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Abstract

MODELING THE NONLINEAR ACTIVE COCHLEA:

MATHEMATICS AND ANALOG VLSI

Bo Wen

Supervisor: Kwabena A. Boahen

The human auditory system vastly outperforms any machine in efficiency and robust-

ness in perceiving sound. Complex and delicate, its front end, namely the cochlea, senses

and processes sound in a nonlinear active fashion, exhibiting remarkable sensitivity and

extraordinary frequency discrimination. The mechanism through which the mammalian

cochlea achieves its incredible capability is postulated as the cochlear amplifier, which is

generally believed to originate from outer hair cells electromotility. However, the detail of

the cochlear amplifier remains unclear.

Using both analytic and synthetic approaches, the present work provided a plausible ba-

sis for realization of the cochlear amplifier, thus advancing our understanding of cochlear

mechanics. We proposed a novel cochlear amplifier mechanism based on the cochlea’s

microanatomy, as well as outer hair cell (OHC) motility, to account for the cochlea’s

characteristic behavior. This mechanism, active bidirectional coupling (ABC), considers

both the basal tilt of OHCs and the apical tilt of phalangeal processes as critical for feed-

ing OHC motile forces (with saturating property) forward and backward onto the basilar

membrane, thereby enhancing the cochlea’s functioning. The ABC-based mathematical

cochlear model produces responses that are comparable to physiological measurements.

Theoretical model analysis reveals that ABC leads to negative damping basal to the re-

sponse peak over a small longitudinal cochlear region. The tilted structure works as a
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spatial filter, amplifying the cochlear traveling wave only when its wavelength becomes

comparable to the tilt distance.

Inspired by the biology, we proceeded to build a nonlinear active silicon cochlea—a

very large scale integration (VLSI) physical cochlear model—for achieving real-time low-

power cochlear processing. Designed in current mode and operating in Class AB, this

microchip implements the ABC mechanism, together with a silicon auditory nerve, in 0.25

µm complementary metal-oxide-semiconductor (CMOS) technology. The resultant new

architecture addresses the shortcomings of existing silicon cochleae, filter banks in cascade

and in parallel. Analog current representing the basilar membrane’s velocity drives the

silicon auditory nerve, which encodes sound in digital pulses, mimicking neuronal spikes,

as the final output of the cochlea.
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Chapter 1

Introduction

The human auditory system exhibits extraordinary ability in sensing sound, distinguishing

frequencies, and maintaining satisfactory performance in adverse environments. Its front-

end, the cochlea, converts fluid pressure fluctuations into neuronal spikes in the auditory

nerve, decomposing the mixture of frequencies, amplifying low-level sound, compressing

high-level sound, and producing interferences between different frequencies. For decades,

engineers have made efforts to build a hearing machine or computer that can emulate the

function and efficiency of the cochlea and the human auditory system. However, no engi-

neered device to date is capable of performing as well as its biological counterpart.

Neuromorphic engineers have taken an unconventional approach in which they reverse

engineer the human brain, with the goal to morph or capture both the organization and

the function of the nervous system. For about two decades, neuromorphic systems have

modeled sensory systems, including the retina [1–4] and the cochlea [5–7], cortical func-

tions, mainly including visual cortex [8, 9], developmental processes, based on axon guid-

ance [10], and memory and learning [11, 12]. While artificial retinomorphic chips have
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meticulously copied the detailed neuronal biophysics and complex synaptic organizations

in the retina, the silicon cochleas have benefited relatively less from morphing the biology

because the cochlear amplifier mechanism that accounts for the cochlea’s characteristic

behavior still remains a mystery.

Advances in physiological measurements and mathematical modeling in the past few

decades have revealed the cochlear mechanics to a larger extent, through much is yet to be

uncovered. In the mammalian cochlea, the non-uniform basilar membrane (BM) vibrates

in response to fluid pressure, providing broad frequency tuning which is then enhanced

and reshaped by the hypothesized cochlear amplifier. Bridging the gap between the dead

cochlea’s response and that of living cochleas, the postulated cochlear amplifier refers to the

selective amplification process occuring within the cochlear partition that enhances active

cochlear behavior: exquisite sensitivity, remarkable frequency selectivity, and nonlineari-

ties. Thus, the BM preliminarily detects and filters sound signals and the cochlear amplifier

selectively amplifies the BM’s responses, resulting in nonlinear active cochlear behavior.

Since the discovery of outer hair cells’ (OHCs) electromotility in mammalian cochlea

[13, 14], cochlear modeling has been focusing on exploring the detailed manner in which

OHCs’ motile forces enhance the basilar membrane’s vibration. The OHC forces can be

transmitted, somehow through the complex organizations of the organ of Corti, onto the

BM to affect its motion. Enormous modeling efforts have been made to incorporate the

OHC motility in cochlear models, with differing hypotheses to account for the cochlear

amplifier [15–17]. Responses to sound in most active models were either unrealistic [18]

or missing important characteristic cochlear behaviors, for instance nonlinearity [15,16].

Our project goal is to build a cochlear model, in mathematics and VLSI circuits, that

can reproduce the major characteristic cochlear behavior, including the active amplification
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and nonlinear compression. We proposed a novel cochlear amplifier mechanism that takes

into account the cochlear micro-anatomy for transmitting OHC forces onto the BM. In

this mechanism, two tilted structures transmit OHC motile forces in the basal and apical

directions, respectively (namely, feedforward and feedbackward), onto the BM, resulting in

active bidirectional coupling (ABC) among BM transverse fibers. We enforced saturation

of ABC, which gives rise to nonlinear behavior. We proceeded to build a silicon cochlea

based on this nonlinear active cochlear model; the cochlear chip is the first to include the

model of cochlear amplifier mechanism, resulting in a novel silicon cochlea architecture

that addresses problems of existing designs.

1.1 Organization of the Dissertation

The dissertation thesis is organized as follows. In Chapter 2, we review cochlear mod-

eling efforts in both mathematical models and VLSI implementations. The review em-

phasizes the models that explore the underlying mechanism of active amplification in the

cochlea. The content mainly encompasses the physiology of the cochlea including cochlear

microanatomy, outer hair cell (OHC) motility, and mathematical models that incorporate

OHC motility. This chapter also discusses advances in silicon cochlea designs and existing

problems.

Chapter 3 is dedicated to presentation of our hypothesized cochlear amplifier mech-

anism, active bidirectional coupling (ABC). We describe unique features of the cochlear

microanatomy that we believe play an essential role in manoeuvring OHC motile forces to

enhance the cochlea’s response gain and frequency tuning and to impart nonlinear process-

ing to the cochlea. We formulate a two-dimensional (2D) nonlinear active cochlear model,
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solve it numerically, and present the model’s simulation results. Analysis of a linear version

of the model follows, which provides insight into the mechanism underlying the selective

amplification.

In Chapter 4, we present the silicon cochlea design that is based on our nonlinear active

cochlear model. We present first the diffusive network for modeling the cochlear fluid, then

the synthesis of the BM filter design. We proceed to describe the transistor-level circuit

design of the BM. What follows is a silicon neuron circuit we have included in the silicon

cochlea for modeling the spiral ganglion cells, which convert the BM motion to auditory

nerve spikes. Last, we present the architecture of the entire cochlear chip.

In Chapter 5, we present chip responses to sound stimuli. The responses include both

analog currents that represent the BM’s velocity, and digital pulses that represent the audi-

tory nerve’s discharge patterns.

Chapter 6 summarizes our efforts in modeling the nonlinear active cochlea, discussing

both the analytical and synthetical approaches.

1.2 Original Contribution of Present Work

The cochlear amplifier mechanism, active bidirectional coupling, is novel, the first to take

account into the tilted structure of both OHCs and phalangeal processes in a cochlear

model. The semi-analytical results of a linear version of the active cochlear model are

novel, including the notion of a spatial filter and the negative damping caused by the tilts

associated with delivery of outer hair cell motile forces.
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The implementation of the nonlinear active cochlea model in analog VLSI is original.

The differential mode (Class AB operation) is the first among silicon cochlea designs. The

bio-inspired coupling between basilar membrane second-order sections is new, thus the

novel architecture of the cochlear chip.

1.3 The Usage of “We”

The personal pronoun “we” is used in a number of places throughout the thesis—though

in plural form, it is used with a singular sense. The present work was completed under

the guidance of my thesis advisor. However, despite the usage of “we” and/or “our(s)”, I

performed 99% of the work, if not all, including model development and simulation, circuit

design and simulation, and chip layout and test.
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Chapter 2

The Cochlea and Cochlear Modeling

The human inner ear, namely the cochlea, functions as the front-end of the auditory system,

turning outside-world sound signals into neural impulses transmitted along the auditory

pathway for further processing. Complex and delicate, the cochlea does not just transduce

mechanical sound into electrical impulses (all-or-none neural spikes); it also processes and

amplifies sound by means of its unique structure and the physical properties of its com-

prising components. In this chapter, we first describe the cochlear anatomy and important

findings about the cochlea’s outer hair cells (OHCs) that make critical contributions to

characteristic cochlear behavior. We then review previous mathematical cochlear modeling

efforts. Last, we give a brief summary of existing cochlear models implemented in very

large scale integration (VLSI) circuits.
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2.1 The Cochlear

2.1.1 Cochlear Anatomy

The periphery of the auditory system includes the outer ear, the middle ear, and the inner

ear (i.e., the cochlea) (sketched as in Figure 2.1). How is sound processed at each step of

the auditory periphery? As the first steps of sound detection, the sound transmission in the

outer and middle ear is basically linear [18]. In general, time-varying sound pressure in the

air (condensation and rarefication) is transmitted through the ear canal of the outer ear. The

basic role of the outer ear is to collect impinging sound waves and channel them toward

the inner ear’s sensory cells. The intercepted sound waves travel through the ear canal and

cause the eardrum to vibrate. The eardrum vibrations are transmitted through an air-filled

middle ear by the ossicles to the acoustic sensor, the cochlea, resulting in the motion of

the stapes at the oval window of the cochlea (Figure 2.2). The stapes movement sets the

cochlear fluid into motion, causing a traveling wave to form along the cochlear partition

through the pressure difference between the two main fluid chambers. The pressure caused

by the stapes motion gets released through complementary movement of the round window

at the bottom chamber of the cochlear duct due to the incompressibility of the cochlear

fluid.

The functional role of the middle ear is to match the acoustic impedance between the

end point of the external ear, the eardrum, and the sensor port of the inner ear. Acoustic

impedance,ZA, is defined as the ratio of acoustic pressure,P , to volume velocity (velocity

V times cross-sectional area,A) [21]:

ZA =
P

V A
(2.1)
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Figure 2.1: Human Ear

The human ear comprises the outer, middle, and inner regions. The outer ear includes the pinna and the

external canal. The middle ear consists of three tiny bones, or ossicles, namely hammer (malleus), anvil

(incus), and stirrup (stapes). The inner ear, or the cochlea, is snail like and filled with fluid. Cochlear nerve

(i.e., the auditory nerve or the VIII th nerve), stems from the central axis of the cochlea and extends to the

central auditory system. From [19].
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Figure 2.2: Mechanism of the Human Ear

Air pressure at the eardrum (Pd) is transformed into stapes displacement (Xs) and velocity (Vs) by the os-

sicular chain of the middle ear. Stapes motion creates a pressure in the vicinity of the footplate,Pow, which

is related to the cochlea’s input impedance,Zow, and the stapes velocity,Vs. In the cochlea,P denotes the

pressure gradient across the cochlear partition, which produces a traveling wave in the cochlear fluid and

along the cochlear partition. Two full cycles of this wave are indicated by the wavelengths,λ1 andλ2. The

traveling wave reaches its peak with short wavelength. RW: Round window. From [20].
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Impedance matching is of significance because only when the acoustic impedance of two

conducting media are identical can a sound wave be passed from one to the other with-

out reflection [18, 22]. Since there is a ratio of 3880:1 between the measured acoustic

impedances of water and air, different sizes of the eardrum and the footplate of the stapes

come into play. Due to the fact that the velocities of the eardrum and the stapes are the

same, and the force acting on the eardrum and the stapes are equal, a ratio of about 62:1

would yield an equal impedance at the eardrum and the stapes [18]. More sophisticated

impedance calculations show that this ratio is a function of tonal frequency; it is actually

equal to 62 at about 2 kHz [23].

The cochlea is a much more complex and delicate organ than the external and mid-

dle ear. Its basic structure is revealed in the cross-sectional sketch of a radial slice taken

from the second turn of guinea pig (Figure 2.3). The cochlear partition that separates the

cochlear fluid duct into three chambers, comprises thebasilar membrane (BM), and the

organ of Corti (OC). The BM consists of a number of fibers oriented in radial directions.

These transverse BM filers are inserted into the bonyspiral lamina on the modiolus end

and the spiral ligament on the opposite side. The BM is narrower and thicker in the base

than it is in the apex, which imparts the stiffness gradient of the BM—This physical prop-

erty is commonly believed to result in decreasing resonant frequency from the base to the

apex along the cochlea.

The OC is a complicated superstructure, containing both sensory cells and supporting

cells (Figure 2.4). Supporting cells mainly comprise pillar cells with two kinds, the inner

pillar (IP) and the outer pillar (OP) cells, which are the chief structural cells in the OC.

The trunks of pillar cells are composed of dense matrices of interlaced microfibrils and

microtubules [25]. One IP cell and one OP cell, together with a small portion of the BM,

form a relatively rigid structure.
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Figure 2.3: Radial Segment of the Cochlear Duct

Filled with fluid, the cochlear duct is divided into three scalae—scala vestibuli, scala media, and scala

tympani—by the Reissner’s membrane and the cochlear partition. The cochlear partition comprises the basi-

lar membrane and the organ of Corti. The modiolus is to the left. From [24].
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Figure 2.4: Cochlear Partition

Resting on the basilar membrane (BM), the organ of Corti (OC) contains both sensory and supporting cells. In

mammal, there are three rows of outer hair cells (OHCs) and one row of inner hair cells (IHCs). The tunnel

of Corti is formed by the inner pillar (IP) cell, outer pillar (OP) cell, and a small portion of the BM fiber.

Deiters’ (D), Hensen (H), and Claudius (C) cells are also constitutional components of the OC. From [26].
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The sensory cells are mainly the hair cells, namely outer hair cells (OHCs) and inner

hair cells (IHCs). IHCs encode sound information, for example, its frequency components,

intensity, timing, and other physical properties, into neuronal electrical discharge patterns,

carried to the central nervous system via afferent axons ofspiral ganglion cells. Mean-

while, efferent axons originate from the brain stem and innervate the hair cells, mainly

OHCs.

Hair cells have hairs called stereocilia (Figure 2.4). IHCs, surrounded by supporting

pillar cells, have stereocilia that are free to deflect angularly. The deflection of IHCs’ cilia

is the final mechanical step in the ear’s transduction of acoustic signals into neural pulses

[18]. In contrast, OHCs have stereocilia that are embedded in the tectorial membrane,

particularly their tallest hair called kinocilium [18]. OHCs, supported only at their bases

byDeiters′ cells (DCs) and at their apexes byreticular lamina are free of cellular contact

on their sides; this is believed to be pertinent to OHC function.

2.1.2 Cochlear Mechanics

Sound stimuli elicit both mechanical and electrical responses in the cochlea. Driven by the

pressure difference across it, the BM vibrates at different cochlear locations depending on

the input frequency, forming an amplitude peak of its motion at certain cochlear location

called the best place, or the characteristic place; the corresponding input frequency is called

as the best frequency, or the characteristic frequency for that location [27–29]. The BM

responds maximally to high frequencies near the base as it is relatively stiff while it vibrates

most near the apex in response to low frequencies [30] as it is floppy there. Acoustic energy

is carried by the cochlear fluid, most of which is absorbed by the cochlear partition in the

vicinity of the characteristic place (Figure 2.5).
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A mechanical traveling wave is formed both along the basilar membrane and in the

cochlear fluid, a fundamental discovery in auditory physiology by von Békésy [31]. The

traveling wave is a displacement wave on the BM or a pressure wave in the cochlear fluid

(near the BM), a wave much slower than the acoustic wave, which transverses the entire

cochlea (at a speed of 1,550 m/s) in a few microseconds [32]. The traveling wave prop-

agates at a relatively large speed near the base, with a long wavelength, and slows down

near the characteristic place, where the wavelength becomes short [33]. Right after it peaks,

where almost all its energy is acquired by the BM, the traveling wave decays rapidly, form-

ing a sharp cutoff.

BM’s up-and-down motion is transformed into the stereociliary deflections of OHCs

through the structural organization of the OC (Figure 2.6), as summarized in [18]. As

the BM is driven downward by acoustic pressure, the relatively rigid triangular pillar-cell-

complex keeps its shape and pivots clockwise about the foot of the IP cell, which is sit-

uated near the edge of the relatively immobile bony spiral lamina. The OHC, cradled by

the Deiters’ cell, is carried along with the BM, moving away from the spiral limbus. The

tectorial membrane—attached to both the stationary limbus and the stereocilia of the re-

ceding OHC—is stretched, resulting in shear force between the tectorial membrane and

the reticular membrane. Thus, the downward BM motion deflects the OHC stereocilia in

the counterclockwise direction, leading to forward transduction (i.e., a mechanoelectrical

process, in which mechanical force results in electrical transduction current in OHCs [34]).

Influx of transduction current depolarizes the OHC, causing changes in transmembrane

receptor potential, which in turn provide input to OHCs’ motor activity.

A further transduction stage in the cochlea occurs at the IHC, from fluid motion to

deflection of IHC stereocilia (Figure 2.7). The counterclockwise deflection of the OHC

stereocilia displaces the fluid (endolymph) underneath the tectorial membrane and above
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Figure 2.5: Basilar Membrane Vibration

In this sketch of uncoiled cochlea, due to the fluid incompressibility, volume displacement of the round

window equals that of the oval window (stapes). Acoustic energy is carried by an acoustic wave that travels

from base (stapes) to apex (helicotrema), absorbed by the basilar membrane (BM) where the resistance to

the pressure is minimum. Thus, the BM vibrates up and down, driven by the pressure difference across it.

From [18].
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Figure 2.6: Deflection of Outer Hair Cell Stereocilia

Basilar membrane (BM) motion causes deflection of outer hair cells’ (OHC) stereocilia through the mi-

croanatomy of the organ of Corti (OC). In the diagram, the downward BM motion is transmitted, through the

supporting pillar cells in the OC, to deflect the stereocilia to the counterclockwise direction, resulting in hy-

perpolarization of the OHCs. Similarly, upward BM motion will cause depolarization of OHCs. From [18].
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the reticular lamina [35]. Unlike in OHCs, the stereocilia of IHC are not attached to the

tectorial membrane, thus they are free to move. Lined up in one row perpendicular to

the flow of fluid, the cilia present to it an almost uninterrupted barrier to be efficiently

deflected by the fluid motion [18]. The ciliary deflection of IHC leads to transduction

currents, which in turn give rise to neurotransmitter release at the IHC-spiral ganglion cell

synaptic interface.

Cochlear Amplifier

The cochlea exhibits remarkable acoustic sensitivity, high frequency selectivity and

(nonlinear) high-level compression in processing sound signals. The marked differences

in vibration amplitude/velocity and frequency tuning, in the measurements between dead

and living cochlea strongly suggested that a feedback amplification mechanism, namely the

cochlear amplifier, exists within the OC and injects mechanical energy into the BM locally

[36], thus enhancing the sensitivity and frequency tuning of the cochlea. In other words,

the cochlear amplifier, together with the passive frequency tuning of the BM, accounts for

the characteristic behavior of a living cochlea (i.e., large amplitude of motion, sharp tuning

at low sound levels).

OHCs have been widely believed to be the amplifying agent, thus the origin of the

cochlear amplifier, given their ability to change their cell body lengths under acoustic stim-

ulation [13, 14, 37]. Although the upper limit has not yet been established [18], the speed

of electromotility, or at which OHCs alter their length, is as high as 24 kHz [38]. Cell

body length change of OHCs are relatively small, which are only a few percent of the cell’s

length at most, but in the same amplitude range as sound-evoked BM vibrations [18].

Upon their contraction or elongation, OHCs generate fast motile forces [39, 40], and
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Figure 2.7: Deflection of Inner Hair Cell Stereocilia

Stereocilia deflection of outer hair cells (OHCs) cause the fluid in the gap between stereocilia and the tectorial

membrane to flow, which in turn deflects the nearby inner hair cells’ stereocilia in the same direction as that

of the OHCs’ stereocilia. From [18].
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these forces are transmitted onto the BM to alter its motion. Deiters cells, which cradle

OHCs, most likely deliver these forces as they are formed by closely packed microtubular

arrays, thereby exhibiting columnar rigidity [18].

The prevailing view is that there exists a feedback system involving OHC electromotil-

ity that enhances the BM motion (Figure 2.8). The process consists of both forward trans-

duction and reverse transduction [41]. Contrary to forward transduction, reverse trans-

duction corresponds to the process from electrical cell membrane voltage to mechanical

force, an electromechanical process. However, details of the cochlear amplifier still re-

mains largely unknown as it is not clear in what precise manner the OHC motile forces

feedback on the BM so that the BM motion is amplified in a frequency-selective fashion.

Cochlear Nonlinearity

It has been discovered that OHCs have a saturation property, thus yielding nonlinear

cochlear responses. The relation measured between sound pressure and receptor voltage

for outer hair cells shows the typicalS-shape (Figure 2.9A) [42, 43]. Further, the cell

body length change of an OHC saturates with its transmembrane potential (Figure 2.9B).

Assuming that acoustic pressure causes proportional BM displacement and the OHC length

change is proportional to the cells’ receptor potential change, a saturation relation can be

derived in which OHCs’ motile forces saturate with respect to BM displacement produced

by acoustic pressure [17].

Cochlear nonlinear behavior includes high-sound-level compression [18], two-tone sup-

pressions [32], distortion-product otoacoustic emissions [46], and more. One of the most

prominent nonlinear phenomena in the cochlea is high sound-level compression. Sound

signals at low intensities are amplified in frequency-selective fashion at certain cochlear
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Figure 2.8: Feedback System with Outer Hair Cell Electromotility

This diagram presents a prevailing view of how outer hair cell (OHC ) motility affects basilar membrane

(BM) motion in general. BM motion causes deflection of OHCs’ stereocilia, resulting in a transduction

current,i(t), which in turn produces the receptor potential,Erec(t). The generated receptor potential changes

the OHCs’ length. Completing the loop, the length change of OHCs exerts a forceF (t) on the BM. This

feedback system has been postulated as the cochlear amplifier. From [18].
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Figure 2.9: Saturating Profile of Outer Hair Cells

A The relation between acoustic pressure and outer hair cells’ receptor potential isS-shape, saturating at high

pressure levels [44].B Changes in the cell body length of an isolated outer hair cell in response to various

transmembrane voltage steps are alsoS-shape [45]. As can be seen, hyperpolarization elicited elongation

while depolarization caused contraction. Dots: Raw data. Solid line: Boltzmann function. Insert: Outer hair

cell.
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position—the cochlea exhibits large gain, while high-level sound signals are nearly not

amplified—the cochlea exhibits small gain (Figure 2.10). Thus, the cochlear responses at

the peak show compressive growth with input intensity. From an engineering perspective,

the cochlea realizes automatic gain control, in which the gain of the cochlear amplifier

becomes attenuated with the increase of input intensity (Figure 2.10).

Two-tone suppression (2TS) is the phenomenon in which the cochlea’s response to one

tone (i.e., the probe) is suppressed by the presence of a loud tone (i.e., the suppressor). 2TS

occurs in the BM’s mechanical motion, in the receptor potential of IHCs, and in the electri-

cal discharges on the auditory nerve (AN) [48]. Although there is debate as to whether 2TS

at the IHC and AN levels is the direct result of the suppression occuring at the BM level, it

is believed that two-tone suppression with the BM’s mechanical responses is attributed to

saturation of OHC forces [32].

One of the major characteristics of 2TS is its intensity dependence (Figure 2.11). In the

absence of a suppressor (or for low suppressor levels) the responses to the CF tone grow

at compressive rates. At higher suppressor levels, the responses to low-level CF tones are

reduced strongly, but only weakly at high levels. As a result, the BM input-output curve

for the CF tones is substantially linearized in the presence of moderately intense suppressor

tones. Another feature of 2TS is that it is characteristic frequency specific with regard to

both the probe tone and the suppressor tone.

2.2 Mathematical Cochlear Modeling

In the past few decades, enormous efforts in mathematical modeling have been made to

help uncover the nature of cochlear mechanics. Since the discovery of OHC electromotil-
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Figure 2.10: Nonlinear Compressions in the Cochlea

Compression, or compressive growth in responses, with input intensity is one of the nonlinear phenomena in

the cochlea.A Families of isointensity curves representing the gain (velocity divided by stimulus pressure)

of basilar membrane responses to tone pips as a function of frequency (abscissa) and intensity (parameter, in

dB SPL). The thick line at the bottom indicates the average motion of the stapes.B The variations of basilar

membrane response phases as a function of frequency. Phases—BM displacement toward scala tympani

relative to condensation at the eardrum thus inward ossicular displacement—were computed. Each curve

represents data for a single stimulus intensity. From [47].
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Figure 2.11: Two-tone Suppression in the Cochlea

Two-tone suppression at the basilar membrane’s velocity-intensity functions responding to a near-CF tone

(F1 = 18.8 kHz) presented simultaneously with a suppressor tone (F2 = 22.9 kHz). The parameter is the

intensity of the suppressor tone. These are data measured from Guinea pig cochlea in [49].
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ity, cochlear modeling has become focused on incorporating the OHC motile forces in

order to reproduce characteristic cochlear behavior. Although the assumptions and mecha-

nisms proposed differ somewhat in explaining how the cochlear amplifier works, all exist-

ing models shared a common goal, that is, to obtain BM responses to sound comparable to

measured physiological data.

