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Abstract

SELF-ORGANIZING NEUROMORPHIC SYSTEMS WITH SILICON GROWTH

CONES

Brian Seisho Taba

Supervisor: Kwabena Boahen, Ph.D.

Neuromorphic engineers have achieved considerable success in devising silicon im-

plementations of progressively more complex neural architectures. However, the effort

required to design a successful neuromorphic system grows dramatically as the scope of

these projects expands to encompass multiple neuromorphic subsystems. This design pro-

cess could be eased by automating difficult design tasks.

In this thesis I introduce a novel technique for automatically rewiring connectivity be-

tween spiking neurons based on a model of activity-dependent axonal growth cone naviga-

tion during neural development, and illustrate its performance with a silicon implementa-

tion of a model growth cone population whose migration is driven and directed by patterned

neural activity. I develop a stochastic model of silicon growth cone motion to explain and

characterize population behavior, and discover that performance is limited by an optimality

criterion whose existence is implied by the fundamental physicality of the system.
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Chapter 1

Introduction

In recent decades, experimental neuroscientists have managed to tease out many of the

computational principles hidden in the inner workings of the brain. Neuromorphic engi-

neers attempt to migrate these hard-won insights into practical engineering applications by

using standard electrical engineering methods to design silicon chips that faithfully repre-

sent neural architectures. The typical design strategy is to carefully trace the wiring patterns

in the physiological tissue under study and then instantiate an equivalent connectivity for

the chip. While this approach has been very successful in modeling systems like the retina

[67, 6, 107], the complexity of the wiring diagram increases combinatorially as systems be-

come larger and more ambitious in their scope. Automation of some of the more arduous

wiring tasks would greatly ease the burden of the neuromorphic system designer.

The human brain is the ultimate wiring problem, involving over 1015 synapses con-

necting 1012 neurons, yet somehow every newborn infant manages to automatically solve

it from only the 109 bits in the genetic code, relying on emergent properties of cellular

populations that are guided by very simple programs. For example, in the mammalian
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visual system, neural circuits wire themselves up according to schematics encoded in the

statistical structure of their spontaneous input activity. The goal of this thesis is to harness

analogous behavior to self-organize axonal connections between disparate populations of

spiking silicon neurons.

Inspired by an examination of self-organizing feature maps in the brain, our basic

wiring principle will be to translate temporal activity coincidence into spatial position co-

incidence, so that ”cells that fire together, wire together.” To implement this rule, we will

design a silicon model of axonal growth cones, motile sensory appendages that steer the

tips of elongating axons based on their assessment of the extracellular chemical environ-

ment. Growth cones can be guided by chemotropic gradients of diffusible substances like

BDNF, whose release and uptake depend on patterned neural activity. BDNF is a good can-

didate for a retrograde messenger that communicates postsynaptic activity to a presynaptic

afferent, which can use this message as feedback to determine the relative fitness of its

current location. An activity-dependent gradient of BDNF would be sufficient to spatially

congregate coactive growth cones, satisfying the desired navigation rule.

There are a number of neuromorphic potentiation circuits intended to model adult

synaptic plasticity, but scant attention has been paid to developmental morphogenesis.

More traditionally engineered neural clustering chips are based on vector quantization al-

gorithms such as Kohonen’s self-organizing map [59, 69, 11, 7, 82, 49] that rely on the syn-

chronous presentation of digital datawords, and are not equipped to process the stochastic

spike trains of neuromorphic chips. Furthermore, these devices are typically limited in size

by their use of a global winner-take-all computation that collates information across the

entire chip.

The Neurotrope1 system described in this thesis is the first neuromorphic model of
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structural neural plasticity, and its behavior highlights many of the performance issues

associated with any physical implementation of a neural algorithm, be it a silicon chip or

the brain itself. The outline of the the thesis is as follows:

Chapter 2 reviews neural map formation from biological, theoretical, and engineering

perspectives.

Chapter 3 presents Neurotrope1, the first neuromorphic self-organizing map chip. The

Neurotrope1 system implements a simplified model of growth cone migration under the

guidance of an activity-dependent diffusive factor called neurotropin.

Chapter 4 introduces a transition matrix analysis that allows us to characterize neu-

rotropic growth cone guidance in the Neurotrope1 system, both theoretically and experi-

mentally.

Chapter 5 applies the transition matrix analysis to the simplest nontrivial case of neu-

rotropic growth cone guidance, supervised pair attraction. We discover that an intermediate

value of the neurotropin spreading range optimizes equilibrium performance, as measured

by the ability of an active growth cone to move to a coactive target.

Chapter 6 elucidates the origin of the optimal spreading range and the resource con-

straints that ultimately limit performance for supervised pair attraction.

Chapter 7 presents the general case of unsupervised self-organization. The Neurotrope1

system robustly refines a retinotopic map when driven by an ideal stimulus generator and a

severely nonideal silicon retina.
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Chapter 2

Neural self-organization

In this chapter we review the experimental and theoretical basis of self-organizing neu-

ral maps.

2.1 Structural plasticity

During development, neurons project axons to distant targets. Axon pathfinding is

guided by labile structures called growth cones, which sense local chemotropic gradients

that steer migrating axons to their targets. Upon arrival, axons elaborate highly dynamic

arbors, continually sprouting and retracting transient branches that form nascent synaptic

contacts with neighboring dendritic filopodia. Synapses and their corresponding branches

are stabilized by correlated activity, and the final pattern of permanent synapses defines the

neural circuit. Directed circuit formation is mediated by activity-dependent regulation of

filopodial dynamics.
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Figure 2.1: Growth cones steer axons

Growth cone filopodia project and retract, driven by F-actin polymerization and disassembly. Microtubules

grow from the axon shaft into the growth cone body to anchor stable filopodia and extend the axon. Extra-

cellular guidance cues bias growth cone dynamics to stabilize more filopodia on one side, steering the axon

up the local gradient [23].

2.1.1 Growth cones

Elongating axons are tipped by amoeboid structures called growth cones. Growth cones

consist of filopodia, finger-like membrane protrusions that probe the local environment and

sense chemical cues, and lamellipodia, networks of cross-linked actin filaments that form

the webbing between adjacent filopodia. Growth cones are highly dynamic structures,

constantly sprouting and retracting filopodia. The relative rates at which filopodia extend

and retract determine the net motion of the growth cone. If more filopodia sprout on one

side of the growth cone, the growth cone turns toward that side. If more filopodia retract,

the growth cone turns away, towing the axon behind it. Axon guidance is thus mediated by

the cytoskeletal dynamics of the growth cone and its filopodia (Figure 2.1).

The growth cone cytoskeleton is constructed from polymers of the building-block pro-
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teins tubulin and actin. Tubulin dimers polymerize into tubular arrays called microtubules,

which offer structural support to the axon and transport nutrients and signals down their

length. Actin monomers polymerize into helical filaments called F-actin or microfilaments,

which provide structural support within the growth cone. The lamellipodial cytoskeleton

consists of a disordered meshwork of F-actin, while the filopodia are built out of bundles

of aligned F-actin filaments.

Axon elongation is a three-stage process. First, filopodia and lamellipodia protrude

from the growth cone by constructing new F-actin bundles. Next, microtubules grow out of

the axon into the growth cone body, engorging it with organelles and vesicles. Finally, the

F-actin in the growth cone body disassembles, permitting the membrane to collapse into a

tight bundle around the microtubules to consolidate into a new axon segment [23].

F-actin is polarized in the sense that monomers are preferentially added to one end of

the polymer and removed from the other end. In filopodia, the polymerizing end of the F-

actin bundle faces the leading edge and the depolymerizing end faces the growth cone body.

In addition, F-actin bundles are constantly retracted toward the growth cone by a motor-

driven transport process called retrograde flow. Thus, an F-actin bundle grows toward the

tip of the filopodium, but is constantly pulled backward by retrograde flow into the growth

cone body, where it dissociates. The balance between polymerization, retrograde flow, and

depolymerization determines whether the F-actin bundle grows or shrinks, extending or

retracting its filopodium.

2.1.1.1 Axon guidance cues

Filopodial dynamics are controlled by the relative rates of several processes including actin

nucleation of new bundles, actin polymerization at the distal end of the filopodium, ret-

6



rograde F-actin flow, actin depolymerization at the proximal end of the filopodium, and

nonmuscle myosin activity. All of these processes are regulated by the activity of a family

of small GTP-binding proteins called Rho GTPases. Agents that influence Rho GTPase ac-

tivity to selectively modulate one or more of these processes therefore represent potential

axon guidance cues.

For example, an agent that inhibits actin polymerization would promote filopodial col-

lapse by permitting retrograde actin flow and depolymerization to dominate. A growth

cone moving in a gradient of this chemorepulsive agent would tend to retract more filopo-

dia from areas of high concentration and the net effect would be to guide the growth cone

toward regions of low concentration.

A number of axon guidance cues have been identified that direct filopodial growth by

regulating Rho GTPase activity, either directly or through intermediate signaling cascades

[53]. Some of these guidance cues are secreted, such as netrin, Slit, neurotrophins, and class

3 semaphorins; others are membrane-bound, such as class 1 and 4 semaphorins, ephrins,

ligands for receptor protein tyrosine phosphatases, cell-adhesion receptors, and myelin-

associated inhibitors. Individual guidance cues may be chemoattractive or chemorepulsive

or both, depending on context.

For example, the same guidance cue can simultaneously activate separate signaling

pathways via different receptors. Netrin binding to the DCC receptor triggers cAMP-

dependent attraction in the growth cones of cultured Xenopus spinal neurons, while binding

to a DCC-UNC5 receptor complex results in cGMP-dependent repulsion [78]. The balance

between these opposing pathways determines the net effect of netrin on the growth cone.

In fact, sufficiently reducing intracellular cAMP levels actually switches the polarity of this

effect from attraction to repulsion [74]. Conversely, elevating cAMP enhances the strength
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of netrin-induced attraction.

Interestingly, brief electrical stimulation can trigger this cAMP-dependent enhance-

ment, implying that growth cone guidance can be modulated by neural activity [73]. Ac-

tivity plays a major role in the morphogenetic development of synaptic circuits.

2.1.1.2 Arborization

As an axon approaches its target, it elaborates an arbor of motile branches that test

and discard provisional synapses onto overlapping dendrites in a flurry of structural re-

modeling. Axons and dendrites each probe their vicinity for suitable synaptic partners by

continually sprouting exploratory filopodia that initiate synaptogenesis at points of contact.

Nascent synapses can form and disassemble in less than two hours, and their filopodia ex-

hibit similarly rapid turnover [1]. Most filopodia are transient, retracting unless anchored

by persistent synapses. Stable filopodia mature into branches of the final arbor.

Synapse turnover continues well past arbor assembly. In neonatal mice, for example,

each geniculate cell initially receives over twenty separate retinal inputs immediately prior

to eye opening, when axon arbors have already segregated into distinct eye-specific layers.

Over the next three weeks, redistribution of presynaptic release sites reduces this number

to one to three synapses whose strengths are increased 50-fold [15]. Early in development,

therefore, weak preliminary synapses may serve to stabilize the arbor, which then provides

a scaffold for more developed synapses in the final circuit.

Dendritic arborization appears to be synaptotropic, meaning it is guided by synapse for-

mation (Figure 2.2). In zebrafish tectum, all nascent synapses appear at the tips of dendritic

filopodia. A fraction of these synapses are actively maintained and are able to stabilize their
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Figure 2.2: Synaptotropic arborization

Dendritic arborization is guided by synapse formation. Time lapse image sequence of dendritic filopodia in

vivo. Red lines are newly formed and possibly transient branches; green dots are synapses. New branches

sprout from synaptic sites [77].

filopodia, either by providing trophic support or even simple membrane adhesion. Their

dendritic filopodia mature into permanent arbor branches that sprout new filopodia from

their synaptic sites. Dendrites advance overall by selectively stabilizing branch segments

between permanent synapses, whose spatial pattern defines the dendritic arbor [77].

Axon arborization is similarly synaptotropic, with most new branches originating at

synaptic sites [1]. Branch dynamics are activity-dependent. Presynaptic activity blockade

significantly increases branch addition and elimination rates, escalating arbor complex-
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ity and interfering with branch stabilization [18]. The pattern of branch stabilization is

instructed by correlations in activity. Retinotectal axons innervating Xenopus binocular

tectum selectively remodel their arbors to reflect differences in activity correlations within

and between eyes. Axon branches stabilize in territory dominated by afferents from the

same eye and disappear from territory dominated by afferents from the opposite eye [85].

Branch stabilization is mediated by NMDA channels. The NMDA receptor is an ionotropic

glutamate channel whose voltage dependence permits ion flow only during the coincidence

of presynaptic glutamate release and postsynaptic depolarization, a conductance profile that

can communicate correlations between presynaptic and postsynaptic activity to the postsy-

naptic cell [94]. Blocking NMDA channels in binocular tectum reduces the axon branch

retraction rate in opposite eye territory but not in same eye territory, consistent with the

idea that poorly correlated activity triggers an active elimination mechanism that prunes

mistargeted branches [85].

New axon branches sprout preferentially into regions with low afferent density. Branch

addition is not directly instructed by correlated activity, but selective branch elimination

would automatically reduce afferent density, indirectly encouraging new sprouting to fill

the emptied regions [85]. Axonal filopodia might measure local afferent density by using

their own glutamate release as an active sensor for extracellular space. Extracellular space

promotes axonal filopodial motility in the hippocampal mossy fibers of neonatal mice,

as mediated by activity-dependent autocrine glutamate signaling. Glutamate regulation

of motility is bidirectional; motility is upregulated by the relatively dilute concentrations

that might result if most of the released glutamate diffused away into a large extracellular

volume, and downregulated by the more intense concentrations that might result from con-

fining extracellular glutamate to a small volume like a synaptic cleft [98]. Thus, afferent

activity could permit axonal filopodia to increase their motility in empty space, improving
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the chance of intercepting a dendrite and inducing synaptogenesis.

Alternatively, the predilection for new branches to sprout into unoccupied territory

might simply reflect a competition between afferents for space. Selective branch elimi-

nation is presumably driven by a similar competition, which could be over a presynaptic

resource such as neurotransmitter vesicles, a postsynaptic resource such as a target-derived

survival factor, or both.

2.1.2 BDNF

The family of proteins called neurotrophins take their name from the neurotrophic hy-

pothesis, which postulates that innervating neurons compete for a limited amount of a sur-

vival factor secreted by the target organ. Neurons supplied with insufficient survival factor

withdraw or die. Neurons supplied with sufficient survival factor are maintained, and are

said to receive trophic support from their target. Beyond this eponymous regulation of neu-

ronal survival, neurotrophins control a host of developmental processes including cell fate

decisions, phenotypic expression, axonal and dendritic arborization and pruning, and pat-

terns of innervation. In the mature system, they modulate synaptic plasticity and function.

The first neurotrophin, nerve growth factor (NGF), was originally purified as a survival

factor for sensory and sympathetic spinal neurons in culture. Subsequent work isolated

additional members of the neurotrophin family, whose current roster comprises NGF, brain-

derived neurotrophic factor (BDNF), NT-3, NT-4/5, NT-6, and NT-7. Neurotrophins all

bind to the shared p75NTR receptor and to specific members of the tropomyosin-related

kinase (Trk) receptor tyrosine kinase family. NGF binds specifically to TrkA, while BDNF

and NT-4 are specific to TrkB. NT-3 binds to TrkC with high affinity, and less efficiently to

the other Trk receptors [52].
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Among the neurotrophins, BDNF is particularly well-studied because its activity-dependent

dynamics offer a plausible substrate for synaptic plasticity and growth cone guidance. It

is commonly believed that BDNF mediates synaptic Hebbian learning by acting as a retro-

grade messenger that communicates postsynaptic activity to the presynaptic afferent. Un-

der this hypothesis, BDNF would need to be released by postsynaptic activity and taken up

by presynaptic activity [56].

2.1.2.1 BDNF as retrograde messenger

Studies of cultured hippocampal neurons demonstrated that electrical activity can in-

deed evoke postsynaptic release of BDNF from CNS dendrites. BDNF secretion requires

high levels of intracellular Ca2+, which can be achieved through presynaptic depolariza-

tion of the postsynaptic membrane that triggers extracellular Ca2+ entry via voltage-gated

calcium channels [46]. The onset of BDNF release lags the start of the electrical stimulus

by tens of seconds, a delay attributed in part to the absence of a readily releasable pool of

predocked peptide vesicles at the membrane, which requires vesicle diffusion to precede

neuropeptide exocytosis. Once triggered, BDNF release can be sustained for minutes be-

yond the end of the stimulus through Ca2+-induced Ca2+ release from intracellular stores

and autocrine activation of TrkB receptors [60]. The slow onset and offset of BDNF release

tend to smooth out the discrete burst stimuli, so that exogenous BDNF levels reflect a more

persistent identification of recently active postsynaptic cells.

Specific patterns of activity can trigger greater BDNF release. Bursts of high frequency

postsynaptic spikes enhance BDNF release, presumably because transient Ca2+ spikes sum

more quickly to attain higher cumulative intracellular Ca2+ levels. Nonphasic and low

frequency spike train stimuli are less effective, as is constant depolarization [5]. BDNF

release depends on action potential generation, possibly to regenerate inward Ca2+ currents
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through post-spike hyperpolarization relief of Ca2+ channel inactivation [38].

Presynaptic BDNF uptake is modulated by similar patterns of presynaptic activity. High

frequency burst stimuli such as standard LTP-inducing tetanus protocols enhance TrkB

insertion into the cell surface and internalization of the bound BDNF-TrkB complex, while

low frequency spike trains and constant depolarization have little effect [24, 25].

Activity-dependent regulation of BDNF secretion, TrkB insertion, and BDNF-TrkB

internalization all help to confine BDNF-TrkB signaling to active synapses. BDNF can

diffuse up to 60 µm from its release site [73], so for BDNF to act as a synapse-specific

retrograde messenger, mechanisms must be in place to prevent spillover from affecting

neighboring synapses. Other observed localizing mechanisms include activity-dependent

BDNF mRNA transcription, which limits BDNF expression to active postsynaptic cells

[60], and local protein synthesis of synaptic potentiation agents, which permits internalized

BDNF-TrkB complexes to selectively promote specific synapses instead of broadcasting a

general potentiation signal by synthesizing agents at the cell body [109]. The diffusive

spread of secreted BDNF might also be restricted by scavenging exogenous BDNF with an

inactive receptor such as truncated TrkB located in the extrasynaptic membrane [64].

2.1.2.2 BDNF as tropic agent

On the other hand, the diffusibility of BDNF suggests that this versatile protein could

also play a chemotropic role in guiding active growth cones over short distances to active

targets. Growth cones are attracted to BDNF in vitro, and preserve their sensitivity to

BDNF gradients by adapting to increasing basal concentrations near a secretion source

[75].

On a larger scale, BDNF increases axon arbor growth through branch addition and
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elongation, as well as the number of synapses per axon terminal in Xenopus tectum [20, 1].

Activity blockade interferes with branch stabilization but does not prevent BDNF from en-

hancing axon growth [18]. BDNF and glutamate might therefore represent complementary

halves of correlation-mediated stabilization. BDNF acts presynaptically to generate new

synaptic guesses through exploratory branch growth and synaptogenesis, while glutamate

acts postsynaptically to preserve good guesses and prune bad ones. In its putative tropic

role, BDNF would also encourage better guesses by attracting axonal filopodia to coactive

dendrites.

As a retrograde messenger, BDNF could also play a role in synapse stabilization.

Synapse assembly and disassembly require action on the part of both afferent and target

[19, 40]. The amount of BDNF taken up by the afferent is a measure of the coincidence of

the postsynaptic activity required for BDNF release and the presynaptic activity that facil-

itates BDNF uptake, so BDNF conveys activity correlation strength to the afferent. Strong

correlations encourage the afferent to reinforce the presynaptic terminal, increasing its abil-

ity to drive the target cell, which responds by strengthening the postsynaptic terminal.

Blocking this retrograde correlation signal impairs normal circuit formation. Infusing

an excess of BDNF or NT-4/5 into cat visual cortex during the critical period prevents

ocular dominance maps from forming [9], as does competitive binding of TrkB ligands

[10]. Occluding one eye during this period causes cortical cells to lose their response to

that eye. NT-4/5 infusion can restore this loss at the cost of orientation selectivity and

ocular dominance, implying that NT-4/5 promotes globally promiscuous connectivity [39].

TrkB ligands thus play an organizing role in the development of neural maps.
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2.2 Neural maps

One of the organizing principles of the brain is that spatially adjacent cells in one region

tend to receive input from spatially adjacent cells in another region. These topographic

maps are ubiquitous in sensory cortex. Examples include retinotopic maps in the visual

system, tonotopic maps in the auditory system, and receptor maps in the olfactory sys-

tem. Each of these maps serves as an internal representation of some feature that varies

continuously in the physical world, be it position, frequency, or odorant composition.

2.2.1 Map development

Sensory feature map development is controlled by a combination of activity-independent

and activity-dependent processes. Typically, coarse global structure is laid down by in-

trinsic molecular markers. Precise local connectivity is then refined and maintained by

patterned neural activity. The relative contributions of activity-independent and activity-

dependent developmental processes have been extensively studied in the retinal projection

to the midbrain, which for amphibians is the tectum and for mammals is the superior col-

liculus.

2.2.1.1 Activity-independent map formation

Retinal ganglion cell (RGC) axons navigate almost the entire path from retina to tectum

using external guideposts whose instructions are intrinsic to each axon. For example, Xeno-

pus tadpole eyes are located laterally, with no binocular overlap. Premetamorphic RGCs

project uniformly to contralateral tectum. During metamorphosis, eye position rotates to

create a partial binocular field and a new small population of new RGCs is generated in the
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ventrotemporal retina that projects axons to ipsilateral tectum to form a binocular map with

the preexisting contralateral projection. Upon reaching the midline, therefore, each RGC

axon must decide which tectum to innervate.

An axon’s decision to cross the midline at the optic chiasm is based on a chemorepulsive

interaction between a membrane-bound receptor on the axon surface and a diffusible ligand

secreted by the surrounding tissue. All RGC axons express the receptor EphB, but the optic

chiasm does not express the ligand ephrin-B until metamorphosis, when all of the initial

RGC axons have already crossed. The presence of ephrin-B repels ventrotemporal RGC

axons, forcing them to project to ipsilateral tectum [76]. Ephrin-B thus acts as a guidance

cue that is regulated both spatially and temporally. Its guidance is global, providing the

same instruction to every EphB-expressing axon. Similar global guidance cues escort the

axon tract to its target tissue [86].

Upon arrival at the tectum, axons sort themselves into loose retinotopy using matched

gradients of molecular markers expressed by tectal cells and the corresponding receptors

on the RGC axon terminals. Retinal expression of the receptor EphA decreases along

the temporal-nasal axis, while tectal expression of the ligand ephrin-A increases along the

rostral-caudal axis. The axons of temporal RGCs express more EphA and are therefore

sensitive to lower ephrin-A concentrations than axons of nasal RGCs. Since ephrin-A

binding to EphA mediates axon repulsion, temporal RGC axons migrate away from high

caudal ephrin-A concentrations to the low-ephrin-A rostral tectum. Axons compete for

space, so nasal RGC axons are displaced into caudal tectum. Axon attraction mechanisms

mediated by EphB/ephrin-B interactions similarly guide dorsal RGC axons to the ventral

tectum. The global topography of the initial retinotectal projection is thus organized by

a combination of activity-independent chemoaffinity gradients and competition for space

[57].
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2.2.1.2 Activity-dependent map refinement

Matched gradients alone suffice to construct a bare-bones map structure, but fleshing

it out requires electrical activity. Map formation is followed by a morphogenetic frenzy in

which axon arbors rapidly sprout and retract transient branches which stabilize only in cor-

rectly targeted regions. Sparse, widely overlapping axon arbors contract into dense, tightly

targeted termination zones, reinforced by a proliferation of precisely placed synapses, while

stray collaterals are pruned. The net effect is to refine a coarse global axon ordering into

precise local synaptic circuitry. This directed morphogenesis overlaps with the onset of

sensory experience, and is strongly activity-dependent. Disrupting normal visual activity

during this critical period of development can freeze or even unravel existing neural maps

[21].

Activity can play one of two organizational roles in morphogenetic map refinement.

First, activity might merely permit refinement, which would be directed by separate wiring

instructions. For example, axons might require activity to read out a matched gradient. In

this case, activity would be necessary but not sufficient for map maturation.

Alternatively, the pattern of activity might itself contain enough structure to instruct

wiring directly. The canonical model for activity-instructed neural wiring posits a com-

petition for synaptic territory in which connection strength is promoted by activity. Syn-

chronous inputs to the same postsynaptic neuron strengthen their connections at the ex-

pense of less active or less synchronous inputs. Circuits are organized through cooperation

between correlated inputs and competition between uncorrelated inputs [56].
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2.2.1.3 Activity-dependent cooperation

In the retinotopy problem, each RGC occupies a unique retinal position and therefore

no two RGCs have exactly the same spatiotemporal activity. However, correlations in nat-

ural images encourage visual processing elements to draw input from adjacent points in

the visual field, so adjacent elements typically share many inputs and can cooperate to

drive downstream targets. In a population of equally active RGC axons, each competitor

is equally fit, so the preferred configuration is the one that permits the most cooperation at

the target, which is achieved when adjacent RGCs project axons to adjacent targets, max-

imizing receptive field overlap. Retinotopy can therefore be generated from a cooperative

process instructed by the statistics of visual computation.

During development, these statistics could be supplied externally by natural sensory

experience [3, 71] or internally by correlated spontaneous activity, in the case of structures

that develop prior to the onset of sensory input. Locally correlated spontaneous activity has

been observed in several developing neural systems, including the spinal cord, cortex, and

retina [56, 16, 36].

In the retina, spatiotemporally correlated patterns of rhythmic bursting activity called

retinal waves appear in immature RGCs prior to the onset of photoreceptor-evoked stimu-

lation [105]. A patterned event begins as a burst of spontaneous spiking in a retinal gan-

glion cell that recruits the activity of adjacent cells via a network of cholinergic amacrine

cells, creating a wavefront of synchronized firing that sweeps across spatially contiguous

domains of retina before fading (Figure 2.3). Domain boundaries are not repeated and

no particular region is favored, although a refractory period prevents recently active do-

mains from participating in a new wave [37]. Their restricted spatial extent and uniformly

distributed initiation sites suggest that retinal waves could supply downstream axons with
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Figure 2.3: Retinal waves

Fluorescence imaging of spontaneous retinal wave domains in P2 ferret retina. Red domains denote the spatial

extent of the current retinal wave; previous domains are colored blue. Overlap between domains is colored

black. Waves typically propagate unless blocked by refractory participants in recent waves (exceptions are

marked with asterisks). The field of view is 1.2mm × 1.4mm [37].

sufficient information to instruct retinotopic self-organization. An RGC axon could recog-

nize an afferent projected by a retinal neighbor based on the coincident presynaptic activity

evoked by participation in the same retinal wave.

Retinal wave correlations play an instructive role in retinotopic map refinement during

a critical period of development in the mouse retinocollicular projection. Disabling retinal

wave propagation through the network of cholinergic amacrine cells decorrelates the activ-

ity of neighboring RGCs during the first postnatal week while leaving absolute firing rates

intact. Without these correlations, the diffuse initial projection fails to refine, despite the

continued presence of activity. Retinotopy cannot be rescued by the subsequent onset of

activity correlations due to glutamatergic retinal waves or visually evoked activity [68].
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Figure 2.4: Retinotopic refinement

RGC axons innervating the mouse superior colliculus (SC) project to dense termination zones (TZ) that form

a retinotopic map. (a) At P1, RGC axons have entered the anterior SC (arrowheads) and project well beyond

their final TZ (circle) in the lateral (L), medial (M), and posterior (P) directions. (b) At P4, many axons have

eliminated much of their overshoot and branches near the TZ begin to arborize. (c) At P8, the retinocollicular

map approaches maturity as all RGC axons resolve to their retinotopic TZ [68].

2.2.1.4 Activity-dependent competition

In the mammalian visual system, RGCs from each eye project axons to the lateral genic-

ulate nucleus (LGN), where they segregate into eye-specific layers, a process that requires

postsynaptic activity [91]. Segregation is a competition-driven process in which an af-

ferent’s fitness is gated by its level of activity relative to its peers. Varying the level of

spontaneous activity in one eye relative to the other causes the layer of the more active eye

to expand into the territory of the less active eye [80, 93].

Compared to the problem of retinotopy in which every retinal position defines its own

RGC subpopulation, eye-specific segregation is almost trivial, requiring only that within-

eye correlations be higher than between-eye correlations [72]. Blocking cholinergic retinal

wave propagation does not disturb segregation as long as the level of spontaneous activ-

ity in each eye remains intact [54]. A similar effect is observed in the olfactory bulb of

transgenic mice, in which afferents segregate onto individual glomeruli according to their
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odorant receptor identity. Olfactory maps form normally in the absence of odorant-evoked

correlated activity, implying that uncorrelated spontaneous activity is sufficient to permit

map formation. However, when presynaptic activity is only blocked in a subpopulation of

olfactory neurons, the inactive fibers initially converge onto the correct glomerulus but sub-

sequently vanish from the sensory epithelium, apparently expelled by more active neurons

[106].

The ability to distinguish between separate afferent populations is critical for competition-

driven segregation. At the rodent neuromuscular junction, each muscle fiber initially re-

ceives synaptic input from several inputs. Stronger synaptic inputs annex the territory of

weaker inputs, resulting in single innervation of the muscle fiber [4, 8]. This transition

from multiple to single innervation of muscle fibers does not occur until after the pattern of

activity switches from synchronous stimulation of all inputs to low levels of asynchronous

spiking by individual afferents [81].

2.2.2 Visual feature maps

The spiking activity of an RGC is generated from a web of interactions with nearby

bipolar cells, amacrine cells, and horizontal interneurons that shape its characteristic re-

sponse properties, which include retinal position, ocular origin, spatiotemporal precision,

wavelength selectivity, and receptive field structure. For example, an ON-center RGC re-

sponds optimally to a circular patch of light in the center of its receptive field and is inhib-

ited by illumination of the surrounding ring of photoreceptors, while an OFF-center RGC

responds to the opposite pattern of stimulation. These properties lay the foundation for

higher visual processing structures. In mammals, RGC axons are bundled into the optic

nerve and routed to the LGN, where they segregate into property-specific layers according
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to ocular origin and spatiotemporal precision.

ON- and OFF-center afferents from the same eye-specific layer in LGN project to pri-

mary visual cortex to form parallel ON- and OFF-subregions within cortical cell receptive

fields that respond optimally to oriented light/dark edges presented at a particular retinal

position in one eye. Cells tuned to the same orientation and ocular dominance stack verti-

cally into columns perpendicular to the cortical surface. Columns are ordered tangentially

as retinotopic maps in which orientation and eye preferences vary smoothly across the cor-

tical surface except for jumps at pinwheel and fracture singularities. Cells in one column

extend long range horizontal connections to cells in a different column with similar prop-

erties, coordinating selectivity between distant columns.

Patterned activity is in principle sufficient to organize cortical maps, since artificially

rerouting retinal afferents to the auditory thalamus generates a two-dimensional retino-

topic, ocularly segregated, and orientation selective map in an auditory cortical region that

normally hosts a one-dimensional tonotopic map [101, 90, 96]. In practice, map forma-

tion tends to be assisted or instructed by intrinsic molecular cues and only subsequently

revised by patterned activity. For example, ocular dominance map formation is activity-

independent, developing normally even when driven by retinal activity unbalanced by

monocular enucleation [22]. However, subsequent maintenance during the critical period

after eye opening requires retinal activity [95].

2.2.2.1 Orientation map development

Orientation maps can be derived independently from a variety of compatible mecha-

nisms [92, 31, 83], and perhaps for that reason are remarkably robust against experimental

manipulation [102, 88]. Within these maps, the strength of orientation selectivity for in-
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dividual cells is instructed by correlated activity. Artificially increasing RGC correlations

by even 10% through chronic electrical stimulation of the optic nerve during development

dramatically weakens orientation selectivity [102].

Retinal wave correlations disappear too early in development and lack the requisite

spatial precision to instruct orientation selectivity [105]. Instead, corticothalamic feedback

interacts with intrinsic LGN circuitry to reshape spontaneous retinal activity correlations

between ON- and OFF-center RGCs from each eye. LGN cells in the same center-type

sublamina of the same eye-specific layer have the highest correlations, while cells in oppo-

site center-type sublaminae of the same eye-specific layer have weaker correlations. Cells

in opposite center-type sublaminae of different eye-specific layers have the least, but still

significant, correlations [103]. This observed pattern of LGN activity presented to cortex

possesses the necessary correlations within and between celltypes to organize orientation-

selective receptive fields [31]. Interfering with this correlation structure by selectively

blocking ON-center retinal ganglion cell activity freezes the development of orientation

selectivity in ferret visual cortex during the critical period [14].

