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A Burst-Mode Word-Serial Address-Event Link—II:
Receiver Design

Kwabena A. Boahen

Abstract—We present a receiver for a scalable multiple-access
inter-chip link that communicates binary activity between two-di-
mensional arrays fabricated in deep submicron CMOS. Recipients
are identified by row and column addresses but these addresses are
not communicated simultaneously. The row address is followed se-
quentially by a column address for each active cell in that row;
this cuts pad count in half without sacrificing communication ca-
pacity. Column addresses are decoded as they are received but cells
are not written individually. An entire burst is written to a row in
parallel; this increases communication capacity with integration
density. Rows are written one by one but bursts are not processed
one at a time. The next burst is decoded while the last one is being
written; this increases capacity further. We synthesized an asyn-
chronous implementation by performing a series of program de-
compositions, starting from a high-level description. Links using
this design have been implemented successfully in three genera-
tions of submicron CMOS technology.

Index Terms—Asynchronous logic synthesis, event-driven com-
munication, neuromorphic systems, pipelining, pixel-level quanti-
zation, serial-to-parallel conversion.

I. SCALING TWO-DIMENSIONAL ARRAYS

EVENT-DRIVEN demultiplexers are used to deliver binary
signals to arrays of parallel-processing cells. Traditionally,

clock-driven demultiplexers were used for this purpose. How-
ever, updating each and every cell regularly is wasteful if ac-
tivity is sparse, either in time or in space. In that case, it is more
efficient to update a cell only when its input changes, which
may be accomplished simply by delivering the cell’s address to
the array. A decoder then selects the cell and either toggles its
input (level coded) or drives the input high briefly (pulse coded).
This address-event representation has been used to communi-
cate pulse-coded outputs of silicon retinae [1]–[4] and cochleas
[5], to drive arrays of silicon neurons [1], [2], [6], [7], and to in-
terface these neuromorphic chips with computers [5]. Interest
in event-driven multiplexer-demultiplexer links is increasing,
driven by the trend toward quantizing signals inside the array
(e.g., active pixel sensors [8]–[10] and pulse-coded neural net-
works [11], [12]).

We recently developed an event-driven multiplexer that
boosts capacity by reading an entire row of cells in parallel
[13]. As feature sizes shrink, it takes longer to cycle the row
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and column lines because faster logic (minimum-sized inverter
chain) is neutralized by larger load (cells per row or column).
This bottleneck limits prior multiplexer designs, where a single
active cell is read at a time [11], [14]–[16]. We broke the
bottleneck by exploiting parallelism—reading an entire row
simultaneously. Communication capacity is not compromised
when we serially encode the addresses of active cells in that
row because we use devices much larger than those in the
array. As communication capacity is boosted without sizing up
devices inside the array, our multiplexer design can exploit the
high integration densities deep submicron processes offer.

In this paper, we describe a complementary event-driven de-
multiplexer that writes an entire row of cells in parallel. Prior de-
multiplexer designs write a single cell at a time [1], [2], similar
to prior multiplexer designs. Hence, they also face a bottleneck.
Our new demultiplexer design provides a scalable solution when
paired with our recently developed multiplexer design to form
a parallel read–write link. The increase in parallelism as the
array gets denser enables the communication capacity to keep
increasing, despite the fact that faster logic is neutralized by
larger load. Our demultiplexer requires large devices only in the
periphery, where serial-to-parallel conversion occurs. The entire
parallel read–write link is implemented asynchronously—the
same approach adopted by prior link designs—to facilitate its
use in large heterogeneous multichip systems.

Similar to prior designs, our event-driven multiplexer-demul-
tiplexer link provides virtual connectivity between cells in the
same array or in different arrays, which need not be on the
same chip. That is, the multiplexer, or transmitter, uses an en-
coder to generate an address that uniquely identifies an event’s
place of origin. Conversely, the demultiplexer, or receiver, uses
a decoder to recreate the event at the destination [1], [5], [14].
These virtual wires can be rerouted by using a look-up table
to translate an incoming address into one or more outgoing ad-
dresses [7], [17], [18]. Events may be fanned out to multiple re-
ceivers by using splits and merges [6], or with a shared bus [18],
[19]. Thus, in addition to providing point-to-point communica-
tion for parallel distributed processing in multi-chip systems, the
single-transmitter-single-receiver address-event link described
here can serve a wide variety of purposes when augmented ap-
propriately.