Models have been modified and improved as more physiological findings and mea-

surements have accumulated, especially by including micro-mechanical details within the

organ of Corti of the cochlea. Since the discovery of outer hair cell electromotility in the

mammalian cochlea [13], cochlear modeling has been focusing on exploring the detailed

manner in which OHC forces enhance basilar membrane vibration. It is commonly believed

that the OHC motile forces are transmitted, somehow through the complex organizations

of the OC, onto the BM to affect its motion.

Cochlear models that include OHC motility are referred to as active cochlear models;

those without OHC motility as passive cochlear models [50]. Building active cochlear

models have helped understand better how OHC motility contributes to amplification and

sharpening of traveling waves along the cochlear partition (CP) at low sound levels [51–53]

and nonlinear behavior at high sound levels. A number of active cochlear models have

introduced OHC motility into cochlear macromechanics (i.e., interaction between fluid

hydrodynamics and BM second-order sections) to account for the active amplification

[15–17,54–59].

It is commonly assumed that OHCs are the origin of the active mechanism in active

cochlear models. With the same goal to account for the active amplification, they differ in

how the OHCs exert forces on the BM, and in the role of other structures and components

(e.g., sensory and support cells) within the CP. A common approach to most of the models
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was adding a feedback loop to simulate the OHC motility [18].

The BM fibers are thought to be only weakly coupled to their adjacent neighbors

through the cochlear fluid [60] due to transverse (i.e., radial) orientation of these fibers.

Most cochlear models ignore the longitudinal elasticity (stiffness) because it is negligible

compared to the transverse stiffness. This assumption was mainly justified by the exper-

iments performed by Voldrich [61], in which they probed the BM to study its stiffness.

However, the latest experiment carried out by Naidu and Mountain [62] provided consis-

tent results with the earlier experiments done by von Békésy in 1960 [31], in conflict with

Voldrich results. These findings support the notion that there exists longitudinal coupling,

weak though, between BM transverse fibers and the coupling increases in strength from

base to apex.

Several cochlear modelers have implemented this longitudinal coupling, as a novel hy-

pothesis of active mechanism, in order to produce more realistic cochlear responses. How-

ever, perspectives on how to include the coupling differ. Hubbard [55] included a sec-

ond traveling wave mode that is coupled to the traveling wave formed along the BM, thus

coupling BM segments in the longitudinal direction. Wong [63] took a straightforward

approach by including weak stiffness between BM transverse fibers to generate distortion

product otoacoustic emission.

A few recently developed active cochlear models took into account the OHCs basal

tilt [15–17, 58, 59]; this arrangement was first pointed out by Voldrich [64]. These models

considered longitudinal coupling based on the observed anatomical structure of OC, in a

way that is compatible with the prevalent opinion on the contribution of OHC motility. This

perspective is that the motile OHC forces are delivered to neighboring cochlear locations,

thus coupling the adjacent BM fibers longitudinally. Along this line of modeling activity,
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Sang and Geisler [15] proposed a feed-forward mechanism that considers the basal tilt of

OHCs, in which OHC forces affect the motion of the downstream neighboring BM; there

were also other models based in this idea [16,65].

These models hypothesized, counter-intuitively, that this tilt sharpens tuning and ampli-

fies BM motion through feedforward OHC forces that act on the downstream BM segment.

These models with feedforward OHC forces produce larger amplification than that in a pas-

sive model, but the overall responses are not realistic compared to physiological data (e.g.,

too much phase accumulation). As one of the remedies for the problem, the tectorial mem-

brane was modeled as an additional resonant system in the feedforward model proposed

in [15].

Although Karavitaki and Mountain argued that this feedforward mechanism is not sup-

ported by the experimental results that the longitudinal component of OHC motion in the

apex is about ten times smaller than the radial component [66], we believe that OHC does

not really need to move in the longitudinal direction to a large extent, to give rise to the

feedforward OHC forces given the unique tilt arrangement.

Another striking anatomical feature within the organ of Corti, which has not been ex-

plicitly taken into account in a cochlear model, is the oblique orientation of the phalangeal

processes (PhPs) (Figure 2.12). PhPs are extended from Deiters’ cells, tilted toward the

apex along the longitudinal axis [26]. This PhP’s tilt has been only considered for its

constitutional role in the complex; its possible role in transmitting OHC forces onto the

BM in the process of cochlear amplification was left unexplored. Brownell and his co-

workers [13] observed that an OHC, the PhP of the DC on which it sits, and the portion

of the RL between the apical end of the PhP and the stereocilia end of the OHC consti-

tute a mechanical unit within the CP, and pointed out that increases in OHC length would
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make this unit more rigid whereas decreases would make it more compliant. Our pro-

posed cochlear amplifier mechanism takes into account both tilts in the OC, which we shall

present in detail in Chapter 3.

Cochlear nonlinearity is believed to originate from the nonlinear behavior of the OHC

[68], which was described in Section 2.1. Some nonlinear cochlea models focused on find-

ing an efficient numerical method for solving nonlinear equations [16, 69–75]. Modeling

efforts have been made to model the nonlinearity of the cochlear behavior, including com-

pressive growth at high sound levels, two-tone suppression, and distortion product otoa-

coustic emissions [18, 76–79]. In most nonlinear models, the nonlinearity was obtained by

introducing a nonlinear element, through certain nonlinear functions (e.g., the hyperbolic

tangenttanh).

2.3 Cochlear Modeling in VLSI

Engineers have long attempted to build physical cochlear models that behave similar to the

biological cochlea. The major motivation of this approach stems from its great potential

for a myriad of sound-processing related applications, for example, acoustic front-end of

automatic speech recognition systems and signal processing component of auditory pros-

thetic devices. Meanwhile, these physical models also function as real-time computational

tools due to their neuromorphic nature, complementary to physiological measurements and

mathematical modeling, to help uncover the cochlear mechanics. When built for such

purpose, they share common goals with mathematical simulations, which is to emulate the

nonlinear active cochlear behavior in order to shed light on how the cochlea works. Among

physical cochlear models, silicon cochleas, particularly analog VLSI (very large scale in-
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Figure 2.12: Cochlear Microanatomy

Scanning electron micrograph of the organ of Corti of the mole rat cochlea. Each outer hair cell (OHC) is

cupped at its base by a Deiters’ (D) cell. Each Deiters’ cell extends a stalk up and expands into a phalangeal

process (PhP), inserted into the reticular laminar (not labeled) at some distance from the base of the Deiters

cell. The outer hair cells are tilted toward the base (on the left) while the phalangeal process is titled toward

the apex (on the right). From [67].

29



tegration) implementations, have exhibited advantages over computer software simulations

in computation efficiency and over digital cochlear chips based on analog to digital con-

verter and digital signal processor in power consumption [6,80].

We shall only review analog VLSI cochlear models in this thesis due to the nature of our

present work. Several generations of silicon cochleas have been built since Lyon and Mead

developed the first analog electronic cochlea [5]. The first silicon cochlea modeled the bi-

ological cochlea as a one-dimensional bank of second-order low-pass filters (LPFs) whose

resonant frequencies decreased exponentially. The design employed transconductance am-

plifiers [81] and capacitors to implement the second-order sections and these second-order

sections were cascaded; the output of one section was fed as input to the following section.

With exponentially increasing time constants along the cascade, the silicon cochlea was

able to generate the characteristic frequency-position map in the biological cochlea.

Despite improvements by other researchers [82,83], the silicon cochlea based on a cas-

cade structure continues to suffer from several shortcomings, which have been found to be

mainly associated with the cascaded structure [6, 84]. In this design, the peak gain (at a

certain position in the cascade) is obtained through accumulation along the cascade, which

imposes a constraint on the number of filters that can be included in a cascade because

too much accumulated peak gain would drive filters out of their linear operating range. In

addition, phase accumulates along the cascade, resulting in too much phase delay at the res-

onant peak, which is unrealistic compared to biology. Meanwhile, noise and distortion with

the output of preceding filters undesirably propagate along the cascade. It is also obvious

that the cascade structure has poor fault tolerance because dysfunction of one second-order

section caused all of its following sections to fail.

Adopting a more biology-inspired approach, Watts built a silicon cochlea with parallel
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structure to address these shortcomings of the cascade structure [6]. This parallel structure

was based on the biological cochlea’s mechanics in which the basilar membrane interacts

with the cochlear fluid. Recent designs have improved Watts original design through circuit

innovation [84–86]. The cochlear chip with a parallel structure integrated the cochlear fluid

model using a resistive network, resulting in a two-dimensional passive cochlea design.

The basilar membrane sections are coupled through the fluid resistive network, thereby

eliminating the problems of phase delay and poor fault-tolerance. The inclusion of cochlear

hydrodynamics reproduced the transition from long-wave to short-wave propagation in the

cochlear duct.

Nevertheless, the parallel structure of silicon cochleae elicited a new problem. In a

second-order system, a high (desirable) quality factor (Q) corresponds to phase frequency

responses that have a steeper slope, resulting in phase differences close toπ among neigh-

boring basilar membrane sections (due to the inherent frequency-position map). Coupling

among basilar membrane sections through the fluid network, therefore, counteracted one

another eliminating the response gain due to their out-of-phase motion [7]. In other words,

this interference has destructive nature, leading to little response gain.

Advances in analog VLSI circuit design technique has also been employed to design

better silicon cochleas. These mainly include the transition from voltage mode [5, 6, 82]

to current mode [80, 84, 85]. Using current to represent signals instead of voltage, current-

mode circuits offer the advantages of larger dynamic range, lower power consumption,

and smaller chip area, over their voltage-mode counterparts [87]. The recently proposed

log-domain filter design approach has also been adopted to design a silicon cochlea [84],

which uses the logarithmic characteristic of the weak-inversion MOSFET (metal-oxide

semiconductor field effect transistor) to extend dynamic range.
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Despite all the progress that has been made in developing silicon cochleas, responses

of existing designs fall short in achieving responses comparable to their biological counter-

part. None of existing silicon cochleas was able to reproduce all the characteristic cochlear

behavior, including large dynamic range, large gain and sharp tuning at low sound levels,

and low gain and broad tuning at intense sound levels. The major factor to account for poor

model responses is that none of the designs include implementation of the cochlear ampli-

fier mechanism—an indispensable component for generating characteristic cochlear behav-

ior. In addition, the constraints imposed by the physical medium for a silicon cochlea, for

example, device (transistor) mismatch, cause discrepancy between the model implementa-

tion and the biological cochlea properties. It is obvious that the biological cochlea also has

mismatch (i.e., variations in its biophysical properties), however, it somehow preserves its

extraordinary ability in sensing and processing sound signals. Discovering the biology’s

secret or trick for fighting mismatch and variation will no doubt lend itself to improving

artificial cochlea-like sound processing system. Building a better silicon cochlea requires a

physiologically plausible cochlear amplifier mechanism and desires advanced circuit tech-

nique. In order to match the brain’s power efficiency, lowering the power consumption in a

silicon cochlear design should also be taken into account as one of the design goals.
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Chapter 3

The Active Cochlea: Mathematical

Model

In Chapter 2, we have reviewed existing cochlear modeling effort in both mathematics

and VLSI circuits. Complementary to physiological measurements, these cochlear mod-

els have made enormous contributions to help uncover the cochlear mechanics, providing

explanation for physiological measurements. In this chapter, we present a nonlinear ac-

tive cochlear model that implements a novel cochlear amplifier mechanism. The idea of

our proposed mechanism stems from the assumption that the cochlea’s micro-architecture

serves its functioning effectively.

We shall focus our modeling effort on numerical simulation and mathematical analysis

as follows. We first describe the cochlear microanatomy and the active mechanism, then

we formulate a two-dimensional (2D) mathematical cochlear model, followed by model

simulation carried out through both numerical and semi-analytical methods. To verify

the proposed cochlear amplifier mechanism, we compare the simulation results obtained
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through both solution methods with physiological data measured from mammalian cochlea.

Through mathematical analysis, we further characterize the traveling wave formed along

the basilar membrane (BM) and in the cochlear fluids. Last, we extend this linear active

model to a nonlinear active one to simulate the nonlinearity of cochlear responses, includ-

ing the compression at high sound levels and two-tone suppression. The mathematical

model described in this chapter serves as a blueprint for the design of a physical model

using analog VLSI techniques, which will be discussed in Chapter 4.

3.1 The Linear Model: Numerical Simulation

In this section, we first discuss the outer hair cell (OHC) forces, including their generation,

property, and its possible role in cochlear mechanics. Then we describe our cochlear am-

plifier mechanism that is based on both cochlear microanatomy and outer hair cell motility.

3.1.1 Outer Hair Cell Motile Forces

OHCs have unique cortical structure in the lateral surface [36], which are believed to

be somehow responsible for their ability of mechanical deformation—changing their cell

body length—at acoustic frequencies when they are acoustically or electrically stimulated.

Roughly speaking, the lateral surface of an OHC consists of three layers, the outmost

plasma membrane, the innermost lateral cisternae, and the helical circumferential filaments

in the middle [36]. The array of cytoskeletal filaments are crosslinked by thinner strands

and attached by pillars to the outmost lateral cistern and to large particles in the inner leaf

of the plasma membrane.
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It is widely held that among various cortical elements of OHCs, the array of large par-

ticles bound in the plasma membrane plays an important role in OHC motility [88]. The

idea is that the membrane-bound particles undergo conformational changes when the trans-

membrane voltage changes thereby causing the cell to hyperpolarization or depolarization.

Upon depolarization, the effective diameters of the particles are reduced or their packing

density becomes increased, resulting in shrink of the surface area of the OHC. Similarly,

hyperpolarization causes expansion of OHCs. The change of surface area of OHCs are then

translated into a change in its cell body length.

Deformation of OHCs can be deemed to be “rapid” although the upper limit to the

speed of OHC electromotility has not yet been determined [18]. Therefore, it is reasonable

to assume that OHC forces can be generated following acoustic frequency and on a cycle-

by-cycle basis. In other words, we assumed that OHC force are exerted onto the BM

instantaneously and not selective with input frequency.

3.1.2 Active Bidirectional Coupling

It has been widely accepted that OHCs are the origin of the cochlear amplifier and that

they make essential contributions to characteristic cochlear behavior. However, the exact

manner or details about how OHC motile forces lead to active amplification in the cochlea

still remains a mystery due to the difficulties in accessing and exploring the functional

roles of different components in the cochlear partition. In our effort pursuing the cochlear

amplifier mechanism, we believe that the complexity and uniqueness of organization and

architecture of the cochlear partition, especially of the organ of Corti (OC), play a direct

role in transmitting OHC forces onto the BM, thus enhancing the BM’s motion.
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We hypothesized a novel cochlear amplifier mechanism in which we considered the

exquisite microstructure of the OC. However, this mechanism did not intend to include

every anatomical details of the OC. Instead, it postulated a possible mean of implementing

the feedback of OHC forces to account for the active cochlear amplification.

The basic idea of the mechanism is that OHC forces, due to OHC mechanoelectro

motility, can be delivered bidirectionally in the longitudinal direction through the cochlear

micro-architecture; if this additional energy is applied at the appropriate cochlear location,

it will enhance the vibration of the basilar membrane (BM), thus generating desired ampli-

fication. These forces are exerted by the OHC on the BM segment through the Deiters’ cell

(DC), realizing active bidirectional coupling (ABC), which results in high sensitivity, high

frequency selectivity, and nonlinear compression.

We hypothesized that the mechanical unit, consisting of the OHC, the phalangeal pro-

cess (PhP) and the reticular membrane (RL), plays a direct role in transmitting OHC forces

onto the BM, thus actively amplifying BM responses. As the main vibrating organ within

the cochlea, the BM is composed of transverse fibers that are weakly coupled longitudi-

nally [18]. The weak coupling is From the base to the apex, BM fibers increase in width

and decrease in thickness. The resulting exponential decrease in stiffness gives rise to the

passive frequency tuning of the cochlea.

The cochlear partition is divided into a number of radial segments from the base to the

apex with OHCs and PhPs arranged within the OC (Figure 3.1). For simplicity, we define

each BM segment as consisting of one DC sitting on the BM, the apical end of one PhP,

and the stereocilia end of one OHC—the latter two both attached to the RL. The stereocilia

end of one OHC lies in one segment, say segmenti − 1, while its basolateral end lies in

the immediately apical segmenti. The DC in segmenti sends a PhP that angles toward the
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apex of the cochlea, with its apical end inserted just behind the stereocilia end of the OHC

in segmenti + 1. The RL is made up of the stereocilia end of the OHCs and the apical end

of PhPs of DCs.

Our hypothesized cochlear amplifier mechanism comprise effect of two distinct OHC

forces due to the tilted structure, namely the feedforward and feedbackward mechanism.

The general idea of the feedforward mechanism is that the motile OHC force due to OHCs’

contraction or expansion is exerted onto an adjacent downstream BM segment due to the tilt

of the OHC. And the novel insight of the feedbackward mechanism is that the OHC force is

delivered onto an adjacent upstream BM segment due to the tilt of the PhP. Downstream and

upstream represent the longitudinal direction with respect to the forward (i.e., from base to

apex) traveling wave—downstream corresponds to apicalward while upstream corresponds

to basalward.

In the case of rigid OHCs (without motility), each BM segment moves up and down as

the cochlear fluids’ pressure difference between the scala vestibuli (SV) and the scala tym-

pani (ST) acts on the BM. Figure 3.1B depicts a transverse view of the cochlear partition,

which reveals a critical structure called arches of Corti. The arches of Corti are formed by

the inner pillar cell (IPC), the outer pillar cell (OPC), and part of the BM transverse fiber.

The base of the IPC works as a rigid pivot point when the BM fiber vibrates up and down.

Given the micro-architecture, the movement of the BM segmenti−1 causes the stereocilia

of the same segment to deflect due to the radial shear motion between the RL and the TM.

In the case of OHCs with electro-motility, the deflection of the stereocilia in turn results

in the contraction or expansion of the OHC because ion flow across the membrane depo-

larizes or hyperpolarizes the OHC. Due to its longitudinal tilt, the OHC in segmenti − 1

exerts a force on the BM (through the DC) that sits in the downstream segmenti, which is
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Figure 3.1: Active Bidirectional Coupling Mechanism

A Longitudinal view.B Transverse view of the Organ of Corti. InA, three segments are labeled (i.e.,i − 1,

i, andi + 1) for illustration. Only the outermost (from the modiolus) row of OHCs is shown; the tectorial

membrane (TM) is not shown. InB, the TM is included.d denotes the longitudinal tilt distance.
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pulled to or pushed away from the RL. Thus, the vibration of BM segmenti amplifies the

displacement of its upstream neighbor, segmenti− 1, due to the feedforward OHC force.

Besides this feedforward mechanism, our model features a novel feedbackward mech-

anism, which is implemented through the PhP extending from each DC’s main trunk [89].

Similar in structure to pillar cells within the OC, the DCs and their PhPs are presumably

rigid. As a result, with the apical end of each PhP immediately adjacent to that of an OHC,

it is reasonable to propose that the PhP transmits mechanical forces effectively—both ten-

sile as well as compressive.

An pertinent phenomenon about the RL is the premise for the feedbackward mecha-

nism. At a step of current injection, both the BM and the RL moved toward each other,

which is consistent with the relationship between the direction of BM’s motion and the

property of OHC forces (i.e., tensile or compressive). In other words, when the BM is

driven upward, corresponding to depolarization of OHCs, thereby contraction of the OHCs,

which in turn pull down the RL, resulting in opposite direction of motion of the BM and

the RL. More importantly, it was reported that the RL moves 5 to 10 times farther than

the BM [90]. This not only showed clearly that the OC is indeed deformable to a physi-

ologically significant extent [18], but also provided us a rather useful hint on the relative

magnitude of feedbackward OHC forces to that of feedforward OHC forces.

Process of feeding back OHC forces is described as follows. In segmenti + 1 of the

cochlear partition, the deflection of stereocilia due to the upward or downward displace-

ment of BM segmenti + 1 causes the OHC whose stereocilia end lies in the segmenti + 1

to contract or expand, thus pulling down or pushing up the RL to some extent (meanwhile,

BM segmenti + 2 (not labeled in Figure 3.1) is pulled up or pushed down due to the feed-

forward OHC force). The driven RL segmenti + 1 then pushes down or pulls up the rigid
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PhP and the whole DC, exerting a force on the BM segmenti. Thus, BM segmenti is

additionally pushed or pulled by the upward or downward displacement of the downstream

BM segmenti + 1, due to the feed-backward OHC force.

In summary, the micro-architecture of the cochlear partition gives rise to feedforward

and feedbackward OHC forces that introduce active bidirectional longitudinal coupling

between BM segments. The motion of BM segmenti−1 reinforces that of segmenti while

the motion of segmenti + 1 opposes that of segmenti.

3.1.3 Formulation of a Two-Dimensional Linear Model

We implemented a two-dimensional (2D) cochlear model in which the cochlear fluids are

included. This physical model is illustrated in Figure 3.2A. In the 2D model, both the

length of the uncoiled cochlea and the finite height of the cochlea duct (i.e., the scala

vestibuli (SV) and the scala tympani (ST)) are discretized into a number of sections with

the original aspect ratio of the cochlea maintained. The stapes movement sets the cochlear

fluid into motion and causes a vibratory deformation of the cochlear partition.

In the 2D model (Figure 3.2B), both the length of the uncoiled cochlea and the height of

the cochlea duct (i.e., the SV and the ST) are discretized into a number of sections with the

original aspect ratio of the cochlea maintained. The variablex represents the distance from

the stapes along the cochlear partition, withx = 0 at the stapes and the round window and

x = L (uncoiled cochlear duct length) at the apex and the helicotrema. Andy represents

the vertical distance from the wall, withy = 0 at the top/bottom wall of cochlear duct and

y = h (cochlear duct radius or height) at the BM.

We first describe the formulation of a linear 2D mathematical model based on our
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cochlear amplifier mechanism—active bidirectional coupling (ABC), and present its nu-

merical solution. Next, we shall extend the linear model to a nonlinear model that simulates

cochlear nonlinear responses by incorporating OHCs’ saturation property.

Assuming incompressibility of the cochlear fluids, we modeled only the bottom cochlear

chamber (ST) in our 2D model, which is mathematically equivalent to modeling both cham-

bers because the fluid movements in the SV and ST are complementary (Figure 3.2B). Now

let φ(x, y, t) represent the difference between the velocity potentials in the SV and ST:

φ(x, y, t) = φSV(x, y, t)− φST(x, 2h − y, t), (3.1)

whereφSV is the velocity potential in the SV whileφST is the velocity potential in the ST.

From here on, we omit the time variablet in the expressions and equations for the linear

version of the model so that we will deal with the model in the frequency domain.

Due to the assumed incompressibility of the cochlear fluid, the velocity potential dif-

ferenceφ of the fluids is required to satisfy

52φ(x, y) = 0, (3.2)

where5 is the Laplacian operator. This potential is related to fluid velocities in thex and

y directions:

Vx = −∂φ(x, y)

∂x
, and Vy = −∂φ(x, y)

∂y
. (3.3)

Considering the pressure difference,Pd(x, y), thereby the force, imparted on a small

element of fluid and its resultant velocity,Vx andVy, we obtain the following relations
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Figure 3.2: Two-dimensional Cochlear Model

The uncoiled cochlea is represented by a rectangle, which includes the two major fluid ducts, scala vestibuli

(SV) and scala tympani (ST). As an approximation for the passive-cochlea case, the cochlear partition was

reduced to only the basilar membrane.A The stapes motion causes the oval window moves inward (solid-line

half circle) and outward (dashed-line half circle), which in turn pushes or pulls the round window due to the

incompressibility of the fluid.B In the two-dimensional (2D) cochlea model, because the fluid movements

in the SV and ST are complementary (i.e., equal in magnitude but with opposite directions), only the bottom

compartment was considered in order to reduce simulation time and computation load as well as taking

advantage of simpler coordinates. Thus, the basilar membrane forms one of the boundaries aty = h. The

longitudinal length of the cochlea at the apex is denoted byL.
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according to the Newton’s second law:

−∂Pd(x, y)

∂x
= 2ρ

∂Vx

∂t
and − ∂Pd(x, y)

∂y
= 2ρ

∂Vy

∂t
, (3.4)

whereρ is the fluid density and the factor 2 accounts for the same amount of fluid mass

in both SV and ST. Combining the relation with Equation 3.3 yields the relation between

pressure differencePd and velocity potentialφ:

Pd(x, y) = 2ρ
∂φ

∂t
(3.5)

The BM’s vibration is in the vertical direction, with downward displacement (i.e., to-

wards the ST) being positive. The BM has mass, damping, and stiffness. Its motion is

directly driven by the pressure difference across it, which can be described as follows.

Pd(x, y) + FOHC(x) = S(x)δ(x) + β(x)δ̇(x) + M(x)δ̈(x), at y = h,

FOHC(x) = αS(x)(γδ(x− d) − δ(x + d)), (3.6)

whereM(x) is the mass,S(x) is the stiffness, andβ(x) = ζ
√

S(x)M(x) is the damping,

per unit area, of the BM, andζ is the damping ratio;δ is the downward displacement of

the BM while the first time-derivative ofδ is its velocity and the second is its acceleration.