The source of these instructive correlations may be spontaneous activity, visual expe-

rience, or both. White et al. examined orientation map maturation in ferrets raised in the

dark, which eliminates all visual input, or with binocular lid suture, which activates the

retina only with very low spatial and temporal frequencies. Dark-reared ferrets still de-

velop weak orientation maps whose diminished selectivity can be attributed to a lack of

intercolumn horizontal connections. Lid-sutured ferrets fail to develop orientation maps at

all, implying that intracolumn selectivity can be disrupted by abnormal patterns of visually

evoked activity. These results suggest that spontaneous activity alone can tune orienta-

tion selectivity within a column, but cannot coordinate long range horizontal connections

between columns. Visual experience then sharpens tuning by providing intercolumn corre-
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lations [104].

2.3 Models of neural map development

Computational models of neural development generate insight by boiling an opaque

complex system down to a few transparent ingredients. Modelers strip away all system

components that seem irrelevant to the property of interest to carve out a toy system that

is simple enough to analyze or intuitive enough to explain. For example, growth cone dy-

namics are carefully detailed when describing axon guidance by diffusible gradients, and

completely ignored when describing the dimension-reducing nature of the cortical surface.

The justification for any simplified model is its ability to correctly postdict existing experi-

mental data, and to generate novel predictions for future experiments.

2.3.1 Axon guidance models

When describing multiple axons navigating local guidance cue gradients, the standard strat-

egy is to construct complicated dynamic equations for axon growth derived from the under-

lying reaction-diffusion processes, preserving mechanistic intuition at the cost of analytical

tractability. At this level of complexity, modelers must content themselves with numerical

iteration of these equations, which are tested by comparing the population statistics of the

simulated axon trajectories with those of real axons for measurable quantities like neurite

length and axon fasciculation [87, 50].

Goodhill and coworkers have been able to derive more analytical results from the sim-

pler case of gradient detection by a single growth cone. They calculated the optimal shape

of a guidance cue gradient for a growth cone that measures gradient steepness by sens-
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ing either absolute concentration increments across its body or percentage increments, and

found that in each case the maximum guidance range is about 1 cm. Conversely, they

observed that the shape of the gradient in situ should predict the slope measurement tech-

nique actually employed by the growth cone [42, 43]. Goodhill also extracted the steepness

constraints on the Slit gradient in vivo that are required for consistency between published

experimental results [41].

Models of chemotropic axon guidance do not generalize well to the collective property

of map formation, which is more fruitfully studied at a higher level by abstracting away the

inner workings of the axons to focus on interactions between axons driven by correlated

activity patterns.

2.3.2 Hebbian map models

A number of neural net models have been proposed that generate cortical feature maps

by applying the Hebb rule to input activity correlations [97, 100]. We will briefly review

several of these Hebbian map models in terms of a simple two-layer neural network that

consists of a source layer, indexed by Greek letters α, β; and a target layer, indexed by

Roman letters x,y. Source cell α is connected to target cell x by a synapse with weight

wαx. Source cell activity sα(t) is called presynaptic and target cell activity vx(t) is called

postsynaptic.

The classical Hebbian learning rule [48] postulates that synapses are strengthened by

correlations between their presynaptic and postsynaptic activity. Synaptic weight updates
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take the form

d

dt
wαx(t) = ηsα(t)

∑

y

I(x,y)vy(t) (2.1)

where η is an update rate and I(x,y) is an interaction function that describes the effect

on target cell x by activity from neighboring target cells y. The range of lateral target

cell connections described by I(x,y) can be used to divide Hebbian map models into two

general categories [34].

Global Hebbian map models use a nonlinear I(x,y) to select for weight update the one

target cell out of the entire population that receives the most activation from the current

input pattern. Since this function involves a global optimization, each target cell requires

information from every other target cell, implying an all-to-all connectivity within the tar-

get layer. Local Hebbian map models reduce the necessary lateral connectivity through the

use of a softer selection criterion based on the degree of correlation between the activities

of each target cell and its input afferents. This interaction function performs a more local

optimization, which can be computed through a smaller number of mostly short-range con-

nections, typically described by a linear kernel I(x,y) = I(x−y) centered on each target

cell.

Global Hebbian map models are used when the optimality of the results is important and

connections are cheap to implement, as in a software implementation of a pattern classifier.

They have been extensively studied by the machine learning community. Local Hebbian

map models are used when the biological plausibility of the classification procedure is

important or connections are expensive to implement, as in a developmental neuromorphic

silicon chip. They appear mainly in the computational neuroscience literature.
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2.3.3 Local Hebbian map models

Since unconstrained Hebbian synapse strengthening causes synaptic weights to increase

without bound, local Hebbian map models typically normalize the sum of all weights en-

tering and/or exiting a cell to a constant value. These global normalization schemes induce

competition between synapses, since any increase in one set of weights must be balanced by

an equivalent decrease from the remaining set of weights. Another way to confine weight

values is to restrict them to some allowed range wmin ≤ w ≤ wmax. Weights that reach

either of the limits are said to saturate.

Hebbian models typically wave away the specifics of filopodial sprouting and retracting

by initializing the weights with weak nonzero values for all connections. Subsequent ap-

plication of the learning dynamics on this blank slate leads to a positive feedback cycle that

either saturates weights at their maximum strength or prunes them completely. Sprouting

exuberance can be spatially constrained by an arbor function that cuts weights off after a

certain distance.

2.3.3.1 Correlation-based learning

Linsker [63, 62, 61] simulated weight vector evolution in a feedforward linear network us-

ing a Hebbian update rule based on an ensemble average of input activity pattern statistics.

∂

∂t
wα = k1 +

∑

β

(Qαβ + k2) wβ (2.2)

Here, k1 and k2 are model parameters and Qαβ is the covariance between the activities of

input cells α and β. The elements of the covariance matrix can be positive or negative,
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so weights saturate at ±wmax. There is no explicit normalization, but the hard satura-

tion limits restrict the choice of weight vectors to the interior of a hypercube in weight

space. Linsker found that an isotropic Gaussian covariance function could lead to inter-

esting center-surround or even bilobed receptive field structures, depending on parameter

choice.

MacKay and Miller [65] recast Linsker’s update rule as the matrix equation

ẇ = (Q + k2I)w + k1n (2.3)

subject to the saturation constraints −wmax ≤ wα ≤ wmax. Here, I is the identity matrix

whose elements Iαβ are 1 for α = β and 0 for α 6= β, and n is the vector with all elements

nα = 1. Q + k2I is symmetric, so it has a complete set of orthonormal eigenvectors e(a)

with real eigenvalues λa. Weight vectors can therefore be written as a weighted sum of

these eigenvectors, w(t) =
∑

a wa(t)e
(a), and the component of w in the direction of each

eigenvector e(a) grows or decays exponentially at a rate proportional to its eigenvalue λa,

relative to the fixed point of the update equation.

wa(t) − wFP
a =

[
wa(0) − wFP

a

]
eλat (2.4)

Weights that reach the saturation limits freeze their dynamics, so the final receptive field is

determined by the first eigenvector to grow to those limits. The principal eigenvector is the

eigenvector that corresponds to the largest positive eigenvalue and therefore grows at the

fastest rate. Its weights are the first to saturate, locking the receptive field into an image of

the winning eigenvector.

Miller subsequently applied this eigensystem analysis to a more biological linear up-
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date model. Since spike frequencies cannot be negative, the Miller model relies only on

positive activity correlations between and within separate source cell populations [72, 71].

Similarly, weights are restricted to non-negative values 0 ≤ wi
αx ≤ wmax to model a purely

excitatory feed-forward projection. Total synaptic input to a given target cell is normalized

to a constant to prevent all synapses within an arbor radius from converging onto the same

target cell.

d

dt

∑

α

wi
αx(t) = 0 (2.5)

Labeling source cell populations with i, j, the weight update rule is

d

dt
wi

αx(t) = ηA(x, α)
∑

y

I(y,x)
∑

j,β

C ij(α, β)wj
βy(t) (2.6)

where η is a constant update rate, A(x, α) is a localized arbor function that enforces global

retinotopy by restricting the spatial distribution in the target layer of synapses projected

by each source cell α, and I(y,x) is a Mexican hat interaction function that relates ac-

tivity at target cell x to target cell y. C ij(α, β) is the correlation between the activi-

ties of source cell α in population i and source cell β in population j. For example,

C{LEFT,ON},{RIGHT,OFF}(α, β) might be the correlation between the ON-center RGC lo-

cated at retinal position α in the left eye and the OFF-center RGC located at retinal position

β in the right eye.

ON- and OFF-center inputs from each eye can assemble correlation modes that generate

binocularly matched orientation maps. In this case, there are four source cell populations,

one for each center-type/eye origin pairing. The sixteen corresponding correlation func-
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Figure 2.5: Correlation modes required for ocular dominance and orientation selectivity

(a) Monocular receptive fields segregate if COD does not oscillate within an arbor radius [72] (b) CORI+

organizes oriented receptive fields that are in phase between eyes. (c) CORI− organizes oriented receptive

fields that are antiphase between eyes. Binocularly matched orientation maps can form if CORI+ or CORI−

oscillate once within an arbor radius [31].

tions can be reduced to four correlation modes by exploiting symmetry:

CSUM = CSE,SC + CSE,OC + COE,SC + COE,OC

COD = CSE,SC + CSE,OC − COE,SC − COE ,OC

CORI+ = CSE,SC − CSE,OC + COE,SC − COE ,OC

CORI− = CSE,SC − CSE,OC − COE,SC + COE ,OC

Here, CSE,SC is the correlation between source cells in the same eye with the same center-

type, COE,OC is the correlation between source cells in opposite eyes with opposite center-

types, and so on. The ocular dominance mode COD is just the difference in correla-

tions within and between eyes. If intraocular correlations exceed interocular correlations,
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monocular receptive fields form (Figure 2.5(a)). There are two orientation-selective modes:

CORI+ is the sum of the left-eye and right-eye ON/OFF correlation differences, and corre-

sponds to ON/OFF subregions that are in phase between eyes (Figure 2.5(b)), and CORI−

is the difference between the left-eye and right-eye ON/OFF correlation differences, corre-

sponding to ON/OFF subregions that are antiphase between eyes (Figure 2.5(c)).

2.3.3.2 Competition for trophic sustenance

Local Hebbian models typically invoke some normalization scheme that is selected more

for its stabilizing or competition-inducing properties than its attention to specific biolog-

ical mechanisms. To dispel this abstraction, several modelers have studied the activity-

dependent dynamics of neurotrophic factors (NTFs) as a candidate normalization process

[100]. These trophic models tend to reproduce the predictions of more general correlation-

based models, since both schemes employ similar Hebbian cooperation rules. Trophic

models specify an NTF-dependent competition mechanism and therefore make the ad-

ditional obvious prediction that flooding the system with an excess of NTF will prevent

normal development.

Elliott and Shadbolt have extensively analyzed a simplified trophic model whose dy-

namics are described by

dwαx

dt
= −ηwαx + η

[
wαx (a + aα) ρα∑
β wβx (a + aβ) ρβ

∑

y

∆xy

(
T0 + T1

∑
β wβyaβ∑

β wβy

)]
(2.7)

The basic idea is that the number of synapses wαx connecting afferent α to target x depends

on the amount of NTF taken up by each synapse, under the assumptions that NTF release

is gated by target cell activity and NTF uptake is gated by afferent cell activity. The first
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term on the right represents activity-independent weight erosion, which causes synapses

to wither unless supplied with the trophic support described by the second term, which

models the proportion of the NTF supply available at x that is taken up by afferent α.

Target cell release of NTF has an activity-independent component and an activity-

dependent component. Activity-dependent NTF release from target cell y is proportional

to postsynaptic activity, which is approximated with the dendritic excitation
∑

β wβyaβ and

normalized against the total synaptic weight
∑

β wβy innervating y to imply that each tar-

get cell can only synthesize enough NTF to sustain a limited synaptic area. The relative

strengths of the activity-independent and activity-dependent release components is set by

the parameter ratio T0/T1.

The sum over y represents the total NTF pool available at x, which combines contri-

butions from all possible release sites y to the current site x. NTF diffusion from y to x is

modeled by the function ∆xy . The fraction in the brackets before the sum describes affer-

ent competition for NTF at x. Afferents compete for shares of the available NTF pool by

expressing and activating synaptic NTF receptors. Afferent α binds NTF from x in direct

proportion to the share of the total population of high-affinity receptors present at x that

belong to α.

The number of high-affinity NTF receptors expressed by α at x is just the total synaptic

area wαx multiplied by the binding affinity (a+aα) and the receptor density ρα. The binding

affinity has an activity-independent component, controlled by parameter a, and an activity-

dependent component, controlled by the afferent activity aα. NTF receptor expression ρα

is activity-dependent, described by ρα = āα/
∑

x wαx, where āα is a sliding average of

recent afferent α activity. ρα is normalized against the total weight strength maintained by

source cell α to account for a limited pool of presynaptic resources.
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To analyze their model mathematically, Elliott and Shadbolt examined the simple case

of two axons converging onto the same neuron. There are three fixed points, two corre-

sponding to single innervation from each neuron and one corresponding to multiple in-

nervation. The stability of these fixed points depend on the relative balance of activity-

dependent and activity-independent NTF release. If activity-dependent release dominates,

the system tips to single innervation by the axon initialized with the most synapses. If

activity-independent release dominates, both axons remain [29]. A unique prediction of

this model is that axons that are about to be displaced from a target should immediately

downregulate their receptor expression [28].

When driven by simulated retinal waves, a three layer version of this model devel-

ops retinogeniculocortical connectivity, self-organizing LGN retinotopy and cortical ocular

dominance maps. The model is initialized with a global retinotopic bias to speed conver-

gence and protect synapses from premature elimination. As expected, flooding the system

with exogenous NTF prevents map formation [30].

2.3.4 Global Hebbian map models

Local Hebbian map models tend to get trapped in globally suboptimal states unless

initialized with a considerable amount of prior information such as coarse global retinotopy.

While this might be appropriate for biological models, which can assume such instruction

is provided by independent genetic mechanisms, it cripples machine learning algorithms,

which typically prefer to assume as little as possible. As a consequence, most engineering

and mathematical effort focuses on global Hebbian map models, the most popular of which

is the self-organizing map (SOM) algorithm introduced by Kohonen [59].
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Kohonen observed that the intracortical connections between many cortical cells tend

to be excitatory at short distances and inhibitory at long distances, and that this center-

surround lateral connectivity might permit the most active target cell to recruit activity from

nearby target cells while silencing more distant target cells. Applying the Hebb rule, the

only target cells with enough activity to potentiate weights would be clustered around the

target cell with the strongest response to the current pattern of source cell activity. Kohonen

proposed the following heuristic algorithm:

1. At each time step, draw one pattern vector v from a prior distribution of source cell

activity vectors, where the vector element vα is the activity of source cell α during

the time step.

2. Next, identify the target cell y that responds most strongly to the input v. This is the

neuron whose weights wy have the most overlap with the participating source cells,

so y = minx ‖v − wx‖.

3. Finally, update the weight vectors wx of target cells x according to their distance

from the winning cell y:

wx(t + 1) = wx(t) + η(t)h(x,y, t) [v − wx] (2.8)

where the neighborhood function h(x,y, t) is a decreasing function of separation

|x − y| and is usually taken to be a Gaussian. The update rate η(t) and the width

of h(x,y, t) are typically initialized at large values and gradually reduced over time,

encouraging rough global ordering early in the weight evolution and precise local

optimization later, a procedure analogous to simulated annealing. The neighborhood

function was originally inspired by cortical microcircuits, but can equivalently be

interpreted as the spread of a target-derived diffusible factor such as nitric oxide.
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A      B

C      D

Figure 2.6: SOM as dimension-reducing map

The SOM algorithm compresses a high dimensional feature space into a two-dimensional cortical surface. (a)

Orientation map. Arrows point to pinwheel (1) and fracture (2) singularities. (b) Ocular dominance map. (c)

Locally distorted representation of retinal space. Receptive field centers of adjacent target cells are connected

by lines. (d) The cortical sheet folds through five-dimensional feature space to try to cover competing feature

maps while preserving local continuity. V1 and V2 are the retinotopic coordinates and V5 is the degree of

monocularity. The orientation selectivity coordinates V3 and V4 are suppressed for visualization purposes

[79].
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More abstractly, the SOM model can be interpreted as a dimension-reducing algorithm

that compresses a high-dimensional feature space into a two-dimensional cortical map.

For example, a five-dimensional feature space might be defined by two retinotopic coordi-

nates, the direction and magnitude of orientation selectivity, and the degree of monocular

innervation. The cortical surface is represented as a two-dimensional sheet that folds and

flattens in this five-dimensional feature space in an attempt to simultaneously satisfy con-

flicting constraints (Figure 2.6). The Hebbian correlation rule pulls the sheet to cover a

representative sample of feature points, while the neighborhood function tries to keep the

sheet locally smooth [79]. The tradeoff between these two constraints is controlled by the

distribution of input pattern vectors in feature space, and can be analyzed with techniques

borrowed from statistical physics such as energy functions, phase transitions and stochastic

processes [33, 32, 79, 51, 44].

SOM algorithms derive much of their power from the winner-take-all computation,

which tends to rescue the system from getting trapped in local optima. This winner-take-

all function becomes increasingly unwieldy in larger networks, since each cell’s activity

must be compared with every other cell’s activity, implying a more universal connectivity

than is physiologically observed. Models that value biological plausibility over technical

performance therefore tend to discard the winner-take-all scheme in favor of the more local

computations that inspired it.

2.3.5 VLSI implementations

Most map formation chips implement some variant of the SOM algorithm. The first

attempts were digital [59] and were restricted by low numerical precision to a limited range

of weight values. In pursuit of compact circuits, subsequent work focused on individual
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analog circuits for high precision operations like weight multiplications [35], distance

measurements [13], neighborhood functions [99], and winner-take-all computations [13].

Despite early examples of fully analog SOM chips [66, 47] and mixed analog-digital

vector quantization [35, 84] and clustering chips [89], more recent implementations tend to

be fully digital, due to the more favorable tradeoff between numerical precision and silicon

area. Current work focuses on accelerating the design cycle by shifting from full custom

application-specific integrated circuit (ASIC) design [69] to more generic hardware such

as digital signal processors [11], programmable logic [7], general purpose multiprocessor

neurocomputers [82], and soft intellectual property (IP) cores [49].

The closest thing to a VLSI implementation of a local Hebbian map model was pre-

sented by Elliott and Kramer, who used output from a spiking silicon retina to drive self-

organization of retinotopy and ocular dominance using the Elliott and Shadbolt model of

NTF-dependent map formation [26, 27]. However, only the input layer was implemented

in hardware, which was used to generate realistic spike trains whose variability could be

tuned to test the robustness of the algorithm. Weight storage and update was implemented

entirely in software running on a separate workstation. To date, there has been no fully

hardware implementation of a local Hebbian map model.
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Chapter 3

Neurotrope1 system

In this chapter we present Neurotrope1, a neuromorphic system based on a simple

correlation-based learning rule in which cells that fire at the same time are wired to the

same place. This rule is inspired by axon guidance during neural development.

3.1 Self-wiring axons

Our basic goal is to self-organize feed-forward excitatory connections between two

layers of neurons. Neurons in the first layer, which we will call source cells, extend axons

into the second layer of neurons, which we will call target cells. At one end of the axon,

the source cell body generates spikes in response to excitation and transmits the spikes

down the axon. At the other end, the axon terminal receives spikes from the axon and

releases neurotransmitter, exciting nearby target cell bodies. The cell body remains fixed

at some location in the source layer, while the axon terminal may move between locations

in the target layer. The description of any axon can be reduced to the coordinates of its two
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endpoints within their respective layers.

In a mature network, the axon terminal forms a synapse that anchors the axon to its

designated target cell and enhances excitatory neurotransmission. In a developing network,

the axon terminal forms a growth cone that guides axon motion within the target layer.

Regardless of whether an axon terminal forms a synapse or a growth cone, we will refer to

source cell activity as presynaptic and target cell activity as postsynaptic.

In the last chapter we saw that a growth cone is an amoeboid body located at the tip of

a growing axon that continually extends and retracts fingers of membrane called filopodia

to feel its way along its migration path, towing the axon behind it. The growth cone moves

when it extends more filopodia in one direction than it retracts from that direction. Filopo-

dia bind extracellular chemicals using membrane receptors that are activated by presynaptic

spikes. Some chemicals stabilize filopodia when bound, reducing the filopodial retraction

rate and causing net growth cone motion in the direction of increasing chemical concen-

tration. Growth cone motion can thus be gated by presynaptic activity and guided by local

extracellular cues.

The properties of these extracellular cues are obviously central to understanding how

the brain is able to wire itself up. We are going to postulate the existence of a target-derived,

activity-dependent, extracellular guidance chemical which we will call neurotropin. We

will use neurotropin to construct the following automatic wiring program (Figure 3.1):

1. A layer of source cells projects axons to a layer of target cells. Elongating axons are

tipped by growth cones that guide the axons to their targets.

2. Presynaptic spikes generated by a source cell trigger neurotransmitter release from

its axon terminal, exciting neighboring target cells.
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Figure 3.1: Neurotropic axon guidance

(a) Spiking (yellow) target cells (TC) release pulses of neurotropin into the surrounding medium. (b) Between

spikes, neurotropin diffuses, establishing a spatial concentration profile. Active growth cones (GC) excite

target cells (red) and measure the local neurotropin gradient. (c) Growth cones migrate up the detected

gradient, tending to cluster correlated axon terminals.

3. Postsynaptic spikes generated by a target cell trigger neurotropin release from the

target cell body.

4. Neurotropin diffuses spatially within the target layer until being consumed by glia or

bound by active growth cones.

5. Presynaptic spikes generated by a source cell also cause its growth cone filopodia to

bind extracellular neurotropin.

6. A growth cone moves up the local neurotropin gradient by comparing amounts of

neurotropin bound by opposing filopodia. When there is no gradient, filopodia pull

equally in all directions and there is no net motion. When there is a gradient, the

net effect is that the growth cone climbs the local neurotropin gradient, looking for

concentration peaks whose presence coincides with the growth cone’s presynaptic
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activation.

7. Neurotropin concentration peaks are centered on target cells that are being stimulated

by active growth cones, so moving growth cones toward detected concentration peaks

is a way to cluster coactive growth cones. Source cells that fire at the same time will

end up wired to neighboring target cells (‘cells that fire together, wire together’).

8. Axons also take up physical space, meaning they can’t maximize neurotropin release

by all converging onto the same target cell. This density constraint requires a moving

growth cone to displace other growth cones in its path. Axon targeting is therefore a

balance between directed growth cone guidance and undirected displacement.

(An equivalent formulation of this algorithm on a longer time scale is to relabel growth

cones as axon arbors and filopodia as axon branches. In this case, axon branches form

synapses that are stabilized or destabilized by postsynaptically released survival signals

called neurotrophins. Neurotrophins do not diffuse significantly from their release sites;

instead, release sites are distributed spatially by a dendritic arbor.)

The Neurotrope1 system implements this algorithm using three major elements:

• Soft wires: Axons are implemented virtually as entries in memory that can be auto-

matically altered to rewire connections.

• Neurotropin chip: Silicon growth cone circuits use a local target-derived signal to

compute updates for the virtual axon table.

• Correlated stimulus: Presynaptic activity correlations drive self-organization of feed-

forward connections.
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Figure 3.2: Address-event representation

(a) Biological networks implement a dedicated axon for every neuron. (b) Address-event representation

requires all neurons to share the bandwidth of one common axon. Each spike must be tagged with the

address of its neural source. (c) For non-trivial network connectivity, address-events must be filtered through

a lookup table that translates spike source addresses into spike target addresses.

3.2 Soft wires

In biological neural networks, each neuron has its own dedicated axon that physically

wires its cell body to every target. A signal consists of a voltage spike arriving from a

particular wire at a particular time — an asynchronous one-hot code (Figure 3.2(a)).

When constructing large neuromorphic systems it remains infeasible to assemble a

physical wire for every neural connection, due to space constraints. Address-event rep-

resentation (AER) allows all cells on the same chip to share a common output axon (Figure

3.2(b)). As a consequence, each spike communicated on this shared axon must be tagged

with its designated target address. However, neuromorphic chips typically label their output

spikes with the address of the source cell, which is not necessarily the same as the address

of the target cell on a different chip. When the source address space and the target address

space differ, spikes must be filtered through a lookup table that decodes source addresses

into target addresses. We call this lookup table the forward map (Figure 3.2(c)).

All the information we need to route a spike is stored in its neuron’s entry in the forward

map. We say the axon is implemented virtually in memory. Rewiring axon targets is just a
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Figure 3.3: Address-event remapping

(a) A virtual axon encoded in the forward map (top) routes a spike from its cell body to its growth cone. (b)

Axon migration originates in growth cones, which use the reverse map (bottom) to identify their innervating

cell bodies. Axons move by modifying the appropriate forward and reverse map entries. (c) The updated

forward map routes a spike from the cell body to its new growth cone location.

matter of changing entries in the forward map. We would like our system to update these

entries automatically, based on some simple learning rule.

In the Neurotrope1 system, an update is computed by a growth cone circuit at the target

end of the virtual axon, and is transmitted from the target chip to the lookup table using an

address-event that encodes the desired growth cone motion relative to its current location.

Since this address-event is generated in the target chip, it is tagged with a target address that

must be filtered through a reverse map that decodes target addresses into source addresses.

The resulting source address is used to index the relevant entry in the forward map, which

is changed to the new target. The reverse map must also be updated to reflect the new

connectivity (Figure 3.3).

This update protocol actually moves two virtual axons: the one whose growth cone

requested the update, and the one already occupying the requested target. So one axon
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moves closer to its target and one axon is bumped in a random direction. This displacement

noise is equivalent to a hard density constraint and enforces competition between growth

cones.

The forward and reverse maps are implemented with an off-chip SRAM. A computer

can write to and read from the SRAM via a USB port controlled by a Ubicom ip2022

microcontroller. The microcontroller also performs all modifications to the lookup table.

Target address lookup is handled separately for faster execution, using asynchronous logic

implemented in a CPLD (complex programmable logic device).

3.3 Neurotropin chip

The neurotropin chip, Neurotrope1, interleaves a 48 × 20 array of growth cones with a

24 × 20 array of target neurons. The 11.5 mm2 chip was fabricated through MOSIS using

the TSMC 0.35 µm process.

The dominant feature of the Neurotrope1 chip is a monolithic diffusive p-type channel

that models the extracellular medium. This channel is laid out as a continuous honeycomb

lattice, with target cell and growth cone circuitry occupying the hexagonal cells of the

lattice (Figure 3.4). Neurotropin is represented as charge diffusing in the lattice, and can

be injected or drained at each node.

Neurotropin is released into the extracellular medium by the cell bodies of spiking

target cells. Source cell spikes are routed through the lookup table to growth cone circuits

that simultaneously excite nearby target cells and sample the neurotropin concentration in

the surrounding extracellular medium. Each growth cone circuit extends three filopodia to

nearest neighbor nodes (Figure 3.5).
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Figure 3.4: Neurotrope1 array layout

Detail of Neurotrope1 chip layout. Growth cone circuits (GC) occupy nodes of the monolithic honeycomb

lattice, while target cell circuits (N) occupy lattice cells. The remaining space is filled by off-chip communi-

cation circuits (AER).

3.3.1 Neurotropin circuit

Figure 3.6 displays the circuits that add, diffuse, and remove charge in the extracellular

medium modeled by the hexagonal charge-diffusing lattice M1. Vspread sets the maximum

amount of charge M1 can hold. The total charge in M1 is determined by circuits that

implement activity-dependent release and uptake. In addition, M11 and M12 provide a

path for activity-independent release and uptake.
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Figure 3.5: Block diagram

(a) The lookup table converts source cell addresses (N) into axon terminal addresses (AT) and passes them

into the neurotropin chip. The neurotropin chip outputs target cell spikes (N) and axon terminal address

updates (∆AT) on the same shared port. Target cell spikes are routed to the next layer of cells, while

address updates are sent to a microcontroller (µC) that writes them to the lookup table. (b) Upon receiving

a presynaptic address-event, the neurotropin chip toggles row and column selects (ATx,y) to activate the

indicated axon terminal, which excites nearby target cells (red) and samples neurotropin from the extracellular

medium (blue). Upon completing a gradient measurement, the axon terminal requests an address update

(∆ATx,y). Spiking target cells release neurotropin into the extracellular medium and transmit their spikes

off-chip (Nx,y).

Target cell activity triggers neurotropin release, as implemented by the circuit in the

left box of Figure 3.6. Spikes from any of the three neighboring target cells pull Cspost to

ground, opening M7 and discharging Cfpost through M4 and M5. As Cfpost falls, M6 opens,

establishing a transient path from Vdd to M1 that injects charge into the hexagonal lattice.

Upon termination of the target cell spike, Cspost and Cfpost are recharged by decay currents

through M2 and M3. Vppost and Vfpostout are chosen such that Cspost relaxes faster than

Cfpost, permitting Cfpost to integrate several target cell spikes and facilitate charge injection
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Figure 3.6: Neurotropin circuit

Neurotropin sample, diffuse, and uptake circuits. Target cell spikes inject charge (left box) into a monolithic

pFET channel (M1), where it diffuses until being passively decayed (M12) or actively sampled by local

growth cone circuits (right box).

if spikes arrive in a burst rather than singly. Vfpostin determines the contribution of a single

spike to the facilitation capacitor Cfpost.

Source cell activity triggers neurotropin uptake, as implemented by the circuit in the

right box of Figure 3.6. Charge is removed from the hexagonal lattice by a facilitation

circuit similar to that used for target cell release. A source cell spike arriving at the growth

cone pulls Cspre to ground through M24. Cspre, in turn, drains charge from Cfpre through

M21 and M22. Cfpre removes charge from the hexagonal lattice through M14, up to a

limit set by M13, which prevents the hexagonal lattice from being completely drained in

order to avoid charge trapping. Current from M14 is divided between five possible sinks.

Depending on source cell activation, up to four growth cones may sample a fraction of

this current through M15-18; the remainder is shunted to ground through M19 in order to

prevent a single source cell event from exerting undue influence on gradient measurements.

The current sampled by the growth cone at its own site is gated by ˜sample0, which is
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Figure 3.7: Gradient detection circuit

Each growth cone integrates neurotropin samples from its four adjacent nodes, including its own (right dotted

box). The first integrator to cross threshold resets its competitors and transmits an address-event off-chip.

pulled low by a source cell spike through M26 and subsequently recovers through M25.

Identical circuits in the other growth cones generate signals ˜sample1, ˜sample2, and

˜sample3. Sample currents I0, I1, I2, and I3 are routed to latency competition circuits in

the four adjacent growth cones.

3.3.2 Gradient detection circuit

When a growth cone receives a spike, its filopodia sample charge from their nodes of the

extracellular medium. These samples are integrated on separate capacitors, which race to

cross a voltage threshold. The winner of this race will be the filopodium whose node tends

to have the highest neurotropin concentration during the times the growth cone is presy-

naptically active. It resets the four filopodial integrators, including itself, and transmits its

address-event off-chip.
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A diagram of the gradient detection circuit is shown in Figure 3.7. Three of the four

integrator circuits represent filopodia extended to the three nearest-neighbor nodes, Loca-

tions 1-3, and the fourth represents the growth cone body at the target node, Location 0.

The growth cone moves to the node of the winning filopodium. If the growth cone body

wins the race, the growth cone stays put.

In the circuit that samples neurotropin from Location 1 (left box of Figure 3.7), charge

pulses I1 arrive through diode M1 and accumulate on capacitor C1 in an integrate-and-fire

circuit described in [55]. Upon crossing threshold this circuit transmits a swap request

˜so1, resets its competitors by using M6 to pull the shared reset line GRST high, and

disables M4 to prevent GRST from using M3 to reset C1. The swap request ˜so1 remains

low until acknowledged by si1, which discharges C1 through M2. During the time that

˜so1 is low, the other three capacitors are shunted to ground by GRST , preventing late

arrivals from corrupting the declared gradient measurement before it has been transmitted

off-chip. C1 being reset restores ˜so1 high, which releases GRST to relax to ground

through M24 with a decay time determined by Vgrst.

C1 is also reset if the neighboring axon terminal initiates a swap. GRSTi1 is pulled low

if either the axon terminal at Location 1 decides to move to Location 0 or the axon terminal

at Location 0 decides to move to Location 1. The accumulated neurotropin samples at both

locations become obsolete after the exchange, and are therefore discarded when GRST is

pulled high through M5. Identical circuits integrate neurotropin from Locations 2 and 3

(center two boxes in Figure 3.7).

If C0 (right box of Figure 3.7) wins the latency competition, the growth cone decides

that its current location is optimal and therefore no action is required. In this case no off-

chip communication occurs and C0 immediately resets itself and its three rivals. Thus, the
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Figure 3.8: Chip anisotropies

(a) Target cell excitability increases with column address, but remains constant across rows. (b) Sampled

charge travels a shorter distance from nodes adjacent to the tap than from the node opposite.

Location 0 circuit is identical to those of Locations 1-3 except that the inverted spike is fed

directly back to the reset transistor M20 instead of to a communication circuit. Also, there

is no GRSTi0 transistor since there is no swap partner.

3.3.3 Layout anisotropies

The chip exhibits two major anisotropies, one associated with spike generation and one

associated with neurotropin diffusion. Each anisotropy significantly distorts growth cone

motion and is due to poor layout.

Figure 3.8(a) displays a histogram of address-events binned by column and row address.