However, unlike prior designs, our event-driven multiplexer–
demultiplexer link communicates row and column addresses
serially, rather than in parallel. By going serial, we cut the pad
count in half—without sacrificing communication capacity.
There is no loss in communication capacity because the multi-
plexer does not retransmit the row address if the next event is
from the same row. These events are communicated in a burst:
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Fig. 1. Receiver architecture: a two-way demultiplexer (U) directs row
addresses to one latch (D) and column addresses to another (E). When the
burst ends, the row’s address and its decoded column addresses (P) are written
to a second set of latches (E and M). As the row address is decoded and the
column data is written to that row (R), the next burst is received and its column
addresses are decoded.

the row address, a column address for each active cell, and a
termination signal. It is obvious which events are from the same
row since an entire row of cells is read out in parallel. Thus,
parallel readout makes it possible to eliminate redundant row
addresses and thereby communicate addresses serially without
sacrificing capacity.

The paper is divided into four sections. In Section II, we
present a high-level specification for the receiver, and decom-
pose it into a hierarchy of concurrent processes. In Section III,
we present the final handshaking sequences and the resulting
asynchronous logic circuits; intermediate synthesis steps can be
found in the Appendix. Section IV concludes the paper. A par-
allel-read burst-mode transmitter and analysis and test results
are presented in companion papers [13], [20].

II. RECEIVER DESIGN

Our goal is to optimize the address-event receiver’s
row–column architecture in three ways. For an -cell array, the
following hold.

1) Multiplexing row and column addresses cuts pad count in
half.

2) Pipelining serial-to-parallel conversion increases com-
munication capacity.

3) Writing a row’s events in parallel boosts communication
capacity by up to .

As alluded to in Section I, we realize Optimization 1 by elimi-
nating redundant row addresses, thus the drop in (peak) capacity
is only 1 in .We realize Optimization 2 by decoding the
new row’s column addresses even while we are writing the pre-
vious row’s events into the array. Finally, we realize Optimiza-
tion 3 by writing up to events in parallel assuming a square
array.

A preview of the receiver architecture we developed is
shown in Fig. 1. In this section, we derive programs that
describe the behavior of each of these blocks by following a
synthesis methodology for asynchronous digital VLSI systems
developed by Martin [21] (tutorial examples are provided in
[22]). His methodology involves applying a series of program

Fig. 2. Receiver specification: the receiver inputs an -bit address on port A
and communicates on the corresponding one of its dataless ports P .

transformations, starting from a high-level specification. As
each step preserves the logic of the original program, the re-
sulting circuit is correct by induction. Thus, it is unnecessary to
deduce how these processes behave when executed in parallel,
which is extremely difficult. After decomposing the receiver
specification into a set of concurrent programs, we compile
these one-line programs into hardware in Section III.

A. High-Level Specification

We start by writing a high-level specification in the concur-
rent hardware processes (CHP) language, a hardware descrip-
tion language for asynchronous systems [21]. In CHP, logic cir-
cuits “execute” concurrent programs, for example

The program or process is named and its argument
is named ; process and argument names are always set in
upper and lower case sans-serif font, respectively. As we are
describing hardware here, you should think of as a call
to a silicon compiler that lays out a circuit with, for instance,
an -bit-wide datapath. denotes infinite repetition; this
demarcates the body of the program. Semicolons (;) denote
sequential execution. inputs data from a port named
and stores it in a local variable named ; port and variable
names are always set in italicized upper and lower case roman
font, respectively. Similarly, outputs the data stored in

on port . is a dataless communication on port ; its
only effect is to synchronize the two processes whose ports are
connected together. That is, this process waits until the other
one gets to the corresponding point in its program, or vise
versa. In the text, we will write “port ” to distinguish the port
itself from a communication performed on that port, which we
write simply as “ .” There is no such ambiguity in the code, as
only communications can appear in the body of the program.

