-bit codewords, assigned such that each is a

I'Synchronous interchip links acheive gigabit/sec/pin rates by having several
bits in flight on an interconnect, properly terminated to avoid reflections.

Odd Even
00 | 0001 | 1110 {00 [0000 |1111
01 |0010 |1101 |{O1 |00O11 | 1100
10 {0100 | 1011 || 10 (0101 | 1010
11 | 0111 | 1000 ||11 (0110 |1001

Fig. 1. Binary to 1-change-in-4 Conversion. Each of 4 data-values is assigned
two 4-bit codewords and their complements. For decoding, the two middle
bits yield the binary value (uninverted codewords). (From [1])

bit-flip away from words for all four data-values (Fig. 1). The
second and third lines correspond to the bits’ value; the first
line (MSB) indicates whether or not this value is inverted; and
the fourth line (LSB) ensures the parity is correct. This line
is toggled if neither bit changes while the first line is toggled
if both bits change; one of the other two lines is toggled if
one bit or the other changes. Nowick et al. proposed the same
coding scheme, dubbed it Level Encoded Transition Signaling
(LETS), and generalized it to 1-change-in-N [3].

In addition to reducing the number of transitions, 1c4
reduces the number of pins by sharing power and acknowledge
between two bits. There is no need to increase the number
of power pads because only one line transitions at a time—
just like in DR. Consequently, the number of pins is reduced
from 10 to 7 (no 3-pin overhead for second bit), in addition
to decreasing the number of transitions from 4 to 2 (same as
LEDR), hence the threefold improvement in bits/transition/pin.

Section II describes our 1c4 coding algorithm. Section III
describes the encoder and decoder circuits. Section IV presents
test results and conclusions.

II. BUTTERFLY NETWORK FOR 1-CHANGE-IN-4

Given the two databits (D1,D0) and the previous codeword
(C3,..,C0), the following four mutually exclusive conditions
determine which of the codeword’s bits to toggle:

C0: D1'=C2 & DO’ = C1
C1: D1' =C2 & D0' # C1
C2: D1 #£C2 & DO’ = C1
C3: D1 # C2 & DO # C1

where D1’ := D14 C3 and D0’ := D0O@C3 (XORs) inverts the
databits before comparing if the previous code was inverted
(C3=1). Conversely, decoding is straightforward: C24 C3 and
C1 @ C3 extract D1 and DO, respectively.

R G B R/—>—>0
R0 1 2 3 [1
G|1 0 3 2 ’/.’—\
B2 3 0 1 */\ 3
3210 1 1
1 0

Fig. 2. Toggling bits. Left — Previous and current data (R=00, G=01, B=10,
or Y=11) specify row and column—or vise versa. Right — Butterfly network
toggles correct bit, given the current data (left, 1-of-4 code) and the previous
data (bottom, binary code)—G in this example. Each block has two 2-to-1
muxes; the same signal controls all muxes in that tier.

Xbar Tog Buf Dec2
—-D T=T S O=0—S QS C—
C CE .
wi
| Dec1 Receiver
C Sk

we {0dd XEvenX Odd)
/N7

\ /

Sender i

Fig. 3. Link’s Function Blocks. Namely, butterfly (Xbar), toggle (Tog),
feedback decoder (Decl), C-element (CE), and feedforward decoder (Dec2);
a buffer (Buf) was added to improve throughput. Acknowledges/enables are
shown in gray. Insert—=Two-phase handshake: The (active) Receiver takes wi
high (low) to request an odd (even) word from the (passive) Sender.

A butterfly network can determine which bit to toggle. From
the algorithm above, it is clear that whether the previous
codeword was odd/even or inverted/uninverted is irrelevant.
For instance, the fourth line always toggles when the databits
called a bit-flip matrix in [3]—are shown in Fig. 2. The
permutations from row to row (2nd row swaps neighboring
bits, 3rd row swaps left and right halves, 4th row performs
both swaps) are realized by a butterfly network (1st tier, 2nd
tier, or both tiers, respectively).

The butterfly’s two tiers are controlled by the previous data-
value, obtained from the previous codeword by a decoder
circuit identical to that at the link’s receiving end (Fig. 3).
The butterfly’s output is captured by the toggle’s internal
state-variable, which is used to update the toggle’s output
once transmission of the previous codeword is complete. The
alternative is a feedforward architecture, where, instead of
decoding the previous codeword, storage is added to capture
the previous data-value.