When driven with the same excitation, circuits in the same row generate address-events at

a rate that increases with column address. Within a column, circuits tend to fire at the
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same rate. This horizontal excitability gradient is due to poor power distribution within

the chip. The supply voltage Vdd is routed along a single metal bus that enters the array

at column 0. Moving horizontally across the array, the accumulated load increases as each

column draws current from the power bus, causing the supply voltage available to higher

column addresses to sag. The neuron and growth cone circuits rely on a positive feedback

circuit whose source is connected to Vdd, so lowering the effective Vdd reduces the threshold

voltage required to trigger spike generation. The resulting position-dependent increase in

activity establishes a permanent neurotropin gradient that tends to pull all growth cones to

one side of the chip.

The workaround for this problem is to simply ignore the worst offenders by never stimu-

lating circuits in the highest 16 column addresses. All future experiments will be performed

on a reduced array of 24 × 20 growth cones.

The second major anisotropy arises from geometric properties of the hexagonal lattice

(Figure 3.8(b)). The filopodial sampling circuit taps current from the hexagonal lattice

using a transistor connected to one corner of the node. Charge sampled from the two

nodes adjacent to the tap therefore travels a shorter path within the lattice than does charge

sampled from the opposing node. The effect is to stretch the perceived node separation

along the horizontal axis of the array so that growth cones are more likely to move vertically

than horizontally.

The workaround for this problem is to program the microcontroller to accumulate suc-

cessive swap requests from each growth cone and only update the lookup table after a

threshold number of consecutive swap requests in the same direction. This threshold is

set to be proportional to the relative frequency of each direction request observed over the

entire array.
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Figure 3.9: Topographic self-organization

(a) Contiguous patches of the input layer are activated (left), projecting a pattern of excitation to growth cone

locations in the target layer (center). Lines connect growth cones corresponding to the four input cells at

the center of the patch. Input cells and growth cones are colored according to the input cell location. (b)

After presentation of many randomly centered input patches, the axon projection achieves a similar level of

topography when initialized with a coarse projection (top) or a perfect projection (bottom).

3.4 Correlated stimulus

Since growth cone motion is directed by local target activity and since target cell activity

is driven by source cell spikes, correlations between source cell spikes will determine the

final connectivity. Different patterns of source activity will drive the system to self-organize

different feed-forward axon projections. Ideally we would generate this correlated activity

by presenting real world video to a silicon retina, using the retinal ganglion cells as the

source layer. Unfortunately, the current version of the silicon retina is plagued by the same

excitability gradient observed in Neurotrope1, due to similarly flawed power distribution.
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We therefore simulate the source layer using a pattern generator board.

We programmed the pattern generator board to drive the chip with a sequence of ran-

domly centered patches of source cell activity meant to simulate retinal waves (Figure

3.9(b)). Each patch consisted of 19 adjacent source cells: a randomly selected source cell

and its nearest, next-nearest, and third-nearest neighbors on a hexagonal grid. Every patch

participant generated a burst of 8192 spikes during each patch presentation, which were

routed to the appropriate axon terminal circuit according to the connectivity map stored in

the lookup table. About 100 patches were presented per minute.

We generated a coarsely topographic initial projection by starting with a perfectly topo-

graphic projection and executing a sequence of (N/2)2 swaps between a randomly chosen

axon terminal and one of its randomly chosen target layer neighbors, where N is the num-

ber of axon terminals used. We opted for a fanout of 1 and full synaptic occupancy, so 480

source cells projected axons to 480 synaptic sites. This perturbed connectivity map pre-

served a loose global bias, representing the formation of a coarse topographic projection

from activity-independent cues. This new initial map was then allowed to evolve according

to the swap requests generated by the chip. After approximately 12000 patches, a refined

topographic projection emerged (Figure 3.9(b)).

To quantify this refinement, we defined the topographic error for a single source cell

to be the average of the target layer distances between the axon terminals projected by the

source cell and the three immediately adjacent source cells. A source cell in a perfectly

topographic projection would therefore have unit error. Topographic error drops quickly

at the beginning of the evolution as local clumps of correlated axon terminals crystallize.

Further refinement requires the disassembly of locally topographic crystals that happened

to nucleate in a globally inconvenient location. During this later phase, the error decreases
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Figure 3.10: Topographic error evolution

The average topographic error converges to the same level from coarse initial topography (blue) and from

perfect initial topography (red).

slowly toward an asymptote. To evaluate this limit we seeded the system with a perfect

projection and let it relax to a sustainable decree of topography, which we found to have an

error of about 10 units (Figure 3.10).

To characterize the system evolution more precisely, we will introduce some techniques

of stochastic analysis in the next chapter.
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Chapter 4

Stochastic Analysis

In this chapter we develop a model for growth cone motion in the Neurotrope1 system

using a finite state Markov chain whose stochastic transition matrix is derived from neu-

rotropic attraction. We will then illustrate the matrix construction procedure using a simple

supervised attraction example. We will conclude by testing the model against actual data.

4.1 Definitions

A random variable X takes on different values x in different systems seeded with dif-

ferent initial conditions. The collection of all possible instantiations of the system is called

the ensemble, and determines the statistical properties of the random variable. By counting

the number of instances of a particular value x in the ensemble and dividing by the total

number of instances in the ensemble, we can construct a relative frequency for x within the

ensemble and call it the probability P (x).

55



In a stochastic process, the random variable can assume different values xi at different

times ti. Each instantiation of this sequence of values and their associated times is called

the sample path traced by the process through the state space. We construct an ensemble

of sample paths in order to calculate the probability P (x1, t1; ...;xn, tn) that X(t) takes on

value x1 at time t1, x2 at time t2, and so on. For a given value x1, we can separate out

all the instances in the ensemble in which X(t1) = x1 and compute relative frequencies

within that subensemble to generate the conditional probability P (x2, t2; ...;xn, tn|x1, t1)

for future values of X(t) given a known initial value.

We typically sample the state of the process at regular time intervals τ , collecting a

discrete sequence of random variables X0 = X(t),X1 = X(t + τ ),X2 = X(t + 2τ )....

The random variable Xn is called the state of the process at time step n. An integer time

process is a stochastic process whose state changes only at integer multiples of the time

step. When the range of the random variable is also discrete, each sample path is a sequence

of transitions between discrete states Xn at discrete sample times nτ .

A stationary function is independent of time. If the conditional probability P (Xn =

i|Xn−1 = j) is stationary, we call it the transition probability W
(τ)
ij , where τ = tn − tn−1

is the fixed time interval separating consecutive observations. Our strategy will be to con-

struct transition probabilities from a model and compare them with transition probabilities

constructed from actual measurements.

4.1.1 Markov chains

A Markov chain is an integer time process in which the value of the current state Xn

depends on previous states Xn−1,Xn−2, ...,X0 only through the most recent state Xn−1;
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that is,

P (Xn = i|Xn−1 = j,Xn−2 = k, ...X0 = m) = P (Xn = i|Xn−1 = j) (4.1)

A Markov chain can be expressed pictorially as a directed graph in which an arrow

pointing from state j to state i represents a nonzero transition probability W
(n)
ij = P (Xn =

i|X0 = j) that the process is observed in state i at time n given that it was previously

observed in state j at time 0 (Figure 4.1(a)). If the graph contains a directed path of any

length n leading from state j to state i (W (n)
ij > 0), we say that state i is accessible from

state j (j → i).

A state i is recurrent if it is accessible from all the states it accesses; that is, if i → j

implies j → i. A process leaving a recurrent state will always return to that state given

enough time. On the other hand, a process leaving a nonrecurrent state may exit to a state

from which it cannot return. Since this permanent departure will occur eventually with

probability 1, nonrecurrent states are transient.

States i and j communicate if i is accessible from j and vice versa (i ↔ j). Commu-

nication is transitive, so if i ↔ j and j ↔ k, then i ↔ k. A class is a non-empty set of

states in which every state communicates with every other state in the class. The set of

all states can be partitioned into disjoint classes of communicating states. A class of states

is recurrent if no member can access a state outside the class, and transient otherwise. A

Markov chain with a finite number of states always has at least one recurrent class and can

have any number of additional recurrent or transient classes.

The period of a recurrent class is defined as the greatest common divisor (gcd) of all n

for which P n
ii > 0. When the gcd is 1, the class is considered aperiodic. A periodic process
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indefinitely perpetuates the influence of its initial state, which determines the phase of

oscillation between states. A recurrent and aperiodic class is called ergodic, and eventually

erases the memory of its initial state. In this thesis, we will use ergodic finite-state Markov

chains to model growth cone population behavior.

4.1.2 Stochastic matrices

Under the Markov assumption, the transition probability that the process will move

from state j to state i in 2 steps is

W
(2)
ij =

∑

k

WikWkj (4.2)

We can express this relation more compactly by defining a stochastic matrix W whose ele-

ments Wij are the transition probabilities. W is a square matrix with non-negative elements

in which each column j corresponds to an initial state xj and each row i corresponds to a

final state xi (Figure 4.1(b)). Since transition probabilities are conditioned on the initial

state, the elements in each column sum to unity (
∑

i Wij = 1). Equation 4.2 can now be

written as a simple matrix multiplication, W(2) = W2 = W ·W. This is a special case of

the Chapman-Kolmogorov equation,

W
(n+m)
ij =

∑

k

W
(n)
ik W

(m)
kj (4.3)

which we can use to iteratively construct transition probabilities for paths of arbitrary length

through successive matrix multiplications.

The probability P
(n+m)
i that the process will enter state i at time (n + m) is the sum of

all possible m-step transitions W
(m)
ij into state i from every initial state j, each weighted by
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Figure 4.1: Markov chain

(a) Directed graph representation. Each arrow represents a possible transition from state xj to state xi, la-

beled with the transition probability Wij. Arrows representing zero probability transitions are not drawn. (b)

Stochastic matrix representation. Columns correspond to initial states and rows index final states. Matrix ele-

ments are tinted according to probability amplitude; darker elements have lower probability. Zero probability

transitions are colored black.

the probability P
(n)
j that the process actually occupied state j at time n:

P
(n+m)
i =

∑

j

W
(m)
ij P

(n)
j (4.4)

or in matrix notation,

P(n+m) = WmP(n) (4.5)

where we have defined the state distribution vector P(n) to be the column vector whose ith

element is the probability P
(n)
i that the process occupies state i at time n. Equation 4.5

predicts any future state distribution P(n) = WnP(0) given only the transition matrix W

and the initial distribution P(0).

For a memoryless process like an ergodic Markov chain, we expect the system to forget

its initial state given sufficient time, so that repeated iteration of W on an initial state dis-
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tribution P(0) will eventually converge to a final state distribution P(∞) that is independent

of time.

P(∞) = lim
n→∞

P(n) = lim
n→∞

WnP(0) = lim
n→∞

WP(n−1) = WP(∞) (4.6)

We say P(∞) is the stationary distribution with respect to W, since it is unaffected by

subsequent multiplication by W. When multiplication of a matrix W by a column vector P

yields a scalar multiple of P — that is, when WP = λP — we say that P is an eigenvector

of W with eigenvalue λ. The stationary probability vector P(∞) is the eigenvector of W

with eigenvalue 1. Eigenvectors and their eigenvalues are intrinsic to each matrix, and can

be computed using standard matrix techniques.

The eigenvectors of a matrix represent an alternate set of generally nonorthogonal co-

ordinate axes that are specifically aligned to match the matrix operation. We can rewrite an

input probability vector P in the new coordinates as the sum of its eigenvector components:

P =
∑

λ

aλΛλ (4.7)

where Λλ is the eigenvector of W with eigenvalue λ. Every matrix multiplication scales

individual eigenvector components by their eigenvalues, so eigenvectors corresponding to

|λ| < 1 die off exponentially with n.

WnP =
∑

λ

λnaλΛλ (4.8)

According to the Perron-Frobenius theorem, all of the eigenvalues of a stochastic matrix

have magnitudes less than or equal to 1, so repeated multiplication by W carves away their

eigenvector components exponentially with n until only the stationary probability vector
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P(∞) = Λ1 remains.

4.1.3 Continuous-time Markov chains

State transitions of integer-time processes are defined to occur at deterministic inter-

vals, an assumption chosen mainly to facilitate sampling. This assumption becomes less

plausible when dealing with heterogenous populations of noisy components. For example,

different growth cones move at different speeds in identical gradients, due to device mis-

match, so the integer-time transition probabilities for a fast growth cone are higher than for

a slow growth cone in the same integer time interval. Since there is no way to predict which

growth cones are fast and which are slow, the intervals between transitions are themselves

random variables.

In a continuous-time Markov chain, the intervals between state transitions are dis-

tributed exponentially with state-dependent transition rates λi. That is, the probability that

the process transitions from state i to state j over time τ is

P (Xt+τ = j|Xt = i) = (1 − exp [−λiτ ])Pij (4.9)

where (1 − exp [−λiτ ]) is the probability that a transition occurs within time τ , and Pij is

the probability that the transition out of i was directed to j. We can recover an integer-time

Markov chain representation by sampling the underlying continuous-time Markov chain at

regular time intervals τ . We will derive the transition rates λi from a model of neurotropic

attraction based on a set of assumptions described in the next section.
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Figure 4.2: Neurotrope1 array

(a) Source cells are indexed with lower case Greek letters and target cells are indexed with lower case Roman

letters. A target cell index may be subscripted with the source cell index of the innervating axon terminal. (b)

Axon terminal and target cell arrays interleave in the Neurotrope1 chip. Axon terminals occupy nodes on a

honeycomb lattice (blue). Target cells occupy nodes on a triangular lattice (red). Neurotropin diffuses along

the edges of the honeycomb lattice (green).

4.2 Model transition matrix

In this section we present a Markov chain model of neurotropic growth cone attrac-

tion in the Neurotrope1 system. We first state some assumptions that allow us to derive an

expression for the neurotropin sampled by an active growth cone, and then outline a pro-

cedure to construct a transition matrix that models growth cone motion under the influence

of this sampled neurotropin.

We index locations in each layer with their two-dimensional coordinates, using lower

case Greek letters α, β ∈ Z2 to denote locations in the source layer and lower case Roman

letters x,y ∈ Z2 to denote locations in the target layer (Figure 4.2(a)). Axon terminals in

the Neurotrope1 system occupy discrete target layer sites that are laid out in a honeycomb

lattice, while target cells are arranged in a triangular lattice interleaved between the axon
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terminal nodes (Figure 4.2(b)). For simplicity we will approximate the target layer as being

a single honeycomb lattice in which each node hosts one axon terminal and one target cell.

A subscripted target index xα denotes the target layer site occupied by the axon terminal

projected by source cell α.

4.2.1 Sampled neurotropin

We use four assumptions to derive a general expression for the neurotropin sampled by

an active growth cone.

1. Target cell activity is proportional to source cell activity

Each source cell α fires at rate aα(t) and projects an axon into the target layer that

elaborates an arbor of A(x − xα) excitatory synapses onto a neighborhood of target

cells centered on xα. Each target cell x fires at a rate ax(t) that is linearly proportional

to the sum of its excitation:

ax(t) ∝
∑

α

A(x− xα)aα(t) (4.10)

The arbor function A(x−xα) is a nonincreasing function of distance ‖x−xα‖ from

the arbor center.

2. Neurotropin release is proportional to target cell activity

Postsynaptic spikes trigger active target cell bodies to release neurotropin, whose

spatiotemporal spread establishes the instantaneous extracellular neurotropin con-

centration profile N(x, t). We assume that neurotropic contributions from separate

target cells sum linearly, so that the extracellular neurotropin concentration present
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at target site x at time t is proportional to a weighted sum of local target cell activity:

N(x, t) ∝
∑

y

G(x − y)ay(t) (4.11)

The neurotropin spreading kernel G(x − y) describes the fraction of neurotropin

released from target site y that spreads to target site x, and is a nonincreasing function

of distance ‖x− y‖.

3. Neurotropin uptake is proportional to source cell activity

A growth cone’s neurotropin uptake is gated by its presynaptic activity. The neu-

rotropin sampled by growth cone α at time t is

Nα(t) ∝ aα(t)N(xα, t) (4.12)

4. Presynaptic rate correlations are independent of time

To remove the explicit time dependence from Nα(t), we assume that presynaptic

rate correlations remain unchanging over time. Source cells fire spikes in fixed du-

ration bursts whose time-averaged overlap defines their mutual coactivity Cαβ =

〈aα(t)aβ(t)〉t, which we take to be fixed for each pair of source cells (α, β). Com-

bining equations, the neurotropin sampled by growth cone α from its location xα in

the target layer is

Nα(∀βxβ) ∝
∑

β

Cαβ

∑

y

G(xα − y)A(y− xβ) (4.13)

where ∀βxβ is the set of all axon terminal locations xβ.

The behavior of this expression is relatively insensitive to the exact shapes of A(x −
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y) and G(x − y) so long as both are monotonically nonincreasing functions of distance

‖x − y‖. Both functions distribute the influence of the same target cell activity over a

wider spatial neighborhood, and can be merged into a single spreading kernel without loss

of generality. For convenience, we assume that each axon terminates onto a single target

site, so that A(x − xα) = δ(x − xα). We typically take the neurotropin spreading kernel

to be a peak-normalized Gaussian G(x − y) = exp
[
−‖x−y‖2

2σ2
NT

]
, a choice inspired by the

transistor circuit analysis outlined in Appendix B1.

In this thesis, we will always sample growth cone positions at regular intervals τ , col-

lecting the nth sample at time t = nτ . We say that x
(n)
α is the position of growth cone α

observed at the nth sample, during which

Nα(∀βx
(n)
β ) ∝

∑

β

CαβG(x(n)
α − x

(n)
β ) (4.14)

4.2.2 Transition matrix construction

We are interested in the transition probability Wyxα that a growth cone initially located

at target site xα will have jumped to an adjacent site y after one time step. To derive Wyxα ,

we will make the following assumptions:

1. Growth cone jumps arrive according to a Markov process whose rate is linear

in the sampled neurotropin concentration Nα(∀βxβ).

Growth cones move by rerouting their address-events to different target site circuits.

Due to device mismatch, every filopodial neurotropin integrator in every target site

circuit counts up to a different threshold of sampled neurotropin before triggering a

1Note that it is the height of the Gaussian peak that is normalized, not the area under the peak.
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growth cone jump. As a consequence, the time it takes for a growth cone to exit a

target site varies unpredictably from site to site. In identical gradients, growth cones

speed through target site circuits with low jump thresholds and stall at circuits with

high jump thresholds. To model this variance in jump timing, we assume that growth

cone jumps arrive according to an exponential distribution with a position-dependent

rate.

This jump rate should increase with the sampled neurotropin concentration Nα(∀βxβ),

since filopodia are able to bind larger neurotropin samples and therefore integrate to

threshold faster by using fewer, larger steps. We assume this increase is linear, so

that the probability that an active growth cone α requests a jump from target site xα

within a time step τ is

Pjump(∀βxβ) = (1 − exp [−λNTNα(∀βxβ)τ ]) (4.15)

λNT is a free parameter relating neurotropin concentration to time.

2. Growth cone jumps are explicitly directed with a probability that depends on

the magnitude of the local neurotropin gradient ‖∇xαNα(∀βxβ)‖.

Since a growth cone requests an update every time one of its neurotropin accumu-

lators overflows, extracellular neurotropin alone is sufficient to trigger an unending

stream of jump requests, even without a detectable gradient. The presence of a gra-

dient biases these automatically generated jumps toward a preferred direction. The

stronger the gradient, the stronger the bias.

For simplicity, we assume that direction biasing is all or nothing. Directed jumps act

as signal, and point unerringly up the gradient. Undirected jumps act as noise, and

their orientations are uniformly distributed over all available directions. Direction
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biasing is a race between two independent processes; if the gradient picks a direction

before the concentration triggers the actual jump, the jump is directed; otherwise it

is undirected. We treat this switch from noise to signal as a random event that occurs

with a probability that depends on the gradient magnitude. The probability that a

given jump is directed is

Pdir(∀βxβ) = 1 − exp [−λdir‖∇xαNα(∀βxβ)‖] (4.16)

The proportionality constant λdir is a free parameter.

3. A growth cone can jump at most once per time step.

We pick a time step τ that is short enough to allow a growth cone to jump at most

once per time step from its initial site xα, always to some adjacent target site y, so

Wyxα = 0 if ‖xα − y‖ > 1. The growth cone remains at xα if it fails to jump during

the time step, so Wxαxα = 1−Pjump(∀βxβ). The remaining probability Pjump(∀βxβ)

is distributed among the adjacent sites according to jump type. Jumps are directed

with probability Pdir(∀βxβ), and flow to the adjacent site y∗ that is most aligned with

the sampled gradient direction, where

y∗ = arg max
y

[(y − xα) · ∇xαNα(∀βxβ)] (4.17)

Jumps are undirected with probability 1 − Pdir(∀βxβ), and distribute evenly among
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all adjacent sites. Summarizing,

Wyxα =





1 − Pjump(∀βxβ), y = xα

Pjump(∀βxβ) {Pdiff(y,xα)(1 − Pdir(∀βxβ))

+ Pdir(∀βxβ)} , y = y∗

Pjump(∀βxβ) {Pdiff(y,xα)(1 − Pdir(∀βxβ))} , ‖y − xα‖ = 1,

y 6= y∗

0, ‖y − xα‖ > 1

where Pdiff(y,xα) is the probability that an undirected jump originating at xα ter-

minates at y. For now, xα and y refer to target site coordinates, so Pdiff(y,xα) =

1/Y (xα), where Y (xα) is the number of target sites y adjacent to the current site

xα. For a honeycomb lattice, Y (xα) = 3 everywhere except the array boundaries.

Pdiff(y,xα) is less trivial when the state vectors xα and y encode more complicated

order parameters.

4.3 Population parameters

Typically we are less interested in tracing individual growth cone trajectories than in

recruiting some aggregate population behavior to perform a useful computation whose

progress can be characterized by a single population parameter. It would be easier to work

with a transition matrix W that is assembled directly from this population parameter in-

stead of cobbling the parameter together after the fact from a W assembled from individual

growth cone positions xα. In this section, we introduce two parameters to define and con-

trol population behavior: an uptake parameter that describes growth cone motivation, and

an order parameter that describes the problem to be solved. We can program the growth
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cone population to execute a particular computation by shaping the form of the uptake

parameter to match the form of the order parameter for the desired operation.

4.3.1 Uptake parameter

The first goal of every growth cone α is to maximize its equilibrium neurotropin up-

take N
(∞)
α . For a given set of presynaptic coactivities Cαβ and target layer distances

r
(n)
αβ = ‖x(n)

α − x
(n)
β ‖ separating growth cones α and β at sample n, the average amount of

neurotropin growth cone α can expect to receive from all coactive growth cones β during

sample n is

N (n)
α =

∑

β

CαβG(r
(n)
αβ ) (4.18)

Since G(r) is a monotonically nonincreasing function of target layer distance r, a perfectly

guided growth cone should move to minimize the distances separating it from coactive

neurotropin sources. We can formalize this statement by defining the uptake parameter Uα

for a given growth cone α to be the average distance separating growth cone α from another

growth cone β, weighted by the coactivity between the two growth cones:

U (n)
α =

∑
β Cαβr

(n)
αβ∑

β Cαβ
(4.19)

We average the uptake parameters of the individual growth cones to obtain the population

uptake parameter U (n) for the full axon projection:

U (n) =

∑
α,β Cαβr

(n)
αβ∑

α,β Cαβ
(4.20)
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The density constraint restricts the number of neighbors allowed at a given separation r,

forcing growth cones to prioritize distances for minimization according to coactivity. The

shape of the final configuration is implicitly encoded in the set of input coactivities Cαβ ,

which we can manipulate directly to specify a desired solution.

4.3.2 Order parameter

In order to harness collective growth cone motion to solve a specific problem, we need

to select coactivity patterns that align the goals pursued by the growth cone population

with those implied by the task. To facilitate this choice of presynaptic stimuli, we devise

an order parameter whose value decreases to a minimum as the system approaches the

intended endstate of the desired computation. The form of the order parameter is obviously

specific to each problem and generally not unique. In this thesis we focus on the problem

of retinotopy, the degree to which a population of axon terminals reprise the topological

relations between their projecting source cells. We can parameterize retinotopy in two

different ways.

4.3.2.1 Relative retinotopy

In a retinotopic mapping from source layer to target layer, adjacent source cells project

axon terminals to adjacent target sites. We can describe the retinotopy of an axon terminal

projected by a single source cell α in relative terms by collecting the pairwise distances

r
(n)
α(α+fi)

separating it from the axon terminals projected by adjacent source cells α + fi

in the nth sample, where fi is the unit vector oriented along the ith edge exiting node α

in the lattice of source cells (Figure 4.3(a)). Perfect retinotopy is attained when each of

these pairwise separations is minimized, subject to the density constraint. We average the

instantaneous pairwise separations r
(n)
α(α+fi)

to obtain the retinotopic order parameter Φ
(n)
α
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Source layer Target layer
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Figure 4.3: Retinotopic order parameters

Retinotopic order parameters Φα for the axon terminal projected by source cell α. Left: source layer; right:

target layer. (a) Relative retinotopy. Φα is the average of the target layer distances rα(α+fi) = ‖xα − xα+fi‖
that separate the axon terminal projected by source cell α from the axon terminals projected by adjacent cell

bodies (α + fi) in the source layer. (b) Absolute retinotopy. Φα is the distance rα = ‖xα − yα‖ separating

the growth cone (white) from a fixed reference site (red) in the target layer.

for axon terminal α during sample n:

Φ(n)
α =

1

Zα

∑

i

r
(n)
α(α+fi)

(4.21)

where Zα is a normalization constant. We can track the retinotopic refinement of the entire

axon projection by averaging all of the pairwise separations into a single population order

parameter Φ(n):

Φ(n) =
1

Z

∑

α,i

r
(n)
α(α+fi)

(4.22)
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where Z =
∑

α Zα is a normalization constant.

The density constraint restricts the range of rα(α+fi) to nonzero values, so Φ(n) is mini-

mized when all of the rα(α+fi) = 1, indicating that the axon terminals projected by adjacent

cells in the source layer remain adjacent in the target layer. Thus, the value of the order

parameter is minimized by the state of perfect retinotopy and increases monotonically with

retinotopic deviation, exactly as desired.

We will return to this order parameter when we study unsupervised self-organization in

Chapter 7.

4.3.2.2 Absolute retinotopy

Another way to characterize retinotopy is to select a perfectly retinotopic axon order-

ing2 and compare each axon terminal’s position yα within that desired endstate with its

current position x
(n)
α . Each axon terminal is associated with a unique absolute position yα

in the target layer, and its retinotopy is measured by its distance r
(n)
α = ‖x(n)

α −yα‖ off this

mark (Figure 4.3(b)). The order parameter for axon terminal α at sample n is simply

Φ(n)
α = r(n)

α (4.23)

Φ
(n)
α is defined only in terms of the axon terminal’s own position relative to a fixed target

site, without reference to the positions of the other axon terminals, so individual axon

terminals are free to minimize their own order parameters independently.

2Map retinotopy is invariant under rotation, translation, and mirror reversal, but each of these symmetries
can be broken by imposing sufficiently irregular layer boundaries or by fixing the desired position of one
or more axon terminals within the target layer. A perfectly retinotopic solution is unique once all of these
symmetries have been broken.
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We will use this order parameter to characterize supervised attraction in the next chap-

ter.

4.4 Empirical transition matrix

In this section, we introduce a procedure to measure an empirical transition matrix

directly from data collected from the Neurotrope1 system. We construct this experimental

W by reading connection maps from the lookup table at regular sampling intervals τ and

observing the change in each axon terminal order parameter Φ
(n)
α between consecutive

samples. The procedure is as follows:

1. Construct the marginal probability P (n)(r).

Pair order parameter values from consecutive maps. Count the number #(∗, r) of

observed pairs {Φ(n+1)
α ,Φ

(n)
α } with initial order parameter Φ

(n)
α = r. This number di-

vided by the total number #(∗, ∗) of pairs is the probability that a randomly selected

growth cone possessed order parameter r at time t = nτ .

P (n)(r) =
#(∗, r)
#(∗, ∗) (4.24)

2. Construct the conditional probability P (n)(s|r).

Count the number #(s, r) of pairs with initial order parameter Φ
(n)
α = r and final

order parameter Φ
(n+1)
α = s. This number divided by #(∗, r) is the conditional

probability that a randomly selected growth cone jumped from order parameter r at

time t to order parameter s at time t + τ .

P (n)(s|r) =
#(s, r)

#(∗, r)
(4.25)
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3. Construct the stationary transition probability Wsr .

If the conditional probability distribution remains the same for consecutive obser-

vations over the course of the experiment, then we can assume that the conditional

probability is stationary and therefore the system is Markov. Under this assumption,

we can treat the time series of system states as an ensemble. We average P (n)(s|r)

over all n to find the stationary transition probability Wsr .

Wsr =
1

Z

Z−1∑

n=0

P (n)(s|r) (4.26)

Z is the total number of samples used to construct W.

4.5 Example: Single growth cone-synapse pair

To demonstrate these transition matrix techniques, we will analyze the simplest non-

trivial neurotropic attraction scenario, that of a single mobile growth cone coactive with a

single anchored synapse (Figure 4.4). The synapse is permanently fixed at target site y and

stimulates neurotropin release from the surrounding target cells, creating a concentration

peak centered on y. The growth cone also induces neurotropin release from target cells

near its own location x, but is free to shift its location over time. Without competing at-

tractors, a perfect gradient-climbing growth cone should move to the synapse position and

stay there, so the uptake parameter is simply the number of edges r currently separating

the growth cone from the synapse. We would like to characterize how well the synapse

can attract the growth cone, so the order parameter is also r. Since the synapse attracts

the growth cone to a predetermined position, we say that the synapse instructs growth cone

migration and that this is a simple case of supervised learning.
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Figure 4.4: Pair attraction

An anchored synapse attracts a mobile growth cone. (a) A growth cone located at x is separated by r edges

from a synapse located at y. Both axon terminals (blue) excite postsynaptic activity in neighboring target

cells (red), releasing neurotropin to spread along the lattice edges (green). (b) Top: neurotropin concentration

N (r) sampled by the growth cone; bottom: neurotropin gradient ∇rN (r) sampled by the growth cone.

4.5.1 Model transition matrix

The transition matrix for this order parameter is a 63×63 element square matrix whose

columns correspond to an initial separation r and whose rows correspond to the subse-

quent separation s. Since the growth cone can only occupy the limited number of discrete

target sites implemented on the Neurotrope1 chip, r and s assume integer values ranging

from 0 up to a maximum of 62, which is the number of edges separating diagonally op-

posite corners of the rectangular array. Boundary conditions for the finite array introduce

a dependence on the synapse location y, which we will eliminate when we generalize to

population behavior in the next chapter.
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4.5.1.1 Construct W(y)

We choose a time step short enough to permit the growth cone to jump at most once

between consecutive observations. The resulting transition matrix W(y) has nonzero ele-

ments only on or immediately adjacent to its diagonal. Elements W(r±1)r(y) immediately

below or above the diagonal are the probabilities that a growth cone initially at r jumps one

edge toward or away from its synapse. An element Wrr(y) on the diagonal is the proba-

bility 1 − Pjump(r) that a growth cone at r has not jumped to a new location after one time

step.

Pjump(r) can be broken down into the probabilities for directed and undirected jumps,

which must be apportioned between the adjacent transition probabilities W(r±1)r(y). From

the perspective of the growth cone, the sampled neurotropin gradient points directly to-

ward its synapse, which is conveniently located at the zero of the separation coordinate r.

Directed jumps automatically orient toward lower r, so we can assign all directed jump

probability Pdir(r) to W(r−1)r(y). Undirected jumps are divided between adjacent nodes

according to the probability Pdiff(r, r ± 1|y) that the adjacent node is located at separation

(r ± 1) from a synapse located at y.

Our recipe for the elements of W(y) can be summarized as

Wsr(y) =





0, s < r − 1

Pjump(r) {Pdiff(r, s|y)(1− Pdir(r)) + Pdir(r)} , s = r − 1

1 − Pjump(r), s = r

Pjump(r) {Pdiff(r, s|y)(1− Pdir(r))} , s = r + 1

0, s > r + 1
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4.5.1.2 Compute Pjump(r) and Pdir(r)

Pjump(r) and Pdir(r) both depend on the neurotropin sampled by the growth cone when

it is located r edges away from the synapse. Neurotropin emanates isotropically from a re-

lease site, so the neurotropin concentration at any target site depends on the radial distances

separating it from the release sites at each of the two axon terminals. The growth cone sam-

ples neurotropin from the center of its own release site, so the neurotropin observed by the

growth cone depends solely on its distance from the synapse release site:

N(r) ∝ exp

[
− r2

α

2σ2
NT

]
+ ρGC (4.27)

The first term in this expression is the peak-normalized Gaussian spreading kernel that rep-

resents the portion of synapse-induced neurotropin release that percolates r edges to the

growth cone from the synapse position. The width σNT of the Gaussian is a free parame-

ter. The ρGC term represents the neurotropin release stimulated by the growth cone from

its own location, and is the ratio of the postsynaptic spike rates induced by the growth

cone and the synapse. ρGC is a free parameter, and is presumed to be less than one since

neurotransmission is more efficient at a synapse.