Pd(x, y) aty = h is the pressure difference at the BM.FOHC(x) combines feedforward and

feedbackward OHC forces, expressed as a fractionα of the BM stiffness (i.e., OHC motility

factor). γ is the ratio of the feed-forward to the feed-backward coupling, representing

relative strengths of the OHC forces exerted on the BM segment through the DC, directly,

and through the tilted PhP.d denotes the tilt distance, which is the horizontal displacement

between the source and the recipient of the OHC force, assumed to be equal for feedforward
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and feedbackward cases.

The stapes and the round window at the base are assumed to move identically except in

opposite directions. The basal boundary condition is described as follows.

−∂φ

∂x
= f(t), at x = 0, (3.7)

wheref(t) is the velocity of the stapes (defined to be positive for inward velocity).

At the apex, the horizontal velocity is zero due to the existence of hard wall. Therefore,

the apical boundary condition is described as follows.

∂φ

∂x
= 0, at x = L. (3.8)

At the bottom wall, the fluids do not have a vertical motion, thus the velocity in they

direction is zero, which is described as follows.

∂φ

∂y
= 0, at y = 0. (3.9)

3.1.4 Model Simulation Results Using Finite-Difference Method

Having obtained the mathematical formulation of an active cochlear model, we shall ex-

plore its responses or behavior in responding to any sound stimulus. We first employed a

numerical approach to obtain model responses, or simulating the model on a digital com-

puter. The major advantage of numerical simulation is that it provides a straightforward

and stereotyped means for obtaining model behavior—discretization in space and/or time,

44



transformation/approximation of the original set of governing equations, and solving the

equivalent equation set for responses.

The numerical method we used is Neely’s finite difference (FD), which has been most

widely employed in solving linear cochlear models [73, 91, 92]. Other numerical meth-

ods in the frequency domain included integral-equation method proposed by Allen [93]

and Sondhi [94]. In the FD method, derivatives in the ordinary differential equations that

describe the fluid hydrodynamics and all the cochlea’s boundary conditions were approxi-

mated by their finite-difference counterparts. Thus, a set of differential equations becomes

a set of linear algebra equations, which can be solved at moderate computational cost with

digital computers.

Specifically, we simulated the linear active model numerically in the frequency domain

and a nonlinear active model in the time domain. In order to investigate the effect of OHC

motility on the BM motion, we simulated the model using different OHC motility factors

α. The model parameter used in our simulations are listed in Table 3.1.4. Part of the

parameters are chosen to match the empirical data of frequency-position map of cat [95].

In this simulation, the cochlea is discretized into 350 segments longitudinally, amounting

to radial segments approximately 71µm long (for a cochlear duct length of 25 mm). In the

vertical direction, 13 segments were used to represent the fluids at each cochlear position.

We obtained the BM displacement responses—amplitude (normalized by the stapes dis-

placement) and phase (with respect to the stapes motion)(Figure 3.3). The input excitation

was a 2 kHz pure tone. The OHC motility factorα varied from 0.0 (passive case) to 0.20

(active case), resulting in different values of amplitude gain in the BM displacement.

Response characteristics were summarized in Table 3.1.4 in terms of peak gain (BM
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Parameters and denotation Values Unit

Cochlear duct heighth 1.0 mm
Cochlear duct lengthL 25.0 mm
Fluid densityρ 1.0 × 10−3 g/mm3

BM mass per unit areaM(x) 3.0 × 10−5 g/mm2

BM stiffness per unit areaS(x) 5.0 × 106e−0.4x g/(mm2s2)
BM damping ratioζ 0.2
Tilt distanced 71.0 × 10−3 mm
Segment length4 1.0 × 10−2 mm
OHC motility factorα 0.0 − 0.2
Forward-to-backward ratioγ 0.3

Table 3.1: Mathematical Model Parameters

This set of parameters were chosen for simulating the cat cochlea.

response peak amplitude normalized by the stapes motion amplitude), peak phase (phase

lag relative to the stapes motion),Q10 (Q10 is used to quantify the sharpness of tuning,

calculated as the ratio between the CF and the frequency span of the curve 10 dB below

the peak. In other words, the larger theQ10, the sharper the tuning.), and peak location, or

characteristic place (CP).

With the varyingα from 0.0 to 0.20, the response peak became larger and tuning gets

sharper. Whenα = 0.15, the amplitude of the BM displacement was realistic while the

phase accumulation at the peak was larger compared to the physiological data (around−1

to−6π radians [32]).

As was evident in the simulation, inclusion of OHC motility in the passive cochlear

model elicited active behavior of the cochlea. As can be seen from Figure 3.3A and Ta-

ble 3.1.4, amplitude amplification of BM motion only occured in the vincinity of peak,

giving rise to frequency-selective amplification of BM vibration. Phase response curves al-

most overlap with one another (see Figure 3.3B): phase accumulation did not change much

near the base while phase lag at the peak varied a little simply due to the shift of peak loca-
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α Peak gain (dB) Peak phase (π radians) Q10 Peak location (mm)

0 17.6 -5.1 0.6 11.4
0.1 46.2 -18.7 3.5 14.6
0.15 79.5 -19.2 6.1 14.6
0.2 114.6 -22.0 6.1 14.6

Table 3.2: Mathematical Model Responses with Varying Outer Hair Cell Motility

This table summarizes the characteristics of the basilar membrane responses in the cochlear model with

different values of outer hair cell motility factor.

tion with the varying OHC motility factorα. This further suggested the restricted property

of the location of the ABC-based cochlear amplifier.

3.1.5 Bidirectional versus Uni-Directional Coupling

In our model, a forward-to-backward ratio,γ, is used to describe the contribution of feed-

forward and feedbackward OHC forces to the BM’s motion. Researchers have previously

shown how an active cochlear model behaves with feedforward forces [15,17]. It is then in-

structive to investigate what roles of forward and backward OHC forces play in enhancing

the BM’s motion.

In order to demonstrate the effects of adding feedforward and/or feedbackward OHC

forces into a passive model (without OHC motility), we simulated three variations of a

linear active model (i.e., with only feedforward, with only feedbackward, and with both

forces). The same parameter values were used for these simulations; the OHC motility

factorα was 0.15 and the ratio between feedforward coupling and feed-backward coupling

γ was 0.3 (in the case that feedforward OHC forces were present).

Peak amplitude, phase accumulation, andQ10 are used to evaluate the model response

quantitatively. Figure 3.4 shows the amplitude and phase of the BM displacement, nor-
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Figure 3.3: Effect of Outer Hair Cell Motility

BM displacement, normalized by the stapes displacement, for different outer hair cell motility factor (α)

values, to a 2 kHz pure tone.A Amplitude.B Phase. Whenα = 0.0, the model shows responses of a passive

cochlea; asα increases, the model generally shows larger amplification, sharper tuning and more phase lag

at peak. The parameter values used for the model simulation are listed in Table 3.1.4
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malized by the stapes displacement, when driven by a 2 kHz tone for the three different

configurations as well as the passive case. The BM response is least amplified (peak< 20

dB) and broadest (Q10 is as small as 0.6) in the passive case, where the cochlear amplifier

mechanism—ABC—is absent; feedforward forces alone increase the amplification (peak

reaches around 54 dB) and sharpen the tuning (Q10 is about 2.6) to a limited extent; feed-

backward forces alone increase the amplification a little more (peak reaches about 57 dB)

and sharpen the tuning to a much larger extent (Q10 is 7.0); the BM displacement is largest

(peak above 80 dB) and more realistically tuned (Q10 is 6.1) when both feedforward and

feedbackward forces are included.

Regarding the phase, the four cases show different phase accumulation at the peak. The

passive case and the feed-backward forces result in the smallest phase lag, and the case with

both forces has moderate phase lag at the peak, while the feedforward forces causes the

largest phase accumulation at -25.6π radians. Thus, feedforward OHC forces alone result

in too much phase shift, feedbackward OHC forces alone give rise to too sharp tuning with a

not-large-enough peak, and when both of them, feedforward and feedbackward OHC forces

are present with different strengths (i.e., when the cochlear amplifier mechanism—ABC—

is included), the model produces the most realistic response in terms of peak amplitude,

phase, and frequency tuning of the BM responses compared to physiological measurements

[32].

3.1.6 Comparison with Physiological Data

The responses of the 2D linear active model at different input frequencies separated by

octave intervals are shown in Figure 3.5. Due to the logarithmic frequency-position re-

lation, the peak locations corresponding to each input frequency are spaced evenly at 3.5
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Figure 3.4: Comparison between Uni- and Bidirectional Coupling

Basilar membrane displacement responses, normalized by the stapes displacement, at 2 kHz pure tone.A Am-

plitude. B Phase. Four cases are simulated for comparison: No ABC, Feedforward only, Feedbackward only,

and with ABC. ABC: Active bidirectional coupling.
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Model Peak gain (dB) Peak phase (π radians) Q10 Peak position (mm)

No ABC 17.6 -5.1 0.6 11.4
Forward only 53.9 -25.6 2.6 15.1
Backward only 57.1 -17.4 7.0 14.5
With ABC 79.5 -19.2 6.1 14.6

Table 3.3: Bidirectional versus Uni-Directional Coupling: Simulation Results

This table compares the simulation results in the passive cochlea model (No ABC), the active cochlea model

that includes unidirectional outer hair cell (OHC) forces (Forward only and Backward only), and the active

cochlea model that include bidirectional OHC forces (With ABC). ABC: Active bidirectional coupling.

mm, which is just the octave span of cats (14% of cochlear length [95]). As the damping

ratio ζ remains the same, the tuning for different input frequencies are the same across the

cochlea.

A frequency-position map can be obtained from the peak locations for different input

frequencies. The frequency-position map extracted from the model responses was plotted

in Figure 3.6 and compared with the empirical function regressed from cat physiological

data [96]. The model data are in reasonable agreement with the regressed function (their

slopes are fairly similar), especially in the medium and high frequency region near the base.

The model data demonstrated a near-linear relationship between cochlear positions and

their corresponding CF in the base and middle of the cochlea. Discrepancy in slope between

the model responses and the physiological data mainly lied in the apical low-frequency

region, which may be attributed to the fact that differences between the apical and other

regions of the cochlea was not included in the present model. It has been observed that the

tuning curves of low-frequency and high-frequency fibers have different shapes [97, 98].

The factors to account for the basal-apical differences is yet to be discovered.
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Figure 3.5: Basilar Membrane Displacement Responses

Longitudinal patterns of basilar membrane displacement to six octave-intervaled frequencies.A Amplitude.

B Phase. The outer hair cell motility factorα was set to 0.15 for all the simulations in the plot.
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Figure 3.6: Frequency-Position Map

The red dots denote generated from simulation results the two-dimensional (2D) linear active model. The

blue curve is the regressed function based on physiological data of cat; the empirical function isf(Hz) =

456(102.1x − 0.8) (x is the proportional distance from apex) [95].
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3.1.7 Frequency Responses

We obtained the frequency responses of the BM velocity gain and phase at a cochlear

position around 6.9mm from the stapes; its CF was around 9.3 kHz. The OHC motility

factor was set to 0.17. The amplitude response compares favorably to the biological data,

while the phase accumulation at the peak (−6.7 cycles) is larger than biological data (−0.5

to−3 cycle) [32].

3.2 The Linear Model: Semi-Analytical Solution

While numerical methods can solve for model responses, they do not provide much insight

into the cochlear mechanics and the role of OHC motility in the active amplification; they

also require prohibitive computation time and resource, especially in time-domain simula-

tions of nonlinear cochlear models and for computation with fine discretization which is

always desirable in the short-wave region to reduce the discretization error.

An alternative to numerical simulations is to solve the model analytically—that is, to

obtain explicit mathematical form or expression to describe the fluid and/or BM’s motion.

However, since transcendental equations were involved in the problem, our analytical ap-

proach had to incorporate numerical calculation at certain point in the solution process,

resulting in a semi-analytical solution (SAS). In addition, due to the difficulty in obtaining

approximation in solving the nonlinear version of the model, our analytical approach only

dealt with the linear version of the active cochlear model.

54



A

2 3 4 5 6 7 8 9 10 20
Frequency HkHzL

-20

0

20

40

60

80

B
M

V
el

oc
ity

G
ai

n

HdB
re

St
ap

es
L

B

2 3 4 5 6 7 8 9 10 20
Frequency HkHzL

-10

-5

0

B
M

V
el

oc
ity

Ph
as

e

HC
yc

le
s

re
St

ap
es
L

Figure 3.7: Frequency Responses of Basilar Membrane Velocity

A Response gain.B Phase. Both were relative to the stapes motion. The outer hair cell motility factorα was

set to 0.17 to match the peak amplitude in the physiological data. Solid line: model simulation results. Dots:

Physiological data [47].
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3.2.1 Solution Procedures

Our analytical approach employed the LG (Liouville-Green), or WKB(Wentzel-Kramers-

Brillouin) or WKBJ (Wentzel-Kramers-Brillouin-Jeffereys) method, a well-known approx-

imation for describing wave behavior on shallow canals. Steele and Taber [99] and de Boer

and Viergever [100] first applied this approach for solutions to cochlea models.

The WKB method is based on the idea that the wavelength can be estimated based on

the properties of the medium in which the wave travels; it deals with the nonuniformity

along the cochlear duct due to the varying BM boundary properties. WKB assumes that

when the wavelength is short enough, the properties of the medium can be treated as uni-

form within the span of a wavelength [101]. As Steele and Taber pointed out [99], this

short-wave approximation can still be applied to the long-wave region of the cochlea be-

cause the long wavelength region is defined relative to the height of the cochlear duct, and

for the cochlea, the wavelength must be very long before the WKB solution becomes in-

valid. Further, the comparison that Zweig [102] made between the WKB and direct numer-

ical integration solutions for a one-dimensional (1D) model confirmed that it is reasonable

to use only exponentials in the analytical approximations.

Following the approach in [6], we assumed a solution form of the velocity potentialφ

that represented a wave traveling in the+x direction withy dependence:

φ(x, y, t) = Y (y)ei(ωt−kx), (3.10)

wherek is the complex wavenumber andω is the real angular frequency of the wave. This

solution form must satisfy Laplace’s equation (Equation 3.2) and the bottom wall boundary
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condition (Equation 3.9). Thus, the solution form can be further determined as:

φ(x, y, t) = B(x) cosh(ky)ei(ωt−kx), (3.11)

whereB(x) varies with cochlear positionx. The form ofφ applies to any cochlear position

(x, y) and timet while B andk take on different values due to the varying stiffness and

damping of the BM along the cochlea, which forms one boundary of the fluid body. In

other words, the wavenumber and wave amplitude are mainly determined by the physical

properties of the BM.

As Vy = ∂δ/∂t = −∂φ/∂y at y = h, the BM displacementδ can be computed as

δ(x, y, t)|y=h = −
∫

∂yφ(x, y, t)dt|y=h

=⇒ δ(x, t) = iB(x)ei(ωt−kx)k sinh(kh)/ω. (3.12)

By substituting these forms in Equation 3.12 and their corresponding derivatives, to-

gether with Equation 3.5, into the BM boundary condition (Equation 3.6), we derived a

dispersion relation, which describes the relation between the wave’s energy (i.e., input fre-

quencyω) and its momentum (i.e., wavenumberk).

k tanh(kh)

1 + αS(x)k tanh(kh)(γeikd − e−ikd)/(2ρω2)
=

2ρω2

S(x) + iωβ(x) + (iω)2M(x)
. (3.13)

Given any input frequency, we can solve this dispersion relation fork, which leads to the

solution of fluid velocity potentialφ as well as the BM displacementδ.

Furthermore, we hadVstapes = −∂φ/∂x atx = 0 and we can derive the stapes displace-
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ment as follows.

δstapes(y, t) =

∫
Vstapesdt, (3.14)

And the average stapes displacement is the integration over the height of the oval window

(i.e., fromy = 0 to y = h as an approximation and simplification). That led to

δstapes(t) =
1

h

∫ h

0

δstapes(y, t)dy (3.15)

This gives a stapes displacement expression, which is a function of the input frequencyω

and the wavenumber atx = 0 (denoted byk0):

δstapes(ω, k0) = |B0 sinh(k0)

ω
|, (3.16)

whereB0 is B(x) at x = 0. And for simplicity, we assume the phase of the stapes dis-

placement is zero. This stapes displacement will be needed for calculating the gain of BM

responses (i.e., BM amplitude normalized by stapes motion).

3.2.2 Wavenumber Loci of the Traveling Wave

Now we can solve the dispersion relation for the wavenumberk at different cochlear po-

sition x. The parameters used for the semi-analytical solution is exactly the same as the

numerical method (Table 3.1.4). Since the dispersion relation is transcendental, we have to

solve it numerically. The solution is the loci ofk along the cochlea, starting fromx = 0 to

x = L. During this process, we trace the locus ofk by using the value ofk at the previous

position as the initial value.

For wave propagation in the+x direction, the real part of the wavenumber,kr, is in-
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versely related to the wavelength, whereas the imaginary part,ki, is related to the wave-

amplitude. These relations are evident if we rewrite the Equation 3.12 by replacingk with

kr + iki as

δ(x, t) = iB(x)ekixei(ωt−krx)(kr + iki) sinh((kr + iki)h)/ω. (3.17)

Thus, wave propagation in the passive and active models may be compared by plotting the

real and imaginary parts of the wavenumber. As the wave propagates, it transitions from

long wave to short wave, where its wavelength becomes much smaller than the cochlear

duct’s height.

Different OHC motility factorα in the simulation corresponded to strikingly different

loci of k, especially in the short-wave region wherekr is large (Figure 3.8). The input was

a 2 kHz pure tone. The wavenumber locus stayed in the fourth quadrant in the passive case

where the OHC motility factorα = 0 (Figure 3.8A; only the fourth quadrant was shown),

while in the active cases where the OHC motility factorα > 0, the wavenumber loci

entered the first quadrant, right before the peak position at different extent with different

OHC motility factors, and then returned to the foruth quadrant (Figure 3.8B; only the first

and the fourth quadrants were shown). It is this positive value ofki that produces large

amplification of BM displacement in the active case.

We plottedkr andki, scaled by the tilt distanced, seperately (i.e.,krd andkid), with

respect to the distance from the stapesx, to understand more clearly the relation between

wavenumber loci and BM responses (Figure 3.9). Only the passive case and one active case

(α = 0.15) were shown for clear illustration.

In both passive and active case,kr started from a near-zero value and gradually in-
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Figure 3.8: Wavenumber Loci of Traveling Wave

Wavenumber loci are different at different OHC motility factors. The input is 2 kHz pure tone.A When the

outer hair cell motility factorα = 0.0. B Whenα = 0.1, 0.15, and 0.2. The dots mark the characteristic

place, where the BM vibration peaks.
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creased, indicating that the wave travels at a high speed, then gradually slows down at

cochlear positions where the peak occurs. A dramatic difference between the passive and

the active cases occurs after the peak: in the passive case,kr increases to a large value

then drops to a near-zero value, while in the active case, it asymptotes at non-zero value—

indicating that while the wavelength remains short in the active case it becomes long again

in the passive case. As forki, whereas it keeps negative in the passive case, we observed

positive values right before the peak location in the active case.

Having obtained the locus of the wavenumberk, we shall now investigate other charac-

teristics of the TW. The traveling velocityv of the wave can be calculated asω/k and the

wavelengthλ is equal to2π/kr or 2πv/ω (i.e.,v/f ); it is proportional to the velocity. (Fig-

ure 3.10) shows the TW velocity for both a passive and an active case. The velocity at the

CP is 1.94, and 0.36m/s for these two cases, respectively. The corresponding wavelengths

are 969, and 180µm for the passive and active cases, respectively.

To visualize the traveling wave behavior, we plot the velocity potential in the fluid and

the BM displacement, obtained using the wavenumberk we just solved for. Figure 3.11

shows the traveling wave for both the passive and an active cases. In the passive case, the

BM amplitude is only about 23 dB, and theQ10 is calculated to be 0.6, while the active

response reaches 85 dB and theQ10 is about 5.4. The wavelength decreases as the wave

travels; near the peak (in the short-wave region), the wave also becomes more localized

in the vertical direction, which cannot be simulated in a long-wave approximation model.

In particular, the wave extends from the BM for about 77µm into the fluids (from model

semi-analytical simulation), which is comparable to its longitudinal wavelength.
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Figure 3.9: Real and Imaginary Parts of Wavenumber

The plots show the loci ofkr andki multiplied by the tilt distanced. The passive case (α = 0) and the active

case (α = 0.15) are compared.A Real part ofk. B Imaginary part. Input frequency is 2 kHz. Dots mark the

peak locations.
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Model simulation result using semi-analytical solutions for passive and active cases are shown.A Traveling

wave velocity for 2 kHz pure tone input.B Zoom-in around the characteristic place. Red curve represents

the passive case(α = 0.0), while blue curve represents the active case(α = 0.15). Dots mark the peak
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Figure 3.11: Simulated Traveling Wave in the Passive and Active Cochleae

The input frequency is 2 kHz. Passive case (α = 0): A & B. Active case (α = 0.15): C & D. Traveling wave

(TW) in the fluid: A & C. TW along the basilar membrane:B & D. The plots for the passive and active cases

are on different scale.
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3.2.3 Semi-Analytical Solutions

We now proceed to perform further analytical treatment to the model in order to derive

closed-form expressions that relate the traveling wave behavior, namely the wavenumber

k, to cochlea’s biophysical parameters. This effort will no doubt lead to more insight about

the contribution of the active mechanism, ABC, to the active amplification in the cochlea.

The analysis shall focus on seeking answers to three questions that highlight the charac-

teristic features of the wavenumber locus in the active case. First, why does the wavenum-

ber enter the first quadrant before the peak? Second, what is the asymptotic value of the real

part of the wavenumber (i.e., in the cut-off region)? Last, when is the imaginary part equal

to zero? Answer to the first question will shed light on how active amplification arises.

The second addresses why the wavelength remains short in the cut-off region, unlike the

passive case. The third reveals how the CP depends on the model’s parameters.

For convenience, we repeat here the dispersion relation (Equation 3.13) of the cochlear

traveling wave in the active case (i.e., with ABC):

k tanh(kh)

1 + αS(x)k tanh(kh)(γeikd − e−ikd)/(2ρω2)
=

2ρω2

S(x) + iωβ(x) + (iω)2M(x)
. (3.18)

We shall now seek solutions to the dispersion relation in the three characteristic re-

gions of the traveling wave, namely the long-wave, short-wave, and the cut-off region. In

these three regions, different assumptions and approximations will be introduced due to the

varying properties of the traveling wave in order to simplify the solution process.

Long-Wave Region
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The dispersion relation (Equation 3.18) can be transformed into

k tanh(kh)

1 + α
√

γS(x) sinh (ikd + log
√

γ)k tanh(kh)/(ρω2)
=

2ρω2

S(x) + iωβ(x) + (iω)2M(x)
.

(3.19)

where the term in the denominator on the left
√

γ sinh (ikd + log
√

γ) replaced the term

γeikd − e−ikd in Equation 3.18.

The wave in the cochlear fluid and along the BM travels at a large speed near the stapes,

corresponding to a long wave length. When the wave length is larger than the cochlear duct

height, the cochlea region is referred to as the long-wave region. Therefore, in the long-

wave region, we havehk � 1 since wavenumberk is small. Therefore,tanh (hk) can be

approximated to behk. In addition, the relation|kd| � |log√γ| holds in this region due

to the smallk and the choice ofd andgamma (see Table 3.1.4). Thus, Equation 3.19 is

simplified as:

k2h

1 + α
√

γS(x) sinh (log
√

γ)k2h/(ρω2)
≈ 2ρω2

S(x) + iωβ(x) + (iω)2M(x)
. (3.20)

Also, the term
√

γ sinh (log
√

γ) is equal to(γ − 1)/2. Substituting this into Equa-

tion 3.20 yields an expression of the wavenumberk:

k ≈ ω

√
2ρ/h

S(x) + iωβ(x) + S(x)α(1 − γ) − ω2M(x)
. (3.21)

As the BM impedance in the long-wave region is dominated by its stiffness (far away from

the resonance), ignoring the damping and mass gives the approximate solution:

k ≈ ω

√
2ρ/h

S(x)(1 + α(1 − γ))
(3.22)
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As we can see, the wave numberk is proportional to the input frequencyω at any position

in the long wave region. In the passive case whereα = 0, the solution ofk reduces to:

k ≈ ω

√
2ρ/h

S(x)
. (3.23)

Even in the active case, sinceα is much less than 1 (< 0.2 given the chosen model param-

eters), the effect of the termα(1 − γ) is rather minor—evidence that ABC does not take

much effect in the long-wave region.

In terms of traveling velocity, the group velocity of the fluid is equal to the phase ve-

locity c:

c = ω/k ≈

√
S(x)(1 + α(1 − γ))

2ρ/h
, (3.24)

which corresponds to a non-dispersive wave.

Short-Wave Region

Switching to the short-wave region, we shall seek the answer to the question of why

the wavenumber locus enters the first quadrant. In the short-wave region, in the vicinity of

the peak location, we observed that the real part of the wavenumber,kr is far greater than

the imaginary part,ki. In addition, since|krh| � 1, we havetanh(kh) ≈ tanh(krh) ≈ 1.