While storing the previous data-value appears simpler than
decoding the previous codeword, the latter yields a more
efficient and robust implementation. Efficiency arises from
exploiting the toggles’ internal state instead of introducing
additional storage. Switching the input between the butterfly
and a latch is also avoided, streamlining operation. Robustness
arises from comparing the new data-value with the value that
was actually sent instead of a stored value. Any discrepancy
between the last two would persist until the system is reset—
because the entire codeword is never updated in normal
operation—individual lines are toggled instead.

TABLE I
HSE NOTATION

Operation Notation Explanation
Complement v Inversion of v

And vV & W High if both are high
Or v | w Low if both are low
Equal v =w High if equal

Set v+ Drive v high

Clear V- Drive v low

Wait [v] Wait till v is high
Concurrent v+, w+ = v+,w+ in PRS
Sequential [u]l;v+ =u -> v+in PRS
Assignment Vi=w =w => vin PRS
Repetition *[v+;v-] Loops forever

IIT. LINK IMPLEMENTATION

To implement the link, we expanded the communications
among its blocks (see Fig. 3) into handshaking sequences.
Handshaking expansion (HSE) is the second step in Martin’s
synthesis procedure for quasi-delay-insensitive circuits [4].2
An active port (A) communicates with a passive (P) port as
follows:

Four-phase

x*[ao+; [ai]; ao-; [Tail]

x[[pi]; po+; ["pil; po-]

(for notation, see Table I). That is, A asserts its request (ao+)
and waits for the acknowledge ([ai]), then deasserts its
request (ao-) and waits for the acknowledge to clear (["ai])
before initiating the next handshake. Whereas P waits for the
request ([pi]) before asserting its acknowledge (po+), then
waits for the request to clear (["pi]) before deasserting its
acknowledge (po-). Alternatively, two-phase handshakes can
be used:

Two-phase
*[ao:="ao; [ai=ao]]
*[[pi="po]; po:="po]

That is, A toggles its request (ao:="ao) and waits for
the acknowledge to match ([ai=ao]) while P waits for
a mismatch ([pi="po]) before toggling its acknowledge
(po:="po). When data is involved, its validity (computed by
odd () for two-phase handshakes) replaces the appropriate
handshake signal (Fig. 3, Insert).

We reshuffled the HSE of Sender’s three blocks to minimize
the number of state-variables, while retaining enough slack to
avoid deadlock in the feedback loop. Our final reshufflings are
shown below (see Fig. 3 for port labels).

Xbar -- 2-to-1 mux

x[[diO&cif|dil&cit]; toO+; [ti]; co+,do+;
["di0& cifs&~dil& cit];to0-;[ti];co-,do-
]

Tog -- Bit-slice 0

2Quasi reflects the assumption that branches have equal delays —isochronic
forks—the sole timing assumption Martin’s synthesis methodology makes.

gl

_cifty—|— _if >—
_dio |:] _dioy—
_dity——] _di1

—
L I;)- _to0 L

_cit>— _cit >—
__|

Fig. 4. Xbar. Connects _di0 and _dil to _toO and _tol, respectively, if _cif
is low; swaps them if _cit is low. The weak feedback-inverter holds state;
_to0 and _tol are reset high (circuitry omitted for simplicity).

r
se
3 se
12
0

% SOl
to0 so1l
o _to1 502
- _to2 ~
_to3 - || so3

Fig. 5. Tog. Toggles _s00.3 when _ti0..3, respectively, is active; _to0..3
acknowledge requests and si enables toggles. _ti0..3 and m0 are reset high
while _u0 is reset low, which forces s00..3 low.

si
odd

*[[ti0]; toO0+;
[Tti0]; to0-;
1

Decl

*[co0..3:=dec(si0..3,e);
co0..3:=dec(si0..3,e);

]

In this sequencing, Xbar is passive-active, Tog is passive-
passive, and Decl is active-active (input-output). A passive
input for Xbar follows convention while a passive output for
Tog yields a full cycle of slack—no overlap between its 7" and
S communications— [si=odd (s00..3)] is not part of S.
This wait confirms that the previous cycle’s toggle (so0 :=u0)
took effect, making it is safe to update u0. Note that it is
correct to assume that si has not changed: It changes after
Decl executes so:=e, which requires Tog to execute to0-
(a 4-input OR-gate feeds to0 to ci). This action occurs after
[si=odd(s00..3)].

