
ABSTRACT

We describe an algorithm for self-organizing connections from a
source array to a target array of neurons that is inspired by neural
growth cone guidance. Each source neuron projects a Gaussian
pattern of connections to the target layer. Learning modifies the
pattern center location. The small number of parameters required
to specify connectivity has enabled this algorithm's implementa-
tion in a neuromorphic silicon system. We demonstrate that this
algorithm can lead to topographic feature maps similar to those
observed in the visual cortex, and characterize its operation as
function maximization, which connects this approach with other
models of cortical map formation.

1.  GROWTH CONES

Neuromorphic vision systems are commonly based upon models
of biological neural circuits. Currently, the circuits and processing
in the retina are the best understood [1], which has enabled neuro-
morphic engineers to implement fairly realistic silicon models of
retinal processing [2]. However, as we move towards higher lev-
els of processing in the brain, our knowledge about the neural cir-
cuitry decreases dramatically. 

Given this lack of knowledge, it might seem an impossible task
for neuromorphic engineers to design silicon models of neural
processing in areas beyond the retina. However, rather than
depending on explicit knowledge about neural circuitry, we may
be able to wire circuits modelling these areas by exploiting
another biological mechanism: self organized development.

This paper describes an algorithm for this development that is
inspired by neurite outgrowth. During development, neurites
(axons and dendrites) grow out from a neuron to connect it with
other neurons to form a network. Neurite growth is controlled by
a growth cone at the tip of the neurite [3]. Diffusible chemicals
whose release are activity dependent, such as brain derived neu-
rotrophic factor (BDNF) [4], can act as tropic factors, which
guide growth cones [5].

Growth cone inspired development has recently been imple-
mented in a neuromorphic silicon system, which models the feed-
forward connections from a source array of neurons to a target 2D
array [6]. In this system, source neurons connect with a set of tar-
get neurons centered around a location in the target array with
weights that decrease with distance from the center location. Out-
put activity in the target array leads to release of electronic charge
that diffuses through the target array. The charge models a tropic
factor, and the system updates center locations such that they
move towards areas with high concentration. Experimental results

demonstrate that the system can start with random initial connec-
tions and gradually evolve the connections over time to replicate
the topography of the source array in the target array. 

This paper has three goals. First, it demonstrates that this
approach can lead to retinotopic maps that also exhibit other prop-
erties associated with the primary visual cortex, such as ocular
dominance and orientation selectivity. Second, it establishes the
stability of this map formation process. Finally, it relates this
approach to previously proposed algorithms for map formation. 

Section 2 of this paper introduces the learning algorithm. Section
3 shows via simulation that this algorithm can lead to ocular dom-
inance and orientation maps similar to those observed in cortex.
Section 4 analyzes the dynamics of learning, and shows that it
evolves in such a way as to maximize an energy function. The
existence of this energy function establishes stability as well as
the connection between this algorithm and previously proposed
algorithms. 

2.  SELF-ORGANIZED GUIDANCE
We assume that two-dimensional (2D) arrays of source neurons
send out axons to connect with a 2D layer of target neurons. For
concreteness, we will consider the example system of geniculo-
cortical connections, and refer to the source neurons as lateral
geniculate nucleus (LGN) neurons and the target neurons as corti-
cal neurons. We will use different arrays of LGN source neurons
to model different types of neurons, e.g. left eye/right eye, or ON/
OFF.

We index position in the LGN by Greek letters, e.g., , and
position in the cortex by Roman letters, e.g. . For simplic-
ity, we will assume a single array of LGN neurons. Let 
be the activity (spike rate) of an LGN neuron at . Each LGN
neuron has an axon, which terminates in cortex with an arbor cen-
tered at location . The connection strength between
the LGN neuron at  and a cortical neuron at  is determined by
an arbor (weight) function , that decays with the dis-
tance between the cortical neuron and the arbor center. In the fol-
lowing, we let  be a circularly symmetric Gaussian with
standard deviation . We assume that the postsynaptic activity
of each cortical neuron is linear in the total presynaptic activity
weighted by the connection strength: 

Inspired by the ability of growth cones to follow neurotropin gra-
dients and the activity dependent release of neurotropin, we
model development by allowing the arbor center to move up its
local neurotropin concentration gradient when it is active. The
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neurotropin concentration has both an activity dependent compo-
nent and an activity independent component. For the activity
dependent component, cortical neurons release neurotropin in an
amount that is proportional to their post-synaptic activity with a
constant of proportionality . The neurotropin diffuses through
cortex, which we model by convolving it with a circularly sym-
metric 2D Gaussian with standard deviation . Since the neu-
rotropin concentration will be high where the activity is high,
movement up the gradient will attract the arbor centers of co-
active LGN neurons towards each other. For the activity indepen-
dent component, we assume that there is an uptake (removal) that
is proportional to the total afferent synaptic strength at each corti-
cal location  with constant of proportionality . By reducing
the neurotropin concentration in areas of high synaptic density,
the uptake prevents the arbor centers from clustering too closely
due to the attraction caused by the activity dependent component. 