Therefore, Equation 3.18 can also be tranformed into:

k

1 + iα
√

γS(x) sin (kd − i log
√

γ)k/(ρω2)
=

2ρω2

S(x) + iωβ(x) + (iω)2M(x)
. (3.25)

In the following derivations, we replaceΩ for ω/ωn, whereωn(x) is the resonant an-

gular frequency at the cochlear locationx (ωn =
√

S(x)/M(x)). In addition, we have
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β = ζ
√

S(x)M(x) = ζM(x)ωn. With these substitutions, Equation 3.25 becomes:

(1 + iζΩ − Ω2)k =
2ρ

M(x)
Ω2 + i2αk

√
γ sin(kd − i log

√
γ). (3.26)

Since|kd−i log
√

γ| is close to 0, we havesin(kd−i log
√

γ) ≈ kd−i log
√

γ. In addition,

Ω < 1 as the peak occurs well before the resonance andζ is chosen to be 0.2, so we have

ζΩ � 1. Thus, Equation 3.26 becomes:

2αd
√

γk2 + i(1 −Ω2 − 2α
√

γ log
√

γ)k − i2ρΩ2/M(x) = 0, (3.27)

Further, we ignore the termα
√

γ log
√

γ since it is far less than 1 based on our parameter

choice. SinceΩ2 � 1, we ignore the1 − Ω2 term, and we have

2αdγk2 + ik − i
2ρ

M(x)
Ω2 = 0. (3.28)

Hence, we find the solution to the wavenumber in the short-wave region as:

k =

(√
i16α

√
γρd/M(x)Ω − 1 − i

)
/4αd

√
γ. (3.29)

From the expression ofk above, we obtain its imaginary part,ki as follows.

ki =

√
2

2

√
1 +

√
1 + 256γd2α2ρ2Ω4/M(x)2 − 1

4αd
√

γ
. (3.30)

Ω increases as the wave propagates, due to the decrease inωn. Thus, ifα > 0, the imaginary

part of the wavenumberk, ki, becomes positive, pushing the wavenumber locus into the first

quadrant. Therefore, it is evident that a positive OHC motility factor is the source of active

amplification.
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Cut-Off Region

Now we shall look at the cut-off region, for which we transfrom Equation 3.18 into:

k tanh (kh)

1 + iα
√

γS(x) tanh (kh) sin (kd − i log
√

γ)k/(ρω2)
=

2ρω2

S(x) + iωβ(x) + (iω)2M(x)
.

(3.31)

Substitutingk with kr + iki in Equation 3.31 yields:

α
√

γS(x) (i cosh(kid − log (
√

γ)) sin(krd) − cos(krd) sinh(kid − log(
√

γ)))

+
ρω2

k2
r + k2

i

(kr − iki) = (S(x)− ω2M(x) + iωβ(x))/2 (3.32)

SubstitutingΩ for ω/ωn and decomposing Equation 3.32 into the real and imaginary

part yield:

ρΩ2

k2
r + k2

i

kr − α
√

γM(x)(cos(krd) sinh (kid − log(
√

γ))) = (M(x)(1 − Ω2))/2, (3.33)

and

ρΩ2

k2
r + k2

i

ki − α
√

γM(x)(sin(krd) cosh (kid − log(
√

γ))) = −(ζΩM(x))/2. (3.34)

These two equations can be further reorganized as:

2
√

γα(cos(krd) sinh (kid − log(
√

γ))) = Ω2 +

2
ρ

M(x)
kr

k2
r + k2

i

Ω2, (3.35)
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and

2
√

γα(sin (krd) cosh(kid − log(
√

γ))) = ζΩ +

2
ρ

M(x)
ki

k2
r + k2

i

Ω2. (3.36)

Dividing Equation 3.36 by Equation 3.35 results in

tan(krd)

tanh(kid − log(
√

γ))
=

ζ

Ω
+

2 ρ
M(x)

ki

k2
r + k2

i

1 +
2 ρ

M(x)
kr

k2
r + k2

i

(3.37)

Since |kid| � 1 in the cut-off region, andlog(
√

γ) ≈ −0.6, we havetanh(kid −

log(
√

γ)) ≈ −1. Thus, we have:

− tan(krd) =

ζ

Ω
+

2
ρ

M(x)
ki

k2
r + k2

i

1 +

2
ρ

M(x)
kr

k2
r + k2

i

(3.38)

SinceΩ � 1 near the apex,ζ/Ω ≈ 0. Also because|ki| � |kr| near the apex, we have:

ζ

Ω
+

2
ρ

M(x)
ki

k2
r + k2

i

1 +

2
ρ

M(x)
kr

k2
r + k2

i

≈ 0. (3.39)

Therefore, Equation 3.38 leads to:

tan(krd) ≈ 0, (3.40)

which gives the asymptotic value ofkr asπ/d. This result predicts that the wavelength gets
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no shorter than twice the tilt distanced, and explains whykr asymptotes to the same value

independent ofα. For a tilt distanced = 71 µm, this estimate yields the value of 44.2,

which is close to the simulation result of 36.1.

At the Characteristic Place

It is also instructive to investigate the model’s responses at the CP as both the magnitude

and phase of the BM response at the CP reflect the characteristics of the cochlear mechan-

ics, as well as encode the input signal’s property. As we already know,ki = 0 corresponds

to the peak in the active case. Therefore, Equation 3.33 and Equation 3.34 become:

ρΩ2

kr
− α

√
γM(x)(cos(krd) sinh (− log(

√
γ))) = (M(x)(1 − Ω2))/2, (3.41)

and

α
√

γM(x) sin(krd) cosh (− log(
√

γ)) = ζΩM(x)/2. (3.42)

Around the peak, we havesin(krd) ≈ π − krd sincekrd ≈ π (by linearizationsin(x)

aroundπ). Also, we have
√

γ sinh (− log
√

γ) = (1 − γ)/2 and
√

γ cosh (− log
√

γ) =

(1 + γ)/2.

Substitutingm = M(x)/2ρd (the ratio between the BM mass and fluid mass of depth

d), Equation 3.41 becomes

ρΩ2

kr
− αM

1 − γ

2
cos krd = (M(x)(1 − Ω2))/2,

=⇒ α(1 − γ) cos krd = Ω2(1 +
1

mkrd
) − 1 (3.43)
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for the real part and Equation 3.42 becomes

α(1 + γ)(π − krd) = ζΩ (3.44)

for the imaginary part of the dispersion relation.

Solving Equation 3.44 forkr, we obtained its solution at the peak position:

kr =
π

d
− ζΩ

αd(1 + γ)
. (3.45)

With cos(krd) ≈ −1, Equation 3.43 becomes:

Ω2

d
+ αmkr(1 − γ) = mkr(1 − Ω2). (3.46)

Substituting the expression ofkr at the peak (Equation 3.45) into Equation 3.46 yields:

−ζΩ3 + α(1 + γ)(π + 1/m)Ω2 + ζ(1 − α(1 − γ))Ω + π(α(1 − γ) − 1) = 0 (3.47)

Ignoring theΩ3 term due toΩ � 1 at the CP, we obtained a second-order polynomial

equation inΩ:

α(1 + γ)(π + 1/m)Ω2 + ζ(1 − α(1 − γ))Ω + π(α(1 − γ) − 1) = 0 (3.48)

Solving Equation 3.48 forΩ, we then obtained:

Ω =
ζ(α(1 − γ) − 1) +

√
(α(1 − γ) − 1))2ζ2 + 4πα2(1 + γ)2(1 − γ(1 − γ))(π + 1/m)

2α(1 + γ)(π + 1/m)

(3.49)

Substituting model parameters in the expression ofΩ above gives values ofΩ at the CP:
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0.48, 0.49, and 0.49 whenα is chosen to be 0.1, 0.15, and 0.20, respectively. These values

verified the assumption we made earlier thatΩ2 � 1 at the CP. Sinceα(1 − γ) � 1 and

γ(1 − γ) � 1, the solution above can be further simplified as:

Ω =

√
ζ2 + 4πα2(1 + γ)2(π + 1/m) − ζ

2α(1 + γ)(π + 1/m)
(3.50)

This simplified solution ofΩ yields 0.49, 0.52, and 0.53 forα is chosen to be 0.1, 0.15,

and 0.20, respectively. On the other hand, the results from the semi-analytical simulation

approach described in the previous section (Figure 3.9) were 0.51, and 0.51 forα = 0.1

and 0.15, respectively (diverged atα = 0.2). Therefore, the predictions in Equation 3.50

are in good agreement with the simulation based on numerical solution of the wavenumber

k.

Substituting the expression ofΩ in Equation 3.50 into the expression ofkr (Equa-

tion 3.45) yields:

kr =
π

d
− ζ

√
ζ2 + 4πα2(1 + γ)2(π + 1/m) − ζ

2α2d(1 + γ)2(π + 1/m)
. (3.51)

Qualitatively speaking, Equation 3.51 clearly shows that at the CP, the wave propagation

speed is determined by the BM-to-fluid mass ratiom, BM’s damping ratioζ, the tilt dis-

tanced, the OHC motilty factorα, and the forward-to-backward ratioγ. Quantitatively,kr

is a little smaller at the CP than the asymptote value ofkr (i.e.,π/d in the cut-off region).

This solution forkr evaluates to 23.8, 26.5, and 27.4 when theα is set to be 0.1, 0.15, and

0.20, respectively. In comparison, the semi-analytical simulation gives 23.6 and 25.9 forα

= 0.1 and 0.15, which indicates that the approximations in Equation 3.51 are quite good.

We have solved a linear version of the active cochlear model that includes our cochlear
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amplifier mechanism, ABC, using a semi-analytical approach. The analysis provided an-

swers to several important questions about how the parameters of ABC, namely the OHC

motility factor α and the forward-to-backward ratioγ, give rise to distinctive locus of the

wavenumberk, thereby the active amplification in the cochlea. We shall now proceed to

investigate the impedance of the BM based on some of the results we have obtained through

the SAS.

3.2.4 Impedance of the Basilar Membrane

Impedance quantifies resistance to motion. While mechanical impedance is defined as the

ratio of the driving force to the velocity it imparts, effective acoustic impedance of the BM

is calculated as the pressure difference acting on a BM segment divided by the velocity of

that segment. For a passive BM (without OHC forces exerted on it), the real part of the

acoustic impedance is the BM damping and the imaginary part is the difference of BM

mass and stiffness. In contrast, for an active BM (with OHC forces exerted on it), the real

part and the imaginary part of the impedance will be altered due to the additional OHC

forces. Thus, exploration of the acoustic impedance of the BM shall give us more insight

about the property of OHC forces, or what contribution OHC forces would make to the

BM’s vibration, which eventually leads to large amplification and sharp tuning.

We derived the expression of the effective impedance of BM,zm, based on its definition.

For convenience, we repeated the solution form of the velocity potential of the fluidφ:

φ(x, y, t) = B(x) cosh(ky)ei(ωt−kx), (3.52)

where all the variables have the same physical meaning as that in the previous section.
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From here, we obtained the BM velocity,VBM, in the vertical axis as:

VBM(x, y, t) = −∂φ(x, y, t)

∂y
|y=h

= B(x) sinh(kh)ei(ωt−kx). (3.53)

Also, based on Equation 3.5, we obtained the pressure difference that is applied to the BM

as:

Pd(x, y, t) = 2iρωB(x) cosh(ky)ei(ωt−kx)|y=h

= 2iρωB(x) cosh(kh)ei(ωt−kx). (3.54)

Then we derived the expression ofzm as:

zm =
Pd

VBM

= − 2iρω

k tan(kh)
. (3.55)

Based on the loci of wavenumberk that we have obtained previously, we obtained and

plotted the real and imaginary components of the BM impedance (Figure 3.12) at 2 kHz

pure-tone input. The reactive components of the effective BM impedance in the passive

and active cases are almost the same (Figure 3.12B), indicating that BM stiffness and mass

are not altered by OHC motility. Meanwhile, the major difference between the passive and

the active case lies in the resistive component of the BM impedance (Figure 3.12A), which

implies that the inclusion of ABC actually modifies the damping. Specifically, compared to

the passive case, the damping in the active case is reduced (by half) before the characteristic

place and is increased after the CP. Furthermore, close to the peak location, at about 14.6

mm, the damping becomes negative, then rises abruptly to a positive value at the CP. As a
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result, the BM gains its large peak amplitude around this position and then the vibration’s

amplitude is cut off sharply.

We plotted the normalized impedance (Figure 3.13) by dividing it by the critical damp-

ing (i.e., mass and stiffness component at resonance;
√

S(x)M(x)). The resistive com-

ponent of the normalized impedance yields the damping ratio. Clearly, the damping ratio

in the active case is no longer constant; instead, it reduced from 0.2 to a value closer to

zero and becomes negative right before the CP. In contrast, the reactive components of

the impedance in both cases are very similar—their CPs are far from the mass-dominated

region.

3.2.5 Comparison of Numerical and Analytical Solutions

We have solved the linear active model using both numerical and semi-analytical methods.

It is helpful to check how well the results of the two methods agree with each other. Com-

paring the results in Section 3.1.4 and in this section, the BM responses obtained using the

finite-difference (FD) method and the semi-analytical (SA) method are quite close to each

other (Figure 3.14).

While the BM’s amplitude responses are quite close to each other, the major difference

between the two approaches is in the phase responses. The FD method results in phase

plateau in the cut-off region while the SA approach does not. This is because of the fact

that in our SA method when solving the wavenumberk, we only track the traveling wave

mode while in the FD simulation, all the modes were found through solving the set of

differential equations. In an attempt to seek quantitative agreement between numerical

simulation and analytical solution, Watts concluded that inclusion of an additional degree
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Figure 3.12: Basilar Membrane Effective Impedance

The basilar membrane impedance at 2 kHz pure tone input.A Re(zm), the resistive component of the

impedance.B Im(zm), the reactive component of the impedance.Red: the passive case (α = 0.0). Blue:

the active case (α = 0.15). The dots mark where the peak occurs in both cases. The difference between

passive and active cases mainly lies in the resistive component of the impedance, in which negative damping

is responsible for the active cochlear responses.
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Figure 3.13: Basilar membrane Effective Impedance (Normalized)

The basilar membrane impedance normalized by the ctritical damping,
√

(S(x)M (x)). The input and data

are the same as that in Figure 3.12.A Resistive component, or the damping ratio.B Reactive component. Red

curve represents the passive case (α = 0.0), while blue curve represents the active case (α = 0.15). The dots

mark where the peaks occur. As expected, the damping ratio in the passive case is a constant (i.e., 0.2). In

contrast, the damping ratio in the active case becomes negative right before the peak while it is only affected

slightly near the base by the inclusion of ABC.
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of freedom, a second wave mode, addresses the issue effectively [6].

Using the SA method, we observed a bifurcation atα = 0.2 (see Figure 3.8). The

wavenumber locus goes into the first quadrant and does not return to the fourth quadrant,

corresponding to an exploding BM displacement response. Our numerical simulations,

however, do not show this bifurcation at larger values ofα. Whenα increases, the numeri-

cal solution simply gives rise to increased peak height. We think that the bifurcation in the

SA solution might be due to the way the roots of the dispersion relation are found, which

is very sensitive to initial values.

3.2.6 Spatial Filter

An instructive perspective on the ABC mechanism is to think of ABC as a spatial filter

that is imposed on the traveling wave along the BM (Figure 3.15). The basal tilt of outer

hair cells and the apical tilt of phalangeal processes help selectively amplify the traveling

wave along the basilar membrane. Near the base, the wavelength is long relative to the

cochlear duct height and also the tilt distance. Positive feedforward outer hair cell forces

and negative feedbackward forces tend to cancel each other, and no extra energy is pumped

into the traveling wave. In contrast, near the characteristic place, the wavelength is short

and comparable to the tilt distance, thus forward and backward outer hair cell forces more

or less reinforce each other, enhancing the basilar membrane motion, thereby producing

amplification near the peak.

To validate the spatial filter concept, we investigated the phase difference between the

source and the target BM segments of OHC forces. In our simulation, this corresponds to

the phase difference between adjacent stages (Figure 3.16A). Clearly, when the traveling
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Figure 3.14: Comparison Between Numerical and Semi-Analytical Solutions

The basilar membrane responses are in good agreement with each other using the two approaches. FD:

Finite-difference. SA: Semi-analytical.
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Long wave region Short wave region Cut off region

ApexBase

Figure 3.15: Concept of Spatial Filter

The tilts of both outer hair cells and the phalangeal process (see Figure 3.1 for structure details) is shown,

overlapping with a snapshot of the traveling wave (its envelop is denoted by the dashed line). In the long-

wave region near the base, feedforward and feedbackward forces due to outer hair cell motility tend to oppose

or cancel each other, resulting in no amplification. In the short-wave region, they tend to reinforce each other,

resulting in large amplification. In other words, feedforward and feedbackward forces work in concert to

amplify the traveling wave, only when the wavelength is short and comparable to the tilt distance. Therefore,

the tilt along the cochlea work as a spatial filter.
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wave is short, the phase difference between neighboring BM segments increases, reach-

ing aboutπ/2. This increasing phase difference activates the ABC because feedforward

and feedbackward OHC forces now act in concert, instead of in opposition, such that the

BM receives net positive energy. Note that theπ/2 phase difference does not occur at

the peak position, but a little basal to it, which concurs with the notion that this energy

boosts the BM’s motion. Moreover, theπ/2 phase difference occurs in the region where

negative damping is achieved in the cochlea. In addition, it is worth noting that the phase

difference becomes closer toπ at cochlear positions away from the peak toward the apex

(Figure 3.16A), thus feedforward and feedbackward forces will oppose each other and get

canceled again.

Figure 3.16B plots the damping ratio (normalized real part of the BM effective impedance)

with the two zero-crossing points indicated. The region between the two lines, exhibiting

negative damping, delimits the region where the cochlear amplifier takes effect.

3.3 The Nonlinear Model: Formulation and Simulation

In order to model nonlinear cochlear behavior, we extend the linear active model to a non-

linear active model by incorporating the saturating property of OHC forces. The saturation

of OHC forces is assumed to be the origin of the cochlear nonlinearity. The assumption that

the OHC forces have a saturation property is supported by the physiological data presented

in Chapter 2: the OHC’s receptor potential saturates with the acoustic pressure and the

OHC’s cell body length change saturates with the receptor potential. Based on these obser-

vations, we use the saturating profile shown in Figure 3.13 to model the relation between

OHC force and BM displacement.
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Figure 3.16: Phase Difference and Damping ratio

A Phase difference between neighboring stages. Dashed lines labelπ/2, the basilar membrane (BM) charac-

teristic place, and the peak location.B Damping ratio (Real part of the BM effective impedance, normalized

by critical damping) with the zero-crossings labeled. The longitudinal span between the two dashed lines is

where the cochlear amplifier mechanism, active bidirectional coupling (ABC), takes effect.
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For simplicity, the present model assumes that OHC forces saturate with a symmetric

profile for both contraction and elongation. This curve is a hyperbolic tangent (tanh). It is

applied to both the feedforward and feedbackward OHC force terms in Equation 3.6. Thus,

the saturated OHC force was modeled as:

FOHC(i) = A(tanh(
αS(i)γδ(i− d)

A
) − tanh(

αS(i)δ(i + d)

A
)), (3.56)

whereA determines the saturation level of OHC forces.

3.3.1 Compressive Growth

In our nonlinear active model, we investigated the compressive growth of BM responses at

high input levels, a phenomenon that is intensively studied, and accounted for by the satu-

ration of OHC forces. We stimulated the model with a 5 kHz pure tone at various intensities

and obtained BM velocity responses (Figure 3.18). The input level was increased in 20 dB

steps. Only 150 BM segments were used to save computation time. The integration time

and the size of the integration step were chosen to be 40 ms and 4µs (i.e., 10,000 steps),

respectively, such that the transient responses decayed, at least within the region concerned

(i.e., from the base to the position a little apical to the peak).

Clearly seen from Figure 3.18A, the BM responses becomes more broadly tuned with

increasing input levels. With input level at 0 or 20 dB (corresponding to stapes displace-

ment at 1 pm), the BM velocity response shows a large peak and sharp tuning (Q10 = 4.2

and 5.3, respectively); as the input increases, the BM response grows in a compressive

manner and becomes more broadly tuned. When input level is 100 dB, the BM response

resembles the passive cochlea’s response (Q10 = 1.6). As a result, the input dynamic range
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Figure 3.17: Saturating Profile of Outer Hair Cell Force

This profile between outer hair cell (OHC) forces and basilar membrane (BM) displacement approximates

physiological data: the OHC receptor potential saturates with acoustic pressure and the OHC’s cell body

length change saturates with the receptor potential. For simplicity, a symmetric form was used for the satura-

tion profile.
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Figure 3.18: Cochlear Nonlinearity—Compressive Growth in the Model

Basilar membrane (BM) velocity responses at various input intensities.A BM velocity amplitude grows

in a compressive manner, exhibiting sharp tuning at low input levels while showing broad tuning (passive

behavior) at high levels. Only part of the cochlea (0-8mm) is shown.B Partial plots that highlight the small

localized cochlear region that is stimulated by low-level sound, compared to much broader activity at high

sound levels.C BM velocity phase responses. They are almost independent of input levels.D BM velocity

amplitude versus input level at three different cochlear locations: 4 mm, 5.7 mm (where the BM peaks at 0

dB SPL), and 6.5 mm. Near the base, the BM shows linearly increasing responses with input levels; at and

apical to the peak, the BM shows nonlinear (saturating) responses (i.e., compression at high input levels).
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of 100 dB is compressed by the cochlea, yielding 50.1 dB compression, which is compa-

rable to physiological data [47]. Note that in the region basal to the peak location, the BM

response increases proportionally with the input level.

This peak-specific high-level compression is further evident when BM responses at

three different cochlear positions were plotted against the input intensity (Figure 3.18D).

These cruves are also called the input-output function of the BM. At a cochlear location

before the peak wherex = 4 mm (near the base), the input-output function is a straight

line with a close-to-unity slope (1.01-1.06). In other words, the BM response near the base

increases proportionally with the input intensity. At the peak wherex = 5.7 mm (the CP at

the lowest input level in the simulation), the input-output function showed varying slopes

at low, medium, and high sound levels, which are 0.62, 0.40, and 0.70, respectively. The

BM response around the peak shows saturation at medium to high input levels, evidence of

compressive growth. At a position that is a little apical to the CP wherex = 6.5 mm, the

BM velocity also shows saturation with a slope of 0.48 at high input levels.

For comparison, we also plotted the input-output function of the BM at the peak of

chinchilla cochlea’s responses (from [47]; Figure 3.18D). As can be seen, our model sim-

ulation is in good agreement with physiological data with the similar saturation profile.

Therefore, the nonlinear cochlear model with saturation of OHC forces was shown to be

capable of model the compressive growth in the biological cochlea.

3.3.2 Two-Tone Suppression

In a nonlinear cochlear model, frequency components of the input sound are expected to

interact with one another. When two tones are presented to the cochlea, suppression is
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observed, known as two-tone suppression. That is, the response to one tone is reduced in

the presence of the other one. This phenomenon occurs at three levels: the BM vibration,

the IHC membrane voltage, and the auditory nerve discharge (action potentials). The main

features of mechanical two-tone suppression are at least qualitatively similar to that of two-

tone rate suppression in the auditory nerve [48]. Therefore, we investigate this interference

phenomena at the BM level in our cochlear model (i.e., with saturating ABC).

Our model showed two-tone suppression both when the suppressor frequency is higher

(high-side) and lower (low-side) than the probe frequency. We used an 8 kHz probe tone,

a 10 kHz high-side suppressor tone, and a 6.4 kHz low-side suppressor tone, of various

intensities. The BM input-output curves (BM velocity versus input level) at the CP (Fig-

ure 3.19) show that for both the high-side (Figure 3.19A and Figure 3.19B) and low-side

(Figure 3.19C and Figure 3.19D) cases, compression decreases with increasing intensity.

Consequently, the saturating BM input-output curve obtained for the probe tone alone be-

comes almost linear when an intense suppressor tone is simultaneously present.

The mechanism underlying two-tone suppression has been ascribed to the saturating

profile of the OHC input-output curve (i.e., the OHC receptor potential versus sound pres-

sure) [18, 79]. In our model, the louder suppressor drives the OHC into saturation so that

the probe response is reduced. For low-side suppression (Figure 3.19C& D), the probe

tone response is directly suppressed by the suppressor tone. In contrast, for high-side sup-

pression (Figure 3.19A & B), the suppressor response acts by suppressing the probe-tone

response basal to the CP of the probe-tone response, where negative damping occurs for

the probe tone.
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Figure 3.19: Nonlinearity: Two-Tone Suppression in the Model

A The basilar membrane (BM) velocities (in dB re Stapes) at the characteristic position at which the CF is

near the probe tone frequency 8kHz versus the probe tone intensity. Increasing suppressor tone intensity(from

zero to 100 dB) turns the curve from nonlinear to linear relation.B The BM velocity amplitude for the probe

8kHz alone, the suppressor 10kHz, and 8kHz with 10kHz.C The BM velocities at the characteristic position

at which the CF is near the probe tone frequency versus the probe tone intensity. Increasing suppressor tone

intensity(from zero to 100 dB) turns the curve from nonlinear to linear relation.D The BM velocity amplitude

for the probe 8kHz alone, the suppressor 6.4kHz, and 8kHz with 6.4kHz.
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3.4 Model Evaluation

We have presented our model simulation results and showed that the present active cochlear

model—by incorporating the cochlear amplifier mechanism, ABC—is able to reproduce

the characteristic cochlear responses. We shall now evalaute the model through discussing

several issues that are related to the model’s performances.

Given the fact that the cell diameters of OHCs and DCs are much larger than the BM

transverse fiber width [18], we need to explore the effect of discretization on model sim-

ulation results. Discretizing the BM into larger number of segments does not affect the

simulated BM responses as long as the tilt distanced is fixed. Without loss of generality,

we always use an BM segment width that is an integer fraction of the tilt distanced. For ex-

ample, we doubled the discretization step number, which decreases the BM segment length

∆ to be 0.035mm, while we kept the tilt distanced to be the same as 0.071 mm. This re-

sulted in the configuration that each BM segment sends and receives coupling to and from

BM segments that are two-segment upstream (basalward) and downstream (apicalward)

away from the segment in question, respectively, instead of to and from its immediate

neighbors. Reaults of the simulation under such configuration showed that discretization

does not affect model responses.