Given this expression for the sampled neurotropin concentration, the probability Pjump(r)

that the growth cone jumps away from its initial position at separation r during a unit time

step is

Pjump(r) = 1 − exp [−λNTN(r)] (4.28)

where λNT is a free parameter. The probability Pdir(r) that a particular growth cone jump
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Figure 4.5: Y (r,y)

(a) The target site y (blue dot) occupied by a synapse acts as a static attractor for a coactive growth cone.

All other target sites x (red dot) can be grouped in concentric rings according to the number of lattice edges

r = |x− y| separating them from the attractor (red lines). (b) Number Y (r,y) of target sites located r edges

away from a reference target site y located in a corner of the array (top) or the center of the array (bottom).

initiated from a node at separation r is directed is

Pdir(r) = 1 − exp [−λdir‖∇rN(r)‖] (4.29)

where λdir is a free parameter.

4.5.1.3 Compute Pdiff(r, s|y)

Pdiff(r, s|y) is the probability that an undirected growth cone moves by chance from

a node at separation r to a node at separation s, given that the synapse is located at y.

For short time steps, growth cones can make at most one jump, so Pdiff(r, s|y) = 0 for

|r − s| > 1. Moreover, in a honeycomb lattice there are no edges connecting nodes at the
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same r, so jumps are directed either inward or outward and Pdiff(r, r|y) = 0.

An undirected jump is equally likely to follow any of the available edges out of its node,

so the probability Pdiff(r, r ± 1|y) that an unguided growth cone jumps by chance from r

to r ± 1 is the fraction of edges exiting its current node at r that lead to adjacent nodes at

r ± 1, which we will approximate as

Pdiff(r, r ± 1|y) ≈ Y (r ± 1,y)

Y (r − 1,y) + Y (r + 1,y)
(4.30)

Y (r,y) is the number of lattice nodes located r edges away from target site y (Figure

4.5(a)). Each target site defines its own set of concentric rings of equidistant nodes, whose

number varies with the position of y relative to the boundaries. A synapse located in a

corner of the array can be separated from its growth cone by up to twice as many edges as

one located in the center of the array (Figure 4.5(b)).

4.5.2 Jump moments of W

To obtain some insight into the dynamic properties of our transition matrix, we intro-

duce indicators called jump moments. The kth jump moment µk(r) of a transition matrix

W is defined to be

µk(r) =
∑

s

(s − r)kWsr (4.31)

The first jump moment µ1(r) = 〈∆r〉 is the expected jump ∆r in the value of r over

one time step. That is, if a growth cone is initially separated from the synapse by a distance

r, at the next time step we expect to find it at a site located r+〈∆r〉 away from the synapse.

In the absence of noise, 〈∆r〉 describes deterministic growth cone motion. Sample 〈∆r〉
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Figure 4.6: Jump moments

Sample transition matrix jump moments and predicted stationary distribution for Pdir(r) = 0 (blue) or

Pdir(r) > 0 (red). (a) 〈∆r〉 is the expected change in r over one time step. (b) 〈〈∆r〉〉2 is the variance

in ∆r. (c) The stationary distribution P (∞)(r) is the eigenvector of W with eigenvalue 1.

functions are plotted in Figure 4.6(a). The red line is the first jump moment of a transition

matrix constructed from Pdir(r) > 0, corresponding to neurotropic attraction, and the blue

line is constructed from Pdir(r) = 0, corresponding to purely random motion. Deviations

from the blue line reveal the presence of directed jump biasing.

Notice that 〈∆r〉 is generally nonzero even when Pdir(r) = 0. The inherent geometry of

our order parameter combine with the boundary conditions of the array to bias the growth

cone toward intermediate r even in the absence of explicit direction. 〈∆r〉 is positive at

low r, since there are more sites located at intermediate r than at low r. Each hexagonal

lattice node has three neighbors, so in an infinite hexagonal array there are 3r sites located

a distance r > 0 from an attractor and 1 site at r = 0. If a growth cone is equally likely

to jump to any of its three neighbors, the probability that a growth cone will jump outward

to an attractor separation r + 1 instead of inward to r − 1 is proportional to the number of

neighbors at the higher separation. This probability is 1 at r = 0 and falls asymptotically

toward 1/2 as r increases. At high r, there is no net bias to jump inward or outward, so
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〈∆r〉 ≈ 0. In a finite array, the number of sites at high r falls to zero as r exceeds the array

bounds, so there are more sites located at intermediate r than at high r and 〈∆r〉 becomes

negative at high r. The zero crossing for 〈∆r〉 in a finite array is located near the separation

r with the largest number of sites.

The variance 〈〈∆r〉〉2 = µ2(r) − µ2
1(r) is plotted in Figure 4.6(b). 〈〈∆r〉〉2 reflects the

propensity for a growth cone to make any jump, directed or not, and therefore tracks the

sampled neurotropin concentration N(r). Higher moments describe deviations from the

Gaussian distribution. The third moment encodes skewness, the asymmetry of the distribu-

tion peak, while the fourth moment encodes kurtosis, the thickness of the distribution tails.

We will not concern ourselves with higher moments, since their information is subsumed

by the full transition matrix.

We use the full transition matrix to predict the stationary distribution P (∞)(r) by com-

puting the principal eigenvector of W, which is plotted in Figure 4.6(c). For random

motion, P (∞)(r) is proportional to Y (r,y). Neurotropic attraction shifts this probability

toward r = 0.

4.5.3 Empirical transition matrix

To test our model transition matrix, we compare its predictions with actual chip data.

Figure 4.7(a) shows the empirical transition matrix assembled from connection maps down-

loaded from the Neurotrope1 system over the course of a refinement experiment consisting

of 225000 randomly selected stimuli presented according to the population supervised at-

traction protocol that will be introduced in the next chapter. During this time, no growth

cones were observed at certain large separations, so we have no estimate of Wsr for those
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Figure 4.7: Model fit to data

(a) Empirical transition matrix. (b) Model transition matrix. (c) Expected separation change 〈∆r〉 for em-

pirical (black dots) and model (red line) transition matrices. (d) Separation change variance 〈〈∆r〉〉2. (e)

Stationary separation distribution P (∞)(r), computed from transition matrix principal eigenvector.

values of r3. Extremely large growth cone-synapse separations are seldom observed during

short experiments, since there are few growth cone configurations that permit these sepa-

rations. However, such rare events exert little influence on system dynamics, so once we

have accumulated enough data to construct a reasonable estimate of W, we can use its

principal eigenvector to predict the stationary distribution P (∞) without having to wait for

3A value of r that is not observed during an experiment constitutes an inaccessible state, for which the
entry transition probability Wrs is 0 for all s. We typically assign the exit transition probability Wsr to be 0
for all s, dropping the state out of the transition matrix entirely, although an equally valid heuristic would be
to assign Wrr = 1 and W(s6=r)r = 0.
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the system to completely converge.

4.5.4 Model fitting

We fit the empirical transition matrix (Figure 4.7(a)) with the model transition matrix

(Figure 4.7(b)) by varying the free parameters by hand until the jump moments of the model

roughly match the data, as shown in Figure 4.7(c) and (d). The stationary distributions

predicted by the principal eigenvectors of the two transition matrices are overlaid in Figure

4.7(e), and show reasonably good agreement.

We can validate some of the assumptions of our model by comparing its predicted dy-

namics with those of the data. Figures 4.8 and 4.9 show the jump probability P
(n)
jump(r) and

one step transition probabilities W
(n)
(r±1)r as functions of time step n and initial separation r

from a single static release site. The top row of each figure is compiled from chip data col-

lected using the supervised attraction protocol that will be introduced in the next chapter,

and the bottom row is the model whose free parameters have been tweaked by hand to fit

the data. In Figure 4.8, the jump probabilities asymptote toward 1 exponentially with time,

as befits a Markov process. Figure 4.9(a) shows that the jump rates fall off with distance

from the release site, suggesting a Gaussian concentration peak centered on the release site.

Figure 4.9(b) shows the probability that the growth cone jumps toward its synapse. This

probability is high at intermediate distances, but falls sharply at short and long distances,

which is consistent with a function of the gradient of a Gaussian.

In the next chapter we will apply these techniques to a supervised learning problem.
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Figure 4.8: Time dependence of Pjump and W

Top: data. Bottom: model. Color denotes separation r. (a) P
(r)
jump(n). The probability of a jump asymptotes

to 1 exponentially with n. (b) W
(n)
(r−1)r is the probability that a growth cone has jumped one step toward its

synapse after n time steps. (c) W
(n)
(r+1)r is the probability that a growth cone has jumped one step away from

its synapse after n time steps.

84



20 40 60
r

0.2

0.4

0.6

0.8

1

PjumpHnLHrL

20 40 60
r

0.2

0.4

0.6

0.8

1

WHr-1L rHnL

20 40 60
r

0.2

0.4

0.6

0.8

1

WHr+1L rHnL
20 40 60

r

0.2

0.4

0.6

0.8

1

PjumpHnLHrL

20 40 60
r

0.2

0.4

0.6

0.8

1

WHr-1L rHnL

20 40 60
r

0.2

0.4

0.6

0.8

1

WHr+1L rHnL

0

45
n

(a) (b) (c)

Figure 4.9: Separation dependence of Pjump and W

Top: data. Bottom: model. Color denotes initial separation r. (a) P
(n)
jump(r). (b) W

(n)
(r−1)r . (c) W

(n)
(r+1)r .
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Chapter 5

Supervised Pair Attraction

In this chapter we apply the transition matrix techniques developed in the previous chap-

ter to analyze supervised pair attraction in the Neurotrope1 system, with and without the

density constraint.

5.1 Stimulus protocols

Our eventual goal is to study the general case of unsupervised behavior of a population of

migrating growth cones that interact via neurotropic attraction and volume repulsion. This

is a complicated problem, which we will build up to in two stages.
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5.1.0.1 Unsupervised self-organization

In the general case of unsupervised self-organization introduced in Chapter 2, a cluster

of growth cones is activated simultaneously and its coactive members converge spatially

within the target layer. A growth cone participates in multiple clusters, each tugging it in a

different direction until it achieves a consensus-satisfying position. To prevent all growth

cones from collapsing onto the same target cell, a density constraint states that only one

growth cone can occupy a given target site at a time. A growth cone that wishes to move

must first push aside any other growth cone obstructing its path.

There are thus two types of growth cone interactions: mutual attraction between coac-

tive growth cones, and unilateral displacement of an inactive growth cone by an active

growth cone. Attraction between coactive growth cones fosters cooperation within clus-

ters, whose members band together to defend territory in the target layer; displacement

of inactive growth cones fosters competition between clusters, whose members expel non-

members from their territory. The migration of an individual growth cone is guided by

its membership in different sets of overlapping clusters. This cluster membership roster

is the program that instructs the development and final configuration of the growth cone

population, using only an initial configuration as input.

5.1.0.2 Supervised pair attraction

Our first simplification is to select a set of simple, nonoverlapping coactivity clusters

that will be easy to analyze. The simplest nontrivial cluster consists of a single pair of

axon terminals that are coactive with one another and no other. When perfectly guided

by a rule that translates correlated activity into spatial proximity, the two axon terminal
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(a) (b) (c)

Figure 5.1: Paired attraction mechanisms

Paired attraction in the presence of a weak global attractor. (a) Tidal attraction. Growth cones arrive at

adjacent locations by moving independently to a weak global attractor. (b) Unsupervised local attraction.

Growth cones mutually attract, then move as a pair to a weak global attractor. (c) Supervised local attraction.

A fixed synapse (red) strongly attracts a mobile growth cone (green), overriding the weak global attractor.

positions should exactly coincide. The target layer distance r separating these two positions

is therefore a good measure of the mutual attraction between the axon terminals.

The simplest paired stimulus protocol would be to activate two growth cones simulta-

neously and observe their attraction, as quantified by r. However, in an imperfect system

like a neuromorphic chip, systematic anisotropies can establish activity-independent gra-

dients that tug mobile growth cones toward a corner of the array. Under these conditions

the corner acts as a global attractor, creating tidal effects that can be difficult to distinguish

from attraction between growth cones (Figure 5.1(a,b)). We can override a weak global

gradient with a strong local attractor if we fix the position of one axon terminal and let the

other roam freely, as if one axon has already formed stable synapses that anchor it in place,

while the other is tipped by a motile growth cone. This type of paired attraction constitutes

a supervised learning task in which the fixed synapse instructs the migration of the mobile

growth cone (Figure 5.1(c)).

5.1.0.3 Supervised pair attraction without bumps

Our second simplification is to remove the density constraint, in order to separate and
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characterize distinct growth cone motion mechanisms. There are two mechanisms to move

a growth cone within the target layer, one internal and one external.

Internally generated moves are called jumps, and are initiated by the growth cone it-

self once it determines the direction of the local neurotropin gradient. A growth cone

binds neurotropin from its location only when it is presynaptically active, and is blind to

neurotropin that appears while it is silent. Upon accumulating a threshold of bound neu-

rotropin, the growth cone jumps from its current node on the discrete lattice of target layer

sites to an adjacent lattice node selected by its calculation of the local neurotropin gradient.

The growth cone sometimes miscalculates the gradient, so some jumps cause undirected

motion.

Externally generated moves are called bumps, and are initiated by one of the growth

cone’s neighbors in order to satisfy the constant density constraint. A growth cone is

bumped from its current node whenever another growth cone jumps in from an adjacent

node. A bumped growth cone is unilaterally displaced to the adjacent node without re-

gard to its own activity or the relative fitness of its former position, so all bumps represent

undirected motion.

Jumps are fundamental to supervised pair attraction, since they mediate the neurotropic

interaction that draws the growth cone to its synapse. Bumps are not, since they only

mediate the density constraint that disambiguates overlapping clusters. Since the activity

of growth cone-synapse pairs do not overlap, each growth cone is uniquely attracted to a

distinct synapse, rendering the density constraint superfluous and permitting us to dispense

with bumps entirely in this special case1. This second simplification allows us to isolate

1Each update request generated by the Neurotrope1 chip identifies a pair of adjacent growth cones whose
positions are to be swapped. To eliminate bumps, we simply program the system to only update the lookup
table entries corresponding to the growth cone that requested the update, leaving its swap partner untouched.
Multiple growth cones can occupy the same target site, but their individual jump requests can be disam-

89



Figure 5.2: Binocular map formation in Xenopus optic tectum

Retinotectal axons form a retinotopic projection onto contralateral tectum, which then relays axons via nu-

cleus isthmus to ipsilateral tectum, where the isthmotectal axon terminals align retinotopically with the stable

contralateral retinotectal projection.

the jump mechanism.

Our strategy will be to first characterize jumps in this second special case of super-

vised attraction without bumps, and then generalize to the first special case of supervised

attraction with bumps.

5.1.1 Experimental protocol

Examples of supervised learning in the brain include classical conditioning in the cere-

bellum, calibration of the vestibule-ocular reflex, and spatial receptive field formation in

the inferior colliculus [58]. The supervised attraction protocol described in this chapter is

most analogous to binocular map formation in Xenopus frog optic tectum (Figure 5.2) [45].

Neighboring retinal ganglion cells project axons to neighboring locations in contralateral

tectum, using activity-independent cues to form a stable retinotopic map. Cells in this map

biguated because only one growth cone is active at a time under the supervised pair attraction protocol.
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Figure 5.3: Supervised attraction protocol

Two separate source cell populations innervate the target layer, one projecting synapses and the other pro-

jecting growth cones. Each growth cone α, γ is coactive with a unique synapse βα, βγ . (a) Presynaptic

spikes arrive in bursts whose average overlap defines coactivity. A growth cone α is coactive only with its

own synapse βα. (b) A synapse βα remains at a fixed target site yβα , neurotropically attracting its growth

cone from location xα. The order parameter for this protocol is the target layer distance rα = ‖xα − yβα‖
separating the growth cone from its synapse, averaged over all growth cone-synapse pairs.

subsequently project to the nucleus isthmus, and thence to ipsilateral tectum, where the

retinotopic map projected from the contralateral eye provides an activity template for the

isthmotectal projection to mimic, resulting in a retinotopic map of the ipsilateral eye that

aligns exactly with the contralateral map. Isthmotectal axons are attracted to their con-

tralateral counterparts.

We will characterize growth cone motion in the Neurotrope1 system by simulating

supervised retinotopic refinement of the isthmotectal projection. In these experiments, two

populations of source cells project axons into the target layer (Figure 5.3). Axons projected

by the first population are tipped by mobile growth cones, corresponding to the dynamic

isthmotectal projection. Axons projected by the second population form stable synapses,

corresponding to the static contralateral retinotectal projection. Each growth cone α is
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coactive with a unique synapse βα, which acts as a fixed attractor that reels the growth cone

toward its retinotopically correct target.

5.1.1.1 Stimulus

All of the experiments described in this chapter use the following paired stimulus pro-

tocol to instruct topographic development:

1. Select a growth cone-synapse pair at random. Every pair is selected with equal prob-

ability, so that on average each of the Z pairs is equally active.

2. Stimulate the growth cone-synapse pair with a burst of spikes at some constant fre-

quency. The burst length should be chosen to elicit at most one jump from the growth

cone.

3. Route each spike to either the synapse or the growth cone. The fraction of spikes

routed to each axon terminal determines its relative neurotransmission efficacy.

4. Repeat.

Under this stimulus protocol, each growth cone-synapse pair is activated separately and

equally, so the coactivity between growth cone α and axon terminal β is

Cαβ ∝ δ(β − βα) + ρGCδ(β − α) (5.1)

where ρGC measures the neurotransmission efficacy of a growth cone relative to a synapse.

The resulting uptake parameter U
(n)
α for an individual growth cone is just the target layer

distance r
(n)
α = ‖x(n)

α − yβα‖ separating the growth cone α from its synapse βα, which

is conveniently identical to the order parameter for absolute retinotopy Φ
(n)
α = r

(n)
α . The
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population uptake and order parameters are equal to the average separation r(n) = 〈r(n)
α 〉

over all Z growth cone-synapse pairs.

Φ(n) = U (n) =
1

Z

∑

α

‖x(n)
α − yβα‖ (5.2)

5.1.1.2 Update

Growth cones are free to move anywhere in the target array, while synapses are an-

chored to fixed locations. The Neurotrope1 system implements this update rule by storing

synapse and growth cone target addresses in separate blocks of the lookup table. Lookup

table update requests computed by the Neurotrope1 chip are applied exclusively to the

growth cone address block. Synapse addresses ignore update requests, remaining constant

over the course of the experiment to instruct the migration of the growth cone population.

Each synapse target address is initialized with the address of the corresponding source cell

to establish a perfectly topographic mapping from source cell to synapse.

5.1.1.3 Sampling

The contents of the growth cone address block are read out at fixed sampling intervals

τ . Each sample consists of the Z growth cone positions indexed in target layer coordinates,

which are immediately translated into relative growth cone-synapse separations r. The

population distribution P (n)(r) of separations r within the nth sample is constructed by

counting the number of appearances of each value of r and normalizing to Z .

We select the sampling interval τ to include approximately Z presynaptic burst stimuli,

which is enough time to allow every growth cone on average one opportunity to jump.

The actual number of opportunities for a given growth cone to jump between samples is
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stochastic, since bursts are targeted randomly.

5.1.1.4 Initialization

Growth cone addresses are initialized with different distributions P (0)(r) for differ-

ent experiments. In a topographic refinement experiment, the growth cone address block

is initialized with a coarsely topographic mapping from source layer to target layer, and

converges over time to a more faithful representation of the source topography. In a topo-

graphic relaxation experiment, the growth cone address block is initialized with a perfect

image of the source layer, and is scrambled by noise to a more sustainable degree of topog-

raphy. We will only examine refinement experiments in this chapter.

5.2 Supervised pair attraction without bumps

In this section we characterize the growth cone jump mechanism in isolation by exam-

ining supervised pair attraction without bumps. We construct a model transition matrix and

fit it to an empirical transition matrix compiled from chip data.

5.2.1 Model transition matrix

For supervised pair attraction, only two neurotropin release sites are active at a time,

one hosted by each axon terminal in a growth cone-synapse pair. Without bumps, axon

terminals in different growth cone-synapse pairs do not interact, so each growth cone is

free to move toward its coactive synapse without being displaced by other growth cones or

distracted by other synapses. The model transition matrix W that describes this population

of independently operating growth cone-synapse pairs is almost identical to the transition
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matrix W(y) that described a single growth cone-synapse pair in the previous chapter. The

only difference is that the order parameter for the single pair task is tied to the location y

of a specific synapse, while the order parameter for the population task is averaged over all

synapse sites.

We can eliminate the synapse-specificity of W(y) by modifying the diffusion proba-

bility Pdiff(r, r ± 1|y). Randomly oriented jumps move the growth cone to an adjacent site

at a new separation of r ± 1 with a probability Pdiff(r, r ± 1) that depends on the lattice

topology and boundary conditions. At the population level, these geometric considerations

are approximated by

Pdiff(r, r ± 1) ≈ Y (r ± 1)

Y (r − 1) + Y (r + 1)
(5.3)

where Y (r) is the number of ways to select synapse sites and arrange growth cones within

the array such that the radial distance separating the synapse from the growth cone is r.

All of the other components of the single pair transition matrix remain the same. The

sampled neurotropin concentration is

N(r) ∝ exp

[
− r2

2σ2
NT

]
+ ρGC (5.4)

where the peak-normalized Gaussian spreading kernel width σNT and the relative growth

cone-synapse activity ratio ρGC are free parameters. The probability for a growth cone to

initiate a jump between consecutive samples is

Pjump(r) = 1 − exp [−λNTN(r)τ ] (5.5)

where the jump rate λNT and the sampling interval τ are free parameters. Finally, the
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probability for a given growth cone jump to be directed is

Pdir(r) = 1 − exp [−λdir‖∇rN(r)‖] (5.6)

where the attraction bias λdir is a free parameter.

From these components we assemble the one step transition probabilities Wsr for the

sampling interval τ .

Wsr =





0, s < r − 1

Pjump(r) {Pdiff(r, s){1 − Pdir(r)} + Pdir(r)} , s = r − 1

1 − Pjump(r), s = r

Pjump(r) {Pdiff(r, s){1 − Pdir(r)}} , s = r + 1

0, s > r + 1

(5.7)

5.2.2 Parameter fits

The model as stated has no fewer than five free parameters: the sampling interval τ ,

the relative growth cone-synapse activity ratio ρGC, the neurotropin spreading range σNT,

the jump rate λNT , and the attraction bias λdir. The sampling interval τ is specified by our

sampling program, and is selected to provide every growth cone on average one opportunity

to jump between consecutive samples. τ is long enough for Z presynaptic burst stimuli,

each of which contains enough spikes to elicit at most one jump from the stimulated growth

cone.

Our strategy is to construct a model W by extracting values for the remaining four

parameters from features of the expected separation change 〈∆r〉 and the separation change
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Figure 5.4: Moment fits and predicted P (∞)(r) without bumps

Moments and predicted stationary distribution for empirical (blue) and model (red) transition matrices W.

Top: Vshunt = 0.20V ; middle: Vshunt = 0.30V ; bottom: Vshunt = 0.40V . (a) Separation change variance

〈〈∆r〉〉2. (b) Expected separation change 〈∆r〉. (c) Predicted stationary distribution P (∞)(r) (solid lines)

and measured distribution P (100)(r) (black dots).

variance 〈〈∆r〉〉2 for a single sampling interval τ , and to compare the P (∞)(r) predicted

by the model W with that predicted by an empirical W compiled from chip data. The

parameter values we extract from the special case of supervised attraction without bumps

will carry over to more general cases.

5.2.2.1 Separation change variance 〈〈∆r〉〉2

The separation change variance 〈〈∆r〉〉2 tracks all jumps, directed or not, initiated by

growth cones from an initial separation r, and therefore acts as a proxy for the jump prob-

ability Pjump(r), which in turn reflects the neurotropin concentration N(r) observed by the

growth cone (Figure 5.4(a)). Accordingly, we will use features of 〈〈∆r〉〉2 to fit the three
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free parameters associated with Pjump(r): the relative growth cone-synapse activity ratio

ρGC, the spreading range σNT, and the jump rate λNT .

〈〈∆r〉〉2 is flat at large r, where the only neurotropin available to the growth cone is

the weak constant release it triggers from its own location. This small constant directly

reflects the growth cone’s presynaptic activity, which determines ρGC. At low r, 〈〈∆r〉〉2

consists of a sharp spike at r = 0 riding atop a broader, shallower peak. The sharp spike

is an implementation-specific artifact that occurs at short distances where the growth cone

and synapse are forced to share transistor circuits. The broad peak tracks the spread of

neurotropin released from the synapse position. The width of the broad peak determines

the spreading range σNT, and the height determines the jump rate λNT .

5.2.2.2 Expected separation change 〈∆r〉

The sign and magnitude of the expected separation change 〈∆r〉 reflects the balance

between directed and undirected growth cone jumps (Figure 5.4(b)). Negative 〈∆r〉 pull

the growth cone closer to its synapse and positive 〈∆r〉 push it away. The geometry of

the radial coordinate r generates weak positive and negative 〈∆r〉 for low and high r,

respectively. In addition, there is a broad negative trough centered on r = σNT that follows

the gradient of the neurotropin spreading kernel. The net attractive bias is reflected by the

depth of this negative trough, a feature that determines the attraction bias λdir. Larger bias

rates increase the share of directed jumps, pushing 〈∆r〉 more negative.

5.2.2.3 Stationary distribution P (∞)(r)

We test our model W by comparing the P (∞)(r) predicted by its principal eigenvector

with that predicted by the measured W. Figure 5.4(c) shows the empirical and model W
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Figure 5.5: Spreading range σNT

(a) σNT dependence on Vshunt . (b) Stationary 〈r〉 predicted by empirical W (blue) and model W (red) for

different σNT.

eigenvector predictions for P (∞)(r) (blue and red lines), as well as the recorded distribution

P (100)(r) of the 100th sample (black dots). The two eigenvector predictions do not fit the

recorded P (100)(r) because growth cones move slowly without bumps and the population

distribution does not approach equilibrium within 100 samples. However, the model W

prediction does roughly line up with the empirical W prediction, which is the aim of the

parameter extraction.

5.2.2.4 Parameter values

Applying these heuristics to data collected from the chip, we extract the following pa-

rameter values: λNT = 0.06 jumps/τ , λdir = 10, ρGC = 0.1. We manipulate the spreading

range σNT directly with the gate bias Vshunt, which controls the strength of the constant de-

cay current at each lattice node. Increasing Vshunt reduces the range of neurotropin spread

by shunting more current closer to the release site. The relation between σNT and Vshunt is

plotted in Figure 5.5(a).

Reducing σNT improves growth cone localization. Figure 5.5(b) shows the stationary
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Figure 5.6: Time evolution of 〈r〉 without bumps

Solid lines: Average growth cone separation 〈r〉 within the nth sampled distribution. Dashed lines: Average

growth cone separation 〈r〉 after n iterations of the empirical W on the initial distribution. (a) Empirical W
constructed from first 50 samples only. (b) Empirical W constructed from all samples.

value of the average separation 〈r(n)〉 =
∑

r rP (n)(r), as computed from the eigenvector

predictions of P (∞)(r) for the empirical W (blue) and the model W (red). The model

W predictions line up reasonably well with the empirical W predictions for large σNT,

but transition probabilities are harder to estimate when growth cone jump events are infre-

quent, so at low σNT the model W prediction deviates from the empirical W prediction.

Nevertheless, the general trend is that smaller σNT yield lower predicted 〈r(∞)〉 values.

5.2.3 Time evolution

The price of better localization is slower convergence. Figure 5.6 shows the time evo-

lution of 〈r〉 from its initial value for different choices of Vshunt, as measured directly from

samples recorded during a refinement experiment and as predicted by iterating an empiri-

cal W on the initial distribution P (0)(r). 〈r〉 decreases toward its steady-state value more

slowly at higher values of Vshunt, which are associated with lower predicted 〈r(∞)〉 val-

ues. Even at low values of Vshunt, the recorded 〈r〉 does not approach its steady-state value
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within the sampled timeframe. The sampling interval in these experiments is about 5 min-

utes, so it is impractical to simply collect samples until the system converges. Instead, we

must rely on the eigenvector prediction of the empirical W to estimate the final 〈r〉.

The validity of the eigenvector prediction relies on the assumption that W is stationary.

This assumption is necessary both to construct W from the time series average of distri-

bution samples P (n)(r) and to predict long term behavior from short sample runs. We can

evaluate this assumption by comparing W constructed over different lengths of time. We

divide our time series of collected P (n)(r) samples into nonoverlapping training and test

subsets. The first 50 samples constitute the training set, which we use exclusively to esti-

mate W using our standard procedure. We then construct a new time series of predicted

P (n)(r) by iterating W on P (0)(r) and compare this predicted time series with the actual

time series.

Figure 5.6(a) shows the time evolution of P (n)(r), as actually recorded (solid lines) and

as predicted by the W assembled from the first 50 samples (dashed lines). The time course

predictions track the data in the training set fairly well, but do not generalize well to the

test set data, consistently undershooting the remaining samples. The estimated W tends

to overfit the endpoints of its training set, as illustrated in Figure 5.6(b), in which W is

constructed from the entire sample set. However, the final 〈r〉 predictions for both W are

very similar (data not shown). Thus, although the measured W depends on our selection

of training set samples and is therefore not strictly stationary, it is sufficiently stationary to

produce adequate predictions.
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5.3 Supervised attraction with bumps

Having characterized internally generated growth cone jumps, we now reinstate exter-

nally generated growth cone bumps.

5.3.1 Model transition matrix

To model the effect of the density constraint on growth cone motion, we assume that

a nonjumping growth cone gets randomly bumped with uniform probability, regardless of

its initial position relative to its synapse or the boundaries. We use a four step procedure to

construct a model transition matrix W for supervised attraction with bumps.

1. Construct jump matrix J(T ).

Growth cone jumps during a time step T � τ are described by the same one step

transition matrix we used for supervised attraction without bumps in (5.7).

2. Construct bump matrix B(T ).

A growth cone may also be bumped to an adjacent site via displacement by migrating

neighbors. Every bump corresponds to a jump initiated by a mobile neighbor, so the

probability that a growth cone is displaced depends on the rate at which its neigh-

bors jump, which in turn depends on their instantaneous separations from their own

targets. In principle we could compute a joint probability distribution for the separa-

tions of the growth cone and its neighbors, but this would require too much data to

be practical. Instead, we will use a constant mean field approximation Pbump for the

average jump probability within the growth cone population. Any value assumed by

Pjump(r) represents a viable choice for Pbump; since we are interested in growth cone

behavior near their targets, we select Pbump = Pjump(0), which also corresponds to
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the highest possible volatility2.

Assuming all its neighbors are equally active, a growth cone is equally likely to get

bumped from any of the incoming lattice edges. Since this is equivalent to uniformly

distributed noise, bumps displace the growth cone to adjacent states r ± 1 according

to Pdiff(r, r ± 1). We can summarize this bump mechanism in a one-step transition

matrix B(T ) whose nonzero elements are

B
(T )
(r±1)r = Pjump(0)Pdiff(r, r ± 1)

B
(T )
rr = 1 − Pjump(0)

(5.8)

All other elements B
(T )
sr in this bump matrix are zero.

3. Construct motion matrix W(T ).

Growth cones motion during one time step is a combination of the jumps generated

during that time step and their associated bumps. We merge these two mechanisms

into a single transition matrix W(T ) by simply multiplying the jump matrix J(T ) by

the bump matrix B(T ).

W(T ) = B(T )J(T ) (5.9)

4. Iterate W(T ).

We previously selected the sampling interval τ to permit each of the Z growth cones

in the population to initiate at most one jump between consecutive samples. In prin-

2A more principled estimate would be the population average jump probability
∑

r Pjump(r)P (n)(r), but
this depends on the instantaneous separation distribution P (n)(r) and is therefore nonstationary. Our use of a
constant parameter Pbump to model an inherently nonstationary property is justified solely by its surprisingly
good fit to the data.
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ciple, any or all of these jumps could bump the same growth cone, so a growth cone

can potentially move several steps between samples: up to one step due to its own

jump, and up to Z − 1 steps due to bumps from its neighbors. To describe the re-

sulting multistep path, we chop the sampling interval τ into Z identical slices and

construct a transition matrix W(T ) for this smaller time step T = τ/Z . We then

iterate W(T ) Z times to obtain the transition matrix W for the full sampling interval

τ .

W =
[
W( τ

Z
)
]Z

(5.10)

5.3.2 Parameter fits

Adding bumps does not introduce any new free parameters but does require a new value

for the jump rate λNT, which is selected to match features of the separation change variance

〈〈∆r〉〉2 and the expected separation change 〈∆r〉. The remaining free parameters retain

their previously fitted values.

5.3.2.1 Separation change variance 〈〈∆r〉〉2

The separation change variance 〈〈∆r〉〉2 consists of a small peak at σNT that is gen-

erated by the growth cone’s own jumps, riding on top of a much larger baseline that is

generated by bump activity (Figure 5.7(a)). We choose λNT to roughly match this constant

baseline.
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Figure 5.7: Moment fits and predicted P (∞)(r) with bumps

Moments and predicted stationary distribution for empirical (blue) and model (red) transition matrices W.