The two muxes in each of Xbar’s blocks (see Fig. 2) are
implemented with two identical gC-elements (Fig. 4). The first
one combines (C-elements) di0 and dil with cif and cit,
respectively, and ORs the results; collapsing these two logic-
levels into a single level saved eight transistors. The second
one swaps di0 and dil. Wires suffice for the acknowledge.?

[si=odd(s00..3)]; ul:="so00;
[si="0odd(s00..3)]; so0:=ul

[ci]; e:="so;
[Tci]; so:=e

3This implementation is fully DI.

sil si2 si3

Y

A PN NP JJ

YYYY
_colf _colt _co0f _co0t

Fig. 6. Decl. Decodes an odd word (si0..3) when _e is low and an even
one when it is high. _e switches when _ci goes low, clearing the output
(_co0t,_co0f,_colt,_colf), and so toggles when _ci goes back high, enabling
the next input. _e is reset high.

Tog is implemented with four toggle elements, each im-
plemented with two cross-coupled gC-elements, a C-element
(triggers priming and toggling) and a third gC-element (con-
firms them) (Fig. 5).* The C-element ensures that a new output
has been requested (se high) before triggering toggling (by
taking m0 high) and that this request has been serviced (se
low) before triggering priming (by taking m0 low)—otherwise
two toggles could occur in response to the same request. When
toggling occurs, so0 complements _u0, enabling the third
gC-element to acknowledge a new input. And when priming
occurs, _u0 matches so0, enabling the acknowledge to be
withdrawn

Decl’s control is implemented with two cross-coupled gC-
elements (similar to Tog) and its datapath (dec ()) with four
XORs and four NANDs (Fig. 6). Each NAND combines the
outputs of two XORS—one extracts the encoded bit, the other
checks that the parity is odd:

co0f := (si3= sil) & (siOp="si2)
col0t := (si3="sil) & (siOp= si2)
colf := (si3= si2) & (siOp="sil)
colt := (si3="si2) & (siOp= sil)

With si0p := xor(_e,si0), the same logic decodes
even codes—flipping the LSB converts them into odd codes
(see Fig. 1). e, which is high when an even code is requested,
is used instead of so because e switches immediately
after the Dec1’s output is acknowledged —thereby clearing the
outputs—whereas so switches immediately after the acknowl-
edge clears (see HSE). Reseting e high decodes Tog’s all-low
outputs (even), thus Xbar receives valid data on startup.’

We now describe the implementation of Receiver’s two
blocks (see Fig. 3): Buf, a two-phase active-passive buffer
(compatible with Sender’s passive output port), and Dec2, a
1c4 decoder (identical to Sender’s Decl). Buf’s HSE reshuf-

4Both inputs must be high to set and low to clear a C-element. Strobe input
(dimple) must be high to set or clear a gC-element; equal (=) inputs must be
equal to set and unequal to clear (XNOR); unmarked inputs function as in a
C-element.

5Except for the isochronic fork m0->_u0,so0, which ensures that both
gC-elements are not updated simultaneously, this implementation is DI.

6Exccpt for the isochronic fork _ci-> e, so, which ensures that both
gC-elements are not updated simultaneously, this implementation is DI.

' I
L wi2 || wi3 | vdd

Fig. 7. Receiver Pads (271.4um height; 100pm pitch). All logic circuitry
(CKT) resides in the enable pad—taking up less than 75 X 13pm (0.18um
process)—sandwiched between electrostatic discharge devices (ESD).

Ser Xbar Tog Buf Dec2 Des

- - - -

L}
CE >
| Dec1

Receiver
Fig. 8. Link plus Seriralizer and Deserializer. Dual-rail odd/even signals
from Decl and Dec2 control Ser and Des, respectively.

{2]

Sender

fling allows Sender to send the next codeword while Receiver
is decoding the previous one, thereby increasing throughput.
Its design is similar to [5], except that there is no separate
request and the acknowledge is generated by a parity circuit
(XOR tree). Buf feeds Dec2, whose two active-low dual-rail
outputs are converted to 1-of-4 by four OR gates.” Although
Dec2’s circuit is identical to Decl’s, it is reset differently:
_e is reset low rather than high. As a result, Dec2’s so
goes high immediately, requesting an odd code from Sender
(through Buf). The C-element combines this request with that
from Decl—which goes high once Xbar has received Sender’s
decoded even output. Thus, whereas Decl decodes Sender’s
even output upon reset, Dec2 ignores it.