Mathematically, if  is the neurotropin concentration at corti-
cal location , then

(1)

where  is a Gaussian with zero mean and variance
, which reflects the net effect of the axonal arbor

and neurotropin diffusion. For the purposes of computing the neu-
rotropin concentration, we have assumed that the number of corti-
cal neurons is much larger than the number of LGN neurons, so
that the cortex can be approximated as a continuous sheet of neu-
rons, where each location has an associated neuron. This simpli-
fies the mathematical expressions by allowing us to combine the
Gaussian describing the arbor and the Gaussian describing the
diffusion into a single Gaussian. Assuming a discrete array would
not change the model significantly.

If each axon center moves in the direction of the neurotropin gra-
dient at a rate that is proportional to the afferent activity as well as
the size of the gradient, then 

(2)

where  is a constant of proportionality. Substituting (1) and
assuming that the axon movement is slow compared to the rate at
which the LGN activity changes so that the net motion is approxi-
mately proportional to the expected value of the gradient, we
obtain

(3)

where  is the correlation
between the activity at LGN neurons  and , and

 is the mean activity of LGN neuron
.

In most Hebbian models of development, an initial large popula-
tion of connections is pruned to a smaller number of connections
by modifying individual synaptic weights [7][8]. In this algo-
rithm, the initial and final number of weights are equal. All

weights from a source neuron are modified simultaneously
through movement of the axon center.

3.  CORTICAL MAP FORMATION
This section shows via computer simulation that the model can
replicate retinotopic maps that exhibit ocular dominance columns
and orientation columns similar to those observed in the cortex
[9]. 

3.1  Topographic Map Formation

To illustrate topographical map formation, we simulated the con-
nectivity from a 10 by 10 array of LGN neurons to cortex. We
assumed two different tilings for the LGN array: rectangular and
hexagonal. In both cases, the correlation between the activities of
LGN cells was given by the same correlation function:

(4)

The correlation between the activity of two LGN neurons
decreases with distance. 

We initialized the arbor centers near the origin of cortex according
to a Gaussian distribution with standard deviation 0.5. Both til-
ings used the same initial conditions. The arbor center locations
evolved according to (3) until convergence.

Figure 1 shows the final locations of the arbor centers, as well as
snapshots of the evolution of the axon centers as they evolve. In
both cases, the topography in the cortex replicates the original
LGN topography up to a rotation. These results demonstrate that
the algorithm can lead to self-organized topographical mappings,
and that the process does not critically depend upon assumptions
about the geometry of the topography in the source array. 

3.2  Ocular Dominance Map Formation
To model ocular dominance map formation, we assumed two rect-
angular arrays of LGN neurons, modelling cells from the left and
right eyes. Corresponding cells in the two arrays were assumed to
serve the same location in visual space. All the cells terminate on
the same layer in cortex. The activity of each LGN neuron was
assumed to be correlated with activity in LGN neurons at nearby
visual locations in both the same and the contralateral eye, but the
correlation was weaker for activity in the contralateral eye. Math-
ematically, the correlation between the activity in LGN neurons
corresponding to the same eye was given by (4). The correlation
between LGN neurons in different eyes was equal to (4) multi-
plied by a constant .

We simulated two 20 by 20 rectangular arrays of LGN neurons
connecting to a 2D cortical plane sampled at a 200 by 200 array of
points. We initialized the arbor centers on two noisy rectangular
grids. Each grid was formed by taking a regular rectangular grid
and perturbing each point by a independent random offset drawn
from a circularly symmetric 2D Gaussian distribution whose stan-
dard deviation was equal to half the unperturbed distance between
adjacent grid locations.

Figure 2 shows the resulting ocular dominance map, where corti-
cal locations are labelled black or white depending upon whether
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the total afferent strength from the left or right eye is greater. Sim-
ilar to the ocular dominance maps observed in cortex, the map
exhibits bands of ocular dominance with a characteristic width
common to the left and right eyes. 