Previous models (e.g., [15]) included the OHC low-pass filtering in the cochlear am-

plifier. However, such concern has been largely cleared by newly accumulated evidence

showing that the limiting frequency of the operating motor in the mammalian OHCs is up

to 25 kHz [103]. Thus, OHC electromotility is fast enough, especially for human hear-

ing. Theoretical analysis of OHC receptor potentials showed that the corner frequency of

low-pass filtering could be extended into the audio range due to the membrane-voltage-

dependent capacitance [104]. According to these findings, there is no need in our model to
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include low-pass filtering effect in OHCs.

The focus of this model is to help explore a plausible way in which OHCs forces are

delivered through the unique architecture of the OC. Our model seeks to capture the major

anatomical features of the cochlear partition and to verify their role in reproducing real-

istic cochlear responses. We did not attempt to include all the possible roles that every

contitutional component in the OC plays in the cochlear amplifier. For example, we did

not include the tectorial membrane’s inertial mass against which outer hair cells can exert

forces [105]) nor its essential role in generating the shear force that deflects OHCs’ stere-

ocilia. However, the functional role of the tectorial membrane was implicitly included; it

was just not modeled by mathematical variables.

There is room for the model to be extended to include more details in the Oc that have

been brought to the attention of cochlear physiologists. For example, the organ of Corti

shows morphological differences along the length of the cochlea—difference in OHCs’

properties between the basal and apical regions are particularly relevant. First, despite fairly

constant diameter, OHCs’ length varies: relatively short near the base while relatively long

in the apex [106]. Second, OHCs are oriented at varying angles along the radial direction

near the base and apex: they are oriented almost in parallel to the modiolus near the base

while their apical ends are more slanted toward the modiolus near the apex [107]. These

differences would possibly result in differences in OHC forces. Therefore, it is reasonable

to postulate that these differences in OHCs at different cochlear locations will contribute to

the differences in BM’s vibrations along the cochlea, such as magitude, tuning, and cut-off

slope. The present model did not include these distinct aspects between the base and apex,

which will be addressed in its improvement as the next step.
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3.5 Summary

OHC motility was discovered more than two decades ago in the mammalian cochlea and

has since been considered to be the basis of the cochlear amplifier. The exact manner in

which OHC motility contribute to characteristic cochlear behavior, or the cochlear ampli-

fier mechanism, however, remains a mystery. The principle idea of our proposed cochlear

amplifier mechanism stems from the notion that the cochlear anatomy, especially the mi-

croanatomy of the cochlear partition, must somehow serve its functioning. Our observation

of tilts of OHCs and phalangeal processes has suggested that this unique arrangement of

sensory cells and supporting cells work in concert to transmit OHC motile forces onto

the basilar membrane, thus enhancing its motion. This delivery of active forces from one

cochlear position to another results in bidirectional coupling between basilar membrane

fibers, and thus active bidirectional coupling.

Specifically, in the active bidirectional coupling mechanism, OHCs’ motile forces are

delivered, through the basal and apical tilt of the OHCs and PhPs, respectively, to up- and

downstream BM fibers. ABC also includes the saturation of OHCs forces with BM dis-

placement. Our 2D mathematical cochlear model produces large amplification, sharp tun-

ing, high input-intensity compression near the characteristic place, and two-tone suppres-

sion, which are the characteristic cochlear responses, and compares favorably with physi-

ological measurements. Our model analysis shows that ABC results in negative damping,

which accumulates energy to produce a large and localized peak. By its dependence on the

traveling wave’s wavelength, we also demonstrate that the bidirectional tilts function as a

spatial filter that selectively amplifies BM motion selectively—only when the wavelength

is appropriate (i.e., comparable to tilt distance).

Our model was not built to describe the details of the cochlear micro-mechanics; it is
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only inspired by them. Our model captures the major anatomical features of the cochlear

partition needed to produce realistic cochlear responses. The model could be further ex-

tended to address other issues that have already been brought to attention of cochlear phys-

iologists. For example, OHC’s tilt distance is less than that of the PhP, which can be easily

incorporated in the model. Further, OHC length increases from the base to the apex, which

can be modeled by a varying OHC motility factor. Also, the saturation profile of OHC

forces versus BM displacement is asymmetric, whereas the model uses a symmetric pro-

file.

In summary, our mathematical cochlear model based on a novel cochlear amplifier

mechanism, ABC, emulates active cochlear behavior. With ABC, the cochlea is able to

realize nonlinear amplification by virtue of clever arrangement of its sensory and supporting

cells, rather than a complex arrangement of multiple resonant systems. Indeed, our model

provides a plausible physical basis, the microanatomy of the cochlear partition, for the

hypothesized cochlear amplifier that has not been described in such detail until now.
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Chapter 4

The Active Cochlea: Analog VLSI

Implementation

In the previous chapter, we elaborated our efforts of exploring the cochlear amplifier mech-

anism through developing a mathematical cochlear model. We proposed a novel cochlear

amplifier mechanism based on the cochlear microarchitecture, namely, active bidirectional

coupling (ABC), to account for the active amplification in the cochlea. The resultant non-

linear active cochlear model yields characteristic responses comparable to physiological

measurements. In this chapter, we will proceed to morph the cochlear microarchitecture as

well as mechanics into a silicon very-large-scale-integration (VLSI) chip.

The chapter is organized as follows. First, we begin with discussing circuit design tech-

niques, specifically continuous-time filter design, as background reference to our cochlear

circuit. We shall also discuss the effect of transistor mismatch in analog CMOS (Comple-

mentary metal-oxide semiconductor) circuits. Second, we synthesize a second-order sec-

tion that models the dynamics and properties of the basilar membrane (BM) in the cochlea
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and the interactions between the BM and the cochlear fluids. Third, we show the log-

domain (current mode) implementation of our Class AB design. In addition, we describe

circuit design that emulates the cochlear fluid and circuitry that realizes the cochlear am-

plifier mechanism, ABC. Last, we present the architecture of our silicon cochlea.

4.1 Analog VLSI Approach

We employ analog VLSI circuit technique for developing microelectronic chips to mimic

the nervous system’s functions—these microchips are known as ”neuromorphic systems”.

Toward the goal of modeling the brain functions, this approach offers several advantages

over software simulation and/or digital hardware modeling. First of all, hardware imple-

mentation runs in real time while computer software simulation usually requires tremen-

dous amount of computation time and large memory space.

Second, analog MOSFET (metal-oxide-semiconductorfield-effect transistor) transistor-

based circuits, rather than digital implementation, perform continuous-time computation

in which continuously varying electrical signals, voltages and/or currents, represent analog

properties of the biological system. This analog computation is especially suitable and ben-

eficial for the task of modeling the sensory periphery of the nervous system because input to

the sensory models is usually real-world analog signals—light or sound, for example—so

that the need for analog-to-digital converters is eliminated.

Finally, operating transistors in subthreshold region leads to compact and low-power

designs which are desirable in both engineering and clinical applications. Two major fac-

tors lead to the features of small size and low power consumptions. On one hand, simple

exponential relationship between drain current and gate voltage of a MOS transistor work-
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ing in weak inversion usually gives rise to simple designs, meaning smaller chip area. On

the other hand, low current level results in lower power consumption than their digital

counterparts. Specifically, we use current-mode low-pass filter (LPF) as the building block

of the cochlear chip design.

In this section, we shall first discuss the log-domain filter design technique that we

employed in our cochlear chip, then we will touch on an important issue that is closely

associated with subthreshold analog circuit design—effect of noise and variation of param-

eters on circuit and system performance.

4.1.1 Filter Design Techniques

Electronic filters are circuits that perform signal processing for specific purposes. From

the perspective of frequency-component processing of signals, there are five basic filter

types:low-pass, high-pass, bandpass, all pass and notch filters. Based on the way signals

are processed, filters fall into three different categories: Continuous-time filters process

analog signals in real time, and fully-digital filters perform filtering operation on digital

representation of samples of signals, often not in real time, while sampled data filters op-

erate on samples themselves [108]. Digital filters can be reliable and insensitive to noise,

but require analog-digital converter and digital-analog converter when dealing with ana-

log signals or when interfacing with real world; they also consume high power due to fast

switching. Switched capacitor filters and switched current filters are the two best known

sampled data filters; they use switches (usually transistor switch) together with capacitors

and active devices to provide filter functions [108]. Sampled-data filters need sampling and

switching, which may have problems in signal settling, clock feedthrough, and charge in-

jection [109]. In our circuit design, we used continuous-time filter design because it meets

96



the requirement for low power and moderate dynamic range [110]. In other words, it serves

our goal to design a cochlear chip whose performance and efficiency are comparable to its

biological counterpart.

Aside from passive continuous time filters (classic RLC filter as an example) which are

still much in use but are unsuitable for implementation in the ubiquitous integrated circuit

[108], active continuous time filters have been extensively explored, in which active-RC

and active-C filter form major conventional continuous time filters. Opamp-RC is the major

form of active-RC filters that use opamp as active elements. Operational transconductance

amplifier-C (OTA-C, or gm-C) filters use only active element, OTA, and capacitors, making

them suitable for integration [108]. Two most popular forms of active-C filters are MOS-C

and OTA-C filters [109].

Most of the existing silicon cochlea employed gm-C filter design [6], [82], [111]. A

gm-C filter is suited for high-speed application due to the fact that it is configured in open

loop such that there is no stability constraint. Its major drawback is that with an OTA

used in open loop, it has a very small input level range, about 60 mV, to keep it relatively

linear [81].

Among all active filter design approaches are only a few of the circuit topologies well

suited to VLSI implementations, one of which, the state-variable filter is the most general

in form and most widely used in VLSI continuous-time filters [110]. The key advantage

of state-variable filters is that they require only two basic building blocks: integrators and

weighted summers [110]. By decoupling the poles of the system, a N-th order biquadratic

(biquad) filter structure is generally realized as a cascade of second-order circuits, followed

by a first-order circuit, if N is odd. The biquad approach is widely used for its simplicity,

ease of design, and ease of debugging.
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Log-domain Filters

As a novel form of current-mode active continuous-time filter, Log-domain filters have

been recently proposed and developed and have demonstrated the potential to accomplish

both high-frequency and low distortion levels [112]. A Log-domain filter directly utilizes

the inherent exponential I-V relationship of a bipolar transistor or a MOSFET transistor op-

erated in subthreshold. It realizes a linear filter from outside although the internal filtering

done in Log-domain is nonlinear. Log-domain filters using MOS transistors has become

increasingly attractive in current-mode design due to its zero gate-leakage current and low

power consumption. As there is no need to include linearization in a Log-domain filter,

unlike in a gm-C filter, the topology is usually quite simple, resulting in fast operation.

The Log-domain technique shares certain similarities with the classical translinear prin-

ciple, and can be viewed as a dynamic extension to this principle [109]. Logarithmic com-

pression in log-domain followed by exponential expansion is referred to as companding

(compress-expand) technique. Log-domain filters achieve the advantageous potential of

companding signal processing, which mainly includes larger dynamic range than that of

a linear signal processing circuit. The compression raises weak signals further above the

noise floor while shrinking strong ones away from the distortion-prone level; the expansion

restores the signal’s original dynamic range by attenuating the weak signals and amplifying

the large signals [109].

Current versus Voltage Mode

Traditional voltage-mode circuits have faced difficulties in meeting high-speed, highly

linear operation towards low-power and low-voltage designs [113]. Current-mode circuits

excel in their high-speed response, generally low power supply requirements, and low sen-
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sitivity to various parasitics. Design of current-mode filters requires current-mode building

blocks, rather than voltage-mode ones. Recent advances in analog integrated circuits and

signal processing have shown that the current-mode approach is superior to the voltage-

mode in terms of its wide bandwidth, high speed, low voltage and power, large dynamic

range, and simplicity in circuit structure [108]. Current-mode operation offers large dy-

namic range if the nonlinear device transconductance is compensated for in the filter design,

such that the operation remains linear outside the small-signal region1 [4].

Class AB versus A Operation

Classification principle in analog electronic amplifiers has also been introduced in clas-

sifying analog filter designs. Among Class A, B, AB and C, Class A and AB are the two

mostly often encountered circumstances. In a Class A filter design, the input signal drives

the output signal throughout the entire input wave cycle, while in a Class B design, only

half cycle of the input drives the output. The “off” status of the device in Class B design

yield high power efficiency; however, it suffers from a drawback that there is some dis-

tortion caused by switching between “on ” and “off” status—called crossover distortion.

Employment of a complementary pair or “push-pull” arrangement of Class B design, but

with a slight “on” bias (a little above zero) for the device when it is not in use, results in

Class AB design.

Compared to Class A operation, Class AB implementation offers the advantages of

increased dynamic range, reduced effect of transistor mismatch, and lowered power con-

sumption. This is mainly due to the fact that a Class AB design only maintains a relatively

low baseline level (current/voltage), thus suppressing this major source of variation and

additional power consumption.

1For small time-varying signals carried over a constant bias, a nonlinear device or system can be consid-
ered as linear as an approximation.
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The Class AB design not only inherits the power efficiency of Class B design, but also

gets rid of the crossover distortion problem by means of the non-zero baseline. In a Class

AB design, there are two differential signal paths in which signals are always kept positive

relative to the low baseline signal. The final full-wave output of a Class AB design can

be obtained through combining the output signals in the two filtering paths. A common-

mode constraint is required to determine the differential output signals together with the

differential mode. This configuration eliminates the need for a large baseline (a DC current

in current-mode design), thus also decreasing power consumption and moderating the effect

of transistor mismatch introduced by matching of the baseline which is a requirement in a

Class A design.

According to the noise behavior analysis for Log-domain filters in both class A and

class AB operation, the dynamic range of class AB companding circuits can be substan-

tially extended compared to that obtained with class A circuits without increasing the max-

imum signal-to-noise ratio and therefore without increasing the power consumption [114].

However, the requirement of an additional class AB conditioner for the input signal (e.g.,

on-off circuit [4] or a current splitter) might result in a higher noise floor, which, in turn,

will somewhat reduce the extension of the dynamics range. Despite the drawback, Class

AB design is favorably chosen in our cochlear chip design because it meets our goal of

reduced variations between circuit components as well as the low power consumption.

4.1.2 Mismatch in CMOS Circuits

Device variations can be categorized into systematic and random [115]. Differential cir-

cuit topology and proper biasing techniques can make the integrated circuits performance

largely insensitive to these systematic variations. Device to device variation is refereed
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to as device mismatch, which is random. In subthreshold operation, variation in threshold

voltage is the major source of channel current difference for a matched transistor pair. It has

a normal distribution with zero mean and a variance dependent on the device area (channel

width W times channel lengthL) [115]. This simply suggests that increasing transistor size

will decrease the extent in threshold voltage matching, thus improving device matching and

circuit performance.

Several approaches can be taken to reduce the effect of transistor mismatch. First,

proper layout technique can be employed, such as symmetry and common centroid tech-

nique, to obtain better matching between transistors that are supposed to match. Second,

transistor size can be increased such that area variation becomes smaller. However, this

size increase is always related to increase in parasitic capacitances, and the extent of area

increase is also limited by the fabrication cost. When taking the approach of increasing

transistor size in our design, we first investigated though SPICE (simulation program with

integrated circuit emphasis)2 simulation of transistor-level circuits to find the transistors

whose size change leads to most significant change in output signals, and then we only

increase the size of transistors that fall into this category, rather than using large-area tran-

sistors everywhere blindly, in order to achieve cost-effective design.

Imperfection in circuit performance can also be caused by the Early effect3 of MOS

transistors. This occurs mostly with current mirrors, the most frequently used circuit prim-

itive. In order to achieve better matching between the original current and the copied one in

a current mirror, an implementation improvement can be made by connecting one transistor

2SPICE is a general purpose analog circuit simulator. It is a powerful program that is used in integrated
circuit and board level design to check the integrity of circuit designs and to predict circuit behavior.

3Early effect, also the channel length modulation effect, describes the phenomenon that the drain current
increases slightly with drain voltage for a saturated MOSFET. Early voltage is defined to be the drain-to-
source voltage (negative) at which the drain current is zero. In an ideal MOSFET, the Early voltage would be
infinite.

101



in series on both sides of the mirror and using diode connection on the source-current side.

This results in a “complex current mirror”. The insertion of these two additional transistors

brings the source-to-drain voltage closer between both sides, thus reducing the effect of

Early voltage. Our SPICE simulations show that if a complex mirror accompanied by in-

creasing the channel area of the transistors that are connected to power supply rails would

make the gain of the mirror closer to 1 while decreasing the standard deviation of the gain

distribution to a large extent.

Class AB design could suffer from mismatch between the differential paths introduced

by device mismatch. An ideal differential-mode circuit does not respond to common-mode

signal (i.e., a signal that is present on both paths) and only responds to differential signals.

That is, an ideal Class AB design has zero common-mode gain and large differential-mode

gain. The ratio between the differential-mode signal gain and the common-mode gain,

called common-mode rejection ratio (CMRR), should be equal to infinity in the ideal case.

However, existence of device mismatch will cause the CMRR to decrease as it increases the

common-mode gain. To address this problem, proper and careful layout technique should

be employed to reduce the effect of mismatch between the two differential paths to make

the CMRR as large as possible.

4.2 Cochlear Circuit Synthesis

We shall synthesize the cochlear circuit in this section which will be the circuit analog

of our mathematical cochlear model, thereby the biological cochlea. We synthesize a cir-

cuit model of a 2D active cochlea, which comprises the cochlear fluid design, the basi-

lar membrane (BM) design, and implementation of our hypothesized cochlear amplifier
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mechanism—active bidirectional coupling (ABC). We first start by synthesizing a passive

cochlea, which mainly includes the design of the BM boundary condition. The synthesis

result was a second-order section that is formed by two first-order LPFs, and the interac-

tion between the input and output signals of the BM. We then synthesize the BM boundary

condition in the active case by adding ABC, achieving an active cochlear circuit model.

4.2.1 Cochlear Fluid Design

VLSI implementation of a passive cochlear model consists of two circuit elements: the

cochlear fluid and the BM. In this section, we present the design of a cochlear fluid ele-

ment; connecting a number of such elements will form the fluid network that emulates the

cochlear fluid body. In other words, we will implement a discrete fluid network, at a large

scale (i.e., small discretization step), as the approximate analogy of the continuous cochlear

fluid.

Modeling the two dimensions of the cochlear fluid chamber offers advantages over a

one-dimensional model in which the height of the fluid chamber is not considered. A 2D

fluid model allows for fluid motion in the vertical direction, and is thus capable of capturing

more biologically compatible responses. Our mathematical modeling investigation on the

choice of a 1D or 2D model also revealed that a 2D model generates more realistic cochlear

behavior than a 1D model, in terms of the amplitude and the phase of the BM vibration.

Therefore, we implemented a 2D cochlea model in analog VLSI, also taking advantage of

the 2D planar nature of a silicon die.

The first silicon cochlea to implement a 2D cochlear fluid was constructed by Watts

[6]. Following Watts’s approach, we treat the cochlear fluid as a resistive sheet [6]. Our
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implementation is different from his though as we employ current-mode design, rather than

voltage mode.

In current mode, we achieve a simpler implementation of the fluid element, described

as follows. In discrete form, the fluids can be viewed as a grid of elements with certain

resistance that corresponds to the fluid density or mass. As we know from Chapter 3, the

fluid velocity potential,φ, satisfies the Laplace’s equation assuming the incompressibility

of the inviscid fluids. Since electrical charge is conserved for a small resistance sheet while

flux is conserved for a small fluid volume, current variables shall be used to represent the

velocity of the fluid, and also of the BM.

Following the approach in [116], we implement the cochlear fluid network using a dif-

fusor network formed by a 2D grid of nMOS transistors. A MOS transistor in subthreshold

ohmic region acts as a diffusive element as the source-to-drain current flowing through the

channel is caused by the diffusion of charge carriers. Thus, such a MOS transistor is called

a diffusor and a network formed by diffusors is called a diffusive network.

We now show in detail the operation of a diffusor. We rewrite the drain current,Ids,

of a nMOS transistor as follows (voltages are in the unit ofuT = kT/q, wherek is the

Boltzmann constant,T is the absolute temperature (in Kelvins), andq the magnitude of

the electrical charge (in coulombs) on the electron. At room temperature (T = 300K), the

value ofuT is approximately 26 mV):

Ids = I0e
κVg(e−Vs − e−Vd)

= D(Qs −Qd), (4.1)

whereVg, Vs, andVd are the gate, source, and drain voltages, respectively, andI0 is the
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Vg
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A B

Vin0 Vin

Figure 4.1: Fluid Diffusive Element Design

Analogy between resistive element and its nMOS implementation.A A resistor with its two terminal voltages

denoted byVin0 and Vin. B An nMOS transistor acts as a diffusor with its gate voltage denoted byVg.

The drain and source voltage of the nMOS is alsoVin0 andVin, respectively, and the reciprocals of their

exponentials are lineally related to the currentsIin0 andIin, respectively. An analogy can be drew between

the resistance of a resistor and the gate voltage of a MOS transistor. In other words, the resistance can be

simulated by the diffusive coefficient of a MOS transistor working in subthreshold ohmic regime.

leakage current at zero gate voltage.D = eκVg denotes diffusion strength of charge carriers

(electrons in the case of nMOS transistors) whileQs = I0e
−Vs andQd = I0e

−Vd represent

their concentrations at the source and the drain, respectively.

We derived the relation between the resistance of a resistor and the diffusive coefficient

of a MOS transistor by drawing an analogy between a resistor and a nMOS transistor in

subthreshold ohmic regime (Figure 4.1). For the resistorR (in Figure 4.1A), the currentId

was calculated as

Id =
Vin0 − Vin

R
. (4.2)

For the pMOS transistor that is gated byVin0 (in Figure 4.1B) with assumed small drain

voltage (4uT smaller thanVdd ), its drain currentIin0 can be described asI0e
−κVin0eVdd;

similarly, Iin is equal toI0e
−κVineVdd. By assumingκ ≈ 1, we obtain the following as an
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approximation:

Iin0 = I0e
−Vin0eVdd,

Iin = I0e
−VineVdd. (4.3)

And for the nMOS transistor in Figure 4.1B, according to Equation 4.1, the channel current

Id can be represented byD(Qin − Qin0) whereQin = I0e
−Vin andQin0 = I0e

−Vin0. Thus,

Equation 4.3 becomes

Iin0 = Qin0 eVdd,

Iin = Qin eVdd. (4.4)

Therefore, for the diffusive element in Figure 4.1B, we have

Id = D(Qin − Qin0)

= De−Vdd(Iin − Iin0)

=
Iin − Iin0

eVdd/D
(4.5)

By comparing Equation 4.5 with Equation 4.2, we obtained the expression as follows

that describes the relation between the magitude of the fluid-element resistance and the

circuit variables:

R ≡ eVdd/D (4.6)

= eVdde−κVg (4.7)

Therefore, the resistance due to the fluid density was implemented by controlling the gate
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voltageVg of an nMOS transistor thus its difference from the power supplyVdd. Increasing

Vg thus decreasing the difference results in larger channel current, thus corresponding to

smaller resistance, and vice versa.

4.2.2 Synthesis and Analysis of a Single BM Stage

We shall now synthesize the circuit design for realizing the BM boundary condition in the

log domain (current mode). This BM circuit will interact with the diffusor fluid network

that we have discussed in the previous section.

For reference, we repeated the boundary condition of the BM in the passive case as

2ρφ̇ = S(x)δ(x) + β(x)δ̇(x) + M(x)δ̈(x), at y = h, (4.8)

whereM(x) is the mass,S(x) is the stiffness, andβ(x) = ζ
√

S(x)M(x) is the damping

per unit area of the BM, andζ is the damping ratio;δ is the downward displacement of

the BM while the first time-derivative ofδ is its velocity and the second is its acceleration.

φ(x) is the velocity potential at the BM boundary wherey = 0, ρ is the fluid density, and

the factor of 2 accounts for fluid mass in both top and bottom cochlear ducts. For this

second-order system, the input is the fluid velocity potential,φ, which is the driving force,

and the output is the BM velocity,̇δ.

The design goal for the passive case is to determine a relation between the input and the

output in terms of circuit variables (electrical signals: current in our current-mode design)

that implements the BM boundary condition as shown in Equation 4.8. Once we obtain the

BM circuit design equation, we shall employ a number of BM circuits to model a number

of BM transverse fibers, and make the BM circuits interact with the fluid diffusive network,
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mimicking the biological cochlea.

We employed current to model the velocity as in our fluid element design. We used

the current flowing through the BM impedance,Imem, to represent the BM velocitẏδ in the

vertical direction. Thus, the BM displacementδ is represented by the integral of the current

Imem while the BM acceleration̈δ is represented by the first time-derivative ofImem. We

also use the quantityIin to represent the velocity potentialρφ.

SubstitutingImem andIin in Equation 4.8 yields

˙Iin = S(x)

∫
Imem + β(x)Imem + M(x) ˙Imem. (4.9)

Taking the time derivative of Equation 4.9 in order to remove the integration operation,

we obtain

Ïin = S(x)Imem + β(x) ˙Imem + M(x)Ïmem. (4.10)

This equation thus becomes the target of our circuit synthesis. Synthesis of the above

equation means decomposing the second-order section into two first-order sections and

possible another equation that describes the relation between the input, the output, and

intermediate variables.