A high-level block diagram of the address-event receiver
is shown in Fig. 2. We use selection,

, to choose the recipient. This program
construct picks a guard that is true and executes the
corresponding program segment .1 In our case, the guard
is a single bit of , an -bit word obtained by decoding an
-bit address received on port , the receiver’s input, where

. And the program segment communicates on one
of the receiver’s dataless ports, , to signal the occurrence
of an event. Thus, we have

where is the th bit of , which is assigned (:=) the value
returned by calling with the address read from port .

1If all the guards are false, it waits for one to become true; they must be mu-
tually exclusive.
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Fig. 3. Row–column organization. (a) The kth column communicates with
all the rows ( l) as well as the column decoder ( ). (b) The lth row
communicates with the row decoder ( ) and all the columns ( k). It
services event recipients l + 1 through (l + 1) with its P ports.

This function converts a binary code ( -bit) into a one-hot one
( -bit).

Alternatively, the receiver process may be described suc-
cinctly using CHP’s replication construct:

, where each is a program-segment and
is any operator that can be concatenated. As the selection

operator can be concatenated, we have

The next step in the synthesis procedure is to decompose
this high-level specification into a hierarchy of concurrent
processes. These processes’ ports are then connected together
by channels. We present this connectivity information picto-
rially. These figures also give the names of instances (e.g.,

specifies an instance of named )
and their ports’ data types (e.g., specifies that port

outputs bytes). Ports that are defined neither as input nor
output are dataless by default. Port names that appear inside
a box are local to that instance; those outside are local to the
process within which that instance occurs.

B. Reorganizing Into Rows and Columns

Here, we decompose into separate row, column,
and decoder processes, named , , and ,
respectively. These processes are connected as shown in Fig. 3.
This decomposition is accomplished through three program
transformations. For the first transformation, we reorganize

’s dataless ports into rows and columns and replace
its input, port , with two inputs, ports and , that accept
row and column addresses, respectively. We use a 1-in-
decoder to select a row and a 1-in- decoder to select a cell in
that row. Thus, we have

where and . Parallel lines denote
parallel execution. The decoded addresses are stored in local
-bit and -bit words named and , respectively.

For the second transformation, we implement address de-
coding in a separate process, . This 1-in- decoder uses
a -bit input, port , for the address, a local -bit word

for the decoded address, and dataless ports , for selec-
tion. That is

Two instances of , with or , are used for row
and column decoding, respectively.

Having removed the decoders, we are left with a process con-
taining just the array of dataless ports, which we call .
This process uses dataless ports and dataless ports

to communicate with the row and column decoders, re-
spectively. It probes these ports to find out which of its rows
or columns has been selected. The probe, , evaluates to true
when there is a communication pending on port (i.e., the
other process is waiting). Having found the selected row and
column, communicates on the corresponding data-
less port and communicates with the column and row decoders
to acknowledge its selection. Thus, we have

For our third and final transformation, we break up
into column processes and row processes. As shown in
Fig. 3, communicates with the column decoder using
its port while communicates with the row decoder
using its port; these ports are dataless. also performs
a column-wide broadcast on its ports, which are connected
to the rows’ ports. A broadcast, denoted by the circle ,
waits for at least one recipient to respond.2 Thus, programs for
the column and row processes read

The second communication is included to prevent the row
decoder from selecting another row until the column communi-
cation is finished. A second communication must be added to

as well to reflect this. With mutual exclusion guar-
anteed, it is no longer necessary to synchronize the row and
column decoders; they can read and decode addresses indepen-
dently.

This serial-write architecture, where cells are written individ-
ually, was first implemented in [1]; it was pipelined by adding
latches to the decoder inputs in [23] and [24]. We design a par-
allel-write version in the next subsection.

