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Abstract— We describe asynchronous circuits that can relay
spikes between multiple chips in a grid. These circuits interface
with an on-chip SRAM to implement programmable connectivity
among chips. We introduce a packet format that is compatible
with updating the SRAM. From a high level specification, we
synthesized and fabricated these circuits in an area of 0.206mm2

in 0.18-µm CMOS technology. Test results that measure per-
formance and demonstrate correct function on first silicon are
presented.

I. LAYERED NEUROMORPHIC SYSTEMS

Neuromorphic engineers are building single-chip systems
with ever-increasing complexity, at both the neuronal and
microcircuit levels. At the neuronal level, the conductance-
based neuron is displacing the integrate-and-fire one [1]–
[3]. At the microcircuit level, the canonical microcircuit—
stereotyped local connectivity among specialized cell types—
is displacing the free-standing all-purpose neuron [4,5]. This
trend has capped the number of pixels and bands in neu-
romorphic vision and auditory systems—despite on-going
miniaturization—bumping up against the single-chip limit.

Faced with the problem of finite area, the neocortex took
advantage of the third dimension, organizing its various neu-
ronal types into six layers and transforming its canonical
microcircuit into a columnar circuit [4]. Inspired by this
architecture, neuromorphic engineers have looked to 3D mi-
crofabrication techniques [6,7]. Though impressive systems
have been built, 3D-integration remains a niche solution, used
mainly in memory devices [8], where structure is regular,
functionality fixed and bandwidth enormous—features that do
not apply to neuromorphic systems.

Here we propose a solution that supports and exploits neuro-
morphic systems’ unique features. On the one hand, bandwidth
is discounted: bandwidth-per-neuron is a millionth of a wire’s.
This favors packet-switching, where wires are shared by
numerous users (as in the Internet), over circuit-switching,
where a wire is dedicated to a single pair of users (as in the
archaic phone system) [9,10]. On the other hand, flexibility
is priced: functionality comes from reconfiguring connections
(through developmental and learning mechanisms). This also
favors packet-switching: packets may be rerouted on the fly
simply by relabelling them [11] whereas circuits must be set-
up in advance.

In our multichip architecture, layers of different neurons
reside on different copies of the same chip (differentiated
by electronically adjustable parameters) and the columnar
circuit (CC) spans corresponding locations on these chips
(Fig. 1). To restrict the size of the look-up-table that specifies
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Fig. 1. Programmable Columnar Connections. Packets travel through each
chip rightward along the bottom path and leftward along the top path. The
addition of an SRAM based look-up-table allows programmable connectivity;
packets can be remapped to other locations, or can skip chips.

its connectivity, we assume the CC is translation-invariant,
thus there are only as many entries as there are chips. If
there is a connection, the entry also specifies its properties,
physiological (e.g., excitatory or inhibitory) or, in the case of
a multicompartment neuron, anatomical (e.g., basal or apical).
In this way, any desired CC may be realized simply by
programming the appropriate bits into a small SRAM that fits
snugly on the periphery of the chip.

Section II describes our architecture’s connectivity network.
Section III presents our network’s high-level specification and
Section IV decomposes this into smaller, concurrent pro-
cesses. Section V presents synthesized circuits and Section VI
presents test results.

II. GRID NETWORKS

Capitalizing on existing chip-to-chip links [12], grids were
developed to broadcast a packet consisting of a neuron’s
chip, row and column addresses whenever it spikes; these
packets are relayed from chip to chip [13]. A packet may
have multiple column addresses (following the chip and row
address) corresponding to multiple spikes read from the same
row. More recent work added the capability to selectively
deliver or filter a packet based on its chip address; a particular
chip may be either targeted or excluded [14]. The excluded
mode provides the functionality we desire for broadcasting
spikes; we do not wish to send them back to the same chip.
The targeted mode provides the functionality we desire for
programming; we wish to write a byte to a particular SRAM
on a particular chip.

Targeted and excluded delivery capitalize on the relative
addressing scheme grids use. To support relative addressing,
a packet’s chip address is incremented or decremented as it
hops from chip to chip. Thus, we can arrange for an overflow
or underflow to occur at a particular chip by modifying the



TABLE I

CHP NOTATION

Operation Notation Explanation
Process Pi A composition of communications
Guarding Gi ≡ Bi → Pi. Execute Pi if Bi is true
Sequential P1 ; P2 P1 ends before P2 starts
Concurrent P1‖P2 There is no constraint
Repetition ∗[P1; P2] ≡ P1 ;P2 ; P1; P2 ; . . .. Repeats forever
Selection [G1 []G2 ] Execute Pi for which Bi is true
Arbitration [G1 |G2] Required if Bi not mutually exclusive
Input A?x Read data from port A to register x
Output A!x Write data from register x to port A

Probe A Is communication pending on port A?
Packet p[j].i The ith bit of p’s j-th word
Assignment y := x Copy data from x to y

chip address (initially zero by default). This chip then becomes
the one the spike is delivered to in targeted mode or filtered
from in excluded mode, as specified by a mode-bit. In this
work, we dispense with the mode-bit. Instead, we write to the
memory (i.e., program) when an underflow occurs; otherwise
we perform a read (i.e., table look-up).