Top: Vshunt = 0.20V ; middle: Vshunt = 0.30V ; bottom: Vshunt = 0.40V . (a) Separation change variance

〈〈∆r〉〉2. (b) Expected separation change 〈∆r〉. (c) Predicted stationary distribution P (∞)(r) (solid lines)

and measured distribution P (100)(r) (black dots).

5.3.2.2 Expected separation change 〈∆r〉

The expected separation change 〈∆r〉 is also magnified by the addition of bumps (Fig-

ure 5.7(b)). The positive peak at r = 0 and the negative dip at high r are both caused by

random growth cone motion, as constrained by the geometry of the radial coordinate and

the array boundaries. Directed growth cone jumps reprise the negative trough centered on

σNT, whose depth is used to fine tune λNT.

5.3.2.3 Stationary distribution P (∞)(r)

The P (∞)(r) predictions of the empirical and model W match each other fairly well
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(Figure 5.7(c)). They also agree with the recorded distribution P (100)(r) of the 100th sam-

ple, since bumps significantly enhance growth cone volatility, causing the population dis-

tribution to converge toward P (∞)(r) much more quickly.

The shape of P (∞)(r) depends on σNT. At low σNT P (∞)(r) is bimodal, with a broad

peak at intermediate r that mirrors the distribution expected if growth cones diffused ran-

domly within the target layer, and a sharper peak at low r caused by neurotropic attraction

of growth cones to their synapses. Increasing σNT suppresses the diffusion peak and broad-

ens the attraction peak.

5.3.2.4 Parameter values

Introducing bumps dramatically magnifies the base jump rate λNT beyond its fitted no-

bump value. This increase occurs because a growth cone that would normally be trapped for

several sampling intervals at a high jump threshold target site can be bumped prematurely

by another growth cone to a lower threshold target site that is easier to escape. This positive

feedback endows the fitted values of λNT with the σNT dependence plotted in Figure 5.8,

which it inherits from the mean field bump probability Pbump. Because the neurotropin

spreading kernel G(r) is normalized to its peak and not its area, broadening the peak width

σNT increases the total amount of neurotropin released by each postsynaptic spike and
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Figure 5.9: Time evolution of 〈r〉 with bumps

(a) Equilibrium 〈r〉 as a function of σNT, as predicted by empirical W (blue) and model W (red). (b) 〈r〉
evolution recorded from data samples (solid lines) and predicted by empirical W (dashed lines).

elevates the aggregate neurotropin concentration. Since jumps are generated as a function

of the available neurotropin and each jump generates a reciprocal bump, Pbump increases

with σNT, pulling λNT with it.

5.3.3 Time evolution

Bumps elevate growth cone volatility, accelerating convergence at the expense of local-

ization. Figure 5.9(a) plots W predictions for the final average separation 〈r(∞)〉 against

σNT. The predicted 〈r(∞)〉 values are all considerably higher than their no-bump coun-

terparts from Figure 5.5(b). The 〈r(∞)〉 values plotted in Figure 5.9(a) are the projected

endpoints of the time evolutions displayed in Figure 5.9(b), as recorded from chip data

(solid lines) and as retrodicted by the measured W constructed from all available samples

(dashed lines) for different values of Vshunt. Each 〈r〉 evolution is faster than its no-bump

counterpart from Figure 5.6(b); at Vshunt = 0.15V , 〈r〉 achieves its equilibrium value within

100 samples. The price of faster convergence is poorer performance; at Vshunt = 0.45V ,

107



20 40 60
r

0.02

0.04

0.06

0.08

PHnLHrL

20 40 60
r

0.02

0.04

0.06

0.08

PHnLHrL

20 40 60
r

0.02

0.04

0.06

0.08

PHnLHrL

0

150
n

50 100 150
n

0.02

0.04

0.06

0.08

PHnLHrL

50 100 150
n

0.02

0.04

0.06

0.08

PHnLHrL

50 100 150
n

0.02

0.04

0.06

0.08

PHnLHrL

0

62
r

(a) (b) (c)

Figure 5.10: Time evolution P (n)(r) with bumps

Time evolution of separation distribution P (n)(r) with bumps at Vshunt = 0.30V . Top: P (n)(r) as a function

of initial separation r; bottom: P (n)(r) as a function of sample number n. (a) Measured P (n)(r). (b) P (n)(r)
predicted from n iterations of empirical W on measured P (0)(r). (c) P (n)(r) predicted from n iterations of

model W on measured P (0)(r).

〈r〉 actually increases from its initial value.

Convergence dynamics within the full population distribution P (n)(r) are shown in

Figure 5.10, which plots the evolution of the population distribution P (n)(r) from its initial

distribution P (0)(r), as recorded directly from chip data (Figure 5.10(a)) and as predicted

by iterating the empirical W (Figure 5.10(b)) or the model W (Figure 5.10(c)) on P (0)(r).

Over time, smaller values of r become more probable at the expense of intermediate r as the

growth cone moves toward its synapse. Neurotropin does not spread beyond intermediate
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r, so there is little change in P (n)(r) at large r.

Reassuringly, the three P (n)(r) time series shown in the panels of Figure 5.10 display

qualitatively similar features, affirming the validity of the transition matrix approach. The

power of this analysis is that it takes the 63N data points contained in the N sample time

series of P (n)(r), reduces them to the 63×63 elements of the empirical W, and then reduces

them further to the 5 free parameters that are required to specify the model W. The fact

that these 5 numbers suffice to reproduce the major features of P (n)(r) is a testament to the

descriptive capacity of our model.

5.4 Growth cone motion mechanisms

In this section, we take a closer look at how different growth cone motion mechanisms

constrain the performance predicted by our model. There are three sources of growth cone

motion: directed jumps, undirected jumps, and bumps. Directed and undirected jumps are

initiated internally, and bumps are initiated externally. Undirected jumps and bumps both

generate random motion; only directed jumps mediate neurotropic guidance. We explain

the origin of an optimal spreading range in terms of the behavior of each growth cone

motion mechanism.

5.4.1 Directed and undirected jumps

Our model states that without bumps, growth cones move purely on their own initiative,

generating jumps at a rate that depends on the local neurotropin concentration N(r). A

fraction of these concentration-fueled jumps are directed, meaning that their orientation is

deliberately selected to point up the local neurotropin gradient ∇rN(r), and the rest are
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Figure 5.11: Directed and undirected motion without bumps

Black dashed: all jumps; blue: directed jumps only; red: undirected jumps only. (a) Probability of a growth

cone jump during one time step. (b) Expected separation change 〈∆r〉 during one time step. (c) P (∞)(r)
predicted by model W.

undirected, meaning that their orientation is randomly selected. The share of jumps that

are directed depends on the local gradient magnitude ‖∇rN(r)‖.

Figure 5.11(a) decomposes the aggregate jump probability Pjump(r) into its constituent

probabilities for directed and undirected jumps. A growth cone initiates a jump within

one time step with a probability Pjump(r) (black dashed line) that tracks the neurotropin

concentration N(r), which is a Gaussian function of distance r. The number of jumps peaks

at r = 0 and decays with increasing r. The fraction of jumps that are preferentially directed

toward the synapse (blue) follows the gradient magnitude ‖∇rN(r)‖, which begins at zero

at r = 0, rises to a peak at an intermediate r ≈ σNT, and falls to zero again at large r. The

remaining jumps are undirected (red).

Directed and undirected jumps exert opposing influences on net growth cone motion.

Figure 5.11(b) plots the expected change in growth cone-synapse separation 〈∆r〉 over a

single time step, overlaid with the 〈∆r〉 separately predicted by directed and undirected

jumps. Directed jumps all point inward (blue), so their 〈∆r〉 contribution exactly tracks

their probability.
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An undirected jump is equally likely to carry a growth cone to any of its adjacent target

sites, whose distribution of separations relative to the attractor depends on the geometry of

the array. If there are Y (r) sites in the array located r edges from a given synapse, the prob-

ability that a random motion displaces its growth cone by chance from an initial separation

at r to an adjacent site with separation r ± 1 is approximately Y (r±1)
Y (r−1)+Y (r+1)

. Target sites

can be sorted into concentric rings of constant separation from any given reference site,

and each ring can contain up to 3r sites, depending on whether or not it intersects the array

boundaries. At low r, Y (r + 1) � Y (r − 1), so undirected jumping is structurally biased

to push the growth cone away from its synapse. At intermediate r, Y (r + 1) ≈ Y (r − 1),

so random jumps have little net effect. At large r, the array boundaries cut off the number

of available sites, so Y (r + 1) � Y (r − 1), creating a net inward bias whose effect is

largely negated by the low jump rate at high r. This r dependence is reflected in the 〈∆r〉

for undirected jumps (red), which is strongly positive at low r, mostly flat at intermediate

r, and slightly negative at high r.

The aggregate 〈∆r〉 sums contributions from both jump types (black dashed line). The

separation dependence of 〈∆r〉 divides the r domain into three bands of values. At low r,

random motion dominates, creating a strongly positive 〈∆r〉 that repels the growth cone

from its synapse. As r rises, the share of directed jumps increases, creating an intermediate

band of r values at which directed jumps dominate, pushing 〈∆r〉 negative. A growth cone

occupying this directed jump band is strongly attracted to its synapse. Further increases in

r reduce both the directed jump share and the aggregate jump rate, so random motion again

dominates but jumps are very rare and have little net effect except at very large r where the

array boundaries bias random motion to point inward.

The system has a stable fixed point at the zero crossing of 〈∆r〉, where random outward

motion balances directed inward motion. A growth cone that is closer to its synapse is
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randomly displaced by undirected jumps, and a growth cone that is further from its synapse

is deliberately reeled in by directed jumps. The location of this fixed point anchors the

predicted peak of the stationary separation distribution P (∞)(r), as shown by the black

dashed line in Figure 5.11(c). With only directed jumps (blue), the growth cone would

move unerringly to its synapse and remain at that site, so all of the probability in P (∞)(r)

would be located at r = 0. With only undirected jumps (red), the growth cone would tend to

occupy all possible target sites with equal frequency and P (∞)(r) would be approximately

equal to the fraction of sites in the array that are located a distance r from the synapse. The

actual P (∞)(r) is a compromise between these two extremes.

5.4.2 Bumps

Neurotropic attraction is only effective when a growth cone enters spreading range of

its synapse. Without bumps, a growth cone must generate its own motion, relying on

neurotropin received from its synapse to fuel its jumps. If the growth cone is out of range,

it never sees its attractor and rarely moves, stagnant and hopelessly lost.

Adding bumps introduces an external source of random motion that can rescue distant

growth cones from their neurotropic poverty. Bumps continually buffet a distant growth

cone, increasing its opportunities to explore new sites and eventually stumble into its di-

rection band. Once in range, the growth cone jumps straight for its target and tries to stay

there. However, bumps are omnipresent even when the growth cone is inactive and a silent

growth cone has no defense against external bumps, so the growth cone can be kicked out

of range as easily as it is kicked in. Its only recourse is to resume activity and generate

enough directed jumps to recover the ground lost to bumps during periods of inactivity.

Thus, like undirected jumps, bumps are helpful at long r and harmful at short r, but unlike
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Figure 5.12: Directed and undirected motion with bumps

Black dashed: all moves; blue: directed jumps only; red: undirected jumps only; orange: bumps only. (a)

Probability of a growth cone motion during one time step. (b) Expected separation change 〈∆r〉 during one

time step. (c) P (∞)(r) predicted by model W.

undirected jumps, bumps are uniformly distributed over all r.

Figure 5.12(a) shows the contributions of each growth cone motion mechanism to the

probability Pmove(r) that the growth cone moves from its initial position within one time

step. As before, the undirected jump probability (red) peaks at r = 0 and trails off with

increasing r, while the directed jump probability (blue) peaks near r = σNT and falls to

zero at low and high r. A motionless growth cone is bumped by a jumping neighbor with a

constant probability (orange).

The omnipresent bump probability exerts a strong influence on the expected separation

change 〈∆r〉 (Figure 5.12(b)). Bumps are randomly oriented and behave like undirected

jumps, deflecting the growth cone from its synapse at low r, and from the array boundaries

at high r. Adding bumps reinforces the effect of undirected jumps, degrading localization

performance by pushing the zero crossing of 〈∆r〉 to higher r.

At high r, where jumps are rare and random, bumps accelerate convergence. A growth

cone at high r receives scant neurotropic sustenance or guidance from its distant synapse,
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and therefore generates undirected jumps at a glacially slow rate. Eventually, one of these

jumps propels it by chance into its directed jump band, which reels the growth cone in

toward its synapse. The convergence speed of the growth cone population is limited by

the time required for distant growth cones to encounter their basins of attraction. Without

bumps, 〈∆r〉 (black dashed) would track the negligible undirected jump contribution (red)

at high r. Adding bumps increases the rate of random motion, shaking the growth cone

loose from its current position and forcing it to guess a new one. This bump noise is

detrimental at low r, where the initial position is fairly good and will probably be degraded

by random motion. Bump noise is beneficial at high r, where growth cones are stagnant

from lack of neurotropin and it is relatively easy to improve on the current position, which

is known to be very wrong. In each case, adding bumps forces growth cones to blindly

probe their environment at a much faster pace (orange).

The stationary separation distributions P (∞)(r) predicted by each growth cone motion

mechanism are plotted in Figure 5.12(c). Undirected jumps (red) and bumps (orange) are

both noise, and push P (∞)(r) toward the site distribution expected from purely random

motion. The P (∞)(r) peak for undirected jumps favors slightly larger separations than the

P (∞)(r) peak for bumps because undirected jumps are strongly repulsive at low r and only

weakly attractive at high r due to the falloff in jump rate, while bumps are present equally

at all r. Directed jumps (blue) pull all growth cones to their synapses, creating a delta

function peak at r = 0. The final P (∞)(r) (black dashed) peak is intermediate between

these noise and signal peaks, and its height is substantially lower than the P (∞)(r) peak

without bumps (Figure 5.11(c)).

114



10 20 30 40 50 60
r

0.05
0.1
0.15
0.2
0.25
0.3
0.35

PH¥LHrL

10 20 30 40 50 60
ΣNT

5

10

15

20

25
<rH¥L>

1´107 3´107 5´107
n

5

10

15

20

25
<rHnL>

1

62
ΣNT

(a) (b) (c)

Figure 5.13: σNT dependence without bumps

(a) Predicted stationary separation distribution P (∞)(r). (b) Predicted average stationary separation 〈r(∞)〉.
(c) Predicted evolution of average separation 〈r(n)〉.

5.4.3 Neurotropin spreading range σNT

A growth cone moves differently depending on its position relative to its synapse.

Jumps are abundant but undirected at low r, plentiful and mostly directed at intermedi-

ate r ≈ σNT, and rare and undirected at large r. The distances delimiting these three bands

of r values determine the convergence properties of the growth cone population, and vary

with the neurotropin spreading range σNT. The addition of bumps speeds convergence but

degrades equilibrium performance.

5.4.3.1 Jumps only

Growth cone localization performance, as measured by the predicted stationary sepa-

ration 〈r(∞)〉, is optimized by a small non-zero value of σNT (Figure 5.13(b)). When σNT

is too small, neurotropin cannot spread far enough from its release site to communicate

the activity of a synapse to nearby growth cones, so neurotropic attraction fails. Increasing

σNT broadens the Gaussian N(r) peak, extending the range at which a synapse can elicit

jumps from the growth cone, but also pushing both edges of the directed jump band to
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higher r. At low r, this effect is detrimental, since it increases the range at which undi-

rected jumps dominate and pushes the system fixed point to higher r. Increasing σNT too

far thus degrades localization performance.

However, at long distances there are no directed jumps to pull the growth cone toward

the synapse, so the growth cone must rely on the infrequent undirected jumps to randomly

jostle it into the directed jump band. Increasing σNT extends the outer edge of the directed

jump band to higher r, enabling the synapse to attract more distant growth cones. Higher

σNT also elevate the neurotropin concentration at long distances, generating more undi-

rected jumps that can randomly propel the distant growth cone into its directed jump band.

Since the time required for the population to reach steady state is limited primarily by the

slow jump rate of its most distant growth cones, increasing σNT accelerates convergence

(Figure 5.13(c)).

5.4.3.2 Jumps and bumps

Although a growth cone can initiate jumps only during its occasional bursts of activ-

ity, it may be bumped at any time during the long intervening stretches of inactivity. The

correctness of the growth cone’s position is therefore continually undermined by random

motion, and the growth cone can only repair this damage during its brief periods of ac-

tivity. A growth cone that generates insufficient directed jumps while it is active will be

overwhelmed by random bumps while it is inactive.

At short σNT, jumps are rare and directed jumps are rarer, so bumps dominate and

P (∞)(r) reverts to the site distribution expected from purely random motion (Figure 5.14(a)).

Jump frequency increases with σNT, creating a bimodal P (∞)(r), with one peak caused by

jumps and the other peak caused by bumps. As the number of directed jumps rises with
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Figure 5.14: σNT dependence with bumps

(a) Predicted stationary separation distribution P (∞)(r). (b) Predicted average stationary separation 〈r(∞)〉.
(c) Predicted evolution of average separation 〈r(n)〉.

σNT, the jump peak of P (∞)(r) suppresses the bump peak. Further increases in σNT shift

and broaden the unimodal P (∞)(r) peak.

At high σNT, the population converges very quickly to achieve a fairly poor perfor-

mance, as measured by 〈r(∞)〉. At low σNT, the population converges very slowly and

achieves an even worse performance. The optimal σNT combines fairly quick convergence

with fairly good performance (Figure 5.14(c)). Performance is substantially worse than

without bumps, but convergence is much faster in all cases.

5.4.3.3 Optimal σNT

If we consider directed jumps to be signal and random motion to be noise, reducing σNT

lowers signal strength until it hits the irreducible noise level established by the undirected

jump and bump mechanisms. However, reducing σNT also increases the precision encoded

by the signal. This opposition between signal precision and signal strength implies the

existence of an optimal σNT that minimizes the achievable 〈r(∞)〉 (Figure 5.14(b)). We will

elaborate on the origins of this optimal σNT as well as the constraints that fundamentally
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limit 〈r(∞)〉 in the next chapter.
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Chapter 6

Optimal Neurotropin Spreading Range

In this chapter, we examine the constraints that generically limit neurotropic growth cone

attraction. We first investigate the role of random motion on equilibrium performance, both

experimentally and theoretically. We then examine the system parameters that collectively

specify population behavior and the resource considerations that constrain their values. We

conclude by distilling these insights into a simple attraction basin model that explains the

origin of the optimal spreading range. We will find that for a given set of parameter values,

the performance of the specified system is dictated by its ability to trap freely diffusing

growth cones within their basins of attraction, and subsequently guide captive growth cones

to their targets within those basins. Growth cone capture and growth cone guidance have

opposite dependences on the basin radius, implying the existence of an optimal signal range

that balances these two complementary roles.
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6.1 Empirical performance

In this section, we examine the long term behavior of the growth cone population under

supervised pair attraction with bumps. Up to this point we have examined the short term

dynamics of the growth cone population and the long term behavior they predict. To facili-

tate parameter extraction on this short time scale, we tuned our system for very conservative

behavior, sacrificing convergence speed for equilibrium performance, but under these set-

tings the system converged too slowly to observe empirically, forcing us to extrapolate

from the principal eigenvector of the transition matrix W. In this section, we pick more

aggressive system settings in order to observe convergence empirically within a reasonable

time. Specifically, we reduce the number of jump requests required to trigger a lookup table

update, increasing the jump rate but decreasing the directed jump share and increasing the

bump rate. We also increase the presynaptic burst length to allow growth cones to jump

multiple steps within a single sampling interval, increasing jump rate but increasing bump

rate. The net effect is to accelerate convergence but degrade performance.

Figure 6.1 displays population convergence under these new settings for three differ-

ent spreading ranges σNT. Figure 6.1(a) shows convergence at a long σNT, as controlled

by Vshunt; Figure 6.1(b) shows convergence at the optimal σNT
1; and Figure 6.1(c) shows

convergence at a short σNT. The top row of color maps plots the target layer positions of

the growth cones, which are colored according to the source layer coordinates of their pro-

jecting cell bodies. The bottom row shows the evolution of the average separation 〈r(n)〉

within the full growth cone population (black solid line). At each sample n, growth cones

are sorted into quartiles according to individual separations r(n), and the average sepa-

rations within each quartile are also plotted (black dots). For reference, population and

1Increasing random motion also shifts the optimal value of Vshunt , in this case from 0.2V to 0.3V .
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Figure 6.1: Population and quartile 〈r(n)〉 evolution

Coarse initial topography refines or degrades, depending on Vshunt . Top: Topographic color map 200 sam-

ples after initialization. Bottom: Evolution of growth cone-synapse separation 〈r(n)〉, averaged over the

full population (black line) or quartile populations (black dots). Red lines denote 〈r〉 for a completely ran-

dom separation distribution, averaged over the full population (solid) and quartile populations (dashed). (a)

Vshunt = 0.20V . (b) Vshunt = 0.30V . (c) Vshunt = 0.40V .

quartile 〈r(n)〉 are plotted in red for the stationary distribution expected from purely ran-

dom motion. If there were no neurotropic attraction, the measured population and quartile

〈r(n)〉 would converge to these chance levels. Instead, the population 〈r(n)〉 improves from

its initial value at the optimal σNT, but deteriorates at low and high σNT. However, even

low and high σNT are able to maintain some non-trivial level of topography, since their

population 〈r(n)〉 stabilizes at a value well below the chance 〈r(n)〉.

Comparing the long σNT (Figure 6.1(a)) with the optimal σNT (Figure 6.1(b)), we ob-

serve that while the lowest quartile performs worse for long σNT, the highest quartile per-
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forms better. This is consistent with the idea that long σNT are able to rope distant growth

cones in from further away, improving the performance of the highest quartile, but less able

to hold growth cones at their synapses, degrading the performance of the lowest quartile.

Similarly, comparing the optimal σNT (Figure 6.1(b)) with the short σNT (Figure 6.1(c)),

we observe that the lowest quartile performs equally well in both cases, but the highest

quartile of the short σNT unravels almost to chance performance. Again, this is consistent

with the idea that short σNT are able to hold growth cones at their synapses, but unable to

influence distant growth cones, which wander freely.

6.1.1 Equilibrium convergence

The notion that long σNT attract distant growth cones and short σNT confine close

growth cones immediately suggests a simulated annealing scheme in which we initialize

the system with a large σNT in order to catch distant growth cones, and gradually reduce

σNT in order to tie growth cones closer and closer to their synapses. Unfortunately, while

such a scheme might speed convergence, the irreducible and omnipresent undirected jumps

and bumps prevent it from improving equilibrium performance.

We can demonstrate this failure by comparing population evolution at short σNT from

two different initial conditions: coarse topography and perfect topography. Perfect initial

topography starts every growth cone at zero separation from its synapse, automatically

placing it within its own attraction basin. If the failing of the short σNT is that initially

distant growth cones never wander into range of a strong short range synaptic attraction

and remain lost at high r, trapping the system in a local energetic minimum, performance

should improve if all growth cones occupy their global optima to begin with.

122



30 60
r

0.02

0.04

PH0LHrL

50 100 150 200
n

10

20

30

<rHnL>

30 60
r

0.02

0.04

PH200LHrL

(a) (b) (c)

Figure 6.2: Evolution from coarse and perfect topography

Population evolution from coarse (blue) or perfect (red) initial topography for Vshunt = 0.45V . (a) Population

state at initialization. Top, middle: Color maps of coarse (top) and perfect (middle) initial topographic

projections. Bottom: Initial separation distribution P (0)(r). For perfect initial topography, P (0)(0) = 1 off

chart. (b) Mean separation 〈r(n)〉 (solid line) and quartile (dots) evolutions from initially coarse or perfect

topography. Black dashed lines denote quartile breaks for a completely random separation distribution. (c)

Population state at the 200th sample. Top, middle: Color maps at the 200th sample for coarse (top) and

perfect (middle) initial topography. Bottom: Measured separation distribution P (200)(r).

Figure 6.2(a) shows the color maps and separation distributions P (0)(r) for coarse

(blue) and perfect (red) initial topography. Population and quartile 〈r(n)〉 evolutions from

both initializations are overlaid in Figure 6.2(b), and the color maps and measured sep-

aration distributions P (200)(r) at the 200th sample are shown in Figure 6.2(c). Despite

initialization at zero separation, perfect topography relaxes to the same degraded separa-

tions as coarse topography for all quartiles, indicating that short σNT does not suffice to

bind growth cones to their synapses. More generally, localization performance is intrinsic
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Figure 6.3: r(n) trajectories

Top row: Vshunt = 0.20V ; middle row: Vshunt = 0.30V ; bottom row: Vshunt = 0.40V . (a) Instanta-

neous separation r(n) (black) for synapse (24, 20), located at the array center. Red lines indicate maximum

possible separation (solid) and average random separation (dashed) from this synaptic site. Blue lines plot

mean separations within instantaneous population quartiles. (b) Instantaneous separation r(n) for synapse

(24, 40), located at the array edge. (c) Separation evolution for initial quartile groups (blue) and full popula-

tion (black).

to the specific value of σNT, and independent of the initial distribution.

Figure 6.3(a) plots the instantaneous separation r(n) at different σNT for a synapse lo-

cated at the center of the array, equidistant from the boundaries (black). The maximum

possible error is achieved when the growth cone is located at the target site most distant

from the synapse and is plotted for reference (red solid line). For this centrally located

synapse, the most distant target site is located in one of the four array corners, and the

maximum error is roughly half the length of the array diagonal. The separation expected
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by chance for a growth cone moving randomly in the array is also determined by synapse

location. A randomly moving growth cone would be expected to visit every target site in

the array with equal frequency, so the chance error is the average distance between the

synapse and all possible target sites (red dashed line).

At long σNT (top), the synapse error fluctuates with high frequency around the chance

error, consistent with fast undirected jump generation. At the optimal σNT (middle), the

synapse error spends most of its time below chance, consistent with directed attraction. At

low σNT (bottom), the synapse error tends to plateau at all levels between its maximum and

minimum, moving between plateaus in sharp, infrequent hops. The low amplitude jitter

on these plateaus is consistent with jump generation, and the sharp hop between plateaus

is consistent with a long string of consecutive bumps that propel the growth cone a great

distance before it has time to react. A synapse located on the edge of the array exhibits

similar behavior for a correspondingly higher maximum and chance error, as shown in

Figure 6.3(b). Instantaneous quartile breaks are plotted in blue. Quartile membership is

highly fluid, as individual synapse separations freely cross quartile breaks over the course

of the evolution.

In Figure 6.3(c) we classify each growth cone according to its quartile in the initial

map and track the 〈r(n)〉 for each group over the course of the evolution. If growth cone

attraction were strictly monotonic at some short range, we would expect the lowest initial

quartile group error to remain distinct, since growth cones within that group are more likely

to have been captured by their synapses. Instead, all four groups converge to the same

global error as growth cones shuffle between instantaneous quartiles and equalize the mix

of separations within each initial quartile group.

The high turnover of quartile membership indicates that growth cones do not remain
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Figure 6.4: 〈r(n)〉 convergence with and without bumps

Convergence of average separation 〈r〉 at different values of Vshunt with and without bumps. (a) Equilibrium

mean separation 〈r(∞)〉 predicted by empirical W with bumps (red) and without bumps (blue), as a function

of Vshunt . (b) Time evolution of mean separation 〈r(n)〉 recorded from chip data without bumps. (c) Time

evolution of 〈r(n)〉 recorded from chip data with bumps.

tethered to their synapses once attracted. This loss of confinement is associated with intrin-

sic bump noise, and prevents simulated annealing schemes from improving performance.

6.1.2 Bumps

To improve performance we need to reduce the random motion injected by bumps and

undirected jumps. One way to do this is to eliminate bumps entirely, as we did in the

previous chapter. Reverting to the original system settings, Figure 6.4(a) plots the empirical

W prediction for the equilibrium separation 〈r(∞)〉, our proxy for performance, against the

decay transistor gate bias Vshunt, our proxy for spreading range σNT. 〈r(∞)〉 is minimized by

some intermediate Vshunt, which corresponds to an optimal spreading range. Adding bumps

shifts this optimum to lower Vshunt, and elevates 〈r(∞)〉 at all values of Vshunt, quantitatively

degrading the sustainable level of retinotopy. At large Vshunt, 〈r(∞)〉 actually exceeds the

initial value 〈r(0)〉, showing that bumps can unravel even the coarse initial retinotopy.

Bumps also affect convergence speed. Without bumps, growth cones can only move by
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generating their own jumps, an excruciatingly slow process at large values of Vshunt (Figure

6.4(b)). Adding bumps considerably hastens convergence to equilibrium (Figure 6.4(c)).

6.1.3 Gradient measurement averaging

Another way to reduce random motion is to increase the directed jump share. Every

jump automatically generates a complementary bump that disrupts the guidance of other

growth cones. A growth cone jump is only worthwhile if the loss incurred by the bumped

growth cone is exceeded by the gain accrued by the jumping growth cone. By this measure,

each directed jump is guaranteed to at least break even, since it reduces the separation of its

own growth cone by exactly one edge and increases the separation of the bumped growth

cone by at most one edge. On the other hand, an undirected jump can potentially damage

itself as well as its neighbor. Better performance therefore requires an higher proportion of

directed jumps, which we can obtain by averaging multiple jump requests to increase the

precision of the gradient measurement.

The Neurotrope1 chip generates jump requests by transmitting a signal every time a

growth cone circuit accumulates a threshold of sampled neurotropin. Since a presynapti-

cally active growth cone automatically binds neurotropin even in the absence of a detectable

gradient, many of the requested jump directions will be random, selected by stochastic

concentration fluctuations at the filopodia. These undirected concentration-driven jump re-

quests constitute noise in the gradient measurement. The obvious way to reduce this noise

is to average over many gradient measurements by requiring the microcontroller to accu-

mulate multiple jump requests from the same growth cone before actually updating the

relevant lookup table entries. This program tweak improves measurement precision at the

cost of update speed and the additional memory required to store the jump request accu-
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Figure 6.5: r(n) trajectories with averaged gradient measurements

Top: Vshunt = 0.20V ; middle: Vshunt = 0.30V ; bottom: Vshunt = 0.40V . (a) Expected separation change

〈∆r〉 predicted by empirical W. Vertical dashed lines delimit the region dominated by directed jumps. (b)

Measured r(n) trajectory for a growth cone initially located at low r. Horizontal dashed lines delimit the

directed jump region. (c) Measured r(n) trajectory for a growth cone initially located at high r.

mulators. From a resource perspective, the memory requirement quickly becomes onerous,

since each bit of extra measurement precision requires an additional 3 bits of memory to

be allocated to every growth cone in the population, one bit per filopodium.

Increasing measurement precision causes a drastic decline in the total number of jumps,

since it takes much longer for a growth cone to accumulate the multiple thresholds of neu-

rotropin required to initiate a jump. Since the lost jumps encoded a much noisier gradient

measurement, most of them would have been undirected and their elimination increases the

share of directed jumps in the surviving pool of jumps. Random motion is doubly diluted
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because the bumps associated with the lost jumps are also eliminated.

Averaging gradient measurements constrains growth cones to move more deliberately,

as shown in Figure 6.52. Figure 6.5(a) plots the expected separation change 〈∆r〉 for three

different values of Vshunt. Vertical red dashed lines demarcate the directed jump band,

whose lower bound is located at the zero crossing of 〈∆r〉 to the left of the attractive

trough and whose upper bound is located at the highest value of 〈∆r〉 to the right of the

trough. Growth cones to the left of the directed jump band bounce rapidly around the

system fixed point at the zero crossing of 〈∆r〉. Growth cones within the directed jump

band jump toward their synapses. Growth cones to the right of the directed jump band

diffuse randomly until they fall into the directed jump band. The directed jump band cuts

off at low r because the diminishing gradient magnitude |∇rN(r)| reduces the share of

jumps that are directed, and at high r because the diminishing concentration N(r) reduces

both the directed jump share and the total number of jumps. Increasing σNT broadens the

directed jump band and shifts it toward higher r.

Sample r(n) trajectories are plotted in Figure 6.5(b) and (c), in which horizontal dashed

lines denote the directed jump band. Note the complete absence of the plateau-hopping

behavior that characterized the short σNT trajectories in Figure 6.3. The reduction in jump

rate eliminates the long bump chains that can push a growth cone away from its synapse

before it can react. The high frequency jitter associated with undirected jump generation at

long σNT has also vanished. Under these conditions, a growth cone’s motion is dominated

not by bump noise, but by its position relative to its directed jump band.

A growth cone starting from an initial separation r(0) located below the directed jump

2Without averaging, we accumulate 7 jump requests in each vertical direction or 2 in the horizontal di-
rection before executing the requested update, in order to smooth out the effects of the layout anisotropy
described in Chapter 3. With averaging, we raise the execution threshold to 150 jump requests in a vertical
direction and 3 in the horizontal direction.
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Figure 6.6: 〈r(n)〉 convergence with and without gradient measurement averaging

Convergence of average separation 〈r〉 at different values of Vshunt with and without averaging. (a) Stationary

mean separation 〈r(∞)〉 predicted by empirical W with averaging (blue) and without averaging (red), as

a function of Vshunt . (b) Time evolution of mean separation 〈r(n)〉, as recorded from chip data without

averaging. (c) Time evolution of 〈r(n)〉, as recorded from chip data with averaging.

band is randomly shuffled inward and outward by undirected jumps and bumps (Figure

6.5(b)). Random outward motion is bounded by the lower edge of the directed jump band,

which herds wayward growth cones back toward their synapses. Raising σNT moves this

fence further out, allowing the growth cone to roam further from its synapse and thereby

degrading localization performance. A growth cone starting from an r(0) located above the

directed jump band is randomly jostled by bumps that eventually nudge it by chance into

its direction band to slide toward its synapse (Figure 6.5(c)). Raising σNT extends the grasp

of the directed jump band, increasing the chances for the growth cone to topple into range

and thereby speeding convergence.