C. Writing the Array in Parallel

Here, we modify and to write all events
destined for the same row in parallel, an innnovation introduced
in this work. These events are received in a burst, the row
address followed by a column address for each active cell [13].
Hence, we must demultiplex the row and column addresses
and detect when the burst ends, signaled by a reserved address
named , only then can the parallel write begin. We introduce
a process named to perform these tasks, where

. Predecoded column addresses are

2This construct is not supported by CHP; its use is discouraged as there is
no delay-insensitive implementation. The reason is that communication signals
sent to inactive recipients are not acknowledged, and therefore, we cannot tell
if they have been cleared.



1284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004

Fig. 4. Burst reception. (a) Latch ( ) is written to by the column decoder
(decc) and read by the demultiplexer ( ). (b) Demultiplexer ( ) relays
words from the latch ( ) to the bus ( ). It also receives row and column
addresses from the receiver’s global A port and sends them to the appropriate
decoder ( and ).

stored in a -bit latch, named . These processes are
connected as shown in Fig. 4.

For [see Fig. 4(a)], we simply set the th bit (
or ) of its -bit word when the th column
is selected and clear every bit ( or ) after the
latch is read . Thus, its program reads

is read by at the end of the burst,
after all the column addresses have been decoded [see Fig. 4(a)].
Hence, we assumed that the communication does not overlap
with any of the communications, allowing us to include it
in the same selection statement. This mutual exclusion can be
guaranteed by , as we shall show next.

For [see Fig. 4(b)], we read bursts from the re-
ceiver’s word-serial input (port ), direct the first address to
the row decoder (port ) and direct subsequent addresses to the
column decoder (port ), until we receive . When that hap-
pens, we transfer ’s data to the array and re-
peat the procedure. Thus, we have

where and are local -bit words. We chose to delay passing
on the row address until the burst ends . This
rearrangement allows us to use a single control signal to initiate
row selection as well as column data transfer , since,
at this point, all the column addresses have been decoded.
Note that the row address is the one that follows ; it is stored
in . Upon initialization, execution must begin at this
communication.

To write ’s data into the selected row, we combine
our processes into a single -bit-wide bus, named

, as shown in Fig. 5(a). And we make
compatible by combining its dataless ports into a single
-bit input, port , as shown in Fig. 5(b). We use concurrency,

, to update all the cells
selected in that row. This construct executes (concurrently) all

Fig. 5. Parallel write-in. (a) Bus ( ) transfers -bit words handed off by
the demultiplexer ( ) to the selected row (rowl). (b) Row’s C ports have
been combined into a single port C that inputs -bit words.

program segments, , whose guards, , are true.3 Thus, we
have

where is a -bit word that is local to each process.
In summary, we have decomposed into five concur-

rent processes: One instance of , two of , one
of , one of , and of . These process’
ports are connected together as shown in Figs. 4 and 5. The next
step in the synthesis procedure is to compile these CHP pro-
grams into hardware.

III. RECEIVER IMPLEMENTATION

Electrically, processes set or clear an output
signal , or wait for an input signal to become true

or false ; tilde denotes logical complement. To
communicate, they must perform complementary four-phase
sequences of actions and waits: on an
active port and for its passive coun-
terpart , where denotes repetition, just like in CHP. We
always append and to the port’s name to indicate its input
and output signals, respectively. Such signal names are always
set in lower case typewriter font. The active port’s output signal

is commonly called Request; the passive port’s is the
so-called Acknowledge. At the signal level, we refer to as

and to as —request first and acknowledge
second in both cases.

We have three choices of signal representations for data.

1) Bundled-data requires a single line per bit, in addition
to the request and acknowledge signals. The data is valid
when the request signal is set; otherwise it is invalid.

2) Straight-data dispenses with the request signal. Instead,
all zeroes signifies invalid data; any other word is consid-
ered valid. Both representations require matched delays
for data as well as request.

3This construct is not supported by CHP. Its use is discouraged because termi-
nation cannot always be guaranteed, but that is not the case here. Concurrency
waits for at least one guard to become true if necessary, just like selection does.
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3) Dual-rail acheives delay-insensitive operation by en-
coding each bit using two lines: bit is true and bit is false
(denoted by appending or ). The data is invalid when
both are cleared; setting either transmits a one or a zero.