III. PROGRAMMABLE CONNECTIVITY

To relay packets between chips, we use a communication
controller named > [14]. We describe the > process using
CHP (Communicating Hardware Processes) notation [15] (see
Table I):

∗[t := DECR(R?); L!t ‖ [t[1].borr → WRITE(t)
[]¬t[1].borr → k := READ(t);
[k.0 → D!SEND(t, k)[]¬k.0 → skip]]]

where ¬ denotes complement, k is a local byte, and t is a
packet. Packets are received from R, decremented (DECR),
sent off-chip on L, and delivered (SEND) to the receiver on
D—but only if the bit (k.0) read (READ) from the SRAM is
set. By appending the other bits to the packet, we can address
different targets on different chips. The SRAM is not read
when the underflow bit (t[1].borr) is set. Instead, the packet
is written (WRITE) to the SRAM.

The function calls perform the following:

DECR({w(1), . . . , w(N )}) overwrites w(1) with w(1) − 1
READ({w(1), . . . , w(N )}) reads from location w(1)
WRITE({w(1), . . . , w(N )}) writes w(3) to location w(2)
SEND({w(1), . . . , w(N )}, b) delivers packet with b

appended

Notice that only the headword, which corresponds to the chip
address, is decremented. It serves as the address during a read
but is discarded during a write (it is always -1 in this case).
The next two words serve as address and data, respectively.
In the next section, we will decompose the programmable >’s
CHP specification.

IV. PROCESS DECOMPOSITION

We decompose the high-level specification into smaller, con-
current processes following Martin’s synthesis procedure [15]
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Fig. 2. Block diagram of the programmable >. Packets come in from the
left (PADS) and go out on the right (PADS). Each packet’s head-word is
decremented (DEC); the borrow-bit is set (DCTL) when an end-of-packet
symbol is detected. Packets are also selectively delivered (SEND), or deleted
(FILTER), via a fork in the datapath (SPLIT) and a mux (SWITCH), which
also provides addresses (MCTL) for memory (SRAM) writes and reads, and
data for writes (via FILTER). FIFO buffers are dispersed throughout the
datapath to maintain throughput. Lines without slashes represent dataless or
one-bit communications.

(Fig. 2). We begin by decomposing DECR into two processes
with the following CHP (bit-level):

DEC ≡ ∗[A?a, B?b; D!dec(a, b), C!bor(a, b)]
DCTL ≡ ∗[F ?f ; [f = φ → h := 1[]f 6= φ → [h → B!1;

h := 0[]¬h → B!0]]]

DEC receives a data-bit on A and a borrow-bit on B (from
the previous DEC) and outputs a data-bit on D and a borrow-
bit on C. DCTL ensures only head-words are decremented;
it feeds a true borrow-bit into the least-significant DEC on B
when it detects an end-of-packet symbol (φ) on F .

We decompose the sequence following DECR into six
concurrent processes (word-level):

SPLIT ≡ ∗[P ?w; L!w‖M !w]
SRAM ≡ ∗[Ma?a; [W → P ?m[a]; W []R→ R!m[a]]]
SWITCH ≡ ∗[A → A!(Q?)[]B → B!(Q?)[]C → C!(Q?)]
MCTL ≡ ∗[U?u; [u→ A?; Ma!(A?)‖F‖W ; E

[]¬u → Ma!(A?); R?k; [k.0→ J !k; J []¬k.0→ E]]]
FILTER ≡ ∗[F → P !(B?); F

[]E → B?w; [w = φ → E[]w 6= φ → skip]]
SEND ≡ ∗[C?w; D!app(w, k)

‖[w = φ → J ; J?k[]w 6= φ → skip]]

where m is the memory array and u is the borrow-bit output
by the most-significant DEC. MCTL monitors u to determine
the approriate memory operation.

For a write (u true), MCTL supplies the packet’s second
word as the address (it dumps the head-word, which is always
-1 in this case). It signals FILTER on F to supply the third
word as data to SRAM, then executes the write on W . A
communication on E signals FILTER to delete the remainder
of the packet. For a read (u false), MCTL supplies the head-
word as the address and executes the read on R. Bit zero
determines whether the packet is delivered or filtered (i.e.,
MCTL signals SEND on J or FILTER on H).