We tackled the synthesis task for the passive case starting with rewriting the design

target equation. Since the passive model is a linear system, we transformed the design

equations in the time domain to the frequency domain to get rid of time-derivative expres-

sions. Usings = jω, Equation 4.10 becomes

Iins
2 = S(x)Imem + β(x)Imems + M(x)Imems2, (4.11)
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which is a new version of our target design equation.

Our synthesis process was a variation of the state-space synthesis approach proposed by

Frey [112]. The general procedures of the approach are firstly to determine a state-space

representation of the system, secondly to explore the equilibrium condition and obtain a

transformation that yields appropriate operating condition, and finally to derive a set of

nodal equations for capacitors, which suggests an interconnection of transistors, thus the

transistor-level implementation of the design.

We developed a Mathematic code to facilitate the synthesis process, which mainly in-

volves determining the coefficients of the state variables, input, and output current signals.

The choice of coefficients is based on whether the chosen set of coefficients could lead to

realization of the target design equation and which realization is the most economical so-

lution, meaning the simplest implementation and smallest chip area among other possible

options.

We found that a few solutions to the synthesis equations were possible. For example, the

two first-order sections could be chosen to be both integrators, both LPFs, or one integrator

and one LPF. Adding gain factors for the state variables as well as input (Iin) and the output

(Imem) introduces additional flexibility. We need to determine what choice yields the best

functionality, flexibility, and implementation cost.

We shall describe both the synthesis result involving two integrators and the result with

two LPFs. Through analyzing both cases, we shall explain why we reached our decision,

based on considerations of DC operating point and stability.

Implementing the second-order system of the BM requires two state-space variables,

which were represented by currentsIs andIo. Synthesis result of a second-order system
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that consists of two integrators is described as follows, withs = jω.

τ1Iss = Imem

τ2Ios = Imem + Is

Imem = Iin − Io (4.12)

Gain factors can be easily added to the results above thus adding more flexibility to the

design. We shall describe two of the possible variations as follows. We added gain factors

a andb at different positions, which result in

τ1Iss = Imem

τ2Ios = Imem + bIs

Imem = a(Iin − Io) (4.13)

and

τ1Iss = Imem

τ2Ios = Imem + bIs

Imem = Iin − aIo, (4.14)

For the design described in Equation 4.12, Equation 4.13, and Equation 4.14, their DC

operating point were found as follows.

Imem = 0, Is = 0, and Io = Iin. (4.15)
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We also synthesized this second-order system using two interacting LPFs, and the de-

sign equations are described as:

τ1Iss + Is = −Iin + Io,

τ2Ios + Io = Iin − bIs, (4.16)

Imem = Iin + Is − Io,

The two first-order systems are both LPFs, with time constantsτ1 andτ2, respectively;b in

the second LPF is a gain factor, which is necessary for realizing reasonable BM stiffness

given practical choice ofτ1, τ2 and capacitance (capacitor size is limited by silicon area).

This design realizes the passive cochlea model, as was described by Equation 4.11.

This design uses a loop of two LPFs connected with negative feedback to realize the poles.

The zeros of the second-order system are achieved by creating an output signal,Imem, that

is the weighted summation of the two LPFs’ outputs,Is, andIo, as well as the input signal,

Iin. The design’s DC operating point, shown below, was somewhat different from that of

the integrator-based design we just described above.

Imem = Is, Is =
1

b
Iin, and Io = Iin. (4.17)

4.2.3 Analysis of the Design

We performed some analysis on both the integrator-based design and the LPF-based design

that we presented in the previous section. This analysis associates the circuit variables

and their expressions with physiological parameters in the biological cochlea. We also

obtained the transfer functions of a single BM section, when stages are combined to form a
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1D network (single cochlear stage with loading), and when stages are combined and ABC

is included. Analysis and result comparison revealed that the output of a combined BM-

fluid network cannot be simply derived from single-stage responses due to the effect of

network loading. We will also present the effect of ABC on the transfer functions.

Circuit Parameters vs. Physical Properties

Given Equation 4.16 in the LPF-based design,Iin, Is, andIo can be expressed in terms

of the output currentImem as follows.

Iin =
(b + 1) + (τ1 + τ2)s + (τ1τ2)s

2

τ1τ2s2
Imem,

Is = − 1

τ1s
Imem,

Io =
(b + 1) + τ1s

τ1τ2s2
Imem. (4.18)

By comparing the expression ofIin with the design target Equation 4.8, we obtain the

circuit counterparts of the BM ’s stiffnessS(x), dampingβ(x), and massM(x):

S(x) =
b + 1

τ1τ2
, β(x) =

τ1 + τ2

τ1τ2
, M(x) = 1. (4.19)

As we can see, three circuit parameters,b, τ1, andτ2, were used to model the BM’s physical

properties. This configuration was the same as in the mathematical model simulation,

in which the BM mass was a constant. Based on these relations, it is required thatτ1

andτ2 increase exponentially from the stapes along the cochlea in order to simulate the

exponentially decreasing BM stiffness and damping.

Furthermore, we can derive the quality factor of the second order section based on the
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above relationships.

Q =

√
S(x)M(x)

β(x)
(4.20)

=

√
b + 1

τ1τ2

τ1τ2

τ1 + τ2

=

√
b + 1√

τ1/τ2 +
√

τ2/τ1

.

Therefore,Q was electrically tunable and it varied from stage to stage asτ1 andτ2 varied

exponentially along the cochlear position. Ifτ1 = τ2, Equation 4.21 reduced to:

Q =

√
b + 1

2
, (4.21)

which implements a constant-Q along the cochlea if the gain factorb is implemented as a

constant.

Similarly, the integrator-based design (Equation 4.12) yields the relationship between

Iin andImem as follows.

Iin =
1 + τ1s + τ1τ2s

2

τ1τ2s2
Imem, (4.22)

based on which, we obtain the circuit analogs as follows,

S =
1

τ1τ2
, β =

1

τ2
, and M = 1 (4.23)

and the quality factor as follows,

Q =

√
τ2

τ1
. (4.24)

Its two variations have the following circuit analogs, respectively:

S =
ab

τ1τ2
, β =

a

τ2
, and M = 1 (4.25)
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and

S =
b

τ1τ2
, β =

1

τ2
, and M =

1

a
(4.26)

And the quality factors are the same,

Q =

√
bτ2

aτ1

. (4.27)

For the BM design, we chose the design with two low-pass filters (LPFs), rather than

two integrators or one LPF and one integrator (synthesis results not shown). The main rea-

son was that through circuit simulations, we found that the response stability of a second-

order system with internal interaction between its two first-order systems was less sensitive

to parameters (e.g., time constants, input amplitude, etc.) when the two comprising first-

order systems were both LPFs instead of integrators. In addition, in terms of realizing

a relatively large quality factor, an LPF-based design does not require the two time con-

stants,τ1 andτ2, to have a large ratio to achieve certain large quality factor, as required in

the integrator-based design.

Transfer Functions

Investigating the characteristics of a single BM stage, especially when it is embedded

in the network that a cochlear circuit requires, was instructive for understanding the re-

sponse of the whole 2D cochlea. We calculated the transfer function of a BM-fluid stage,

in an isolated condition and in the context of a network (with interaction between previous

and following BM sections and fluid diffusive elements), and compared them in order to

develop insight into the effect of network loading on a BM section.

In a single BM-fluid stage, the BM was viewed as a finite impedance,zm, to the driving
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Fluid
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R

Figure 4.2: Conceptual Electrical Model of a Single Basilar Membrane-Fluid Stage

A single basilar membrane (BM)-fluid stage includes a fluid diffusive element realized by an nMOS transistor,

and an impedancezm, representing the BM circuit.Iin0 andIin represent the velocity potential at the two

terminals of the fluid element while the corresponding voltages,Vin0 andVin, represent the logarithm of the

velocity potentials, respectively. The fluid diffusive element, an nMOS transistor, is gated by the voltageVfd,

which determines the resistance given a supply voltage. The current flowing through the BM impedance is

denoted byImem, emulating the BM’s velocity in the vertical direction.
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force of the fluid (Figure 4.2).Iin0 andIin represent the velocity potential of the two fluid

terminals. The impedancezm can be calculated as follows, based on the BM design we

have described in the previous section.

zm =
Iin

Imem

=
(b + 1) + (τ1 + τ2)s + (τ1τ2)s

2

τ1τ2s2
. (4.28)

In order to gain understanding about the behavior of a single BM subcircuit, we ex-

plored two transfer functions, the same approach as in [6] except that we used currents as

variables rather than voltages. In addition, the present BM design was different from that

work.

One transfer function,Gsgl (the subscript “sgl” represents the single isolated stage case),

defined as the relation between the resultant current through the BM impedance,Imem, and

the driving force on the fluid diffusive element,Iin0, can be expressed as:

Gsgl(s) =
Imem

Iin0

=
1

R + zm

=
τ1τ2s

2

(b + 1) + (τ1 + τ2)s + (R + 1)(τ1τ2)s2
, (4.29)

whereR represented the fluid mass as we discussed in the previous section. The transfer

functionGsgl(s) had a complex-zero-pair and a complex-pole-pair with the pole-pair cor-

responding to a peak at certain frequency. At even higher frequencies,Gsgl(s) becomes a

constant.

Another transfer functionHsgl(s), defined as the relation between the currents at the
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two terminals of a single fluid diffusive element,Iin andIin0, is described as:

Hsgl(s) =
Iin

Iin0

=
zm

R + zm

=
(b + 1) + (τ1 + τ2)s + (τ1τ2)s

2

(b + 1) + (τ1 + τ2)s + (R + 1)(τ1τ2)s2

=
1 + τ1 + τ2

b + 1
s + τ1τ2

b + 1
s2

1 + τ1 + τ2
b + 1

s + (1 + R) τ1τ2
b + 1

s2
(4.30)

RepresentingHsgl(s) in terms of functional parameters,τ (time constant),Q (quality factor,

a measure of sharpness of frequency responses), andη, yields:

Hsgl(s) =

1 +
τ

Q
s + τ 2s2

1 +
τ

Q
s + (1 + η)τ 2s2

, (4.31)

whereτ =
√

τ1τ2/(b + 1), Q =
√

(b + 1)τ1τ2/(τ1 + τ2), andη = R. Using the same

relationships, we rewrote the transfer functionGsgl(s) as:

Gsgl(s) =
ητ 2s2

R(1 + τs
Qs + τ 2s2(1 + η)

)
. (4.32)

The roots of the denominator ofHsgl(s) determined its complex-pole pair:

sp± =
1

2τQ(1 + η)
[−1±

√
1 − 4Q2(1 + η)]. (4.33)

while the roots of the numerator set its complex-zero pair:

sz± =
1

2τQ
[−1±

√
1 − 4Q2]. (4.34)
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As plotted in [6], the poles and zeros were close to the imaginary axis, which suggested a

pronounced peak and a pronounced valley in the magnitude of the transfer functionHsgl(s).

Sinceη is determined by the resistanceR, which realization was described in Equation 4.7,

we expected thatη > 1. As pointed out in [6], due to the positive value ofη, the poles were

always closer to the real axis in the complex plane than were the zeros, so the peak in the

magnitude of the transfer function always occured at a lower frequency than did the valley.

As we can see from Equation 4.32, for the second-order BM circuit, its amplitude (or

gain) and phase responses was determined by the quality factorQ, whenη was a constant

throughout the cochlea, andτ was chosen for a certain cochlear position. IncreasingQ will

result in increased response gain.

Single-Stage Transfer Functions in a Loaded Network

Transfer functions of an isolated single BM-fluid section cannot represent its property

when it was loaded by a number of other sections in a network [6, 117]. Therefore, it was

beneficial to obtain the transfer functions when embedded in the network of BM sections

and fluid elements. Toward this end, the straightforward approach was to obtain an closed-

form expression of the transfer functions. It is, however, extremely difficult to achieve that

goal due to the fact that in a BM-fluid network, BM sections have exponentially increasing

time constants along the cochlear position, resulting in a non-uniform network. Therefore,

we combined semi-analytical solution and numerical simulation to obtain the frequency

response of the two transfer functions, and we checked the effect of loading on the single

BM-section function by comparing the transfer functions in the two cases.

We derived the semi-analytical solution to compare a single stage transfer function and

the combined-network stage transfer function, based on the single-stage shown in Fig-
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Figure 4.3: Basilar Membrane-Fluid Interaction With Loading

A array of single basilar membrane (BM)-fluid forms a network. Transfer functions are altered by the network

loading.

ure 4.2 and the network setup shown in Figure 4.3.

According to the Kirchhoff’s Current Law (KCL), we have

Iin(i − 1) − Iin(i)

R
= Imem(i) +

Iin(i) − Iin(i + 1)

R

=⇒ Iin(i − 1) − Iin(i)

R
=

Iin(i)

zm(i)
+

Iin(i) − Iin(i + 1)

R
. (4.35)

This leads to

Hload(i) =
Iin(i)

Iin(i− 1)

=
zm(i)

R + (2 −Hload(i + 1)) zm(i)
. (4.36)

where the subscript “load” denotes the loaded case. From Equation 4.36, we see further
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that it is difficult to obtain a closed-form solution for the two transfer function because

zm (Equation 4.28) changes with cochlear position and it has a complex form. Therefore,

Equation 4.36 was solved numerically to obtain solution toHload(i).

In seeking solutions for transfer functions at each cochlear position, we representedzm

andR in terms of biophysical parameters. The BM impedancezm was represented as:

zm =
Iin

Imem
=

S(x) + iωβ(x) + (iω)2m(x)

(iω)2
, (4.37)

whereω is the input signal’s angular frequency, andx is the distance from the stapes in the

cochlear model. As we can see, aside of its dependence on input frequency,zm varied along

the cochlear locationx with varying stiffnessS(x), dampingβ(x) and massm(x). In our

case, the mass was constant across the cochlea. Also, the resistance of a small amount of

fluid was represented as

R = 2ρ(∆x)2/H, (4.38)

whereρ is the fluid density,H is the cochlear duct height, and∆x is the discretization size

along the longitudinal axis. Using Equation 4.37 and Equation 4.38, the transfer functions

Hsgl(s) andGsgl(s) were obtained easily in an isolated case based on the expressions in

Equation 4.31 and Equation 4.32.

Finding the transfer functions in the loaded network case was more complex. First

it was necessary to solve for the transfer functions at the last position (at the apex) of

the discretized cochlea, and then use the solution to solve for the transfer function at the

previous section, based on the relation described in Equation 4.36. Repeating the procedure

yielded the transfer functions at all cochlear positions. The parameter values used were the

same as those listed in Chapter 3.
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Comparing the numerical simulation results in the loaded network with the isolated

condition revealed the effect of loading to the transfer functions of BM-fluid section. In

contrast to the responses of a single BM-fluid stage, the peak was reduced when stages were

combined (Figure 4.5A). Furthermore, the amplitude ofHload(i)’s frequency response did

not exhibit a pronounced peak before the valley in the loaded network (Figure 4.4A). The

result indicated that interactions between BM stages through the diffusive elements had a

destructive impact on the gain of BM responses. This destructive interference was very

likely due to the large phase difference between BM sections, with close-to-π phase differ-

ence causing cancelation of response amplitude. This destructive-interference phenomena

was evident with responses described in [7].

Adding ABC in the Loaded Network

It was instructive to take the loaded-network simulation further by adding the cochlear

amplifier mechanism into the system, and then investigating the effect of the active bidirec-

tional coupling. Meanwhile, this task was formidable if the circuit model in Figure 4.3 was

used because the realization of ABC requires using the comprising lower-level variables

of the BM circuit to represent the BM impedancezm. Therefore, it was quite difficult to

formulate the transfer function as described in Equation 4.36. An equivalent approach we

took was to simulate our 1D mathematical model and obtain the value of transfer functions

defined by their definition.

When ABC was included in the simulation, the amplitude response ofHload(s) regained

a pronounced peak and a relatively large quality factor (Figure 4.6A and Figure 4.7A). This

suggested an important notion that the bidirectional coupling between BM sections due to

ABC counteracts the destructive interference among BM sections due to their coupling

through fluid. Therefore, ABC played a critical role in achieving desirable gain and quality
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Figure 4.4: Transfer FunctionH(f) of a Single Basilar Membrane-Fluid Stage and in a

Loaded Network

Frequency responses of transfer functionH(f) of a single basilar membrane (BM)-fluid stage (Hsgl(f)) and

in a loaded network (Hload(f)). Top Amplitude;Bottom Phase;Green Single BM-fluid stage;Red Loaded

network.
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Figure 4.5: Transfer FunctionG(f) of a Single Basilar Membrane-Fluid Stage and in a
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Frequency responses of transfer functionG(f) of a single basilar membrane (BM)-fluid stage (Gsgl(f)) and

in a loaded network (Gload(f)). Top Amplitude;Bottom Phase;Green Single BM-fluid stage;Red Loaded

network.
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factor along the cochlea.

4.2.4 Adding Active Bidirectional Coupling

We have described our circuit design for the BM and fluid circuits and we have also inves-

tigated the characteristics of a single BM in isolated and loaded conditions. We were also

able to compute the transfer functions of the BM-fluid network with added cochlear am-

plifier mechanism ABC through solving the mathematical circuit equivalent We shall now

present the circuit design when including the active bidirectional coupling OHC forces in

the cochlea design (i.e., to include theFOHC term).

For reference, we rewrote the BM boundary condition with ABC as follows.

2ρφ̇ = S(x)δ(x) + β(x)δ̇(x) + M(x)δ̈(x) − FOHC,

FOHC = αγS(x)T
(
δ(x− d)

)
− αS(x)T

(
δ(x + d)

)
, (4.39)

whereT denotes saturation, andδ(x − d) andδ(x + d) represented the displacement of

adjacent upstream and downstream BM segments, respectively. Note that we took the

termsrfbS(x) andrffS(x) outside of the saturation operationT as an approximation and

for simplicity.

Let the gain factorrff = αγ denote the feedforward OHC motility factor and the gain

factorrfb = α denote the feedbackward OHC motility factor. Combining the two equations
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Figure 4.6: Transfer FunctionH(f) with Loading in the Passive and an Active Case

Frequency responses of transfer functionHload(f). Top Amplitude;Bottom Phase;Red Passive case;Blue

Active case. The OHC motility factor used is 0.16 while the forward-to-backward ratio is 0.3 for the simula-

tion.
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Frequency responses of transfer functionGload(f). Top Amplitude;Bottom Phase;Red Passive case;Blue

Active case. The OHC motility factor used is 0.16 while the forward-to-backward ratio is 0.3 for the simula-
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above and taking the first time-derivative yields:

2ρφ̈ = S(x)δ̇(x) + β(x)δ̈(x) + M(x) ˙̈δ(x)

+rfbS(x)Ṫ
(
δ(x + d)

)
− rffS(x)Ṫ

(
δ(x− d)

)
. (4.40)

As in the passive design, we usedIin to model the quantity 2ρφ andImem to represent

the BM velocityδ̇. Also, working in the frequency domain (Laplace domain) withs = jω

gave us:

Iins
2 = S(x)Imem + β(x)Imems + M(x)Imems2

+rfbS(x)T
(Imem(x + d)

s

)
s − rffS(x)T

(Imem(x − d)

s

)
s, (4.41)

We based the synthesis of the active model, implementation ofFOHC, on the outcome of

the passive design. By observing that in the passive design Equation 4.18, the state variable

Is was expressed in terms ofImem as

Is = −Imem

s τ1
. (4.42)

We then obtained expressions forImem(x − d), received from the upstream BM segment,

and forImem(x + d), received from the downstream BM segment, as follows.

Imem(x − d)

s
= −τ1fIsf, and

Imem(x + d)

s
= −τ1bIsb, (4.43)

whereτ1f andτ1b represent the time constant,Isf andIsb the output currents, of the first

LPF at the upstream and downstream BM segment, respectively.
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To reduce complexity in implementation, we usedτ1 to approximate bothτ1f andτ1b as

they have similar values due to the small longitudinal span between neighboring sections.

Recall that in the passive system, the BM stiffnessS(x) is represented byτ1, τ2 and the

gainb, S(x) = (b + 1)/(τ1τ2). Thus, theFOHC term in Equation 4.41 was transformed to

the following:

FOHC = rfbS(x)T (−τ1Isb)s − rffS(x)T (−τ1Isf)s

= rfbS0(x)T (−Isb)s − rffS0(x)T (−Isf)s, (4.44)

whereS0(x) = S(x)τ1 = (b + 1)/τ2. Note thatτ1 was taken out ofT in order to simplify

the implementation.

Therefore, we have obtained the target equation for the active system synthesis:

Iins
2 = S(x)Imem + β(x)Imems + M(x)Imems2

+rfbS0(x)T (−Isb)s − rffS0(x)T (−Isf)s. (4.45)

Following similar synthesis procedures to that used in the passive design, we obtained

the synthesis result for an active design, which implemented the BM boundary condition

with active coupling, as follows.

τ1Iss = −Iin + Io − Is,

τ2Ios = Iin − bIs − Io + rfb(b + 1)T (−Isb) − rff(b + 1)T (−Isf),

Imem = Iin + Is − Io. (4.46)

Note that to include implementation of the cochlear amplifier mechanism ABC, we only
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needed to add two current quantities into the input of the second LPF in each BM circuit

design. The two current signals were taken from the two adjacent neighbors of each BM

circuit, respectively. Specifically,Isf andIsb denoted the output current signals of the first

LPF, Is, in a BM circuit, fed forward and backward from its upstream (basalward) and

downstream (apicalward) BM circuits.

4.3 A Log-Domain Class AB Low-Pass Filter

4.3.1 Nodal Equations

We have synthesized the design for the cochlear fluid and the second-order BM section. We

used a single nMOS transistor as a physical model of a small amount of cochlear fluid. Next

we shall discuss the implementation of the BM design. We chose to realize the BM circuit

differentially. This results in Class AB operation which increases dynamic range, reduces

the effect of transistor mismatch, and lowers power consumption. Differential operation

also agreed with the way the biological cochlea operates—the vibration of BM is driven by

the pressure difference across it.

In a differential design, each signal was represented by the difference between its posi-

tive component and negative component. In addition to the constraint applied to differential

signals, the operation of a Class AB design also required additional common-mode con-

straint. Differential- and common-mode conditions combined together and determined the

two components of the output signal.

Following a bottom-up strategy, we will present the design of a differential LPF in detail
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as a building block based on which we will develop the BM circuit. A current-mode LPF

can be described in the frequency domain as:

τIouts + Iout = Iin (4.47)

wheres = jω andτ is the time constant.Iin andIout are the input and output current,

respectively. We wrote the differential-modeequation of the LPF as follows by representing

each signal using the difference between its two components (i.e., positive and negative).

τ (I+
out − I−

out)s + (I+
out − I−

out) = I+
in − I−

in. (4.48)

Using the approach described in [4], we then enforced a common-mode constraint to ad-

ditionally govern the two components of the output signal. This constraint is chosen as

follows:

τI+
outI

−
outs + I+

outI
−
out = I2

q , (4.49)

whereIq set the geometric mean of the positive and negative currents. This equation real-

ized a dynamic common-mode constraint that had the same time constant as the differential

mode. At constant input (s = jω = 0), the following relation holds:

I+
outI

−
out = I2

q (4.50)

Combining the common-mode constraint with the differential design equation, we de-
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rived the nodal equations for the positive and negative paths.

C
dV +

out

dt
=

Iτ

I+
out + I−

out

(
(I+

in − I−
in) + (

I2
q

I+
out

− I+
out)

)
,

C
dV −

out

dt
=

Iτ

I+
out + I−

out

(
(I−

in − I+
in) + (

I2
q

I−
out

− I−
out)

)
. (4.51)

Here,C was the capacitance of the capacitors in each paths of the differential-mode LPF.

VoltagesV +
out andV −

out were the node voltages of the capacitors; and the current flowing

through a MOS transistor gated byV +
out was the current signalI+

out, and same relation

applies toV −
out andI−

out.

4.3.2 Circuit Building Block

The nodal equations of the LPF (Equation 4.51) that were derived in the previous section

showed that the primitive computations required are multiplication and division. For that

implementation, we employed the log-antilog multiplier (Figure 4.8) as the building block

of the differential-mode LPF circuit and thereby the BM circuit.

The relation between the input current,Ia, and the output current,Ir, in the building

block (Figure 4.8) can be described as:

Ir =
IaIb

Ic
(4.52)

whereIa was the current flowing through the pMOS gated byVa (and sourced by the power

supply railVdd), Ib by Vb, andIc by Vc. We tied the well (substrate) of the two pMOS

transistors gated byVm to their sources, respectively, to eliminate the body effect4.

4Effect on the threshold of a MOSFET when the source to substrate voltage increases. Increase inVsb

(Vsource − Vsubstrate) results in increase in threshold voltage and decrease in channel current
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Figure 4.8: Log-Antilog Multiplier

This circuit is the building block of a low-pass filter in the present design. Comprised of only seven transistors,

the circuit realizes multiplication and division of currents.
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4.4 Log-Domain Class AB Circuit Implementation of the

Cochlea

In this section, we will present the transistor-level cochlear circuits, then the cochlear chip

architecture. We will first show the Log-domain Class AB circuit of a low-pass filter,

two of which will form the BM circuit. With additional circuit for realizing the cochlear

amplifier mechanism ABC, we shall present the schematic for the BM circuit in the active

case. Last, we will show the architecture of the entire cochlear chip which includes fluid

diffusive network, the BM circuit, and the coupling circuit for ABC.