Handshaking expansion (HSE) is the procedure whereby
each communication in our CHP programs is fleshed out into
a full four-phase request-acknowledge sequence. Following
Martin’s synthesis procedure [21], we make two choices when
we perform HSE. First, we make output ports active and input
ports passive.4 The only exception is a port that is probed
must be passive, as the probe is implemented simply as .
Symmetric links—dataless ports that are not probed on either
end—are dealt with on a case by case basis. Second, we use the
second half of the four-phase handshake to implement a second
communication on the same port—a two-phase handshake—if
these communications always occur in pairs. This optimization
is possible because the second half just returns the signals to
their initial state. So,we are free to clear them whenever it is
convenient to do so, a process known as reshuffling.

The final step in Martin’s synthesis procedure is compiling
HSE sequences into production-rule sets (PRS), which are
straightforward to implement with CMOS transistors. A
production rule clears a bit when a boolean
expression becomes true. We write to set the bit
when the expression is false. An n-type field-effect transistor
(nFET) implements the former rule while a p-type field-effect
transistor (pFET) implements the latter; the two rules together
correspond to an inverter. Logical and and or (denoted by
& and , respectively, in PRS, or HSE) are implemented by
connecting FETs in series and in parallel. If both pull-up and
pull-down chains may be inactive at the same time, a weak
feedback-inverter must be added to overcome their leakage
currents. Such outputs are said to be state holding, as opposed
to combinational; the feedback-inverter is called a staticizer.
Active-low signals are allowed in PRS and at the circuit level;
their names have an underscore prepended (e.g., ).

We present only the final HSE sequences and the synthesized
circuits in this section. Details of how we arrived at these reshuf-
flings and how we compiled them into PRS are in the Appendix.
We recommend that you refer to Fig. 6 to see how these circuits
interact as you read their descriptions. To facilitate this, we in-
clude the block labels in this figure in HSE sequences and in
subsequent figure captions.

A. Demultiplexing

The CHP program for [see Section II-C and
Fig. 4(b)] requires us to read addresses from the receiver’s
input (port ), store the row address, pass column addresses
on to the column decoder (port ), and then pass on the row
address (port ) and transfer the row word (port to port )
when the burst ends. These operations are implemented in this
section; we implement here as well.

We use the passive counterpart of the transmitter’s three-wire
protocol [13] for port . That is, we use bundled-data but we

4Our choice is arbitrary—the direction that data flows is not necessarily re-
strictive.

Fig. 6. Receiver schematic. consists of a two-way demultiplexer (U)
that parses b-bit row and column addresses (Y;X), and a latch (controlled
by block D) that holds the row address till the burst ends. (two
instances) includes a latch (controlled by block E) that drives its decoding
logic (represented by discs) with dual-rail encoded data (2b lines). ’s bit
cells consist of a buffer (P) and a memory (M). includes a set of wires
that connect ’s cells (do; di), to the array (so;si), and to a controller
(ho;hi). These wires broadcast column data to ’s cells (R), thereby
implementing as well.

distinguish row and column addresses using separate request
lines, and , respectively; they share the same acknowl-
edge, . Fig. 6 shows the correspondence between these sig-
nals and the receiver’s Ry, Rx, and Ack signals mentioned
earlier. The sequence of waits and actions on these three lines
is

�[[ari];ao+;[~aci];ao-]

�[[aci];ao-;[~aci];ao+]

where denotes parallel execution, just like in CHP. The first
sequence’s first half receives the row address, while the second
half receives the burst-termination signal . Multiple column
addresses are received by executing the second sequence as
many times as desired, halfway through the first sequence.
This three-wire handshake is illustrated in Fig. 7. The address
switches back to the row address because the transmitter’s
address mux is controlled by the column request (i.e., ).
Note that remains high throughout.