TABLE II

1-OF-4 CODE

binary 00 01 10 11
1-of-4 0001 0010 0100 1000

We have decomposed the programmable > into eight con-
current processes. In the next section, we synthesize these into
circuits.

V. CIRCUIT SYNTHESIS

The next step in Martin’s synthesis procedure is hand-
shaking expansion (HSE), the procedure in which each CHP
communication is expanded into a full four-phase request-
acknowledge sequence. An active port (A) is paired with a
passive port (B): A asserts the request (ao+) and waits for
the acknowledge ([ai]), then deasserts the request (ao-
) and waits for the acknowledge to clear ([∼ai]) before
initiating the next handshake. The passive port B waits for
the request ([bi]) before asserting the acknowledge (bo+),
then waits for the request to clear ([∼bi]) before deasserting
the acknowledge (bo-).

In this step, we also choose the data-encoding scheme. We
use 1-of-4 (Table II) instead of a bundled-data (binary) because
we want our circuits to be delay-insensitive. In 1-of-4, the data
is valid if any one of a set of four wires is driven; otherwise it
is neutral [15]. This validity functions as the request; bundled-
data requires a separate signal for this purpose. A 4-input OR

checks for validity or neutrality in a single 1-of-4 set, whereas
a datapath with M sets requires M 4-input ORs that feed into
a tree composed of M -1 C-elements (VN in Fig. 3a). We name
this validity signal va for port A. Since 1-of-4 encodes two
bits, we use 1-of-2 code (dual-rail) when we want to encode
a single bit. For bit b, we label these two signals b.0 (b = 0)
and b.1 (b = 1).

We begin with DCTL, which feeds DEC a true
borrow-bit on B after it detects φ on F . DCTL’s F
acknowledge to FIFO is relayed through DEC, which
acknowledges FIFO after the B communication. DCTL’s HSE:
# DCTL #

*[[˜bi&fe.1]; h+; b.0+; [bi&˜fe.1]; b.0-]
|| *[[˜bi&h&fe.0]; b.1+; [bi&˜fe.0]; h-; b.1-]
|| *[[˜bi&˜h&fe.0]; b.0+; [bi&˜fe.0]; b.0-]

The first sequence sets the state variable h upon receiving
φ (fe.1). The second sequence sends a true borrow-bit
(b.1) during the next word (head-word); otherwise the third
sequence sends a false borrow-bit (b.0).

We expand MCTL’s CHP program into two HSE sequences:
MADR and MRD. MADR implements the program up until
the R communication. At this point, we introduce a channel,
M , to communicate with MRD, which implements the rest of
MCTL’s program.

MADR controls FILTER, MRD, and SRAM, thus its
E, F , M , and W ports are made active, whereas both
A and U are passive. We introduce a latch (AALAT in
Fig. 3a) between MADR and SWITCH, whose A, B,
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Fig. 3. Detailed block diagram of the programmable >’s memory access
circuits. a When a true underflow bit arrives on ui, MADR signals AALAT to
discard the head-word of the packet and latch the second word for SRAM’s
address (ani). MADR executes the write and instructs FILTER to signal
SWITCH to supply the third word as SRAM’s data. FILTER subsequently
deletes the remainder of the packet. If the underflow bit is false, MADR
signals AALAT to latch the head-word for SRAM’s address, and signals
MRD to execute the read. If bit four is set (ji), SEND signals SWITCH
to supply the second word to APP, which appends bits two and three to
the words delivered to RECEIVER; otherwise (e2i), FILTER deletes the
remainder of the packet. VN checks for validity or neutrality of 1-of-4 data.
b MRD’s jo and ri become shorted when we reshuffle the HSE sequence,
resulting in a triangular communication between MRD, SEND, and SRAM.

and C ports are passive as they are probed (implemented
as [ai], etc.). AALAT keeps SRAM’s address valid
while SWITCH provides the data to FILTER. MADR’s HSE:
# MADR #

*[[u.1 & va]; s+; uo+; ao+; [˜u.1 & ˜va];
k+; uo-; ao-; [va]; fo+; [fi]; wo+;

[wi]; s-; fo-; [˜fi]; eo+; [ei]; ao+;
wo-; [˜va & ˜wi]; k-; eo-; [˜ei]; ao-]

|| *[[ u.0 & va]; mo+; [mi]; uo+; ao+;
[˜u.0 & ˜va]; mo-; [˜mi]; uo-; ao-]

When data is valid (va), ao goes high to latch it and
acknowledge SWITCH. In the memory write sequence (top),
we introduce state variables s and k to distinguish the two
communications on A. We move the F request (fo+) before
the second A acknowledge (ao+)—but after the second va—
to pipeline the communication. At this point, the third word
of the packet is available from SWITCH, thus by asserting
fo, FILTER can direct data to SRAM at the same time
MADR signals the write (wo+). Once SRAM acknowledges,
MADR signals FILTER (eo+) to delete the remainder of
the packet. In the memory read sequence (bottom), MADR
signals MRD (mo+) to execute the read.