With full-custom layout, Sender and Receiver’s circuitry
(0.18um CMOS) were each small enough to fit in a single
pad (Fig. 7). In addition to these circuits, we designed a 2-to-1
serializer and a 1-to-2 deserializer, controlled by phase signals
from Decl and Dec2, respectively (Fig. 8). These phase signals
were computed as follows:

codd := and(odd(si0..3), e)
ceven := and(odd(si0..3), e)

The respective output goes high when an odd or even code is
received, and goes low when the acknowledge (ci) causes e
to switch (see Fig. 6). Decl and Dec2 obtain odd (si0..3)
from Tog’s and Buf’s parity circuits, respectively, avoiding
duplication. Thus, we transmitted two pairs of bits over four
I/O pads—one pair on the odd phase, the other on the even
phase—taking advantage of the doubled throughput 1c4 offers
to cut pad-count in half.

7As the first DR input that clears will clear the 1-in-4 output, this
implementation is not DI.

I:00’ o] 10___01 10'01 00 11 01 00 2v/div 10ns/div

N/ - | / X

—— 12.7ns
wol
4
b
wo2 i
t
wo3 s
Fig. 9. Transmission rate. Two dataline transitions occur in 12.7ns, trans-

mitting four bits, a 315 Mb/s data-rate. Bit values are indicated. Notice that
the inverted request (wi) behaves just like an uninverted acknowledge.

IV. TEST RESULTS AND CONCLUSIONS

Ours is the first full-custom VLSI implementation of 1c4.
The chip, fabricated in 0.18um CMOS, was tested with 3cm-
long PCB traces connecting a pair of 1c4 sender and receiver
pad-groups (on the same chip). Each two-phase communica-
tion took 6.3 ns, yielding 315 Mb/s (Fig 9). Power dissipation
was 17.7mW at 197Mb/s, or 89.8 pJ/bit.® The two previous
implementations were done with a CPLD [1] and with standard
cells [3]. The latter’s cycle-time was estimated to be 4.5-5.0
ns, based on simulation results, but this was for an on-chip
link. Whereas our 6.3 ns cycle-time was measured from a
fabricated chip, and is for a chip-to-chip link, which has much
higher capacitance.

V. ACKNOWLEDGEMENTS

Shih-Chii Liu and Fopefolu Folowosele contributed to a
CPLD implementation of this link at the 2007 Telluride
Neuromorphic Engineering Workshop. Paul Merolla and John
Arthur performed the test measurements. The NIH Director’s
Pioneer Award provided funding (DPI-OD000965).

REFERENCES

[1] A. Chandrasekaran, F. Folowosele, S. Liu, and K. Boahen, “One-change-
in-four encoders and decoders,” in 2007 Telluride Neuromorphic Engi-
neering Workshop Report. Institute for Neuromorphic Engineering, 2007,
pp. 37-47, http://ine-web.org/workshops/past-workshops.

[2] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient self-timing with
level-encoded 2-phase dual-rail,” in Proc. of the 1991 UC Santa Cruz
Conference on Advanced Research in VLSI, C. H. Sequin, Ed. Cambridge
MA: MIT Press, 1991, pp. 55-70.

[3] P. B. McGee, M. Y. Agyekum, M. A. Mohamed, and S. M. Nowick,
“A level-encoding transition signaling protocol for high-throughput asyn-
chronous global communication,” in /4th IEEE International Symposium
on Asynchronous Circuits and Systems, 2008, pp. 116-127.

[4] A. Martin, Programming in VLSI: From Communicating
Processes to Delay-Insensitive ~ Circuits, ser. UT Year of
Programming Series. Addison-Wesley, 1990, pp. 1-64,
http://resolver.caltech.edu/CaltechCSTR:1989..cs-tr-89-01.

[5] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-signaling
asynchronous pipelines,” IEEE Trans. VLSI, vol. 15(6), pp. 684-698,
2007.

8Simulations including layout-extracted parasitics, bonding-wire induc-
tances (3nH), package pin capacitance (0.5pF), and PCB transmission-lines
(50 2,2 cm) predicted 4.8 ns per two-phase communication, yielding 414
Mb/s at 11.3mW, or 27.3pl/bit.