Generalizing to the full growth cone population, averaging improves equilibrium per-

formance, slows convergence, and lengthens the optimal σNT (Figure 6.6). Averaging ef-

fectively increases the sensitivity with which a growth cone can measure a gradient. More

sensitive growth cones can perceive an attractor from further away, lengthening the opti-

mal σNT. In the next section we will systematically vary the sensitivity λdir in the model
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Figure 6.7: Model W dependence on gradient strength λdir and range σNT

Influence of gradient strength λdir and range σNT on equilibrium growth cone guidance, as predicted by the

model W. (a) Equilibrium probability Pcaptive = P (r(∞) ≤ σNT) that a growth cone is found within its

attraction basin, as a function of spreading range σNT and parameterized by λdir . Black dashed line indicates

λdir = 0. (b) Average equilibrium separation 〈r(∞)〉.

transition matrix W and observe its effect on predicted equilibrium performance.

6.2 Model transition matrix

In the previous section, we observed empirically that the predicted equilibrium perfor-

mance 〈r(∞)〉 depends on the neurotropin spreading range σNT, and that this dependence

can be shifted by manipulating various parameters. In this section, we observe a similar

σNT dependence in our model transition matrix W. We vary the growth cone sensitivity

λdir, the shape of the neurotropin spreading kernel N(r), and the concentration dependence

of the jump probability Pjump(r) and observe the consequences predicted by the model W.

We will find that the optimal σNT shifts with λdir, but that the predicted equilibrium perfor-

mance is surprisingly insensitive to perturbations in N(r) and Pjump(r).

6.2.1 Growth cone sensitivity

In the model transition matrix W from the previous chapter, the probability that any
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given jump is explicitly directed is a function of λdir‖∇rN(r)‖, where the attraction bias

λdir is a free parameter that scales the measured gradient magnitude. Larger values of λdir

increase the growth cone’s response to smaller values of ‖∇rN(r)‖, so we can think of λdir

as the growth cone’s sensitivity to the local neurotropin gradient.

Increasing λdir monotonically improves growth cone guidance, as shown in Figure 6.7.

Figure 6.7(a) plots the equilibrium probability Pcaptive that a growth cone is found within a

circular attraction basin of radius σNT centered on its target. Random motion allows growth

cones to shuttle in and out of this basin with some probability that depends on λdir. Weaker

attraction biases λdir loosen a basin’s hold on captured growth cones, lowering Pcaptive for

all basin sizes σNT. Outside the attraction basin, growth cones move randomly, if at all.

Since a diffusing growth cone is less likely to encounter smaller attraction basins, Pcaptive

decreases with σNT.

The equilibrium separation 〈r(∞)〉 predicted by W depends on an attraction basin’s

ability to capture diffusing growth cones and on its ability to guide captive growth cones.

Inside the attraction basin, growth cone localization depends on the local gradient mag-

nitude, which depends inversely on σNT. σNT parameterizes the distance required for the

neurotropin concentration to fall a set level to a detection threshold from its peak at a re-

lease site, so increasing σNT weakens the gradient of a monotonically decreasing function.

Growth cones have a harder time finding smaller basins, but are better guided once found.

The optimal σNT balances growth cone capture with growth cone guidance, as shown

in Figure 6.7(b). 〈r(∞)〉 rises at low σNT, consistent with the idea that diffusing growth

cones have trouble finding small basins, and at high σNT, consistent with the idea that

large spreading ranges yield weaker gradients. The minimum value of 〈r(∞)〉 for a given

attraction bias λdir is located at some intermediate σNT. Increasing λdir pushes this optimal
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σNT closer to 0, as if raising the potential barrier that blocks a growth cone from escaping

from a basin, and lowers the 〈r(∞)〉 achievable at high σNT, as if increasing the salience of

weaker gradients.

Interestingly, when λdir = 0, corresponding to no growth cone attraction, 〈r(∞)〉 actu-

ally rises to a maximum at an intermediate σNT (black dashed line in Figure 6.7(b)). This

is a consequence of the concentration dependence of the jump mechanism.

6.2.2 Concentration dependence

In our conception of neurotropic axon guidance, a growth cone moves by preferentially

sprouting new filopodia in one direction and retracting old filopodia from the opposite di-

rection. Filopodial sprouting is promoted by the presence of neurotropin, biasing a growth

cone to climb the local neurotropin gradient by sprouting more filopodia in the direction of

increasing neurotropin. Since growth cone size is fixed, each growth cone must construct

its filopodia from a conserved pool of cytoskeletal resources. New filopodia cannibalize

existing filopodia for structural components, so any increase in the sprouting rate is ex-

actly matched by an increase in the retraction rate and the overall effect of neurotropin is

to accelerate filopodial turnover. Since filopodial longevity depends inversely on the local

neurotropin concentration, more neurotropin makes a growth cone more mobile.

Concentration-driven mobility obeys the risk-averse philosophy that a growth cone

should never move unless directed. Every jump is presumed to explicitly increase the fit-

ness of the jumping growth cone, so a growth cone should remain immobile in the absence

of neurotropin in order to avoid making active missteps. Under this philosophy, a growth

cone only generates a jump when it has some idea where to go and otherwise remains silent,

an appealing property for a bandwidth-limited implementation like the Neurotrope1 system
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in which growth cone jump requests must compete for access to a shared output link.

The contrary philosophy – a growth cone should always move unless directed to remain

still – is represented by concentration-damped mobility. One criticism of concentration-

driven growth cone mobility is that excessive neurotropin uptake renders a growth cone

hyperactive, causing it to fidget compulsively atop the neurotropin peaks where it should

be the most content. A stabler growth cone motion mechanism would reverse the con-

centration dependence of filopodial longevity, so that filopodia turn over at a high rate in

the absence of neurotropin and are stabilized by its presence. This concentration-damped

mobility would allow a growth cone to spend more time in the neurotropin-rich region

surrounding its attractor but pass swiftly through neurotropin-starved regions that are self-

evidently the wrong places to be.

From an implementation perspective, concentration-damped mobility offers a more el-

egant allocation of system bandwidth. Concentration-driven mobility permits the system

bandwidth to be monopolized by the growth cones least in need of attention, those that have

already found their targets. Once a growth cone has found its target, further concentration-

driven jump requests cannot improve the growth cone’s position, but merely affirm its con-

tinuing correctness. Nevertheless, correctly placed growth cones continue to generate jump

requests at a high rate, so that as more and more growth cones settle into their targets, a

greater share of the system bandwidth must be spent to service their self-affirming jump re-

quests, crowding out more critical jump requests from less voluble growth cones marooned

in low neurotropin regions. By contrast, concentration-damped mobility preferentially as-

signs bandwidth to the growth cones most in need of attention, those that are furthest from

their targets. A wildly misplaced growth cone generates many random jump requests in an

effort to escape its neurotropin-starved location, but this jump rate tapers off as the growth

cone ascends a neurotropin peak, automatically annealing its bandwidth consumption and
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Figure 6.8: Concentration-dependent growth cone mobility

Equilibrium performance predicted by model W using different growth cone mobility functions Pjump(r).
Top: Jump probability Pjump(r). Dashed line indicates σNT. Bottom: Average equilibrium separation

〈r(∞)〉. Colors denote different values of direction bias λdir . Black dashed line corresponds to λdir = 0; blue

line corresponds to λdir = 106. (a) Concentration-driven mobility. (b) Constant mobility. (c) Concentration-

damped mobility.

freeing the system to attend to direr placement errors.

6.2.2.1 Model predictions

We can compare the predicted equilibrium performances of concentration-driven and

concentration-damped mobilities by modifying our expression for the jump probability

Pjump(r) in the model W. For concentration-driven mobility,

Pjump(r) = 1 − exp [−λNTN(r)] (6.1)

while for concentration-damped mobility,

Pjump(r) = 1 − exp [−λNT(N0 − N(r))] (6.2)

where N0 is the peak neurotropin concentration. The average equilibrium separation 〈r(∞)〉
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predicted by the model W for each mobility function is plotted in Figure 6.8 for different

growth cone guidance strengths, as parameterized by the jump direction bias λdir.

The model predicts that a concentration-damped mobility will perform better when

growth cone guidance is weak, but a concentration-driven mobility will perform better

when growth cone guidance is strong. When λdir is small, a growth cone diffuses almost

randomly, spending more time in regions where it has lower mobility. A concentration-

damped mobility allows the growth cone to spend more time in the high neurotropin re-

gions surrounding its target, while a concentration-driven mobility strands the growth cone

in low neurotropin regions far away from its target. When λdir is large, a growth cone

moves straight for its target at a speed that depends on its mobility. A concentration-driven

mobility allows the growth cone to capitalize on increasingly strong guidance signals by

accelerating the growth cone up the local gradient, while a concentration-damped mobility

brakes the growth cone as it nears its target, reducing the rate at which it can jump to-

ward its target but also reducing the rate at which it can repair damage incurred through

displacement by other migrating growth cones.

In short, the quality of the growth cone guidance mechanism determines which con-

centration dependence is best. Concentration-driven mobility rewards the successes of a

strong guidance mechanism, while concentration-damped mobility punishes the failures of

a weak guidance mechanism.

6.2.3 Gradient shape

One obvious criticism of a Gaussian neurotropin spreading kernel is that its gradient

peaks at r = σNT but then falls to zero at a neurotropin release source, precisely the point

at which the growth cone generates the most concentration-driven jump requests. In the
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Figure 6.9: Neurotropin spreading kernel shape

Top: Neurotropin spreading kernel N (r). Dashed line denotes σNT. Middle: Directed jump probability

Pdir(r). Dashed line denotes σNT. Bottom: Average equilibrium separation 〈r(∞)〉. Colors indicate different

values of λdir . Dashed line indicates λdir = 0. (a) Gaussian spreading kernel. (b) Triangular spreading

kernel. (c) Exponential spreading kernel.

absence of a discernable guidance signal, all of these jumps are randomly oriented, causing

a correctly positioned growth cone to jitter energetically around its mark. This hyperactive

fidgeting eventually topples the growth cone from its perch, to be swept away by bumps

and other noise sources.

We might expect performance to improve if we replaced the Gaussian neurotropin

spreading kernel (Figure 6.9(a)) with a function whose gradient is high at r = 0, such

as a triangular kernel (Figure 6.9(b))

N(r) =





1 − r
2σNT

if r ≤ 2σNT

0 if r > 2σNT

(6.3)
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or an exponential kernel (Figure 6.9(c))

N(r) = exp

[
− r

σNT

]
(6.4)

Plugging each expression into the model W, we find that the predicted qualitative de-

pendence of 〈r(∞)〉 on the neurotropin spreading range σNT and jump direction bias λdir

is surprisingly insensitive to the shape of the kernel. Gaussian, triangular, and exponen-

tial spreading kernels all yield 〈r(∞)〉 curves that rise at low and high values of σNT. The

optimal value of σNT that minimizes 〈r(∞)〉 can be reduced in each case by increasing the

direction bias λdir.

We can evaluate the relative performance of the different kernel shapes by comparing

the minimum values of 〈r(∞)〉 achieved by each kernel for identical λdir. By this measure,

the Gaussian kernel performs slightly better when λdir is small, and the exponential kernel

performs slightly better when λdir is large. The difference lies in the way each kernel shape

plays to the neurotropin gradient’s complementary roles of growth cone capture and growth

cone guidance.

When λdir is small, the only feature a growth cone can discern is the presence or absence

of neurotropin, so the neurotropin gradient behaves like a discrete potential barrier located

near its peak. The gradient of a Gaussian kernel peaks at r = σNT, making its attraction

basin appear larger than that of an exponential kernel, whose gradient peaks at r = 0. Since

larger basins are easier to find, the Gaussian kernel performs better in this weak attraction

limit.

When λdir is large, the growth cone can discriminate a wide range of concentration

values, so the neurotropin gradient acts as a continuous guidance signal that directs captive
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Figure 6.10: Neurotropic attraction system

(a) An active target cell (red) broadcasts a homing signal that is received by all coactive growth cones (green)

within range σ (dashed circle). Growth cones move within a bounded target layer of area A, and their

positions r relative to the target cell depends on the neurotropin signal N (r) and the level of thermal noise

T . (b) System parameter definitions. Vertical axis: neurotropin concentration N (r) bound by growth cone;

horizontal axis: distance r separating source cell from growth cone. Dashed lines bound sensitivity domain

of growth cone receptor population. Colors denote discriminable concentration bands. 1/λdir is the minimal

discriminable concentration increment and ρ(A) is the maximum radial distance in a target layer of size A.

growth cones within their basins. The gradient of the exponential kernel increases contin-

uously to a peak at r = 0, where the gradient of a Gaussian kernel falls to 0. In this strong

attraction limit, a growth cone is more concerned with its guidance within the attraction

basin than its ability to remain there, so the exponential kernel performs better.

6.3 Resource constraints

In this section, we outline the resource constraints that limit the values of parameters

like λdir that govern neurotropic growth cone attraction in any physical implementation.

We cast neurotropic attraction as a simple system in which an active target cell acts as a

fixed guidance beacon that broadcasts a neurotropic homing signal to all coactive growth

139



cones within range (Figure 6.10(a)). Growth cones act as mobile receivers that shift their

positions toward the direction of increasing signal strength. System performance is gov-

erned by a growth cone’s ability to decode the position information encoded in the local

neurotropin signal and then update its position accordingly. The system and its ultimate

performance are completely specified by a handful of parameters: transmitter strength N0,

receiver sensitivity λdir, target layer size A, signaling range σ, and a temperature-like pa-

rameter T .

6.3.1 Position measurement

For the special case of a single active target cell, the neurotropin level N(r) at any

point in the target layer encodes the distance r separating that point from the transmitting

target cell (Figure 6.10(b)). N(r) attenuates with distance from the transmitter, decreasing

monotonically from a peak value of N0 at the active target cell site. The position informa-

tion embedded in N(r) can be decoded by a coactive growth cone, which is sensitive to a

restricted domain of N(r) values bounded by a detection threshold Nlow and a saturation

limit Nhigh. Within this domain, the growth cone measures the local neurotropin signal

with some finite precision that chunks the continuous dynamic range of N(r) values into

a discrete set of discriminable increments whose size depends on the receiver sensitivity

λdir
3. Each increment encodes membership in a disjoint band of equiprobable separations

r whose neurotropin levels are indistinguishable (colors in Figure 6.10(b)). A growth cone

records a nonzero neurotropin gradient when its filopodia occupy different equiprobable

separation bands. The perceived gradient strength is proportional to the number of incre-

3For simplicity, we model the fraction of bound receptors with a piecewise linear function of concentration
whose slope is 1/(Nhigh − Nlow) for Nlow ≤ N (r) ≤ Nhigh and 0 elsewhere. We divide each unit of
neurotropin concentration into a constant number λdir of discriminable gradations, which we define as the
receiver sensitivity. Nlow is taken to be the minimum discriminable concentration increment 1/λdir and Nhigh

is taken to be equal to N0.
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ments spanned by the growth cone body.

The distribution of signal increments over the domain of separations r is controlled by

the shape of the neurotropic attenuation function N(r), as parameterized by the signaling

range σ, which is defined as the distance at which N(r) drops below the growth cone’s

detection threshold Nlow
4. The optimal function shape spreads the signal increments to

cover the entire target layer. Extending neurotropic signaling beyond the finite dimensions

ρ(A) of the array is a waste of dynamic range, since low signal values are expended on

unreachably long pair separations. Excessively short signaling ranges are similarly profli-

gate, spending the entire dynamic range to encode a small number of short distances with

unnecessary precision.

6.3.2 Position update

Mobile growth cones continually update their positions as instructed by their decoded

neurotropin signals. In principle, a level-based neurotropin signal contains enough infor-

mation to localize a growth cone’s position to the width of an equiprobable separation band,

as set by λdir. In practice, the growth cone’s ability to hold this position is compromised

by bumps, which we model as thermal fluctuations whose average strength depends on the

temperature T .

We define thermal fluctuations to include any growth cone motion that is not explic-

itly and correctly directed toward a neurotropic attractor. Fluctuations may arise from

implementation-specific issues like device mismatch and layout errors, or generically from

stochastic spike arrival timing and stimulus presentation order. We lump all of these ther-

4Note that σ refers to the radius of the attraction basin, while σNT parameterizes the width of the neu-
rotropin spreading kernel G(r). Typically, σ ≈ 2σNT, but the exact relation depends on the form of G(r).
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mal noise mechanisms into a single parameter T that is analogous to the temperature of a

confined population of gas molecules. In the absence of guidance, T sets the rate at which

a growth cone diffuses through the target layer. Lowering T reduces the average fluctuation

size, slowing random growth cone motion.

The presence of a gradient biases the growth cone to drift in the direction of increasing

neurotropin. The stronger the gradient, the stronger the bias. Since the measured gradi-

ent magnitude λdir‖∇rN(r)‖ is proportional to λdirN0, increasing either the transmitter

strength N0 or the receiver sensitivity λdir strengthens the attraction bias at a fixed temper-

ature T .

6.3.3 Resource constraints

Each choice of parameter values {N0, λdir, T,A, σ} implicitly specifies an achievable

system performance and the associated resource schedule. We can purchase better sys-

tem performance by committing additional resources to secure more favorable parameter

values.

6.3.3.1 Transmitter strength N0

At the transmitting end of the signal, simply raising the initial concentration peak N0

would expand the dynamic range of the target cell broadcast. However, increasing raw

broadcast power requires the target cell to pump out more neurotropin molecules, which

must be procured from a finite manufacturing capacity. In a silicon chip, N0 is capped by

the peak current that can be sourced by the power supply during a postsynaptic spike; in a

biological neuron, N0 would ultimately be limited by the protein synthesis rate.
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6.3.3.2 Receiver sensitivity λdir

At the receiving end of the signal, increasing the precision λdir of the growth cone

gradient sensor would stretch the existing dynamic range to encode more states at the cost

of the time and space required to collect and store the additional information. In a biological

growth cone, λdir is limited by the membrane receptor density that can be sustained by a

finite protein synthesis capacity, and by the signal-specific amplification cascades that can

be encoded in a finite genome; in a silicon chip, λdir is limited by the die area available for

the integrating capacitors in the filopodial transistor circuits, or alternately by the memory

and logic available to store and average multiple samples.

6.3.3.3 Temperature T

Thermal motion allows a growth cone to explore the target layer for its correct position

but hinders its ability to consolidate that position once found. For this reason, learning sys-

tems typically anneal the level of thermal motion over the course of development to some

minimum achievable value. In a biological system, this minimum value is determined by

the resource flow available to stabilize and maintain synaptic contacts. In a silicon chip,

the minimum error rate is limited by the time and labor available to design and implement

reliable circuits, and the die space available to accommodate the larger devices or compen-

sation circuits required for better matching.

6.3.3.4 Target layer size A

Growth cones located out of range of their coactive target cells wander aimlessly within

the target layer until sliding by chance into their basins of attraction. A wandering growth

cone may remain lost for a very long time if the target layer area A is much larger than the
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basin area, so reducing A automatically improves performance by restricting the options

of a diffusing growth cone. However, unlike the transmitter strength N0 and the receiver

sensitivity λdir, the size of the target layer is chosen to optimize the performance of the adult

circuit, not the developmental mechanism. A is typically taken to be as large as possible,

constrained only by metabolism or die area.

6.3.3.5 Signaling range σ

For fixed N0, the nonincreasing nature of the attenuation function imposes a tradeoff

between signal range and signal strength. Uniformly stretching N(r) to cover a larger range

σ weakens the gradient at each point by spreading the same concentration increment over

a longer distance. This tradeoff implies the existence of an optimal signal range σ∗ that

minimizes the expected equilibrium separation 〈r(∞)〉 within the growth cone population

for a given allocation of resources. In the next section, we will describe σ∗ in terms of the

system parameters N0, λdir, A, and T .

6.4 Attraction basin model

In this section we derive the optimal signal range σ∗ for an attraction basin model of

neurotropic growth cone guidance. We consider the simple case of a single mobile growth

cone moving in the presence of a fixed coactive release site. The neurotropin concentration

N(r) peaks at the release site and falls off with distance r, crossing below the growth cone’s

detection threshold at a radius r = σ that defines a circular basin of attraction centered on

the release site. Outside of this basin, the growth cone is free to diffuse randomly at some

base rate, but once captured by the basin, a portion of the growth cone’s motion is biased

toward the attractor by the local neurotropin gradient. Successful growth cone attraction
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depends on a basin’s ability to capture free growth cones and guide captive growth cones.

Our strategy in this section is to first construct a toy model to describe growth cone

capture by an attraction basin, and then augment that model to describe growth cone guid-

ance within the basin. We will then compare the features of this toy model with those of

the model transition matrix W from the previous chapter. We will find that small values

of σ reduce the footprint of the attraction basin within the target layer, degrading its ability

to capture free growth cones. Large values of σ weaken the gradient within the basin, de-

grading its ability to guide captive growth cones. The optimal value σ∗ emerges from the

confluence of these two mechanisms.

6.4.1 Growth cone capture

The steady-state probability Pcaptive that the growth cone is found within the attraction

basin depends on the probability Pcapture for a free growth cone to be captured by the

basin and the probability Pescape for a captive growth cone to escape from the basin. At

equilibrium, the probability currents into and out of the basin are equal:

PcaptivePescape = (1 − Pcaptive)Pcapture (6.5)

Rearranging terms,

Pcaptive =
Pcapture

Pescape + Pcapture
(6.6)

Outside the basin, a free growth cone diffuses randomly, and can be found anywhere

in the array with equal probability. The equilibrium probability Pcapture for a free growth
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Figure 6.11: Potential well model

(a) Neurotropin (red) released from a single active target cell defines a circular attraction basin of radius σ

(dashed line) at the center of a circular target layer of radius ρ (solid line). (b) Potential energy profile E(r)
for attraction basins modeled as square potential wells of depth λdirN0ε. (c) Equilibrium probability Pcaptive

for a growth cone to be found inside the attraction basin for the well depths depicted in (b). Black dashed line

plots the case of no attraction (λdirN0 = 0).

cone to stumble into its attraction basin is

Pcapture =
B

A
(6.7)

where B is the area of the attraction basin and A is the area of the target layer. For the

special case of a circular attraction basin of radius σ located at the center of a circular

target layer of radius ρ (Figure 6.11(a)), B = πσ2 and A = πρ2.

Inside the basin, a captive growth cone attempts to escape but collides with the potential

barrier surrounding the basin perimeter. The growth cone successfully escapes the basin

with probability (1− γ), while with probability γ the growth cone lacks the energy to hur-

dle the potential barrier and rebounds toward the center of the basin instead. A sufficiently

energetic growth cone can move anywhere in the array, leaving the basin area with proba-

bility (A − B)/A, so the equilibrium probability Pescape for a captive growth cone to leak
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out of its basin is

Pescape =
A− B

A
(1 − γ) (6.8)

We can relate γ to the peak neurotropin concentration N0 and growth cone receptor

sensitivity λdir if we think of the attraction basin as a potential well with uniform depth

λdirN0ε (Figure 6.11(b)), where ε is a unit conversion ratio5. To escape the well, a captive

growth cone must first acquire enough thermal energy to vault over the potential barrier.

The probability that a given thermal fluctuation is large enough to propel the growth cone

out of the well is exp[−λdirN0ε/T ], where the temperature T parameterizes the average

fluctuation strength. Hence,

γ = 1 − exp

[
−λdirN0ε

T

]
(6.9)

Increases in transmitter strength N0 or receiver sensitivity λdir strengthen the attraction bias

γ, while increases in thermal noise T degrade it.

Substituting (6.7) and (6.8) into (6.6),

Pcaptive =
B

(1 − γ)A + γB
(6.10)

Pcaptive behaves according to our intuition about the problem (Figure 6.11(c)). A freely

diffusing growth cone is more likely to stumble into a basin that covers a larger fraction of

the available area, so Pcaptive → 1 as B → A, and conversely, Pcaptive → 0 as B → 0.

Once caught, the time a growth cone remains in captivity depends on the attraction bias γ.

5This is equivalent to modeling the neurotropin spreading kernel N (r) with a step function whose gradient
magnitude is N0 at r = σ and 0 elsewhere.
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Figure 6.12: Optimal basin radius σ∗ in square potential well model

(a) Average equilibrium separation 〈r(∞)〉 as a function of basin radius σ. Red dashed line indicates contri-

bution (1−Pcaptive)〈r〉free from free growth cones; blue dashed line indicates contribution Pcaptive〈r〉captive

from captive growth cones. (b) 〈r(∞)〉 for different attraction biases γ. (c) Optimal basin radius σ∗ as a

function of 1 − γ.

With perfect attraction, the captive growth cone never escapes its basin, so Pcaptive → 1 as

γ → 1. Without attraction, the basin is indistinguishable from the rest of the target layer,

so Pcaptive reverts to the uniform probability B/A ∝ σ2 when γ = 0.

6.4.1.1 Optimal basin radius σ∗

Our use of a step function for N(r) implies that a captive growth cone is located with

equal probability at any point inside the basin, and that a free growth cone is located with

equal probability at any point outside the basin. Given these two permissible states, the

expected distance 〈r(∞)〉 separating a growth cone from the basin center at equilibrium is

〈r(∞)〉 = Pcaptive〈r〉captive + (1 − Pcaptive)〈r〉free (6.11)

where the equilibrium distance 〈r〉captive separating a captive growth cone from the basin

center is
∫ 2π

0

∫ σ

0
r2dθdr/(πσ2) = 2

3
σ, and the equilibrium distance 〈r〉free separating a free
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growth cone from the basin center is
∫ 2π

0

∫ ρ

σ
r2dθdr/(πρ2 − πσ2) = 2

3
(ρ3 − σ3)/(ρ2 −σ2).

〈r(∞)〉 and its constituent components are plotted against σ in Figure 6.12(a). 〈r〉free

dominates at low σ, which allow more growth cones to escape their basins, while 〈r〉captive

dominates at high σ, which allow captive growth cones to roam within larger basins. In-

creasing γ traps more growth cones in their potential wells, reducing 〈r〉free but leaving

〈r〉captive untouched (Figure 6.12(b)).

Combining terms,

〈r(∞)〉 =
2

3

σ3γ + ρ3(1 − γ)

σ2γ + ρ2(1 − γ)
(6.12)

There are two real values of σ that extremize this expression. The first real extremum is

located at σ = 0 and is a maximum if γ > 0 and a minimum if γ = 0. Since the ideal of

γ = 0 is unrealizable in a physical implementation, we are more interested in the other real

extremum located at

σ∗ =
(1 − γ)1/3

√
γ

[
(1 +

√
γ)1/3 − (1 −√

γ)1/3
]
ρ (6.13)

σ∗ ranges from 0 to 2
3
ρ, and is the optimal basin radius that minimizes 〈r(∞)〉 for a given

choice of release strength N0, receptor sensitivity λdir, target layer radius ρ, and noise level

T (Figure 6.12(c)).

6.4.2 Growth cone guidance

Comparing the flat attraction basin model predictions for 〈r(∞)〉 (Figure 6.12(b)) with

those of the model W (Figure 6.7(b)), we observe that as λdir increases, the flat attraction

basin model successfully describes the improvement in 〈r(∞)〉 at low σ, where performance
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Figure 6.13: Guidance within attraction basin

(a) Linear spreading kernel N (r) for different attraction basin radii σ and fixed N0. (b) Gradient magnitude

|∇rN (r)| for the σ in (a). Increasing σ decreases |∇rN (r)| for fixed N0. (c) Average equilibrium separation

〈r(∞)〉 for different values of λdirN0 and fixed λdirN0ε/T .

is limited by a growth cone’s ability to remain in the basin, but fails to capture the improve-

ment at high σ, where performance is limited by a growth cone’s lack of guidance within

the basin. In practice, growth cones are not entirely unguided within their attraction basins,

but are biased toward their attractors by the local gradient. The strength of this guidance

signal is limited by the dynamic range λdirN0 of bound neurotropin and by the basin radius

σ.

For simplicity, we will describe the neurotropin concentration N(r) with a triangular

spreading kernel that falls linearly from a peak of N0 at r = 0 to zero at r ≥ σ, defin-

ing a circular attraction basin of radius σ (Figure 6.13(a)). Higher values of σ weaken

the gradient magnitude within the basin by spreading the drop from N0 over a greater dis-

tance (Figure 6.13(b), an inverse dependence that holds for any monotonically decreasing

function of r.

To compute the average equilibrium separation 〈r〉captive within an attraction basin, we

classify captive growth cones as either guided or unguided. A growth cone is guided with

probability Pdir and unguided with probability 1−Pdir, where Pdir = 1−exp(−λdir|∇rN(r)|)
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is a function of the local gradient magnitude |∇rN(r)|. For a linear gradient, |∇rN(r)| =

N0/σ. Guided captive growth cones are always found at r = 0, while unguided captive

growth cones may be found anywhere inside the basin with equal probability, for a com-

bined equilibrium separation of

〈r〉captive = (1 − Pdir)
2

3
σ. (6.14)

We can improve growth cone guidance, as measured by 〈r(∞)〉, by increasing the guid-

ance probability Pdir (Figure 6.13(c)). There are two ways to do this. First, increasing

receptor sensitivity λdir allows the growth cone to detect and amplify shallower gradients.

Second, raising the peak concentration N0 increases the salience of the guidance signal by

steepening the gradient. Reducing the basin radius σ would also steepen the gradient.

The fundamental conflict is that the capture probability Pcaptive is a function of σ but

the guidance probability Pdir is a function of 1/σ. These opposing dependences imply the

existence of an optimal basin radius σ∗ that balances an attraction basin’s ability to capture

free growth cones with its ability to guide captive growth cones.

In summary, the attraction basin model establishes the existence of an optimal signal-

ing range σ∗ and relates it to a set of parameters that collectively prescribe the convergence

properties of the system. Equilibrium performance at low σ can be predicted by treating

the basin as a flat potential well, but predictions for high σ require consideration of the

gradient within the basin. Consistent with this model, we observed that equilibrium perfor-

mance can be improved empirically by eliminating bumps to reduce the temperature T , or

by averaging multiple gradient measurements to increase the growth cone sensitivity λdir.

Reducing T enhances growth cone capture, improving performance at low σNT (Figure
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6.4), while increasing λdir enhances growth cone guidance, improving performance at high

σNT (Figure 6.6). Now that we understand the constraints governing supervised pair attrac-

tion, we are finally ready to tackle unsupervised self-organization, which we will cover in

the next chapter.
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Chapter 7

Unsupervised Self-Organization

In this chapter, we examine unsupervised growth cone motion under the influence of

multiple mobile neurotropin release sites of varying strength, when driven by presynaptic

activity correlations generated by an ideal stimulus generator and by a silicon retina.

7.1 Unsupervised patch attraction

In unsupervised self-organization, there are no static attractors to direct active growth

cone motion. Instead, active growth cones direct each other, exerting mutually attractive

forces whose average strength depends on the degree to which their presynaptic activities

coincide. Growth cone motion is driven by two opposing mechanisms: cooperative attrac-

tion of coactive growth cones, and competitive displacement of inactive growth cones.
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7.1.1 Order parameter

Without fixed instructors to mark absolute positions within the target layer, the retino-

topic order parameter must be assembled solely from relations between axon terminals. As

defined in Chapter 4, the relative retinotopic order parameter for the axon terminal pro-

jected by source cell α is the average of the instantaneous pairwise separations r
(n)
α(α+fi)

separating it from the axon terminals projected by its source cell’s immediate neighbors

α + fi:

Φ(n)
α =

1

Nα

∑

i

r
(n)
α(α+fi)

(7.1)

where Nα is a normalization constant. We average the individual axon terminal order

parameters to obtain the population order parameter for the full axon projection:

Φ(n) =
1

N

∑

α,i

r
(n)
α(α+fi)

(7.2)

where N =
∑

α Nα is a normalization constant.

7.1.2 Uptake parameter

To match the relative retinotopic order parameter that defines the problem with the up-

take parameter that programs growth cone attraction, we must choose a presynaptic stimu-

lus protocol that generates the appropriate coactivities Cαβ.

7.1.2.1 Pair stimulus

Since our retinotopic order parameter is composed of pair relations between growth
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cones, one obvious strategy is to address each relation individually by stimulating each

growth cone pair in turn. We randomly select and simultaneously activate a source cell

α and one of its immediately adjacent neighbors α + fi, each of which projects a mobile

growth cone into the target layer. The two coactive growth cones are mutually attractive

and move to minimize their target layer separation rα(α+fi). Retinotopic self-organisation is

induced through sequential activation of every growth cone pair {α,α + fi} whose separa-

tion is contained in Φ(n). The resulting set of coactivities Cαβ = δ[‖α− β‖− 1] assembles

an uptake parameter U
(n)
α with the same form as the retinotopic order parameter Φ

(n)
α . (This

choice is not unique, since any monotonically decreasing function of source layer separa-

tion ‖α − β‖ would achieve similar results.)