4.4.1 BM Circuit

Using the building block (Figure 4.8), we obtained the circuit of the positive path of a Class

AB LPF (Figure 4.9A). The nodal equation set in Equation 4.51 suggests the transistor-

level LPF circuit, in whichV +
out andV −

out denoted the voltage on plus- and minus- capacitor

nodes, respectively, and each of them gated a pMOS transistor to produce the corresponding

current signals,I+
out andI−

out. V +
in andI+

in, V −
in andI−

in, were related in the similar way. The

biasVq set the quiescent currentIq, which was usually close to zero, whileVτ determined

the currentIτ , which was related to the time constant byτ = CuT/κIτ (uT is the thermal

voltage, andκ is the subthreshold slope coefficient). Two of these subcircuits, connected

to push/pull with each other, formed a complete differential log-domain LPF.

The nodal equations for the two LPFs in the BM design (Equation 4.16) were derived

using the same approach as that for obtaining Equation 4.51. Based on the BM design

described in Equation 4.46, we put together the BM circuit using two Class AB LPFs and
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circuitry that realized their interactions (Figure 4.9). The differential input signalsI+
in and

I−
out represented the difference of velocity potentials across the BM, and the differential

output signalsI+
mem andI−

mem represented the BM velocity in the upward and downward

directions, respectively. As can be seen, the final outputI+
mem-I−

mem representing the BM

velocity, orImem, was computed as the linear summation of three current signals,Iin, Is,

andIo.

For realizing the ABC, each BM circuit sent out currentsI+
s to its two immediate neigh-

bors; each BM circuit also receivedI+
T andI−

T from its neighbors, which were saturated

version of its neighbor’sI+
s andI−

s , respectively. The bidirectional coupling currents,I+
s

andI−
s , were saturated simply by passing through a current-limiting transistor which was

inserted in series in each of the coupling current pathway (Figure 4.10).

The saturation of the input current through M1 was realized by connecting a current

limiting transistor M2 (Figure 4.10). When the input current,Iin, set byVin, exceeded the

current level thatVsat sets,Vx increases which in turn reduced the current through M1. The

saturation current, denoted byIrsat, was described as

Irsat = T (Iin) =
IsIsat

Is + Isat
(4.53)

whereIsat was set by the bias voltage,Vsat.

4.4.2 Spiral Ganglion Cell Circuit

In the cochlea, the mechanical vibration is eventually translated into neural activities; inner

hair cells (IHCs) and spiral ganglion cells are the agents for the translation. The output

of the biological cochlea is neurotransmitter release at the base of IHC, and ultimately
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neurons’ electrical discharges, or spiral ganglion cell’s (SGC) spikes.

Several transduction processes occur from the BM’s motion to the spikes of the SGCs

[18]. The BM’s up and down motion causes the cochlear fluid in the sub-tectorial space to

move, causing viscous drag which deflects the cilia of inner hair cells (IHC). If the ciliary

deflection is in the radially outward direction (i.e., away from the modiolus), IHCs are ex-

cited which means that the transduction channels on the hairs open, allowingK+ to flow

into the IHCs, which in turn depolarizes the IHCs. Depolarization of IHCs causes voltage-

gatedCa2+ channels to open, and the resultant influx ofCa2+ causes neurotransmitter vesi-

cle exocytosis. The neurotransmitter binds with glutamate receptors on the post-synaptic

membrane of spiral ganglion cells. The receptor potentials serve as generator potentials

that initiate a cascade of events that eventually produce action potentials at the SGCs.

SGCs in the cochlea fall into three categories based on their spontaneous firing rate;

there are high-, medium-, and low-spontaneous rate SGCs. In addition to spontaneous

rate, they also have different firing-rate profile with sound intensity (rate-intensity or RI)

functions [118].

To convert the analog current that represents the BM’s motion into digital pulses , or

spikes of SGCs, we built a circuit model to emulate the functions of SGCs. First, we

modeled the conversion between the BM’s velocity to the post-synaptic input current to the

SGCS. We used a current-splitter [114] to obtain a half-wave rectified current signal, which

represented the depolarizingK+ influx. Constrained by chip die size, we did not explicitly

model the IHC-SGC synapses in detail; instead, we used a low-pass filter to model the IHC

cell membrane’s filtering effect.

The circuit has three functional components: circuit to obtain full-wave BM velocity,
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Circuit that models the processes converting BM velocity into the driving current of spiral ganglion cells.

The outcome is a half-wave rectified current.

current splitter for generating half-wave currents, and a LPF. The circuit of full-wave BM

velocity was formed by taking the difference between the positive and negative components

of the BM velocity,Imem
+ andImem

−, which were half-wave rectified, and 180 degree out

of phase. Then this sinusoidal signal was split into a positive and a negative current, from

which we only used one of them (i.e., a half-wave current with near-zero baseline) as the

input for driving SGCs. Last, a LPF filters out the high-frequency component in the half-

wave rectified input, emulating the effect of the membrane capacitance of IHCs.

In order to model the difference in their spontaneous rates, our silicon SGC modeled

have different gain of the input current (i.e., different biasVgain), and modeled the different

saturation levels by using differentVsat biases. What was in common among the high-,

medium-, and low-spontaneous rate SGC circuits are the types of ion channels and their

dynamics. Similar to the biology, our silicon SGC model consisted of a depolarizing fast

Na+ ion channel, a hyperpolarizing membrane-voltage-dependentK+ channel, a hyperpo-

larizingCa2+-concentration-dependentK+ channel, and a fast hyperpolarizingK+ channel
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Figure 4.12: Silicon Spiral Ganglion Cells

Transistor-level circuit model of spiral ganglion cells. It consists ofNa+, K+, andCa2+ ion channels whose

dynamics together shape that of the spiral ganglion cell.

139



Figure 4.12 (Figure 4.12).

The neurons’ spikes were sent off chip through an asynchronous digital communication

protocol, address event representation (AER) [119, 120]. AER is an interface designed for

transmitting and receiving neuronal spike information between silicon neurons. Instead of

communicating using actual spikes of a neuron, each spike is represented by the neuron’s

unique address (i.e., coordinates) in a 2D array and the address is the token for communi-

cation. The form of digital pulses offers the advantage of robustness and high efficiency,

compared to an analog code.

Once a neuron’s membrane voltageVm (Figure 4.12) reached its threshold, the neu-

ron generated an action potential, or a spike, which then sent a request (Req) to the AER

transmitter circuitry. Upon the request was serviced, an acknowledgment (Ack) was re-

ceived from the receiver (the receiver configured and mounted on the chip test PCB) and

the neuron were reset.

4.5 Chip Architecture

We fabricated a version of our design with 360 BM circuits and two 4680-element fluid

grids (360×13), with its architecture shown in Figure 4.13 and the chip die shown in Fig-

ure 4.14. This chip occupied 10.9mm2 of silicon area in 0.25µm CMOS technology.

Differential input signals were applied at the base while the two fluid grids were connected

at the apex through a fluid element, which represented the helicotrema. As we can see in

the close-up view (at the bottom of Figure 4.13)), BM circuits exchanged their currents re-

alizing ABC, and the level of currents were controlled by a biasVsat realizing the saturation

of ABC.
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4.6 Summary

In this chapter, we described the process of the cochlear circuit design based on our math-

ematical cochlear model, including design synthesis and transistor-level implementation.

This silicon cochlea comprised the BM and the fluid circuits. The BM design was imple-

mented by two interacting LPFs and the coupling to the cochlear fluid circuit, similar to

the biological cochlea in which the BM is driven by the pressure in the cochlear fluids,

and the BM’s motion in turn affects the motion of the fluid nearby. In order to achieving

simpler implementation, larger dynamic range, and low power consumption, we chosen to

implement the cochlear circuits in current mode with class AB operation. We synthesized

the passive and the active cochlea and implemented the design using current-mode circuit

building blocks. Inclusion of our proposed cochlear amplifier mechanism ABC yielded a

novel architecture of silicon cochlea design.

141



Base Apex

IST

ISV

IT
-

Is
+ Is

+

Is
-

IT
+

Is
-

IT
+

IT
-

T

T

T

T

IT
+

IT
-

Is
+

Is
-

T

T

T

T

IT
+

IT
-

Is
+

Is
-

Iin
+

Iin
-

Imem
+

Imem
-

BM

Auditory nerve

Spiral ganglion cells
(Neural spike outputs)

BM

Fluid

Fluid

A
ud

io
 I
np

ut
s

Diffusive grid
 (Top)

Second-order sections
 (BM)

Active bidirectional
coupling
(T: Saturation)

Diffusive grid
 (Bottom)

D
if
fe

re
n

ti
a

l

6

Figure 4.13: Cochlear Chip Architecture

The cochlear chip comprises two diffusive-element grids that model the two cochlear fluid chambers, and 360

basilar membrane (BM) circuits that are embedded in between the two diffusive grids. Each BM segment

sends and receives currents from its two immediate neighbors. The current output of each section, represent-

ing BM’s velocity, drives six spiral ganglion cells that have three different spontaneous firing rates with the

ratio of 3:2:1.
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Figure 4.14: Micrograph of Cochlear Chip Die

Different comprising elements of the cochlear chip die are labeled in the micrograph, including the input, the

basilar membrane, top/bottom fluid, and the auditory nerve (SGC: Spiral ganglion cell).
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Chapter 5

Cochlear Chip Responses to Sound

In previous two chapters, we have elaborated our hypothesis about the cochlear amplifier

mechanism, active bidirectional coupling (ABC), in which we proposed that outer hair cell

(OHC) motile forces are delivered onto the basilar membrane through the tilted structure

within the organ of Corti, thereby giving rise to frequency-selective amplification and non-

linear cochlear responses. In this chapter, we present responses to sound stimuli in our

silicon cochlea that was described in detail in Chapter 4.

We first examined the effect of ABC on the basilar membrane’s (BM) motion in re-

sponse to sound stimuli, thereby providing further verification of our hypothesis. We then

explored both the frequency responses and longitudinal responses of the silicon cochlea. To

demonstrate nonlinearity of the silicon cochlea, we performed experiments that involved

measuring BM’s responses with varying input intensities. Finally, we obtained spiking ac-

tivities on the auditory nerve model, which represented the final output stage of the silicon

cochlea.
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5.1 Chip Test Setup

Input signals of differential nature were required for our Class AB silicon cochlea. To stim-

ulate the chip, we drove the top and bottom diffusive network simultaneously by applying

two complementary voltage signals at the beginning of the silicon cochlea, corresponding

to the base of the biological cochlea. A voltage signal of a node of the diffusive network

represented the logarithm of fluid velocity potential. Therefore, the current flowing through

a pMOS transistor that was gated by the node voltage emulates the fluid velocity potential.

By the same token, the currents flowing in and out of the two diffusive networks model the

complementary inward and outward motion (velocities) of the oval window and the round

window of the silicon cochlea.

In order to generate sinusoidal current input for the BM subcircuits, the voltage signals

applied were set to be the logarithmic of a half-wave rectified sinusoidal signal with certain

offset (i.e., DC level), based on the exponential I-V relationship of transistors operating in

subthreshold region. To this end, We obtained the value ofκ through transistor characteri-

zation from the chip being tested and used thisκ value in generating input voltage signals.

Further, in order to obtain a set of input current signals with log-linear increase in their

amplitude, a linear increase in the amplitude of the input voltage resulted in an exponential

increase in input current for the BM subcircuit, through which we obtained a linear increase

of current on a logarithmic scale.

Mimicking its biological counterpart, the chip’s outputs have two forms. One is the cur-

rent output at each BM subcircuit representing the BM velocity, can be measured through

the voltage across a resistor through which the output current passes. The output current

goes through a current sense-amplifier in the output pad before it flows through the resis-

tor. Given the class AB operation of the present design, we measured both current outputs
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from the positive and negative paths and then took the difference between the two as the

complete output signal. The operation of taking the difference of two output signals is

conveniently performed off chip (i.e., through separate circuitry on the test printed circuit

board).

We included a serial-analog-multiplexer, or scanner, in the periphery of the chip to fa-

cilitate visualizing and measuring analog output signals at any desired chip position. The

scanner design we used in our cochlear chip was adapted from [121]. Considering the ac-

tual layout of the present silicon cochlea (i.e., columns of cochlear segments alternated in

downward and upward directions physically, forming a consecutive cochlea electrically),

we used two arrays of shift-registers—in downward and upward directions—connected

such that they formed a chain that enabled scanning the entire silicon cochlea sequentially

from the beginning of the silicon cochlea (corresponding to the base) to its end (corre-

sponding to the apex). As the adjacent two columns of BM stages in the cochlear chip

were arranged in opposite directions, the shift registers in the two columns were arranged

in the similar manner to accommodate selection of BM stages in the chip core. By con-

trolling the clock input of the shift registers, we were able to measure output signals of any

BM stage (i.e., subcircuit) in the silicon cochlea.

We directed digital-pulse outputs of the cochlear chip—the neuronal spikes on the sil-

icon auditory nerve—to a PC for real-time visualization (including debugging). Through

the word-serial address-event representation (AER) interface [120], the spikes were repre-

sented in terms of theirx andy addresses in the 2D array; then an on-board CPLD (complex

programmable logic device) and a USB (universal serial bus) controller were employed for

transmitting spike events together with time stamps to a PC program that we developed for

displaying the results.
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5.2 BM Frequency Responses: Linear Domain

Although measurements of the human cochlea are unavailable, data of other mammalian

cochleas are abundant with which we can compare the chip measurements, at least quali-

tatively. In physiological measurements, pure tones were most often used for obtaining the

cochlea’s responses. The use of pure-tone stimuli provided a simple and straightforward

probe for the cochlea’s functions—including spectral analysis and active amplification. To

obtain frequency responses, we swept the frequencies of input signals and measured the

current outputs (from both positive and negative paths) of the BM subcircuit at certain

cochlear location that are selected by the scanner.

5.2.1 Effect of Active Bidirectional Coupling

We investigated the frequency responses for the passive and active cases by varying the

saturation level of outer hair cell (OHC) forces, and thus the extent of ABC between BM

stages. To that end, we varied the voltage biasVsat that controlled the coupling current level

between BM stages.

IncreasingVsat decreased the coupling between neighboring BM stages, and vice versa,

asVsat gated pMOS transistors. Specifically, the cochlear amplifier (i.e., ABC) was com-

pletely shut off by settingVsat equal to or higher than the source of the saturation transistors;

that reduced the system to a passive cochlea with only electrical embodiments of the fluid

hydrodynamics, BM’s physical properties, and interaction between the fluid and the BM.

DecreasingVsat increased coupling current level, introducing ABC into the system, thereby

giving rise to active cochlear responses.
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At each saturation level, the input frequency was swept from 100 Hz to 30 kHz in

45 logarithmically spaced frequencies. At the BM Stage 100, we obtained a series of

frequency response curves (Figure 5.1), each of which had a peak—the corresponding fre-

quency at which the stage vibrates maximally, known as the characteristic frequency (CF).

Increasing ABC changed the BM velocity amplitude responses but hardly affected the

phase response (accumulation or lag in the traveling wave). As can be seen, with decreasing

Vsat, the CF at which the peak occurs remains more or less the same (around 4 kHz).

The peak amplitude increased monotonically as a result of increasing strength of ABC

(through lowering the biasVsat). Plotted on an arbitrary dB scale (Figure 5.1), the peak

height values with increasing ABC level were listed as follows: 18.2, 18.5, 24.1, 26.2, 28.1,

31.6, 33.4, 34.1, and 34.3 dB. Note that the amplitude of the BM velocity were amplified

only over a restricted frequency region so that the responses became more sharply tuned. In

terms of the frequency tuning, the calculatedQ10 values increased monotonically in general

from 0.45 to 1.14 with increasing ABC levels.

BM velocity phase responses relative to that of the input signal keep almost the same:

flat near the base and abrupt accumulation near the CF (Figure 5.1B). This result indicated

that a traveling wave was formed along the BM in the silicon cochlea.

5.2.2 Active Cochlear Frequency Responses

Under an active cochlea setting (with maximal saturation current level), we measured fre-

quency responses of six linearly spaced BM stages (Figure 5.2). The six cochlear locations

were from Stage 30 to 230, spaced 40 segments apart. The CF that maximally excited the

first measured position (i.e., Stage 30) was 12.1 kHz. The remaining five CFs, from early to
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Figure 5.1: Frequency Responses in the Cochlear Chip with Varying Outer Hair Cell Forces

Measured frequency response of the basilar membrane velocity with increasing strength of outer hair cell

forces, thus varying ABC.A Amplitude. B Phase. DecreasingVsat leads to increase in the saturation level,

which increases the strength of ABC. The amplitude of the BM velocity increases over a certain frequency

range and thus the tuning becomes sharper. The phase responses remains almost the same.
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later stages, were 8.2 k, 1.7 k, 905, 366, and 218 Hz, respectively. Their tip-to-tail ratio val-

ues (amplitude difference between the response peak to the lowest response value) are 27,

18, 27, 17, 22, 26 dB, respectively.Q10s were also calculated as 1.4, 2.7, 2.2, 1.3, 1.4, 2.2,

respectively. The cutoff slopes were -21, -38, -54, -20, -20, -46 dB/Octave, respectively.

Measurements from the chinchilla cochlea were also plotted in Figure 5.2 for compar-

ison (dashed lines).Q10 of the chinchilla cochlea was 2.55 at mid-sound intensity (com-

puted from [47]) and the cutoff slope was about−85 dB/octave (computed from [47]). In

the chip, the phase accumulation at the CFs ranged from 0.56 to 2.67π radians, compara-

ble to 1.67π radians in the mammalian cochlea ( [47]). Despite some irregularities with

the response shape (which were related toQ10 and cutoff slope) and peak height, the chip

responses were comparable to the biological data qualitatively.

We performed frequency-response measurements with the chip at several more cochlear

positions, from Stage 10 to 230, which were spaced by 20 stages, thereby we obtained the

frequency-position map in the chip. The frequency-position map depicted the tonotopic

(spatial) mapping of the spectral analysis that the cochlea performs. To obtain such a map,

we plotted the characteristic frequency for each BM stage we measured against its cochlear

position (Figure 5.3). The expression in Figure 5.3 is the regressed relationship between

the CF and cochlear position. It was evident that despite some deviation due to transistor

mismatch, the CFs decreased linearly on a logarithmic scale with the increasing cochlear

positions, thus distance from the beginning of the silicon cochlea.
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Figure 5.2: Frequency Responses in the Cochlear Chip Compared to Biology

Frequency responses of the basilar membrane (BM) velocity at different cochlear positions are obtained and

compared with physiological data measured in chinchilla cochlea [47].A Amplitude. B Phase. These

linearly spaced BM stages, ranging from the beginning to the end of the silicon cochlea, have characteristic

frequencies that shift from high to low. In addition, the responses are comparable to biological measurement

in terms of shape, peak amplitude, and the phase accumulation.
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Figure 5.3: Measured Frequency-Position Map in the Cochlear Chip

The expression in the figure describes the regressed function, indicating a linear relationship between the

characteristic frequency,f , and the cochlear position,x (x is in the unit of stage number).
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5.3 Nonlinear Frequency Responses

We investigated the nonlinearity of the cochlear responses due to saturation of ABC. In an

active-cochlea parameter setting (high saturation level of ABC), we varied the input current

level and obtained the BM velocity frequency responses at the Stage 100 (Figure 5.4).

We increased the input voltage level linearly such that the corresponding current into the

BM increase exponentially; the input level (in dB) was then calculated based on the input

voltage and measured value ofκ from the chip being tested. The dynamic range of input

current was limited on the high side by the threshold of transistors, and on the low side by

the noise floor of the output current.

BM Stage 100 responds to increasing input intensity distinctively at different frequen-

cies. As expected in the log-scale plot, we observed the linearly increasing BM responses in

the lowest frequency region. In contrast, the BM responses around the CF did not increase

linearly with the input level as the near-CF region was where ABC took effect. Thus, satu-

ration of OHC forces caused the compression, or compressive growth, with the increasing

input levels locally around the CF region. Figure 5.4B shows the phase responses of the

BM velocity, relative to that of the input signal.

The peak amplitude increases monotonically in a compressive way, which is evident

when we plot the peak amplitude against the input intensity (Figure 5.5). As can be seen,

the amplitude at the CF (peak) increase more linearly when input intensity is low while it

grows compressively when the input level is high, resulting in 24 dB compression between

the input and the output. In Figure 5.4, at lower frequencies, the output increases more

linearly than at the peak. The CFs at increasing input intensities hardly change while in the

biological cochlea the peak shifted a little basalward (to lower-frequency side) [32].
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Figure 5.4: Nonlinear Compression in the Cochlear Chip

Chip data of BM velocity frequency responses at different input levels.A Amplitude. B Phase. The input

levels (dB) were listed in the figure legend: they were 8 dB spaced, ranging from 0 to 48 dB.
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Figure 5.5: Saturating Input-Output Function in the Cochlear Chip

The basilar membrane velocity at the characteristic frequency (i.e., peak amplitude) saturated with the input

intensity.

The tuning of the responses became broader with increasing input level;Q10s were 1.8,

1.6, 2.2, 1.6, 1.4, 1.4, and 1.1, respectively (monotonically except for the 16 dB input, due

to some artifacts at lower input levels whose responses were noisier); the cutoff slopes were

−44, −29, −35,−24, −19, −16, and−13 dB/Octave, respectively; again, they became

shallower monotonically except for the response at 16 dB input. The phase plots at different

input level overlapped with one another, nearly independent of the input intensity. The

larger phase plateau at the lower input levels (0 and 8 dB) were due to the noisy responses

at the cutoff; as a result, the plateau occurred at−6π and -8π for the two lower input levels,

respectively, just one or two more cycles than that of other phase response curves.
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5.4 Longitudinal Patterns

Longitudinal responses of the cochlea are the spatial patterns of BM vibrations in response

to input sound. We measured the longitudinal responses of BM velocity in the cochlear chip

by applying sinusoidal current input (input voltages were logarithm of sinusoidal signals).

At 500 Hz pure tone input, we measured the BM responses at every single stage and then

we obtained the smoothed response by taking a moving average over 10 stages (Figure 5.6).

We measured the silicon cochlea’s responses at 2 kHz input in the passive and active

case (Figure 5.7). In the active case, where the largest possible coupling gain between BM

stages was set, the cochlea showed larger response peak (about 14.6 dB) than that in the

passive case where there was no coupling made possible. In addition, the cutoff slope was

much steeper in the active case than in the passive case.

Stimulating the chip using three additional input frequencies independently—500 Hz,

1, 2, and 4 kHz—we obtained the BM velocity longitudinal responses (Figure 5.8). 4 kHz

input elicited a BM response peak at Stage 85 (defined as the characteristic place, or CP)

while 500 Hz sound traveled all the way to Stage 178 and peaked there. In addition, the

CPs for 1k and 2kHz were Stage 166 and 139, respectively. The tip-to-tail ratios of the

responses from 500 Hz to 4 kHz were 13, 14, 32, and 12 dB, respectively.Q10s were 1.1,

0.9, 1.2, and 0.9, respectively. The cutoff slopes were−70,−16,−27, and−21 dB/Octave,

respectively.
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Figure 5.6: Longitudinal Responses in the Cochlear Chip (I)

Measured BM longitudinal responses at 500 Hz input frequency. Gray: Raw data. Magenta: Smoothed data

(10-stage moving average).

0 50 100 150 200
Cochlear Stage Number

-10

0

10

20

30

B
M

V
el

oc
ity

A
m

pl
itu

de
HdB
L

Input freq: 2k Hz
Passive
Active

Figure 5.7: Longitudinal Responses in the Cochlear Chip (II)

Measured BM longitudinal responses at 2 kHz input frequency in the passive case and in an active case.

Curves are smoothed data (10-stage moving average).
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Figure 5.8: Longitudinal Responses in the Cochlear Chip (III)

Input frequency varies from 500 Hz to 4 kHz, resulting in response peaks at different cochlear positions

(10-stage moving average).
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5.5 Silicon Auditory Nerve’s Spike Activities

The silicon auditory nerve in our cochlear chip converted the BM’s mechanical motion into

electrical discharge patterns, or spikes that encoded a sound wave’s frequency, intensity and

temporal information. The sound signal’s frequency was represented by neuronal spikes at

certain cochlear positions, or frequency channels; the temporal structure of sound signals

were replicated in terms of the temporal responses of the frequency channels. Sound in-

tensity was coded by the firing rate of the spiral ganglion cells, whose axons formed the

auditory nerve.

Cochleargram

We measured real-time auditory nerve responses to a complex sound stimulus. The

complex sound comprised a chirp followed by a click. We constructed the chirp by sweep-

ing frequency linearly on a logarithmic scale from 16 kHz to 200 Hz for 1.5 seconds. The

click contained 50 frequency components on a logarithmically linear scale. The spectrum

of the constructed sound signal was plotted in Figure 5.9.

We presented this complex sound to the silicon cochlea and obtained the spike re-

sponses on the silicon auditory nerve. There were two ways for generating the differential

input signals: one is to download signal data points into two function generators and to use

their output signals (out-of-phase half-wave rectified sinusoidal) as the input of the chip,

the other is to play the sound signals in a PC and use the sound card output to drive the

chip. We then obtained a cochleagram from the chip response (Figure 5.10), in which the

silicon cochlea responded to frequencies from high to low at cochlear positions from the

beginning (the base) to the end (the apex), and all of the frequency channels in the input

frequency range were activated by the click sound.
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Figure 5.9: Spectrum of A Complex Sound

In the spectrotemporal pattern of a complex sound stimulus (Frequency vs. time plot), the first component

was a 1.5-second chirp, with frequency sweeping from 16 kHz to 200 Hz logarithmically to match the log-

frequency position map of the cochlea. Each of the all 50 frequency components lasted for the same number

of periods thus for a frequency-dependent duration. The second part of the complex sound was a click-like

sound for 0.1 second, which comprised all of the 50 frequencies.
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In this cochleagram, we plotted the spike outputs of all the three types of spiral ganglion

cells (SGC) for cochlear channels ranging from 1 to 240, which amounted to spike activities

of 1440 (i.e., 240x6) frequency channels. The channel activities from Stage 240 to 360

(near the end of the silicon cochlea) were omitted in the cochleagram because the responses

outputs were not satisfactory under the bias setting used.