To demultiplex addresses received on ’s port (pas-
sive), we augment the three-wire handshaking sequence above
with communications on ports and (both active), which
are connected to the row and column decoder, respectively [see
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Fig. 7. Three-wire handshake: when ari becomes high, receiver reads the row
address y0 : b and raises ao. When aci becomes low, the receiver reads the
column address x0:b and lowers ao. This column communication is completed
by taking aci high—the address reverts back to y0:b—followed by ao. After
a second column address is received, the burst is terminated by taking ari low,
followed again by ao.

Fig. 8. Three-to-four-wire converter [U]. Requests ari and aci are relayed
to the decoders on ro and co, while acknowledges ri and ci are merged onto
ao.

Fig. 4(b)]. Thus, we obtained the following reshuffled HSE se-
quence:

# demux (U) #

�[[ari];ro+;[ri];ao+;[~ari];ro-;[~ri];ao-]

k�[[aci];co+;[ci];ao-;[~aci];co-;[~ci];ao+].

These sequences convert the three-wire handshake into a
four-wire one, with separate acknowledges for row and column
addresses. The second two-phase communication on port
now signals the end of a burst.

Compiling this HSE into PRS (see Appendix part A) yielded
thecircuit showninFig.8.When becomeshigh, goeshigh,
which prompts to become high. Both of the AND gates’ inputs
are now high, so it drives high. Row-address reception is now
complete. Column-address reception starts with becoming
low.Bothof theNORgates’ inputsarenowlow,so itdrives high,
which prompts to become high. Hence, the inverter’s output
goes low, which forces the AND gate’s output low. Column-
address reception is now complete. Now, initial states must be
restored. is cleared once goes back high and returns
to the high state once becomes low. is cleared next, once

swings low, and is cleared once becomes low.
We do not decode the row address, which is read on the first

(two-phase) communication, until the second communica-
tion occurs (see above). This delay is realized by
the following reshuffled HSE sequence (see Appendix part B),
which communicates with the three-to-four-wire converter on
its port (passive) and communicates with the row decoder on
its port (active), as shown in Fig. 6

# delay (D) #
�[[gi];go+;[~gi&~pi];po+;[pi];go-;po-].

Fig. 9. Row-address delay [D]. Transfers row address from three-to-four-wire
converter ( gi; go) to row decoder (po;pi), after holding it in a latch (go) till
the burst ends.

As required, does not begin until the second half of starts,
which signals the end of a burst. At this point, all the column
addresses have been decoded, and a parallel write may begin as
soon as the row address is decoded.

Compiling this HSE into PRS (see Appendix part B) yielded
the circuit shown in Fig. 9. Initially, is low, so goes high
as soon as becomes low. After goes back high, swings
low, since both inputs to the NAND gate are now high. be-
coming low will make go high, provided is low. also
strobes the latch that holds the row address (described in Sec-
tion III-B). The latch becomes opaque when is high. It does
not become transparent again until goes low, after be-
comes high, which signals that the address has been read.
becoming low also clears by forcing high.

’s parallel read–write operation is realized
by the following reshuffled HSE sequence, which uses a
straight-data representation. Ports and are both active; a
third port, , which is passive and dataless, gives the go signal.

# transfer #
�[[hi];do+;[di];so+;[si];ho+;
[~hi];do-;[~di];so-;[~si];ho-].

This sequence is implemented by three wires: tie to , to
, and to . may also be implemented with wires [see

Fig. 5(a)]: these connect its passive input (port ) to its active
outputs (ports ). Thus, the parallel write is realized simply by
extending the lines (one per bit) into the array ( wires in all),
connecting them to every row.

The triangular communication that implements the parallel
read–write operation is shown in Fig. 6. It is controlled by the
delay circuit (D), whose port drives port . Thus, column data
transfer and row-address decoding are initiated simultaneously.
The E block in this figure was inserted to pipeline the decoder;
this is described in the next subsection (Section III-B). Ignoring
E for the moment, and imagining that is tied directly to
and to , we observe a triangular path connecting the delay
circuit (D), the column data latch (M), and the receiving row (R).
The receiving row’s acknowledge , which signals column
parallel write as well as row selection (see Section III-C), is fed
to a -input OR gate (part of the decoder) that combines row
acknowledges into a single array-level acknowledge .