U (n)
α =

∑

β

δ[‖α− β‖ − 1]r
(n)
αβ

=
∑

i

r
(n)
α(α+fi)

(7.3)

The advantage of this approach is that we can build up any arbitrary coactivity pattern

out of individual pair stimuli. The disadvantage is that it takes a very long time to present

all of the necessary pair stimuli with sufficient repetition to achieve convergence.

7.1.2.2 Patch stimulus

We can present stimuli more quickly by activating several pairs in parallel, a strategy

that has some biological plausibility. During mammalian development, spontaneous bursts

of coordinated activity called retinal waves sweep across contiguous patches of the retina,

correlating the spiking of neighboring retinal ganglion cells (RGCs) [105]. Consecutive

retinal waves do not overlap, but eventually tile the entire retina, establishing sufficient

statistical structure to encode the relative retinotopic distance separating each pair of RGC
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cell bodies in the coincidence of their spontaneous spike activities.

Since we are only interested in the static property of retinotopy, we represent each

retinal wave as a spatially contiguous patch of coactive source cells, ignoring its temporal

dynamics. Each patch is centered on a randomly chosen source cell and uniformly activates

all neighboring source cells within a fixed radius p. Every patch is selected with equal

probability, so the coactivity Cαβ between two source cells α and β is proportional to

the number of patches shared by both source cells. Consequently, the uptake parameter

includes some extra terms not present in the order parameter. For example, the uptake

parameter for a patch stimulus of radius 1 is

U (n)
α =

∑

i

r
(n)
α(α+fi)

+
1

4

∑

j

r
(n)
α(α+gj)

(7.4)

where α + fi indexes the three source cells located one edge away from source cell α

and α + gj indexes the six source cells located two edges away. For small patches, these

extra terms are closely linked to the order parameter terms, and minimizing one tends to

minimize all. In larger patches, the extra terms can sometimes distract the growth cone

from the primary goal of minimizing the order parameter.

7.1.3 Unsupervised retinotopic evolution

Under patch stimulation, an unsupervised population of mobile growth cones converges

to the same level of sustainable retinotopy from very different initial configurations. Figure

7.1 shows the evolution of the growth cone population under stimulation by patches of

radius 1. We seed the system with either a completely random initial projection (Figure

7.1(a), blue line in Figure 7.1(b)) or a perfectly retinotopic initial projection (Figure 7.1(c),

red line in Figure 7.1(b)) and release the system to refine or relax its retinotopy.
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Figure 7.1: Unsupervised retinotopic evolution

Population refinement and relaxation to a common sustainable retinotopic level. (a) Source cell color maps

generated from no initial retinotopy. Source cells are colored by the target layer coordinates of their growth

cones. Top: n = 0; middle: n = 20; bottom: n = 200. (b) Evolution of retinotopic order parameter Φ(n)

from no initial retinotopy (blue) and perfect initial retinotopy (red). (c) Source cell maps generated from

perfect initial retinotopy. Top: n = 0; middle: n = 20; bottom: n = 200.

Starting from random initial locations (top color map in Figure 7.1(a)), growth cones

quickly crystallize into small clusters that are locally topographic but globally misplaced

(middle color map). Over time these locally topographic crystals melt, migrate, and merge

to form larger, better positioned topographic clusters until only a single globally retinotopic

map remains (bottom color map). A perfectly retinotopic initial map relaxes to a similar

state of disorder, as illustrated by the color maps in Figure 7.1(c).

The evolution of the order parameter is plotted in Figure 7.1(b). Φ(n) converges to

the same stable value Φ(∞) from both initial configurations, indicating that the achievable

retinotopic endstate is a property of the system settings, not the initial state. In other words,

the retinotopy of the final state cannot be improved merely by initializing growth cones
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closer to their intended targets.

7.1.4 Model transition matrix

For small patch radii, we can directly apply our model transition matrix for supervised

pair attraction to describe unsupervised patch attraction after only a minor adjustment to

the form of the sampled neurotropin concentration N(r). We treat the patch stimulus as

if its participating growth cones had been activated in a sequence of nonoverlapping pair

stimuli between the patch center and each of the other patch participants in turn, ignoring

the cross terms in the uptake parameter between pairs of noncentral patch participants. The

neurotropin concentration sampled by each growth cone in a pair stimulus is a function of

the radial distance r separating the growth cone from its coactive partner. There are only

two sources of neurotropin release at a time, one stimulated by each growth cone. A growth

cone detects the neurotropin released from its own site C0G(0) and a portion C1G(r) of

the neurotropin that spreads from the other growth cone site. Since each growth cone is

equally active, C0 = C1 and the ratio ρGC = C0/C1 is identically 1 and is no longer a free

parameter.

Of the remaining free parameters, the sampling interval τ and the attraction bias λdir

retain the values previously fitted in the supervised attraction experiments, while the jump

rate λNT and the signalling range σNT are fit to features of the expected change 〈∆Φ〉 in the

order parameter between samples and the variance 〈〈∆Φ〉〉2 of that change. Each growth

cone is activated by multiple patches during each time step, so λNT is higher than for

supervised pair attraction. σNT captures the effective growth cone signalling range, which
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Figure 7.2: Moment fits and predicted P (∞)(r) for patch radius=1

Moments and predicted stationary distribution for empirical (blue) and model (red) transition matrices W.

Top: Vshunt = 0.20V ; middle: Vshunt = 0.30V ; bottom: Vshunt = 0.40V . (a) Order parameter change

variance 〈〈∆Φ〉〉2. (b) Expected order parameter change 〈∆Φ〉. (c) Predicted stationary distribution P (∞)(Φ)
(solid lines) and measured distribution P (100)(Φ) (black dots).

is a combination of the neurotropin spreading range and the patch radius.

7.1.4.1 Change variance 〈〈∆Φ〉〉2

The change variance 〈〈∆Φ〉〉2 again consists of a small peak at σNT due to the growth

cone’s own jumps, riding on top of a much larger baseline due to bump activity (Figure

7.2(a)). The height of the baseline sets λNT . 〈〈∆Φ〉〉2 takes on much larger values for patch

stimuli because each growth cone is activated more often between samples and therefore

has more opportunities to move.
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7.1.4.2 Expected change 〈∆Φ〉

The expected order parameter change 〈∆Φ〉 under patch stimulation reprises the major

features of the expected separation change 〈∆r〉 under supervised pair stimulation (Figure

7.2(b)). The amplitudes of these features are magnified by the increased stimulation be-

tween samples. The position of the attractive trough reveals the effective signalling range

σNT.

7.1.4.3 Stationary distribution P (∞)(Φ)

The stationary distributions P (∞)(Φ) predicted by the principal eigenvectors of the em-

pirical and model W both fit the recorded distribution P (100)(Φ) of the 100th sample, as

shown in Figure 7.2(c). P (n)(Φ) converges more quickly than in the supervised case be-

cause more pairs are activated between samples. As before, performance peaks at an in-

termediate value of Vshunt that corresponds to an optimal neurotropin spreading range. We

will discuss this result in the next section after exploring the contribution of patch size to

the effective signaling radius.

7.2 Effective signaling range

In theory, uptake parameter minimization heavily penalizes large separations, implying

that coactive growth cones can robustly communicate their attraction across arbitrarily long

distances. In practice, this global information flow becomes prohibitively expensive in a

large physical system, so growth cones approximate uptake parameter minimization with

the more local mechanism of neurotropic gradient ascent. Growth cones operating under

these theoretical and practical techniques navigate similar paths near a coactive attractor,
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Figure 7.3: Optimal spreading range

Time evolution of 〈Φ〉 under stimulation by patches of radius 1. (a) P (∞)(Φ) predicted by empirical W. (b)

〈Φ(∞)〉 as a function of Vshunt . (c) 〈Φ(n)〉 evolution recorded from data samples (solid lines) and predicted

by empirical W (dashed lines).

but diverge in their assessment of more distant targets.

Neurotropin-mediated growth cone signaling is limited by the neurotropin spreading

range, which establishes a perception horizon beyond which a growth cone cannot detect

distant release sites. Since growth cones cannot pursue invisible targets, the cost of large

separations is effectively zero under neurotropic gradient ascent. Growth cones that are

separated from their coactive attractors by long target layer distances must rely on random

motion to jostle them into signaling range. Increasing the patch size recruits more coactive

attractors, increasing the likelihood that one will appear on the horizon to guide an active

growth cone.

In this section, we investigate the influence on retinotopic convergence of the effective

growth cone signaling range, which consists of the neurotropin spreading range and the

radius of the patch stimulus.
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7.2.1 Neurotropin spreading range σNT

Varying the decay transistor gate bias Vshunt to control the neurotropin spreading range

σNT, we find that retinotopic convergence is optimized at an intermediate value of σNT

(Figure 7.3). As in the supervised case, smaller values of σNT yield stronger, slower attrac-

tion at shorter distances, while larger values of σNT yield weaker, faster attraction at longer

distances. Performance is best at an intermediate value of σNT.

7.2.2 Patch radius

Another way to extend the effective attraction range of a growth cone is to increase the

size of the presynaptic patch stimulus. To isolate the effect of patch radius on topographic

convergence, we reduce the neurotropin spreading range to a small fraction of the array

dimensions and stimulate the system with patches of increasing size. Larger patches are

stimulated with shorter bursts to maintain a constant absolute presynaptic activity level.

Each patch of radius p consists of a source cell and all of its neighbors up to p edges

away, for a total of 1 +
∑p

r=1 3r = 1 + 3p(p + 1)/2 coactive cells if the patch is not cut

off by the array boundaries (Figure 7.4(a)). Conversely, each source cell participates in

up to 1 + 3p(p + 1)/2 distinct patches. The coactivity between a pair of growth cones is

proportional to the number of patches shared by both growth cones. Neighboring source

cells participate in overlapping patches, so Cαβ decreases monotonically with source layer

separation ‖α − β‖, dropping to zero at twice the patch radius (Figure 7.4(b)).

Source cell coactivity leads to target layer proximity. Figure 7.4(c) plots the stationary

average distance 〈rαβ〉 separating growth cones α and β in the target layer as a function of

the source layer separation |α − β| of their projecting cell bodies. Larger patches correlate
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Figure 7.4: Patch radius

Coactivity dependence on patch radius. Data collected at Vshunt = 0.45V . Left: patch radius=1; middle:

patch radius=2; right: patch radius=3. (a) Sample patches of coactive source cells. (b) Coactivity Cαβ as a

function of source layer separation |α− β|. (c) Measured average target layer distance 〈r(240)〉αβ separating

growth cones projected by source cells α and β, as a function of |α − β|. (d) Growth cone positions in the

target layer during the 240th sample, colored by source cell coordinates.
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the activities of more widely spaced source cells, clustering their growth cones in the target

layer. Large patches can compensate for short neurotropin spreading ranges, as vividly il-

lustrated in Figure 7.4(d). We select a spreading range that is too short to refine retinotopy

using a patch stimulus of radius 1. Increasing patch size rescues performance, aggregat-

ing growth cones into larger, more refined topographic clusters. The effective neurotropic

signaling range is a combination of patch radius and neurotropin spreading range.

7.2.2.1 Neurotropic connectivity

We can envision the network of growth cone pair relations as an undirected graph in

which two coactive growth cones are neurotropically connected if they are within spread-

ing range of each other (Figure 7.5(a)). Connected growth cones mutually attract, while

unconnected growth cones rely on random motion to eventually nudge them into range of

an attractor. A pair of coactive growth cones whose attraction basins do not directly overlap

may still be connected indirectly if both are within view of a third coactive growth cone.

Increasing the patch size increases the number of coactive intermediaries available to

bridge long pair separations. For example, in the middle panel of Figure 7.5(a), the attrac-

tion basins of three of the radius 1 patch growth cones overlap (black, red, green), but the

fourth growth cone (blue) is disconnected from the first three, being too distant to commu-

nicate directly. However, the fourth growth cone overlaps with other members of the radius

2 patch (grey), which also overlap with the original three growth cones, so the four radius

1 patch growth cones are connected indirectly and can actively attract each other, mini-

mizing the three pairwise separations that collectively comprise the order parameter. By

contrast, the fourth growth cone (black) remains disconnected in the similar configuration

for a radius 1 patch shown in the left panel of Figure 7.5(a).
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Figure 7.5: Patch trajectory

Trajectory dependence on patch radius. Data collected at Vshunt = 0.45V . Left: patch radius=1; middle:

patch radius=2; right: patch radius=3. (a) Positions (dots) and detection horizons (circles) for growth cones

participating in a patch at n = 240. Each growth cone is located at the center (dot) of an attraction basin of

radius σNT (circle). Black dot marks position of growth cone projected by center of patch. Red, green, and

blue lines identify pair separations rαβ that compose order parameter Φα. (b) Evolution of pair separations

rαβ that compose order parameter Φα. Dashed lines bound directed jump band. (c) Expected order parameter

change 〈∆Φ〉 as a function of initial value. Dashed lines bound directed jump band.
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Figure 7.6: Signaling range

Average target layer distance 〈rαβ〉 separating growth cones α and β, as a function of the source layer distance

|α − β| separating their projecting cell bodies. Red: patch radius = 1; green: patch radius = 2; blue: patch

radius = 3. (a) Short σNT. (b) Intermediate σNT.

The probability that a growth cone falls within spreading range of a neurotropic attractor

is proportional to the density of attractors in the target layer. The Neurotrope1 array has a

fixed volume, so any decrease in the number of neurotropic attractors within this bounded

arena also decreases attractor density. Lowering attractor density reduces the number of

pair relations available to tie a growth cone to a cluster of coactive neighbors, making it

easier for a growth cone to slip away. Growth cones in a radius 1 patch easily escape each

other’s orbit, wandering in and out of range many times over the course of the evolution

(Figure 7.5(b), left panel).

Larger patches offer more opportunities for a growth cone to connect to at least one

of its fellow patch members, which all cooperate to hold each other together within the

patch, preserving their coherence (Figure 7.5(b), right panel) and widening the band of pair

separations at which directed jumps dominate growth cone motion (Figure 7.5(c)).

7.2.2.2 Attractors and distractors

For short spreading ranges, each neurotropic attraction basin covers a comparatively
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small fraction of the array area, making it difficult for a stray growth cone to rediscover a

lost attractor. Increasing patch radius compensates for the short spreading range by adding

more attractors to broaden the coactive coverage of the array, rescuing performance (Fig-

ure 7.6(a)). At longer spreading ranges, an initial increase in patch radius has a similarly

salutary effect, but a second increase partially reverses this trend. Figure 7.6(b) plots the

average target layer distance rαβ separating two growth cones as a function of the source

layer distance ‖α − β‖ separating their projecting cell bodies for a longer σNT. Larger

patches coactivate growth cones projected by more widely spaced source cells. When the

patch gets too large, these additional attractive forces actually distract growth cones of more

proximate cell bodies from their primary attraction to the center growth cone.

For example, the patch of radius 1 centered on source cell α recruits all four of the

nearest-neighbor source cells affiliated with the retinotopic order parameter Φα. Each patch

elicits two types of interactions between participating growth cones. First, the center source

cell α is coactive with each of its three nearest neighbors α+fi, so their growth cones move

to minimize the three distances rα(α+fi) that comprise the order parameter Φα for the center

source cell. Changes in these center-neighbor separations constitute radial motion relative

to the center growth cone. Second, the three neighboring source cells α+fi are also coactive

with one another, so their growth cones attempt to minimize three separations r(α+fi)(α+fj)

that do not contribute to the order parameter. Changes in these neighbor-neighbor separa-

tions mix radial and angular motion relative to the center growth cone.

From the perspective of the order parameter, the supplemental linkage provided by

these extraneous neighbor-neighbor interactions is beneficial when a proximate neighbor

attracts a distant neighbor closer to the center growth cone, and detrimental when the dis-

tant neighbor draws the proximate neighbor away from the center growth cone. However,

as long as more distant neighbors are less coactive, the center growth cone should be able
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to dominate the attention of more proximate neighbors. Problems arise when there are too

many simultaneously active neurotropin sources to distinguish between their relative coac-

tivities. Since a growth cone pursues all equally coactive neurotropin sources with equal

intensity, saturating the measurable coactivity prevents the growth cone from localizing

positions within a patch.

In summary, as in the supervised case, the general principle is that signals in the real

world are physically bounded to a finite dynamic range of distinguishable signal values.

Since a growth cone’s guidance depends on its ability to discriminate level differences in

neurotropin concentration, the patch size and spreading range must be chosen to prevent

the combined guidance signal from saturating at one of its bounds.

7.3 Silicon retina

Up to this point we have driven the Neurotrope1 system with near-ideal presynaptic

coactivity patterns supplied by a programmable stimulus generator. However, the real test

of any neuromorphic algorithm is its performance when burdened with the imperfections

of real world systems. We therefore conclude this chapter by replacing the ideal stimulus

generator with a more physical signal source in the form of a silicon retina.

7.3.1 Multichip system

We use the silicon retina described in [107, 108] to translate patterned illumination into

appropriately correlated spike trains that are fed into the Neurotrope1 chip as presynaptic

input. Activity generated by two different populations of retinal ganglion cells (RGCs)

drives growth cones in the combined system to self-organize retinotopy, a task that is hin-
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dered by three implementation-specific chip pathologies.

7.3.1.1 Retinal ganglion cells

The silicon retina transduces incident photons into electrical spike activity generated by

four different RGC types. ON-center RGCs are excited by a spot of light in the center of

their receptive fields and inhibited by light in the surrounding annulus, while OFF-center

RGCs are excited and inhibited by the opposite polarity stimulus. ON- and OFF-center

RGCs are further divided into sustained or transient cell types depending on their temporal

response to a change in stimulus. We will use the sustained ON- and OFF-center RGCs as

our population of source cells, which we will stimulate by projecting patterns of light onto

the silicon retina.

ON- and OFF-center RGCs respond to opposite polarity stimuli, so the activity of an

RGC of one cell type is anticorrelated with the activity of another RGC of the opposite cell

type at the same location. This statistical difference segregates growth cones from each cell

type into subpopulations that can be separately instructed with appropriate manipulation of

the visual stimulus.

7.3.1.2 Presynaptic activity gradient

The silicon retina exhibits several of the same pathologies as the Neurotrope1 chip,

including a systematic excitability gradient that causes RGCs on the left side of the silicon

retina to spike more frequently in response to a given stimulus. Enhanced presynaptic

activity increases growth cone mobility for two reasons. First, growth cones accumulate

extant neurotropin more quickly, since neurotropin binding is gated by presynaptic activity.

Second, there is more extant neurotropin, since neurotropin release is gated by postsynaptic
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activity, which is triggered by presynaptic activity. Consequently, more active growth cones

can systematically displace less active growth cones from mutually preferred territory in the

target layer.

7.3.1.3 Postsynaptic excitability gradient

The Neurotrope1 chip exhibits a similar gradient of postsynaptic excitability that in-

creases from left to right across the target cell array. A given presynaptic stimulus elicits

more neurotropin release from more excitable target cells, so neurotropin-hungry growth

cones are globally attracted to the highly excitable region on the right side of the array. The

density constraint forces growth cones to fight over this neurotropin-rich territory, pulling

other growth cones back when active and being pulled back when inactive. This churning

is purely disruptive if all source cells are equally active, but any imbalance in source cell

activity allows the postsynaptic excitability gradient to sort growth cones by relative presy-

naptic activity. More active growth cones remain closer to the right side of the array, so

a growth cone’s horizontal position reflects its relative level of presynaptic activity within

the population.

7.3.1.4 Quiescent RGC activity

Device mismatch in the silicon retina renders some RGC circuits more excitable than

others. At the bias settings required to sustain a reasonable mean firing rate within the

RGC population, some RGCs never fire under any provocation. Their silent growth cones

do nothing to improve their own position but at least do not interfere with the guidance of

more active growth cones. At the other extreme, some RGCs are so excitable that they fire

spikes even in the absence of a stimulus. Their perpetually active growth cones eventually

clump together in the most excitable corner of the Neurotrope1 array, creating a global
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attractor that actively disrupts the guidance of more transiently active growth cones.

Device mismatch in the Neurotrope1 chip also causes random variability in growth cone

mobility, but this effect is nonsystematic and therefore less pernicious.

7.3.2 Retinotopic self-organization

To induce retinotopic self-organization within the population of growth cones projected

by the same cell-type, we illuminate the retina with an sequence of stimulus images. Each

image consists of a randomly centered spot of light or dark presented against a uniform gray

background, which stimulates a contiguous patch of ON- or OFF-center RGCs. RGCs are

coactive with neighboring RGCs of the same cell type, so in the absence of other consider-

ations we expect their growth cones to form disjoint retinotopic projections.

7.3.2.1 Gaussian bump stimulation

We begin by attempting to induce retinotopic self-organization within a subpopulation

of growth cones projected by a single cell type. We initialize the system with a coarsely

retinotopic projection and present randomly centered dark spot stimuli to excite patches

of OFF-center RGCs. Light spot stimuli are not presented, so ON-center RGCs remain

inactive.

Figure 7.7(a) and (b) plot the target layer locations of RGC growth cones for each cell

type at three different samples, colored according to the coordinates of their projecting cell

bodies in the silicon retina. ON-center RGC growth cones are plotted in Figure 7.7(a) and

OFF-center RGC growth cones in Figure 7.7(b).

Seeded with a coarsely topographic initial projection that evenly distributes growth
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Figure 7.7: OFF-center RGC stimulation

ON- and OFF-center RGC growth cone evolution under Gaussian bump stimulation of OFF-center RGCs.

(a) Target layer color maps of ON-center RGC growth cones, colored by the source layer coordinates of their

cell bodies. Top: n = 0; middle: n = 7; bottom: n = 80. (b) Target layer color maps of OFF-center RGC

growth cones. (c) Order parameter evolution for ON-center (red) and OFF-center (blue) RGC growth cone

subpopulations.

cones of both cell types across the whole target layer (top color maps), the active OFF-

center RGC growth cones immediately clump together in the center of the array, where they

refine their internal topography at the expense of the inactive ON-center RGC growth cones,

which are exiled to the edges of the array (middle color maps). Once gathered, the unitary

mass of OFF-center RGC growth cones is free to drift as a whole toward the more excitable

right half of the array, displacing the inactive ON-center RGC growth cones from that edge

to join their compatriots on the less excitable left side. Since all of the ON-center RGC

growth cones are being herded into the same place, their internal topography gradually
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improves as the active OFF-center RGC growth cones continue to expel straggling ON-

center RGC growth cones from the right side of the array (bottom color maps). A handful

of ON-center RGCs are robustly excited by the gray background and their perpetually

active growth cones congregate in the upper right corner of the array, creating a global

attractor for nearby OFF-center RGC growth cones.

Figure 7.7(c) plots the evolution of the order parameters Φ
(n)
ON and Φ

(n)
OFF for retinotopy

within each subpopulation, which are defined as the average target layer distance separating

growth cones projected by adjacent RGCs of the same cell type. The initial segregation by

cell type is reflected in the sharp drop in Φ
(n)
OFF and rise in Φ

(n)
ON. As the body of OFF-center

RGC growth cones shifts to the right, Φ
(n)
ON returns to its initial level.

Strictly speaking, any imbalance between ON- and OFF-center RGC activity could have

induced the segregation by cell type that is responsible for the sharp initial improvement

in OFF-center retinotopy and gradual refinement of ON-center retinotopy. However, the

subsequent maintenance and slow refinement of this retinotopy requires the topographic

correlation structure of the dark spot stimulus, since the ON-center RGC growth cones are

segregated to the same degree but display much coarser retinotopy. The difference between

Φ
(n)
ON and Φ

(n)
OFF at high n is a measure of the active topographic refinement within the OFF-

center subpopulation.

7.3.2.2 Center-surround stimulation

We conclude by attempting to self-organize retinotopy for both cell types simultane-

ously. We initialize the system with a random projection that spreads growth cones of

both cell types over the entire target layer (Figure 7.8(a)). We then apply a difference

of Gaussians to generate a center-surround stimulus that oscillates radially from light to
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Figure 7.8: Coordinated retinotopic development of ON- and OFF-center RGC growth
cones

Co-evolution of ON- and OFF-center growth cone subpopulations under oscillating spatial phase stimulation.

(a) ON-center RGC growth cones (top) and OFF-center RGC growth cones (bottom) uniformly cover the

entire target layer in the random initial projection. (b) The visual stimulus consists of an oscillating phase

kernel presented against a gray background and centered over randomly selected regions of the silicon retina.

Top: ON-center, OFF-surround; bottom: OFF-center, ON-surround. (c) Target layer color maps of ON- and

OFF-center RGC growth cones at the 420th sample. (d) Average target layer distance 〈rαβ〉 separating growth

cones of the same cell type (blue) or the opposite cell type (red), as a function of source layer separation |α−β|
of the projecting cell bodies.

dark or vice versa, coactivating neighboring ON- and OFF-center RGCs (Figure 7.8(b)).

The location and polarity of each stimulus are independently drawn from a uniform dis-

tribution. The light-dark oscillation in the center-surround stimulus injects just enough

coactivity between ON- and OFF-center RGCs to prevent the two cell types from segre-

gating into disjoint retinotopic maps. Instead, both subpopulations develop and maintain

coarse retinotopic maps that cover the entire target layer and are oriented in register with

one another (Figure 7.8(c)).

The ability of the Neurotrope1 system to automatically extract this level of retinotopy

from even the severely nonideal silicon retina stimuli is a powerful demonstration of the
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robustness of the neurotropic guidance algorithm in physical implementations.
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Chapter 8

Conclusion

We conclude this thesis with a discussion of our results and some suggestions for future

research directions.

8.1 Discussion

Engineers have long admired the computational elegance and efficiency with which the

brain effortlessly adapts to novel situations, and have made many attempts to endow con-

ventional digital computers with a similar self-organizing capacity. Prominent examples

include Grossberg’s adaptive resonance theory (ART) [12] and Kohonen’s self-organizing

map (SOM) [59], both of which achieved popularity by distilling neurophysiological in-

sights into a simple set of mathematical equations that require no biological knowledge to

analyze and implement. However, by shrouding the messy biological details under a veil

of mathematical notation, these models obscure the powerful computational role played by

cellular structures such as motile growth cones.
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In this thesis, we presented Neurotrope1, the first silicon model of self-organization

based on growth cone migration. The Neurotrope1 system is a neuromorphic implementa-

tion of a two layer neural network with feedforward excitatory connections that automati-

cally update their own weights based on a Hebbian learning rule. The core of the system

is the Neurotrope1 chip, a full custom VLSI design that integrates axon terminals, target

cells, and extracellular medium on the same silicon die. Axons connecting the two layers

are implemented virtually, as soft wires stored in a set of off-chip lookup tables that can

dynamically reroute address-events on the fly. The novel infrastructure developed to im-

plement these soft wires is broadly applicable to any address-event-based system and has

already been adapted for use with other neuromorphic devices [70, 2].

Our faithful adherence to cellular level details yields an algorithm that is better suited

to physical implementation. All previous SOM chips have implemented a winner-take-

all computation to enforce competition, requiring a global information flow that does not

scale well to larger systems [35, 69, 66, 47, 99, 89, 13, 84]. By contrast, growth cones in

the Neurotrope1 system employ a local information flow that scales effortlessly to larger

populations. Growth cone motion is a purely cellular operation, drawing information only

from the growth cone’s own target site and the ring of immediately adjacent sites.

We characterized growth cone guidance in the Neurotrope1 system using a transition

matrix analysis of supervised pair attraction. For this simplest nontrivial case of neurotropic

attraction, neurotropic guidance fidelity is measured by a single active target cell’s ability to

attract and hold a single coactive growth cone. The neurotropin concentration surrounding

an active target cell falls from a peak at the release site to a detection threshold at some

radius σ that defines the edge of the target cell’s basin of attraction. Growth cones inside

this basin are guided toward the central attractor with a fidelity that depends on the local

gradient magnitude. Growth cones outside the basin diffuse freely until stumbling into
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the basin by chance. A captured growth cone can also be ejected from its basin by its

own mistaken jumps and by random bumps from other growth cones. This non-negligible

escape probability defeats any attempt to improve equilibrium performance by annealing

σ.

Growth cone capture and growth cone guidance have opposite dependences on basin

size. Diffusing growth cones are captured at a rate that depends on the fraction of the

total target layer area covered by the basin, so growth cone capture is strongest at large σ.

Larger basins have shallower internal gradients, since the concentration drop from peak to

detection threshold is spread over a longer distance σ, so growth cone guidance is strongest

at small σ. The optimal basin radius is the value of σ that best balances a basin’s ability

to guide captive growth cones with its ability to recapture escapees. This insight draws

empirical support from our observation of an intermediate neurotropin spreading range

that optimizes equilibrium performance in the Neurotrope1 system.

Generalizing to multiple coactive target cells, we found that the effective σ combines

the spatial extent of presynaptic coactivity in the source layer with the spatial extent of neu-

rotropin spread in the target layer. Larger presynaptic patches can compensate for shorter

neurotropic spreading ranges. However, the combined guidance signal is still mediated

by the neurotropin concentration, which saturates at high and low values and can only be

measured with a finite precision. Consequently, the effective σ for multiple coactive target

cells obeys the same optimality criterion that obtained in the single active target cell case.

Since signals in any physical system are limited to a finite dynamic range, this optimality

criterion is present in any hardware implementation of this algorithm, silicon or carbon.

We concluded by demonstrating the first fully hardware implementation of retinotopic

self-organization. We interfaced the Neurotrope1 system directly with the silicon retina
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described in [107, 108], which is the most elaborate neuromorphic model of the mam-

malian retina to date, mimicking thirteen different cell types in all five retinal layers and

computing four distinct spike-encoded output streams whose biologically realistic activity

correlations are ideally suited to program growth cone migration in the Neurotrope1 sys-

tem. By illuminating the silicon retina with appropriately patterned stimuli, we induced

separate populations of ON- and OFF-center retinal ganglion cells to organize their axon

terminals into coordinated retinotopic maps. This is the first time every stage of the process

from patterned illumination through neural map formation has been implemented entirely

in hardware. The only comparable system was described in [26], which processed silicon

retina data offline using a software model of neurotrophic guidance running on a work-

station. Our system computes results in real-time at low power, the two prerequisites for

autonomous mobile applications.

Perhaps the most surprising result of the Neurotrope1 system is that it even generates

results to begin with. The sheer complexity of the system is daunting: a 48 × 20 array of

growth cones, each containing four distinct filopodia; a 24×20 array of spiking target cells;

a monolithic chip-wide transistor channel laid out in a honeycomb lattice that spans the en-

tire array. Remember that, in a physical implementation, each added component introduces

another opportunity for design error or device mismatch. For example, the measured ac-

tivity of two filopodia in the same silicon growth cone can differ by over two orders of

magnitude. Coupling this system with another neuromorphic device only multiplies these

nonidealities. The combined silicon retina-Neurotrope1 system was rife with systematic

signal corruption that would have been fatal for a more brittle learning heuristic.

Given all of these issues, the Neurotrope1 system’s demonstrated ability to robustly re-

fine retinotopy powerfully validates the neurotropic attraction algorithm for use in systems

assembled from unreliable components. Such fault-tolerant algorithms have applications in
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emerging fields like nanotechnology, which typically lack the process maturity to fabricate

well-matched devices.

Biological algorithms operate on similarly unreliable components, so it is no surprise

that several of the techniques that improve performance in the Neurotrope1 system have

been proposed independently as mechanisms for biological growth cone navigation, in-

cluding sample averaging to increase measurement precision [43], addition of coactive sig-

nals [41], and concentration-damped mobility [85]. The fundamental strategy is the same:

expand the finite dynamic range of the guidance signal to cover a bounded physical domain

with sufficient precision, satisfying an optimality criterion that is present in any physical

instantiation of this system, be it the Neurotrope1 chip or the human brain.

8.2 Insights into biology

We can apply lessons learned from the Neurotrope1 system to describe an effective

signalling range for biological morphogenesis, and to explain the role played by synapto-

genesis during neural map development.

During the morphogenetic phase of neural map development, sparse, widely overlap-

ping axon arbors shrink into dense, tightly packed termination zones. We can construct an

effective signalling range by analogizing the neurotropin spreading range to the size of the

dendritic arbors in the target tissue and the presynaptic patch size to the number of branches

initially projected by each axon. All else being equal, we predict that smaller target cell

dendritic arbors would require the innervating axons to elaborate more initial branches,

leading to a higher proportion of pruned branches. The optimal axonal and dendritic arbor

sizes would depend on the size of the target tissue.
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The nature of the optimal signalling range offers some insight into the role played by

synaptogenesis during biological neural map development. The fundamental constraint that

limits a growth cone’s performance is its ability to find and hold its optimal target. Any

source of random motion, be it internal miscalculation or external competition, eventually

allows a growth cone to leak away from this target. The existence of an optimal signalling

range is a direct consequence of this nonzero escape probability, which forces a growth

cone to balance its ability to remain at its target once found with its ability to return to its

target once lost.