We could now appreciate one of the advantages of building analog VLSI model of

the cochlea, from the perspective of complex-sound processing. This mixed-mode silicon

cochlea responded to sound, simple or complex, in real time; in contrast, responses to the

complex sound discussed above would take thousand times more time to obtain in soft-

ware simulation running on a PC. The real-time characteristic is desirable in engineering

applications such as sound/speech preprocessing in automatic speech recognition systems.

Rate-Intensity Function

Firing rate varying with input intensity is one of the coding approaches that the biolog-

ical auditory nerve employs for representing intensity. We measured the average firing rate

at the characteristic place in the cochlea for a given sinusoidal input, and we obtained the

firing rates with increasing input intensity, a relation called the rate-intensity (RI) function.

We observed different RI functions for different SGC types, namely high-, medium, and

low-spontaneous rate (HSR/MSR/LSR) SGC (Figure 5.11). The input to the SGC cells is a

low-pass filtered version of a half-wave rectified signal that represents the upward velocity

of the BM.

In the chip, there were two major differences in the parameter setting among the three

types of SGCs. On one hand, HSR SGCs were assigned a higher gain bias voltage than

the MSR and LSR SGCs so thatVgainH > VgainM > VgainL. Under this setting, HSR SGCs
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Figure 5.10: Measured Cochleagram from the Cochlear Chip

The spectrotemporal structure of the sound stimulus is described in Figure 5.9. In response to the chirp, the

neuronal spiking activities shifted from high-frequency channel (i.e., near the beginning) to low-frequency

channels (i.e., near the end). In response to the click, almost all of the channels shown in the plot generated

spikes simultaneously.
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obtained larger input current than MSR and LSR SGCs while MSR SGCs were stimulated

more than the LSR SGCs. By setting the neuron’s firing threshold at an appropriate level,

the three types of SGCs exhibited different firing rate, which can be interpreted as different

spontaneous rates. On the other hand, the saturation levels of the depolarizing input current

were set differently; the gate voltage of the pMOS transistor for the HSR was set to be

higher than the other two types of SGCs so that starting from certain input current level the

firing rate of the HSR SGCs saturated while the MSR and LSR SGCs did not show such

saturation profile.

Four different RI types have been reported in the chick cochlea nerve ( [118]), while

only three RI function profiles have been found in the guinea pig [122]. In our chip, we

only modeled the major three types of RI functions for simplifying the design—saturating

for HSR SGCs, sloping-up for MSR SGCs, and straight for LSR SGCs.

Comparing the RI function we obtained from the silicon cochlea with the physiological

data ( [118,122]), we found that our chip showed similar RI functions as that in the biolog-

ical cochlea. As seen in Figure 5.11, HSR SGCs generated spikes even at the lowest input

intensities, while MSR and LSR neurons kept silent until the input intensity increased to a

certain level; LSR SGCs had an even higher threshold than the MSR SGCs. With the input

level increasing, the HSR SGCs’ firing rate saturated while the firing rate of LSR SGCs

continued to increase.

5.6 Nonideality in Chip Responses

We have shown in the previous sections that our silicon cochlea’s responses demonstrate

the characteristic features observed in the biological cochlea. Meanwhile, we also observed
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Figure 5.11: Rate-Intensity (RI) Functions Measured From the Cochlear Chip

The average firing rates of the silicon auditory nerve vary with the input intensity. The spike raw data of

silicon spiral ganglion cells (SGCs) were collected at Stage 110 for an 4 kHz pure tone input and the firing

rates were calculated. Different parameter settings (voltages) were used for generating distinct RI functions

for high-, medium-, and low-spontaneous rate (HSR/MSR/LSR) SGCs.
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that the chip responses were different across the chip (e.g., in shape or amplitude), and/or

deviated somewhat from physiological measurements. This variation in responses can be

largely attributed to the variation in parameter setting (voltages) in the chip.

We shall explore the possible cause of the variation of chip parameters, thus suggesting

possible ways of reducing the nonideality with chip responses. We first describe the circuit

parameters that model the physical properties of the cochlea and discuss what an optimal

setting is. We then investigated the effect of transistor mismatch on chip responses due to

variations in the chip parameters.

Parameter Settings in the Cochlea Chip

We shall find out what the optimal bias voltage settings should be for achieving desired

responses that are quantitatively comparable with the physiological measurements or the

mathematical model responses. It is not reasonable to pursue precise matching thereby

exactly the same responses across the chip because that is not the case even in the biolog-

ical cochlea. It is also not practical to find a set of parameters to make chip responses the

same as the mathematical model responses because the hardware and the software mod-

eling work in different modeling paradigm—software simulation is performed under an

ideal condition without ant variations, while a VLSI system is unavoidably subject to non-

ideality in the physical medium that are introduced by the fabrication process. However, it

is instructive to scrutinize the effect of parameter settings and their variations because the

resultant knowledge will help the physical model yield more realistic responses.

We repeated the circuit analogs of the stiffnessS, dampingβ, and massM of the BM,
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as follows.

S =
b + 1

τ1τ2

,

β =
1

τ1
+

1

τ2
,

M = 1. (5.1)

Form the above expressions, we calculated the damping ratio as:

ξ =
β√
SM

=
τ1 + τ2√
(b + 1)τ1τ2

(5.2)

The damping ratio value we chose in our mathematical simulation was 0.2, resulting

in a quality factor of 5 for this second-order system. In order to realize this damping ratio

in the chip by equalizing Equation 5.6 with 0.2 and solving the equation, the relationship

between the time constantsτ1 andτ2, and the gain factorb was calculated as:

τ1 = (0.02b − 0.98 + 0.02
√

(b + 1)(b − 99))τ2, (5.3)

or

τ1 = (0.02b − 0.98 − 0.02
√

(b + 1)(b − 99))τ2. (5.4)

The relations above suggest that to obtain real-value time-constant solutions, the gain

factorb should be set to be equal to or greater than 99. In our circuit design,b is calculated

as:

b = eVb−Vdd (5.5)
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where voltages were in the unit ofuT, the thermal voltage at room temperature. To this end,

the bias voltageVb needs to be set somewhat higher thanVdd. Let us look at an example

of the setting to get a flavor of the relation betweenτ1 andτ2, in which we madeb = 100

meaning thatVb was about 0.12 V higher thanVdd. Then we obtained:

τ1 = 0.819τ2, or τ1 = 1.221τ2 (5.6)

In other words, only when this relation was satisfied across the chip (along the silicon

cochlea) can the desired damping ratio be realized. The largerb, the larger ratio between

τ1 andτ2.

Note thatτ1 and τ2 should increase exponentially along the cochlear position in the

chip. Also, a time constantτ is related to the time-constant current, namelyIτ as follows.

τ =
CuT

κIτ
. (5.7)

We had two electrical variables for controlling the time constants, the capacitorC and the

currentIτ . In practice, it is convenient to haveC fixed (corresponding to constant area for

capacitance in chip layout) and to decreaseIτ along the silicon cochlea. For each BM stage,

each of the two time-constant bias voltages was tied to a node on a polysilicon wire. These

nodes across the chip were linearly spaced, which in turn results in exponentially spaced

time-constant currents due to the exponential I-V (current-voltage) relation in transistors’

subthreshold-regime operation. A polysilicon wire with certain voltage potential difference

at its two ends were known as a tilt poly line.

With regard to keeping the ratio betweenτ1 andτ2, we need to maintain the ratio at the

starting and ending terminals of the tilt poly lines. Assuming that the time constant ratio is
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r, we have the relations as:

τ1(x) = rτ2(x),

=⇒ Iτ1 =
1

r
Iτ2,

=⇒ Vτ2 − Vτ1 =
uT

κ
log(r). (5.8)

where we can see from that the two voltage tilt lines needed to have the same space constant.

From Equation 5.6 only, the values ofr was determined byb andVτ1 can be set either

larger or smaller thanVτ2. In oder to help determine whichτ of the second-order section

should be set higher, we needed to consider what setting will give rise to optimal responses.

Recall that the quality factorQ of the BM second-order section can be computed as

Q =

√
SM

β

=

√
b + 1√

τ1/τ2 +
√

τ2/τ1

(5.9)

Note that thisQ was not directly indicative of the value ofQ10 in the cochlear chip re-

sponses because the tuning, or frequency selectivity, of the cochlea is the outcome of a

collective network behavior that comprised the loading effects among a number of second-

order sections. From Equation 5.6, we can see that whenτ1 � τ2:

Q =

√
(b + 1)

τ2

τ1
(5.10)

or whenτ2 � τ1:

Q =

√
(b + 1)

τ1

τ2
(5.11)

The highestQ can be obtained whenτ1 = τ2, which is
√

b + 1/2. Therefore, a larger value
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of b will result in a higherQ.

However, another issue should also be considered—the parameter setting should be

optimal so that the chip’s responses become enhanced to the relatively large extent when

the active mechanism, ABC, is activated. As a reference, we repeated the second LPF that

includes the ABC design below.

τ2Ios = Iin − bIs − Io − rfb(b + 1)T (Isb) + rff(b + 1)T (Isf). (5.12)

As we know from the derivation above, the gain factorb has to be equal to or greater than

99, which adds at least two orders of magnitude gain for the currentIs on the right side

of Equation 5.6. For that purpose, together with the subthreshold-regime current level in

mind, we want to have a relatively small value ofIs relative to other current quantities,Io

for example. Therefore, we chose the latter case in Equation 5.6 for settingτ1 andτ2 such

that the effect of the last two terms, which implemented ABC, become relatively larger

once included. Of course, the effect of ABC can be additionally augmented by raising the

gain factorsrfb andrff in Equation 5.6.

Variations in Parameters due to Transistor Mismatch

Device mismatch in integrated circuits refers to the variations in transistor’s proper-

ties and characteristics. It is essentially caused by random difference in dopant density in

the transistor channels. In practice, two identically designed transistors are never exactly

identical. Much research has characterized and modeled the device mismatch [115] and has

shown that the variation in the threshold voltages is one of the dominant sources underlying

the drain-source current and gate-source voltage mismatch [115]. The threshold mismatch,

∆VT, is due to the fluctuation in dopant density across the chip. These fluctuations exhibit
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a Gaussian (or normal) distribution with a standard deviation,σ(∆VT); it can be modeled

as:

σ(∆VT) =
AVT√
WL

(5.13)

whereAVT
is a proportionality constant that is technology-dependent,W is the channel

width andL is the channel length [115,123]. As can be seen from Equation 5.13, increasing

the channel area (eitherW or L or both) obviously decreases the standard deviation of

the variation in threshold voltage, but it is only employed to a very limited extent due to

the high cost in terms of chip die area. Due to this design tradeoff, transistor mismatch

inevitably contributes to variations in model parameters. Specifically, in our cochlear chip,

the variations in parametersτ1, τ2, andb would result in variations in the implemented

stiffnessS, dampingβ, and massM .

In order to investigate the effect of parameter variations on the BM response, we sim-

ulated our mathematical model with additionally added log-normal distributed variations

to the model parameters (i.e., the BM’s stiffness and damping). Circuit analogs of these

parameters are scaled current variables (according to Equation 5.1 and the relationship be-

tween time constants and current variables described in Equation 5.7). Therefore, these

parameters with variances are lognormally distributed, to a first-order approximation, be-

cause their logarithms (i.e., voltage) are normally distributed.

According to [123],AVT
in 0.25µm technology is about 6 mV, which give the value

of σ(∆VT) to be around 1.4% (based on Equation 5.13) for a 10 by 10λ nMOS transistor

(mostly common in our chip) with its threshold voltage around 0.36 V. Therefore, in our

simulation under nonideal condition, we applied the standard deviationσ ranging from

0% (zero variation) to 2% to the logarithmic of mean parameter values, which has normal

distribution.
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We found that model responses deviated from the ideal result, exhibiting smaller peak

amplitude and less sharp tuning and getting noisier with increasingσ (Figure 5.12). This

simulation provided just one example of the effect of parameter variations on model re-

sponses, thus we can gain understanding on the causes of the nonideal chip responses.

Multiple simulation can be performed further to obtain the distribution of some character-

istics of the BM displacement response (e.g., peak amplitude,Q10, cutoff slope, etc.).

The effect of variation can be somewhat compensated by increasing the OHC motility

factorα in model simulations (Figure 5.13). This simulation example showed that increas-

ing the OHC motility factorα raises the response peak but causes the cutoff slope (slope of

the response curve after the characteristic place) to become shallower than that when there

is no variation. In practice, we increase the source biasVff andVfb in the chip to increase

the OHC motility factor. The extent of this raise is limited as instability would occur if the

coupling among BM stages were too large. The non-steep cut-off slope was also observed

in our chip’s BM velocity responses (Figure 5.2) as a result of increasing OHC motility

factor.

In the biological cochlea, variations also exist with the physical properties of its com-

prising components. They do not, However, seem to deteriorate the cochlear behavior to a

severe extent. In other words, the biological cochlea tackles the variation problem some-

how, likely through averaging responses locally as inner hair cells sense the nearby-fluid’s

velocity, which is a collective outcome of neighboring BM fibers’ motion. This suggests a

possible solution in the silicon cochlea design—to average BM responses locally and use

the smoothed BM responses as input signals to inner hair cell and the spiral ganglion cells.
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Figure 5.12: Effect of Log-Normal Variations in Parameters on Model Responses

Basilar membrane (BM) displacement responses at 2 kHz pure tone input are obtained with Log-Normal

distributed variation added to original model parameters of fluid densityρ, BM stiffnessS, dampingβ. Mass

M was kept without variation to match the circuit implementation scheme (constant mass). The values of

standard deviationσ used are 0% (original case), 0.5%, 1%, and 2% of mean (log) values. With increasing

variation, the BM displacement peak becomes reduced and the tuning becomes broader.
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Figure 5.13: Effect of Log-Normal Variations and OHC Motility on Model Responses

Effect of Log-Normal variations on model responses can be remedied to a certain extent through increasing

the OHC motility factorα. The responses shown are examples with the standard deviation of the normal-

distributed variation was set to be a relatively high value, 1% of the mean (log). When the OHC motility

factorα is increased from 0.15 to 0.25, basilar membrane displacement peak is raised but the cutoff slope

apical to the peak becomes shallower compared to the model response without variation.
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5.7 Summary

Measured chip responses have demonstrated that inclusion of the OHC motility, simply

through the coupling between BM neighboring sections, enhances the basilar membrane

responses’ amplitude response and frequency selectivity, turning a passive cochlear model

into an active one. This active model produces cochlear responses that are qualitatively

comparable to physiological data. The cochlear chip consumed 52 mW power when ABC

was activated and the silicon auditory nerve’s spiking activities were being generated. The

overall performance of the present silicon cochlea is generally superior to existing designs,

in terms of response amplitude, sharpness of tuning and working frequency range.

Compared to the biological cochlea or the present mathematical cochlear model, the

silicon cochlea does not exhibit quantitatively comparable responses—its response peak

amplitude was smaller even when ABC was included, although its phase responses are

realistic. The BM response curves also existed irregular shapes across the chip. These un-

desirable features of chip responses are mainly caused by transistor mismatch, which gives

rise to parameter variations. Since the cochlear model took on a physical form, silicon

medium, to mimic the biological cochlea, it is subject to both advantages and constraints

that are imposed by the medium, the similar way as the biological cochlea has evolved. The

design, thereby performance, of a physical model relies on our understanding of the bio-

logical system; meanwhile, the final yield for functionality is also dependent on hardware

design techniques and implementation approaches. Therefore, performance optimization

is the next step in improving the silicon cochlea through reducing the negative effect of

device mismatch. This highlights an important issue for neuromorphic system design that

are compact, operates in subthreshold, and consumes low power—in addition to mimicking

the organization and function, neuromorphic systems should also learn from the nature’s
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approaches for overcoming the physical constraints and combating the effect of variations.

What have we gained from building the silicon cochlea? Despite its less realistic re-

sponses compared to software simulation, a hardware cochlear model is superior to a math-

ematical model on several aspects. First, it runs in real time with electronically tunable

model parameters. This is especially attractive when processing complex sound such as

natural sound and speech, which usually require a great amount of computation resource

if simulated on a computer. Second, the low-power feature and compact design of analog

VLSI cochlear models promise a variety of applications. For example, it could work as the

acoustic front end of automatic speech recognition system on a mobile phone or a personal

digital assistant. It can also be tranformed into a fully-implantable cochlear implant if a

microphone can be embedded on the chip. Above all, through building the silicon cochlea,

we learned what it takes to build a system that emulates a biological system and what the

constraints are.
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Chapter 6

Conclusions

The human cochlea transduces sound waves into the basilar membrane (BM) vibrations

and auditory nerve electrical discharge patterns. The cochlea decomposes complex sound

into its spectral components, representing them as vibrations at different locations along

the BM. This creates a tonotopic map of frequency along the cochlear partition. When

performing the spectral analysis, the cochlea achieves exquisite sensitivity and remarkable

frequency selectivity due to nonlinear active amplification of cochlear mechanics.

Although the outer hair cell (OHC) electromotility has been widely thought to amplify

the traveling wave [18], the exact manner in which OHCs enhance cochlear function re-

mains unclear. In other words, understanding of how the cochlear amplifier (CA) gives

rise to the BM’s exquisite frequency sensitivity and selectivity is still lacking. Cochlear

modeling has been extensively employed to help deepen our understanding about how the

cochlea works. Cochlear models were based upon what has been known but also make

predictions on what still remains unknown and suggest further physiological experiments.
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6.1 Summary of Present Work

The present effort was dedicated to explore a plausible CA mechanism that is possibly

based on the cochlear microanatomy. We hypothesized a CA mechanism in which OHC

motile forces actively couple the otherwise weakly coupled BMs transverse fibers, through

the tilts of Deiters cells and of their phalangeal processes (PhPs), as observed anatomically.

We implemented this cochlear amplifier mechanism, named active bidirectional coupling

(ABC), in both a mathematical model and an analog VLSI microchip to reproduce nonlin-

ear active cochlear behavior.

The ABC mechanism captured structural features of the cochlear microanatomy and

thereby provided biologically plausible explanations to the outstanding question of how

the cochlear amplifier is realized. In the organ of Corti, the OHCs are tilted toward the

base of the cochlea while the phalangeal processes (PhPs) are tilted toward the apex. It is

assumed in our model that this tilted structural organization very likely provides an effi-

cient means to transmit OHC motile forces onto the BM. Due to the tilted structure, OHC

forces are delivered in both forward and backward longitudinal directions, enhancing the

cochlea’s sensitivity and tuning. In addition, it is widely accepted that the saturating nature

of OHC forces imparts to the cochlea nonlinearity, which is also incorporated in the ABC

mechanism.

We formulated a two-dimensional nonlinear active model based on ABC. The numer-

ical simulation results showed that activation of ABC boosted frequency-selective ampli-

fication, sharpened tuning, as well as increased sensitivity. Additional simulation demon-

strated that the tilted structure was of primary importance in the cochlear amplifier because

including OHC motility without taking into account the tilts of OHC and PhP was not as

effective as ABC in terms of producing active amplification. Furthermore, including satu-
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ration of OHC forces, as observed physiologically, produces compressive growth near the

characteristic place (CP) at high sound levels. And when two tones are present, the louder

one suppresses the other to a larger extent at higher suppressor intensity.

Analysis of the model revealed that the introduced OHC forces through the tilted struc-

ture leads to negative damping right before the peak over a restricted region in the cochlea.

Further analysis showed that the tilts work as an array of spatial filters, only amplifying

the traveling wave in the vicinity of the response peak where the shortening wavelength

becomes comparable to the OHC (and PhP) tilt distance.

Our cochlea model may be tested by measuring the wavelength of the traveling wave in

live (active) and dead (passive) cochleas. In the long-wave region, the model predicts a 9%

longer wavelength in the active case. In the short-wave region, the model predicts a 81%

shorter wavelength in the active case. Furthermore, the traveling wave peak amplitude was

displaced 3.2 mm apically in the active case; negative damping should occur between these

two peak locations.

Embodying a nonlinear active cochlear model in analog VLSI realizes cochlear pro-

cessing in real time with low power consumption. We implement ABC in a silicon cochlea,

resulting in a novel design architecture that addressed the problems of existing designs. Our

cochlear chip comprises circuits that model the cochlear fluid, the BM, and the bidirectional

delivered OHC forces. The measured chip responses demonstrate that when ABC was ac-

tivated, larger amplification and sharper tuning is achieved. Through limited currents that

represent ABC, the chip responses show nonlinear saturation at high sound levels. In ad-

dition, our chip also included silicon spiral ganglion cells, whose digital-pulse encoded

output emulates the spike patterns of auditory nerve.
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The present cochlear modeling efforts and results have a great deal of implications in

the study of cochlear mechanics, clinical experiments, and sound-related engineering prob-

lems. Our mathematical and VLSI cochlear models will function as computational tools in

scientific exploration of the auditory system. With its basis in cochlear microanatomy, the

ABC-based cochlear model has clinical significance in understanding OHC-related hear-

ing loss as well as in improving speech-preprocessing for cochlea implants. In addition,

the cochlear model, especially the silicon cochlea, provides a basis for building silicon au-

dition that involves emulating the human auditory system. Last, the new architecture of the

silicon cochlea gives insight into the design of cochlea-like sound-processing microchips.

6.2 Future Work

The human auditory system has been recognized as the most efficient and noise-robust

speech recognition system [124]. Human is capable of perceiving and recognizing sound/speech

signals in rather noisy or reverberant environment with very low error rate while the state-

of-the-art automatic speech recognition (ASR) system fails to perform well even with the

most advanced computation resource. Therefore, building models that morph the superior

capability of the auditory system in processing sound and speech, referred to as neuromor-

phic audition, would provide insightful hints or even solutions to the engineering problem

of building ASR as well as shed light on understanding of auditory processing mechanisms.

Building cochlear models, in mathematics and VLSI, are a starting point of building

neuromorphic auditory systems. The present silicon cochlea, inspired by the cochlear am-

plifier mechanism, can generate neuronal spikes that encode the input sound; its output

is ready to drive systems that model higher auditory processing centers to perform more
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auditory tasks such as pitch perception and sound localization. Therefore, in addition to

improving the present cochlear model, future work along the track would include explor-

ing practical applications using the silicon cochlea and developing neuromorphic auditory

models.

On the model improvement side, the present cochlear model can incorporate more

anatomical details of the cochlea, for example, the difference between the base and the

apex, in order to generate more realistic cochlear behavior. More simulation of cochlear

nonlinearity, such as distortion product otoacoustic emission, could further verify the no-

tion that cochlear function is closely association with its structure and anatomy. Reducing

effect of transistor mismatch in the silicon cochlea would result in more physiologically

comparable behavior.

On the application side, an automatic speech recognition system could potentially ben-

efit from the cochlea-like sound processing of the present silicon cochlea: it runs in real

time and it’s responses exhibit nonlinearity. Development of neuromorphic VLSI chips that

emulate further auditory processing will allow more complicated tasks because each pro-

cessing center in the auditory hierarchy seems to extract different features (e.g., frequency,

timing, and location) of incoming sound. Building such models would be extremely chal-

lenging because it requires not only sufficient understanding of the auditory system, which

is still rather limited although our knowledge about its working is experiencing extension

through both experimental and theoretical approaches, but also advanced circuit and system

design techniques. Nevertheless, it is no doubt a rewarding task because once the real-time

low-power neuromorphic auditory system is built, it can be used to test our hypothesis

of the auditory mechanisms; it can be applied to preprocess sound and speech in attempt

to improve the performance of current ASRs, especially in acoustically-cluttered environ-

ment; Also, with appropriate silicon-neural interfaces, it can potentially substitute current
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auditory prosthetic devices due to its advantages of low power consumption, compact size,

and real-time biomorphic signal processing.
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Appendix A

List of Abbreviations

1D One-dimensional

2D Two-dimensional

2TS Two-tone suppression

ABC Active bidirectional coupling

AER Address event representation

ASR Automatic speech recognition

BM Basilar membrane

CA Cochlear amplifier

CF Characteristic frequency

CMOS Complementary metal-oxide semiconductor

CMRR common-mode rejection ratio

CP Characteristic place

dB Decibel

DC (Re biology) Deiters’ cell

DC (Re engineering) Direct current

182



FD Finite-difference

HSR High spontaneous rate

IHC Inner hair cell

IP Inner pillar

IPC Inner pillar cell

LG Liouville-Green

LPF Low-pass filter

LSR Low spontaneous rate

MSR Medium spontaneous rate

MOSFET Metal-oxide-semiconductor field-effect transistor

OC Organ of Corti

OHC Outer hair cell

OP Outer pillar

OPC Outer pillar cell

PhP Phalangeal process

RI Rate-intensity

RL Reticular laminar

SA Semi-analytical

SAS Semi-analytical solution

SGC Spiral ganglion cell

SPICE Simulation program with integrated circuit emphasis

VLSI Very large scale integration

WKB Wentzel-Kramers-Brillouin

WKBJ Wentzel-Kramers-Brillouin-Jeffereys
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