This completes our implementation of as well as
, which we have essentially folded into .
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Fig. 10. Address latch [E]. Interfaces three-to-four-wire converter or row-
address delay (li; lni; lo) with decoder-logic (ent; enf; ei). The latch is
opaque when its control signal (s) is high. Dual-rail encoding is used for data
output.

B. Decoding

We now turn our attention to the CHP program for
(see Section II-B). In addition to the combinational logic re-
quired to implement the binary to one-hot function, , our
decoder design includes a latch, to support pipelined operation,
and a bundled-data-to-dual-rail converter, to guarantee delay-
insensitive operation. Here we describe the latch and the con-
verter; the combinational logic was described in [22]. There is
also an -input OR gate (mentioned above), built from a tree of
two-input ORs, which combines the acknowledges.

We made the latch’s input (port ) passive and its output (port
) active and used the following reshuffled HSE sequence:

# pipeline (E) #
�[[~ei&li];eo+,lo+;[ei&~li];eo-,lo-].

This reshuffling allows the decoder to acknowledge receiving
the address before it has finished decoding it, thereby increasing
throughput [23], [24]. The compiled circuit, called a C-element
[25], is shown in Fig. 10, which also includes the memory cell.
The C-element clears and sets when and are both
high. Thus, the write is acknowledged and a read is initiated at
the same time. It sets and clears when and are both
low, thus enabling a new write and terminating the old read at
the same time.

The latch’s memory cell consist of two inverters and a mux,
whose select signal is driven by the C-element. When goes
high, is driven high and is driven low. Thus, the latch be-
comes opaque. It does not become transparent again until
goes low, which happens after is lowered, indicating that
the address has been decoded.

The data converter consist of two AND gates that combine the
control signal (i.e., or with the stored bit and its comple-

ment. Thus, either or is forced high depending on the
th bit’s value when goes high. One or the other of these dual

rails is connected to the -input AND gates that generate
the decoder’s (one-hot) outputs, depending on that particular
address [22]. Thus, when all bits are valid, an output
will become active. If even just one bit is invalid (i.e., both rails
are low), all the outputs will remain inactive.

Previously, we drove the decoding logic with bundled-data
instead of dual-rail. That is, we connected one or the other
of the memory cell’s complementary outputs directly to each

-input-AND gate, which had an extra input driven
by the request (i.e., ) that served as an enable [22]. We
abandoned this scheme as we found that delays on this enable
line produced glitches, because the -input AND gates
would remain enabled for some time after was driven low.
Since the latch becomes transparent at this point, new data
would propagate straight through and drive the AND gates until
the delayed enable was cleared, hence the glitch. Glitching is
prevented by using dual rail, which eliminates the extra line
and logic level as well.

We use the same pipelined decoder design for both the row
and column addresses. For the row decoder, this means that the
parallel write is also pipelined, as the C-element’s signal ini-
tiates column data transfer as well as row selection (see Fig. 6).
Hence, when the delay circuit passes on the row address at the
end of the burst, it will be acknowledged at the same time we
begin transferring the data into the array. This simultaneity al-
lows the delay circuit to complete its communication with the
three-to-four-wire converter early (see Section III-A). Hence,
the next burst can be received, and its column addresses de-
coded, even while we are performing the parallel write. The
column data latch, which is presented in the next subsection
(Section III-C), must be designed to ensure that the old data is
not overwritten.

C. Writing

We implement and in this section.
must complete each and every communication in its entirety
before it has even begun one communication [see Fig. 4(a)].
This ability for communications on one port to get out of step
with communications on another is referred to as slack. For in-
stance, in a regular left–right buffer, like that used to pipeline
the decoders (see Section III-B), the second phase of the left
port’s communication starts at the same time as the first phase
of the right port’s. Thus, a little more than a quarter cycle of
slack is provided. For ’s cells, a full cycle of slack is re-
quired to allow another burst to be read while we are writing the
preceding one into the array.