A biological growth cone directly attacks the escape probability by annealing its own

mobility. As neurites wire themselves into their desired circuits, morphogenesis segues

smoothly into a synaptogenetic phase in which neurites stabilize their connections by form-

ing more permanent synapses. Neurites use morphogenesis to explore their surroundings

for better targets and synaptogenesis to consolidate satisfactory connections. By separating

the mechanisms that mediate exploration and consolidation, biological growth cones avoid

the tradeoff that leads to an optimal signalling range when the two functions are mediated

by the same neurotropic signal, as in the Neurotrope1 system.

8.3 Future work

Our experience with Neurotrope1 suggests several possible upgrades for incorporation

into a successor system.

1. Implementation issues

Flaws in the Neurotrope1 chip substantially degrade system performance. Most no-

tably, poor power distribution creates an excitability gradient that renders almost half
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the chip unusable. These errors would be easy to fix in future iterations.

2. Neurotropin spreading kernel

The Gaussian shape of the neurotropin spreading kernel is suboptimal for gradient

descent because the gradient drops to zero at a release site, precisely where the signal

should be the strongest. Changing the kernel shape to an exponential, for example,

could improve growth cone stationkeeping by marking the intended target with the

peak of the guidance signal instead of its trough. The circumstances under which a

change in kernel shape would improve performance require further study.

3. Concentration-dependent mobility

Concentration-driven growth cones generate the most jump requests from the top of

neurotropin peaks, destabilizing correctly placed growth cones and wasting band-

width on content-free communications. Since growth cones should be less restless

in regions that supply them with more neurotropin, concentration-damped mobility

might be more effective. Growth cones would decelerate as they approach their tar-

gets, allowing them to consolidate their tropic gains and shift smoothly into a synap-

togenetic phase. In addition, correctly placed growth cones would automatically

anneal their bandwidth consumption, allowing the system to focus on improperly

placed growth cones. The computational aspects of concentration-damped mobility

can actually be simulated with the current system1, but the bandwidth advantages

1For example, to improve gradient measurement precision, the current system accumulates multiple
filopodial jump requests before executing a change in growth cone position. To store these requests, the
system includes enough memory to associate each filopodium with a digital count that increments every time
the filopodium requests a jump. The jump request of the first filopodial incrementor to overflow is serviced
and the rest of the jump requests for that growth cone are dropped. To switch from concentration-driven to
concentration-damped jump generation, each growth cone could be supplemented with a single bidirectional
count in memory that encodes neurotropin concentration. Each presynaptic address-event routed to a growth
cone would increment its counter, while each filopodial jump request would decrement it by some constant.
If its counter overflowed, the growth cone would service its most frequently requested jump, as directed by
its three filopodial incrementors. If its counter underflowed, the growth cone would clear all outstanding
jump requests. As a result, the growth cone would execute a stream of jumps at a rate that is based on its
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would require a new chip.

4. Synaptogenesis

The best way to systematically improve performance would be to deepen the po-

tential well of the attractor basin, preventing growth cones from escaping or being

displaced through random motion. Potential wells can be deepened by improving a

growth cone’s gradient sensitivity or by enhancing its resistance to external displace-

ment. In the limit of infinitely deep wells, we could even dispense with gradient-

directed growth cone guidance entirely, since growth cones could be permanently

localized to arbitrarily small attraction basins, as if they had formed stable synapses

onto their attractors.

5. Multiple arbor branches

One-to-one connectivity is fairly unforgiving, allowing each source cell only a single

guess for its axonal target. A more distributed representation might yield better per-

formance. For example, each source cell could project several growth cone-tipped

axon branches into the target layer, each of which could move independently. Accept-

able performance could be achieved if most of the branches clustered at the correct

location. Given a mechanism to identify misplaced branches, such as concentration-

damped mobility, hopelessly lost branches could be pruned and correctly placed

branches could be reinforced.

6. Multichip systems

Spike-encoded data is communicated as address-events, making them compatible

with a family of neuromorphic devices [70, 107, 17, 2] that can be used to drive

the system with correlated input activity from a variety of modalities. In particular,

presynaptic activity and attenuated by its neurotropic uptake, as measured by the frequency of filopodial jump
requests.
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the ability of the silicon retina to process arbitrary visual stimuli into growth cone-

compatible spike trains in real-time opens the door to more ambitious experiments

like using natural video correlations to drive growth cones to organize more compli-

cated visual feature maps.

In larger systems, target cells will most likely be located on their own neuromor-

phic chips, not on the neurotropin chip itself. A future iteration might include only

the growth cones, the extracellular medium, and the postsynaptic neurotropin re-

lease sites, receiving both presynaptic and postsynaptic spikes from off-chip. This

generic axon chip would be a temporary plug-in module that could be inserted be-

tween neuromorphic chips to developmentally wire their connections, and removed

upon completing the mature circuit.

8.4 Conclusion

The ability of the Neurotrope1 system to self-organize coarse retinotopy from even the

highly nonideal input activity generated by the silicon retina is a powerful demonstration

of the robustness of the neurotropic guidance algorithm against the vicissitudes of physical

implementation. As such, this technique represents a practical addition to the neuromorphic

toolbox.
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Appendix A

Neurotrope1 system description

This appendix describes the Neurotrope1 system at the circuit board level. The Neu-

rotrope1 system is divided between two circuit boards: the router board, which trans-

lates source-indexed address-events into target-indexed address-events using a lookup table

called an axon map; and the update board, which computes axon map updates using the

Neurotrope1 chip. The board level signal flow is diagrammed in Figure A.1.

A.1 Router board

The router board receives and transmits address-events through six independent asyn-

chronous address-event ports (of which three are shown in Figure A.1). Source-indexed

address-events are translated into target-indexed address-events using the axon map stored

in an asynchronous random access memory (RAM) that is controlled by a complex pro-

grammable logic device (CPLD). Individual elements of the RAM can be written or read

by a microcontroller (uC) acting through the CPLD. The microcontroller also handles com-
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Figure A.1: System signal flow

The router board uses an axon map to translate source-indexed address-events into target-indexed address-

events and forwards them to their destination. The update board transmits axon map updates to the router

board based on target-derived feedback.
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munication with an external computer through a universal serial bus (USB).

The router board performs three operations: the route cycle, which translates source-

indexed address-events into target-indexed address-events; the read/write cycle, which

reads or writes axon map entries based on USB communications with the external com-

puter; and the update cycle, which modifies axon map entries based on feedback signals

from the update board.

A.1.1 Address-event ports

The router board implements six independent address-event ports, three of which re-

ceive address-events and three of which transmit address-events. Each address-event port

is composed of eight data lines and three control lines, according to the word-serial address-

event protocol described in [6]. Control lines are tied to their inactive logic levels through

3.3kΩ resistors. Every port output is driven with an LVT573 buffer whose output is se-

ries terminated by a 50Ω resistor in order to attenuate cable reflections. Similarly, every

port input is routed through an LVT573 buffer to regenerate the signal. The LVT logic

family operates at 3.3V but can tolerate logic inputs ranging from 2.0V to 5.5V, so the in-

put buffers also insulate more sensitive and expensive board components from potentially

dangerous line noise, particularly when interfacing with external components that utilize

higher supply voltages.

The Neurotrope1 system requires three of the six address-event ports for normal op-

eration. The source port receives address-events and passes them to the CPLD, which

translates the source address into its target address using the axon map stored in the asyn-

chronous RAM. The CPLD repackages this address as an address-event and routes it to

the target port for transmission to the next stage in the system. The update port receives
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Figure A.2: Growth cone swaps

(a) Input and output address spaces. Receiver addresses (Rx) index growth cones by row and column. Trans-

mitter addresses (Tx) index event-generators by row and column and use the lowest row and column bits to

specify the event type. Half of the allotted receiver and transmitter addresses are unoccupied. (b) Transmitter

address-events Tx can be decomposed into a base address (x0, y0) and an offset (x, y), as can the addresses

of the two growth cones S0 and S1 to be swapped. The growth cone base address (a0, b0) and offset (a, b)
are computed from (x0, y0) and (x, y).

address-events from the update board that encode feedback-derived modifications to the

axon map. In addition, an optional monitor port can be configured to echo address-events

to an external monitor controller or logic analyzer for visualization or data collection.

A.1.2 Microcontroller

A Ubicom ip2022 microcontroller handles axon map updates and USB communication

with an external computer. Address-events arriving at the update port are passed through

the CPLD to the microcontroller, which interprets the instructions encoded in the address-

events and executes the requisite updates to the axon map stored in the RAM.
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A.1.2.1 Axon map updates

The Neurotrope1 chip transmits address-events of four different types (Figure A.2(a)).

The first type is the standard source-indexed neuron spike. The other three types are swap

requests, which are instructions to update the axon map by swapping adjacent growth cones

along one of three directions: diagonally up, diagonally down, or horizontally.

Each address-event can be written as the sum of a base address (x0, y0) that encodes

row and column position in the array, and an offset (x, y) that encodes address-event type.

Swap request address-events uniquely encode the identity of the two growth cones S0 and

S1 to be exchanged. The S1 address is obtained by adding an offset (a, b) to the S0 address

(a0, b0). The growth cone base address (a0, b0) and offset (a, b) are computed from the

swap request base address (x0, y0) and offset (x, y), as outlined in Figure A.2(b).

The microcontroller maintains a count for every growth cone of the number of swap

requests received in each direction. Each swap request modifies the swap counters for

both of its growth cone participants by incrementing the swap counter corresponding to its

own direction and clearing the swap counters for the two opposing directions. The micro-

controller only executes an exchange when one of the swap counters exceeds a software-

defined threshold, which requires an unbroken chain of consecutive swap requests in the

same direction. Each direction has a different swap threshold, which is selected to balance

the layout anisotropy described in Chapter 3.

A.1.2.2 USB communication

The microcontroller also executes commands received via USB from the external com-

puter. During a write command, the microcontroller receives a two byte address and two
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bytes of data and writes the data to the memory cell in the RAM indexed by the address.

During a read command, the microcontroller receives an address from the computer, reads

the data in the indexed memory cell, and transmits the data back to the computer.

The microcontroller code implementing the USB protocol is adapted from the standard

software library provided by Ubicom, Inc. This code generates control and data signals for

the Phillips Semiconductor PDIUSBP11A USB controller, which drives the USB bus. On

the computer end, a graphical user interface program is written in C++ around the USBIO

driver provided by Thesycon Gmbh.

A.1.3 RAM

The axon map is stored in an ISSI IS61LV25616-10T single-chip asynchronous RAM

which can store up to 256K × 16 bits of data, of which only 64K is utilized by the router

board, which grounds the highest two address bits. The remaining sixteen address bits are

grouped into two eight bit address busses, AX for X addresses and AY for Y addresses.

Data stored in the memory cell indexed by the address presented on AX and AY is input

or output on sixteen data bits, which are similarly grouped into data busses DX and DY .

The RAM address space is further divided into four pages, indexed by the highest X

and Y address bits. The first page stores the forward map, which is a list of target addresses

indexed by source address. The second page stores the reverse map, which is a list of source

addresses indexed by target address. The third and fourth pages store data maps, which are

lists of data fields indexed by source address. The data fields on the third page contain

the eight bit diagonal swap counters for each growth cone and the data fields on the fourth

page contain the eight bit horizontal swap counter. Only the forward map is required for

address-event translation; the contents of the other three pages are used for map updates.
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The asynchronous RAM is normally operated in read mode, meaning that the data

busses DX and DY are continually driven with the contents of the memory cell indexed

by the address busses AX and AY . In write mode, the RAM places the contents of DX and

DY into the memory cell indexed by AX and AY . In each case, after the initial address

presentation, a setup time under 10 ns is required before the operation takes effect. Read

mode and write mode are toggled by separate active-low enables, /R and /W , that are

controlled by the microcontroller.

The source port, update port, and microcontroller all compete for write access to the

address busses, and this competition is mediated by an arbiter module in the CPLD.

A.1.4 CPLD

The CPLD controls the address-event ports and the RAM using four internal asyn-

chronous logic modules: an s2p module, which converts word-serial address-events into

word-parallel address-events; an arbiter module, which controls write access to the address

bus of the RAM; a delay module, which establishes the necessary setup time for the RAM;

and a p2s module, which converts word-parallel address-events into word-serial address-

events (Figure A.3). All internal busses use dual rail data and all external interface busses

use bundled data. A brief description of each module follows.

A.1.4.1 s2p module

Under the serial address-event protocol, an upward transition on the input Y request ryi

indicates the presence of a Y address on the eight bit bundled data input bus Si. The s2p

module latches this Y address on the dual rail output bus AY i and acknowledges receipt

by raising the input acknowledge ai. The address-event source then drives Si with an
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Figure A.3: Route cycle

Source-indexed address-events arriving at the source port are translated through the axon map stored in the

RAM into target-indexed address-events that are retransmitted through the target port.
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X address and lowers the active-low input X request rxi. The s2p module latches the

X address on the dual rail output bus AXi and lowers ai. The full X-Y address is now

present on the output busses, so the s2p module raises the output request rAi, signalling

the presence of data to the next stage in the system. The s2p module then waits for the

output acknowledge aAi to go high, clears the dual rail data from AX , lowers rAi, waits

for aAi to go low, and finally waits for rxi to go high before raising ai.

At this point, the address-event source can either lower rxi, beginning another spike

in the same row, or lower ryi, ending the serial address-event burst. If rxi goes low, the

s2p module again latches the X address presented on Si into AX and raises rAi, beginning

another parallel address-event. If ryi goes low, the s2p module clears AY and lowers ai,

terminating the burst.

There are actually two s2p modules in the router CPLD, one associated with the source

port and one associated with the update port. The modules are internally identical and are

distinguished externally by appending the letter N to the signal names of the update port

s2p module.

A.1.4.2 arbiter module

The arbiter module controls write access to the RAM address bus. It can receive a

bus access request rAi from the s2p module of the source port, a request rAiN from the

s2p module of the update port, and a request ruC from the microcontroller. It returns

one of three permission signals at a time; pAi grants bus access to the source port, pAiN

grants bus access to the update port, and puC grants bus access to the microcontroller. For

simultaneous requests, permission is granted first to the microcontroller, then the update

port, then the source port. Regardless of origin, a new request cannot preempt an existing
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permission signal, which persists until its own request is cleared.

A.1.4.3 delay module

The delay module receives an input signal and echoes it to its output after some delay,

which is chosen to exceed the setup time of the RAM. The CPLD implements a constant

delay by routing the signal off-chip, through an LVT573 buffer, and back into the CPLD,

a process which takes on the order of 10 ns. This delay can be extended by running the

signal through the buffer more than once.

A.1.4.4 p2s module

The p2s module converts a dual rail parallel address-event into a bundled data serial

address-event. Upon receiving an input request rD, the p2s module drives its bundled data

output bus So with the address on the dual rail input bus DY and raises the output Y request

ryo. When the output acknowledge ao goes high in response, the p2s module drives So

with the address on the dual rail input bus DX and lowers the output X request rxo. When

ao goes low, the p2s module clears So, raises rxo, waits for ao to go high, raises the input

acknowledge aD, waits for rD to go low, lowers ryo, waits for ao to go low, and finally

lowers aD, terminating the address-event.

A.1.5 Route cycle

The route cycle translates a source-indexed address-event into a target-indexed address-

event, as diagrammed in Figure A.3.

An address-event arriving at the source port is first converted from serial address-event
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format into parallel address-event format by the s2p module, which then raises rAi to re-

quests permission from the arbiter module to access the RAM address busses AX and AY .

Once the arbiter module grants permission by raising pAi, the parallel address is presented

to the asynchronous RAM which outputs the target address stored in the addressed memory

cell onto its data bus after some setup time, which is implemented by running the permis-

sion signal pAi through the delay module and thence to the p2s module, which bundles the

target address as a serial address-event and transmits it off-board through the target port.

Upon transmission, the p2s module raises aD to acknowledge the s2p module, which low-

ers rAi to return bus control to the arbiter module. The arbiter module lowers pAi, causing

the p2s module to lower aD, terminating the cycle.

A.1.6 Read/write cycle

The external computer reads and writes to the RAM by sending commands via USB

to the microcontroller, which implements these read/write commands as diagrammed in

Figure A.4.

The microcontroller requests write access to the RAM address busses AX and AY from

the arbiter module of the CPLD by raising ruC . When the arbiter module grants access

by raising puC , the microcontroller drives AX and AY with the address supplied by the

external computer.

If the computer sent a write command, the microcontroller now raises the RAM read

enable /R and clears the RAM write enable /W , which are both active low. It then writes

the data supplied by the computer to the RAM data busses DX and DY . After waiting out

the setup time, the microcontroller raises /W , clears DX and DY , clears AX and AY , and

lowers /R. It then lowers ruC , returning bus control to the arbiter module, which lowers
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Figure A.4: Read/write cycle

The external computer sends commands via USB to the microcontroller to read or write to the RAM.
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puC .

If the computer sent a read command, the microcontroller simply waits out the setup

time and then reads the contents of DX and DY into an internal buffer for transmission

via USB to the computer. It then lowers ruC , causing the arbiter module to lower puC .

A.1.7 Update cycle

The update cycle uses the microcontroller to interpret and execute the instruction en-

coded in an address-event arriving at the update port, as diagrammed in Figure A.5.

The s2p module associated with the update port converts an arriving serial address-

event into parallel format and requests RAM address bus access from the arbiter module by

raising rAiN . The arbiter module grants bus access by raising pAiN , which is forwarded

to the microcontroller to request update handling. The microcontroller responds by reading

the contents of AX and AY , which are now being driven by the parallel address-event

from the update port. If the address corresponds to a swap request, the microcontroller

requests bus control by raising ruC . It then acknowledges receipt of the instruction by

raising aAiN , causing the s2p module to lower rAiN and release AX and AY . Since the

arbiter gives priority to the microcontroller, it lowers pAiN and immediately raises puC ,

granting the microcontroller bus control.

The microcontroller then executes a sequence of RAM reads and writes to read and

update the affected swap counters and, if necessary, to exchange entries in the forward and

reverse maps. Upon completion, it returns bus control to the arbiter module by lowering

ruC . The arbiter module lowers puC and waits for the next request.
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Address-events arriving at the update port are interpreted by the microcontroller.
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A.2 Update board

The update board contains the Neurotrope1 chip and its associated logic and analog

components. The Neurotrope1 chip communicates using a parallel address-event proto-

col that has been superseded by the current serial address-event protocol and therefore all

address-events must be filtered through a CPLD that converts serial address-events into

parallel address-events and vice-versa.

A.2.1 Address-event ports

The update board includes one input serial address-event port and one output serial

address-event port. All port lines are buffered through an LVT573 and output lines are

series terminated with 50Ω resistors.

A.2.2 Neurotrope1

The Neurotrope1 chip receives source neuron spikes from the CPLD and returns target

neuron spikes and growth cone updates. Layout errors in the receiver circuit inverted the

sense of the input signals and disabled the normal handshake signals. As a result, addresses

presented to the Neurotrope1 chip must be active low, and the address-event handshake is

simulated by tying the receiver request to the receiver reset and removing it without ac-

knowledgment after some delay, implemented by routing the receiver request to the input

of an LVT573 buffer and using the buffer output as the receiver acknowledge. The trans-

mitter is implemented normally.

All analog biases are set off-chip by 10kΩ potentiometers. Current for source biases is

supplied by LM6464 amplifiers. Board power is supplied through a DC jack and controlled
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Figure A.6: Neurotropin circuit

Neurotropin sample, diffuse, and uptake circuits. Target cell spikes inject charge (left box) into a monolithic

pFET channel (M1), where it diffuses until being passively decayed (M12) or actively sampled by local

growth cone circuits (right box).

by five separate LM1086 3.3V voltage regulators, one for the analog circuits in the pixel

array, one for the digital circuits in the pixel array, one for the address-event receiver, one

for the address-event transmitter, and one for the output pads. The CPLD and buffers draw

power from the transmitter voltage regulator, while the amplifiers draw power from the

analog circuit voltage regulator.

A.2.2.1 Sampling requires fanout

A growth cone participates in four charge sampling circuits, one for its own lattice

node x, and one for each of the three adjacent lattice nodes x + f . In each charge sampling

circuit, reproduced in Figure A.6, a pulse at node x pulls the voltage on the facilitation

capacitor Cfpre low, diverting charge from the diffusive lattice M1 through M13 and M14

into a node-specific charge pool that is shared by the four adjacent sample circuits. Sample

currents If are drawn from this charge pool, gated by pulses ∼samplef that are generated

at nodes x + f . Unused charge remaining in the pool is drained to ground through M19.

200



Since the charge pool is filled by a pulse at node x but the sample current is gated by

a pulse at node x + f , charge transfer from x to x + f requires two address-events. First,

an address-event must arrive at the filopodial node x in order to fill the charge pool at x by

pulling Cfpre low. Second, an address-event must arrive at the growth cone node in order to

generate the specific filopodial sample pulse ∼samplef that diverts charge from the pool

onto the filopodial integration capacitor.

Growth cone neurotropin sampling therefore requires four address-events, one at the

growth cone and one at each of its filopodia. Every growth cone-targeted address-event

arriving at the update board must be fanned out to all four filopodial locations. This fanout

is implemented by the CPLD.

A.2.3 CPLD

The update board CPLD uses seven modules to process address-events entering and

exiting the Neurotrope1 chip, as diagrammed in Figure A.7. The s2p module and the p2s

module are the same as those used in the router board CPLD. The filter module, sequence

module, addendX module, addendY module, and adder module are described below.

A.2.3.1 filter module

Growth cones in the Neurotrope1 chip occupy nodes on a honeycomb lattice, which

can be decomposed into dual triangular lattices (Figure A.8(a)). Nodes are assigned to

each lattice according to the relative positions of their nearest neighbors. Type A nodes

have one neighbor to the right and two to the left, while type B nodes have one neighbor to

the left and two to the right. Node types are readily distinguished in the rectangular input

address space because type A nodes all have even column addresses and type B nodes all
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Figure A.7: Update board CPLD signal flow

The update board CPLD fans out growth cone address to four adjacent filopodial locations by adding an offset

to the original address.
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(a) A honeycomb lattice can be decomposed into dual triangular lattices. Type A nodes (red) occupy one

triangular lattice and type B nodes (green) occupy the other. (b) Fanout for type A nodes (top) and type B

nodes (bottom).

have odd column addresses.

The filter module examines the lower address bits of a parallel address-event to deter-

mine the node type of the encoded growth cone address. When the input request rAi goes

high, the filter module raises one of two output requests, rGCa for type A addresses or

rGCb for type B addresses. The filter module then waits for the output acknowledge aGC

to go high before removing the output request and acknowledging the input by raising the

input acknowledge aAi, which is lowered after rAi goes low.

A.2.3.2 sequence module

The sequence module is a state machine that successively executes four different paral-

lel address-event handshake cycles, one for each node in the filopodial fanout of the growth

cone-targeted address-event.
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When the sequence module receives an input request of either node type on rGCa or

rGCb, it raises the first fanout request radi0, which is sent to the addendX and addendY

modules. The sequence module then waits for the fanout acknowledges aadiX and aadiY

from both addend modules, indicating that the filopodial X and Y addresses have been

prepared. The sequence module then raises the output request rA, sending the filopodial

address into the Neurotrope1 chip.

When the output acknowledge aA goes high, the sequence module lowers radi0 and

waits for aadiX and aadiY to go low before lowering rA. When aA goes low in response,

the sequence module begins the next fanout event by raising the second fanout request

radi1.

After completing the fourth fanout address-event, the sequence module raises the input

acknowledge aGC and waits for the input request to go low before lowering aGC , ending

the filopodial fanout sequence.

A.2.3.3 addendX/Y module

Filopodial addresses are computed by adding offset constants to the growth cone X

and Y addresses. The specific constants depend on the node type of the growth cone and

the identity of the filopodium (Figure A.8(b)). The addendX module accepts filopodial

requests radi0, radi1, radi2, and radi3, and growth cone node types rGCa and rGCb,

and calculates the carry in bit and eight bit addend for a binary addition operating on the

growth cone X address. The addendY module does the same for the growth cone Y address.

For type A growth cones (rGCa high), the addendX module outputs an addend of 0x00

and carry in bit of 0 in response to the first filopodial request radi0, 0x01 and 0 for radi1,

0xfe and 1 for radi2, and 0xfe and 1 for radi3. For type B growth cones (rGCb high), the
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addendX module outputs 0x00 and 0 for radi0, 0xfe and 1 for radi1, 0x01 and 0 for radi2,

and 0x01 and 0 for radi3.

The addendY module outputs identical values for type A and B growth cones: 0x00

and 0 for radi0, 0x00 and 0 for radi1, 0xfe and 1 for radi2, and 0x01 and 0 for radi3.

Upon completing an addend and carry in bit computation, the addendX module raises

its output request radX , telling the adder module to begin its operation. When the addition

is complete, the adder module raises the acknowledge aadX , which the addendX module

passes back to the sequence module by raising aadiX . When the sequence module removes

the filopodial request, the addendX module clears its output and lowers radX . It waits for

aadX to go low before lowering aadiX , completing the filopodial handshake cycle. The

addendY passes its output to its adder module in the same way.

A.2.3.4 adder module

The adder module receives two addends and a carry in bit and outputs the results of

a binary addition. There are two identical adder modules in the update board CPLD, one

operating on the X address and one operating on the Y address.

The X address adder module executes its addition when it receives an input request

from the addendX module on radX , indicating the presence of data on the addend and

carry in bits AXs. The other addend AXi is the original growth cone X address output by

the s2p module. The adder module outputs the sum AX and raises the acknowledge aadX .

When radX goes low, the adder module clears AX and lowers aadX .
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A.2.4 Fanout cycle

In the fanout cycle, an arriving address-event is fanned out to its encoded target and

the three immediately adjacent sites. The CPLD receives a growth cone address (a, b) and

transmits a train of filopodial addresses (a, b), (a ± 1, b), (a ∓ 1, b − 1), (a ∓ 1, b + 1) to

the Neurotrope1 chip.

An address-event arriving at the CPLD is first converted from serial to parallel format

by the s2p module, which passes the parallel address to the filter and adder modules. The

filter module examines the growth cone address to determine its node type and then raises

one of two request lines, rGCa for type A nodes or rGCb for type B nodes. The sequence

module accepts these requests and generates four consecutive filopodial address-events.

It begins each filopodial address-event by raising one of four filopodial requests, radi0,

radi1, radi2, or radi3, which collectively act as a one-hot encoding of filopodial identity.

The addendX and addendY modules compute the offset constants AXs and AY s to be

added to the growth cone X and Y addresses AXi and AY i, based on the filopodial identity

encoded in radi0, radi1, radi2, and radi3, and the growth cone node type encoded in

rGCa and rGCb.

The addendX and addendY modules send their computed offsets to their respective

adder modules, which add the offsets to the growth cone X and Y addresses and present the

resulting filopodial X and Y addresses AX and AY to the Neurotrope1 chip. To begin the

output address-event handshake cycle, the adder modules acknowledge the addendX and

addendY modules, which pass the acknowledges back to the sequence module. When the

sequence module has received both acknowledges aadiX and aadiY , indicating that both

AX and AY are ready, it raises the output request rA, telling the Neurotrope1 chip to latch

the address.
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When the Neurotrope1 chip raises the output acknowledge aA, the sequence module

removes the filopodial request, causing the addend and adder modules to clear their outputs.

When both addend acknowledges aadiX and aadiY have cleared, the sequence module

either raises the next filopodial request or, if the last request radi3 has already been raised,

acknowledges the filter module on aGC . The filter module passes the acknowledge back to

the s2p module, which clears its output and acknowledges its input, completing the fanout

cycle.

A.2.5 Output cycle

In the output cycle, a parallel address-event from the Neurotrope1 chip is converted to

serial address-event format by the p2s module and transmitted to the output port.
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Appendix B

Neurotropin spreading circuit

In this appendix we describe the transistor circuit that implements the neurotropin

spreading kernel in the Neurotrope1 chip.

The Neurotrope1 chip models extracellular neurotropin spread as current flow in a dis-

crete transistor lattice. A target cell circuit injects current into the network by tying a

lattice node to the supply voltage. A fraction of this input current is shunted to ground by

an activity-independent current sink, and the remaining current either charges the node ca-

pacitance or flows to adjacent nodes. Each lattice node can shunt only a small fixed current,

so neurotropin spreads laterally from its release site to cover as many nodes as are required

to sink the injected current. The size of the fixed shunt current is controlled by the gate

voltage Vshunt shared by the leak transistors at every node. The higher Vshunt, the larger the

shunt current and the shorter the range to which neurotropin can spread.
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Figure B.1: Neurotropin spreading circuit

(a) Transistor circuit. (b) Equivalent current source representation.

B.0.5.1 Pulse range

The transistor circuit for the extracellular lattice is shown in Figure B.1(a). Lattice

nodes are sorted into disjoint rings according to distance, with ring r defined as the set of

nodes separated from the release site by r edges. Nr is the number of nodes in ring r and

Er is the number of edges connecting members of ring r − 1 with members of ring r. For

a honeycomb lattice, Nr = 3r and Er = (9r − 6)/2 for r even or (9r − 3)/2 for r odd.

Every node in the lattice is connected to ground through a decay nFET Md, and to

E1 of its neighbors through horizontal pFETs M1 (Figure B.1(a)). Current, representing

neurotropin, is injected into a node through a pair of series pFETs Mf and Mp that connect

the node to the supply rail. These injection transistors are gated by time-dependent voltage
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pulses.

Nodes in the same ring r have the same node voltage Vr , which is set by the lateral

current Er+1Ir+1 exiting ring r through the Er+1 horizontal transistors Mr+1. This exit

current is equal to the current entering ring r from ring r − 1, less the Nr decay currents

sunk by member nodes through transistors Md. Current injected at the release site flows

outward through concentric node rings until all of the injected current has been sunk.

The horizontal transistors Mr share the common gate bias Vspread, and conduct current

only when their source voltage Vr exceeds κpVspread. We typically set Vspread ≈ 1.8V ,

so if Vk > κpVspread then the decay transistor Md is driven well into saturation, since

κpVspread � 4VT, where the thermal voltage VT ≈ 26mV . A transistor in saturation passes

an approximately constant current whose amplitude is set by its gate voltage. Accordingly,

we can treat the decay transistor Md at a node in ring r as a constant current sink Id if

there is significant current flow through Mr+1. We make similar assumptions to replace the

series pFETs Mf and Mp with a time-dependent current source Iin(t). The resulting current

source representation is shown in Figure B.1(b).

In steady-state, all current entering the lattice through Iin(t) must exit the lattice through

a combination of current sinks Id. Current spreads outward from the release site up to some

radius R at which all current has been sunk. We can solve for R by expressing the sourced

current Iin(t) in terms of its current sinks:

Iin(t) = Id

[
1 +

R∑

r=1

3r

]

= Id

[
1 +

3

2
R(R − 1)

]
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Figure B.2: Neurotropin pulse shape

SPICE simulation of neurotropin release pulse. (a) Temporal pulse shape. A current pulse Iin(t) is injected

at r = 0 beginning at t = 0µs and ending at t = 40µs. Vshunt = 0.4V . (b) Spatial pulse shape, measured at

t = 38µs. Pulse range is limited by the constant decay current Id , as controlled by Vshunt .
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Current injected at a release site spreads up to R nodes away before being shunted to

ground. Increasing the constant decay current Id decreases R, since more current gets

shunted closer to the release site.

B.0.5.2 Pulse shape

During a release pulse, current Iin(t) is injected at a release site and radiates outward

through concentric rings of lattice nodes until all of the injected current has been sunk

through the distributed decay currents Id. Current enters a node in ring r from adjacent

nodes in the next innermost ring r − 1 through the horizontal transistors Mr. From this

horizontal input current Ir, the node’s decay transistor Md subtracts a constant Id. The
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excess current Ir − Id charges the node capacitance until the node voltage Vr exceeds

κpVspread, at which point the next set of horizontal transistors Mr+1 turn on, arresting the

rise in Vr by diverting the excess current outward to charge adjacent nodes in the next ring

(r + 1).

Figure B.2(a) shows an example of this sequential ring charging, as simulated in SPICE.

A 40µs pulse of current is injected at the release site at r = 0. For r = 1..4, node voltages

Vr rise in order toward Vdd = 3.3V . Finally, at r = 5, enough current sinks Id have been

recruited to balance the input current Iin(t) that V5 remains only partially charged. Upon

removal of the input current at t = 40µs, all nodes decay toward ground. Immediately

after input removal, node voltages near the release site converge, coupled by the initially

above-threshold operation of their horizontal transistors, before sinking in concert due to

the collective load of their decay currents Id. Once node voltages drop below κpVspread, hor-

izontal current flow ceases and individual node voltages decay linearly and independently

to ground.

Larger decay currents Id reduce current spread, as simulated in Figure B.2(b). Id in-

creases exponentially with the gate bias Vshunt. The same injected current can be balanced

by fewer nodes using larger decay currents, so increasing Vshunt reduces the effective range

r of the release pulse. We will use Vshunt in the future as a knob to control pulse range.

For the purposes of growth cone guidance on the chip, we can characterize the pulse

gradient as being shallow near the release site, steep at some intermediate range, and flat

again at long distances. For convenience, we will approximate this pulse shape by using a

peak-normalized Gaussian function for the spreading kernel.

G(x,y) = ρNT exp

[
−‖x− y‖2

2σ2
NT

]
(B.2)
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where the standard deviation σNT reflects the spatial extent R of the pulse and is controlled

by Vshunt.
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