3.3  Orientation Map Formation
To model the emergence of orientation columns, we assume two
rectangular arrays of LGN neurons, representing ON center type
cells and OFF center type cells. Corresponding points in the two
array represent the same visual location. We assume the correla-
tion between ON and OFF LGN cells has the form of a “Mexican
hat”:

where  and . The expres-
sion  is the difference of two Gaussians with standard
deviations  and  representing the center and surround
( ), where the surround Gaussian is weighted by a fac-
tor . The activity of a cell is positively correlated with
activity of cells of the same type at close distances, and cells of
opposite type at some distance away. 

We simulated two 2D arrays of 20 by 20 LGN afferents terminat-
ing onto a 2D cortical plane sampled at a 200 by 200 array of
points. As in the simulation of ocular dominance column forma-
tion, we initialized the axon locations with a noisy rectangular

topography, and allowed the locations to evolve until conver-
gence.

Figure 3 shows the preferred orientation of the cortical neurons,
where different colors indicate different preferred orientations. To
determine each cell’s preferred orientation, we presented sine
wave gratings as the input to the LGN neurons. For each input ori-
entation, we took the maximum over the responses of each corti-
cal cell to gratings with different phases to obtain a phase
invariant orientation response  where  indicates the
input orientation and  indicates the cortical cell location. At
each location, we combine the responses from different orienta-
tions into a complex vector,

whose phase angle determined the preferred orientation:

.

4.  GRADIENT ASCENT LEARNING DYNAMICS
In this section, we show that the equation describing the learning
dynamics (3) can be expressed as gradient ascent on a function . 

Consider the following function of the afferent axon centers :

(5)

Differentiating  with respect to , we find that the
dynamics in our model can be written as:

By formulating the learning dynamics as a process of gradient
ascent, we immediately establish the stability of the map forma-
tion process. Since the function  is bounded from above and the
value of  increases along trajectories of the learning process, the
function  is a Lyapunov function for the learning dynamics.

The function  also establishes a link between this algorithm and
a wide class of previously proposed algorithms for cortical map
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Fig. 1: Topographic map formation. Grid points represent the
locations of arbor centres of LGN cells in cortex. Neighboring
LGN cells are connected by lines. Final spacing between nearest
neighbors is approximately 0.3. (a) LGN cells arranged as a
rectangular array. (b) LGN cells arranged as a hexagonal array.
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Fig. 2: Ocular dominance map. Cortical cells dominated by left
and right eye input are shown in black and white respectively.
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formation, such as dimension reduction [10] and the elastic net
[11]. Their dynamics can be expressed as the maximization of a
C-measure [12]:

where  is a measure of similarity applied to the input space and
 is a measure of similarity applied to the output space. Intu-

itively, this measure is maximized if similar points in the input
space map to similar points in the output space. 

The first term in (5) has the form of a C-measure, where the simi-
larity measure in the output space is a Gaussian function of the
Euclidean distance between the points whose variance depends on
the axonal arbor and diffusion of neurotropin. The similarity mea-
sure in the input space is the correlation function that measure the
degree of co-activity between the two points. One of the desirable
properties of the C-measure we derive here is that the similarity
measure in the cortical space initially decreases quadratically with
the distance, but saturates at a zero lower bound for larger dis-
tances. This reduces the deleterious effect of outliers during map
formation.

The C-measure we derive here arises naturally from the dynamics
of the biologically inspired equations for axon guidance by neu-
rotropin gradient following. In contrast, most algorithms for topo-
graphic map formation which can be formulated by a C-measure,
derive this measure from “top-down” considerations of the
attributes a “good” map should posses, such as coverage and con-
tinuity.

The final arbor center locations must balance the attraction intro-
duced by the C-measure with repulsion introduced by the second
term, which penalizes close distances between arbor centers.
Thus, the ratio  determines the final arbor center spacing
in the topographic maps. The ocular dominance stripes form 

because the C-measure creates stronger attraction between neu-
rons from the same eye because they are more strongly correlated.
In the orientation map, the correlation function encourages ON
neurons to cluster with OFF neurons slightly displaced in retinal
position, leading to orientation tuned neurons.

5.  CONCLUSION
We have described an algorithm for self organized map formation
that is both amenable to silicon implementation and capable of
replicating topographically organized maps similar to those
observed in the visual cortex. We have also shown that the
dynamics of the learning operate to maximize an objective func-
tion. These results indicate that in building neuromorphic systems
for higher level processing, it may be possible to compensate for
our lack of knowledge regarding the precise neural circuitry by
exploiting self-organized development.
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Fig. 3: Orientation map of cortical cells. The preferred orientation
of neurons changes across the visual cortex. Different colors
indicate different preferred orientations, according to the legend
on the right hand side where the orientation of each colored bar
indicates the preferred orientation of the cell. Parameters:
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