In MRD’s sequence, we make the R, E, and J ports
active. We reshuffled its communications with SEND and
SRAM into a triangular communication (see Fig. 3b):
SRAM’s R acknowledge becomes MRD’s J request to
SEND. Thus, when MRD signals a read, SRAM outputs
data to SEND, which acknowledges MRD. A similar
triangle occurs among MRD (R and E), SRAM (R), and
FILTER (E). With these two triangles, MRD’s HSE becomes:



# MRD #
*[[mi]; ro+; [ei | ji]; mo+, ro-;

[˜mi & ˜ei & ˜ji]; mo-]

When MRD initiates the read (ro+), either FILTER (ei) or
SEND (ji) acknowledges—depending on the value of the
dual-rail bit from SRAM.

We implement FILTER’s CHP program as three
sequences, one for E and F and a third to handle
multiple communications on B, which reads words until φ:
# FILTER #

*[[ fi]; bo+; [ vb]; fo+;
[˜fi]; bo-; [˜vb]; fo-]

|| *[[ ei]; bo+; [be.1 & vb]; eo+;
[˜ei]; bo-; [˜vb]; eo-]

|| *[[be.0 & vb]; bo-; [˜vb]; bo+]

In the first sequence, when MADR asserts fi, FILTER signals
SWITCH (bo+) to supply data to SRAM. MADR releases
fi when the write is complete. In the second sequence, ei
signals FILTER to find φ (be.1); the third process receives
words otherwise.

We implement SEND’s C and D communications with
SWITCH and RECEIVER as a triangular communication,
with both ports active (see Fig. 3a). APP is implemented
as combinational logic. SEND relays RECEIVER’s
acknowledge to SRAM through MRD. SEND’s HSE:
# SEND #

*[[ ji]; co+; [ce.1 & di]; jo+;
[˜ji]; co-; [˜di]; jo-]

|| *[[ce.0 & di]; co-; [˜di]; co+]

The first sequence waits for ji from SRAM before it signals
SWITCH (co+) to supply the RECEIVER with the first
word (row-address); it acknowledges MRD when φ appears
(ce.1). The second sequence signals SWITCH to supply
words to RECEIVER (column-addresses) otherwise.

Once we have HSE sequences, the final step is to compile
them into production-rule sets (PRS), which are straightfor-
ward to implement with CMOS transistors [15]. Due to space
constraints, we show only the synthesized CMOS circuits (see
Fig. 4). In the next section we present test results that validate
functionality and measure performance.

VI. TEST RESULTS

We present test results from a full-custom chip fabricated
in 0.18-µm CMOS technology. This chip has a die area
of 29.59mm2 (6.19mm×4.78mm) with the programmable >
occupying 0.697% of that area (Fig. 5). The array is comprised
of 4×320×240 pixels: a group of 4 pixels corresponds to
RGBY color video output (half VGA resolution). Two bits
from the SRAM (256×16-bit) determine which of these four
pixels is targeted. Each pixel is a pulse-extender configured to
function as either a sample-and-hold or a leaky integrator.

In testing the chip, we are concerned with performance
and functionality. One measure of performance is burst rate,
the rate at which a chip receives words within a packet. We
measured the maximum burst rate to be 62.9Mhz (Fig. 6), a
38.2% improvement upon the previous best of 45.5MHz (0.25-
µm CMOS) [14].
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We tested functionality by simulating activity from virtual
chips with a computer through a USB (Universal Serial Bus)
link using the packet format described in Fig. 7. When the
array receives an address-event, the pixel with the correspond-
ing address outputs a current. By measuring the response of
a single pixel, we successfully demonstrated programming,
filtering, and delivery (Fig. 8).

VII. FUTURE POTENTIAL

We presented a programmable > that can relay packets
between multiple chips in a grid together with test results that
prove correct function on first silicon.

The programmable > is superior to an architecture that uses
an external memory. With an external memory, each incoming
packet would require N outgoing packets: one for each chip in
a system with N chips. Thus, for links of the same bandwidth,
only 1/N th as many connections can be implemented. By
integrating the SRAM on-chip and pipelining the datapath,
we achieve an expandable solution.

The programmable > is ideal for building layered neural
networks with stereotyped columnar connectivity similar to the
neocortex. Thus, neuromorphic engineers can finally develop
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systems that expand beyond the single-chip limit.
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