To obtain a full cycle of slack, we implement the cell in
two stages called column buffer and data latch, each of which
contributes at least half a cycle of slack. We made the port that
column buffer uses to communicate with the decoder passive
(see Section II-C). We made the port it uses to communicate
with data latch active (see Fig. 6). Buffer’s reshuffled bit-level
HSE sequence reads (see Appendix part C)

# buffer (P) #

�[[ci];co+;[~qi];qo+;[~ci];co-;[qi];qo-].
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finishes before the request to the second stage has even been
acknowledged (i.e., ). In fact, as is from the end of the
previous cycle, only the first of ’s four phases overlaps with

. Hence, buffer provides a slack of three-quarters.
Compiling buffer’s HSE into PRS (see Appendix part C)

yielded the circuit shown in Fig. 11(a). goes high as soon as
becomes high, provided is low. becoming high will

make go high, provided is low. And a high will clear
after goes back down. With low, becoming high

is all that is required to clear . Essentially, this circuit is just
two serially connected C-elements, like those used to control
the address-latch (see Fig. 10).

For the second stage, data latch, we made the port it uses
to communicate with buffer passive as well as the port it uses
to communicate with the array (see Section II-C). Port must
be passive to make it possible for to initiate the par-
allel write. Latch’s reshuffled bit-level HSE sequence reads (see
Appendix part C)

# data latch (M) #

�[[bi];bo+;[vi];vo+;[~bi];bo-;[~vi];vo-].

starts when is halfway, hence, the latch provides a slack of
half. This amount is clearly sufficient, since buffer only needs
to see , which corresponds to its , to complete its
communication. The buffer can even get halfway through its
next communication, but it must wait for to happen,
which corresponds to its , to proceed to completion. Thus,
the buffer can complete a second communication while is
only halfway—before even the write-request has been cleared
(i.e., ). Consequently, this reshuffling gives us a half-cycle
more slack than we need.5

Compiling the latch’s HSE into PRS (see Appendix part C)
yielded the circuit shown in Fig. 11(b). goes high as soon as

becomes high, provided is low. Now must become high
before can drive high. When becomes low it cannot
clear unless is high. When that happens, and is cleared,

also must become low before is cleared. This sequencing
ensures that data cannot be overwritten before it is read—even
though clearing enables new data to be presented. Inactive
cells require extra care, as explained in Appendix part C.

Finally, to implement [see Fig. 5(b)], we made its
and ports both passive and made its ports active (see

Section II-C). The reshuffled bit-level HSE for the row reads
(see Appendix part D)

# row cell (R) #

�[[ri&ci];po+;[pi];ro+;[~ri&~ci];po-;

[~pi];ro-]

where we treat as data that arrives on . Thus, there is no
need for a separate acknowledge for ; acknowledges the
latch as well as the decoder. Compiling this HSE into PRS (see

5The receiver will hang if the same column address appears thrice, because,
while the first goes in the latch and the second is held in the buffer, there is
nowhere to put the third; the address-latch provides less than a half-cycle.

Fig. 11. Column buffer [P] and data latch [M]. (a) Interfaces column decoder
(ci; co) with data latch (qo;qi). (b) Interfaces column buffer (bi;bo) with
array (vo) and row decoder’s C-element (vi). The zero-tag indicates that the
inverter’s output is forced low during reset; this clears the pipeline.

Fig. 12. Event-recipient interface [R] and acknowledge-OR. (a) Interfaces
data latch ( ci) and row decoder ( ri;ro) with event-recipient (po;pi).
(b) Broadcasts a request li, to all n ports and ORs their acknowledges
r1i;r2i; . . . or rni, together to create a single one lo.

Appendix part D) yielded the circuit shown in Fig. 12(a)—a
C-element (the staticizer was eliminated to save area). goes
high when and are both low, and it goes low when
they are both high. Thus, the cell makes sure its row select and
column data lines are both clear before clearing , its request.
Then, it simply copies , the acknowledge, to .

We combine ’s bit-level acknowledges to generate a
single acknowledge for that row using the staticized wired OR

gate shown in Fig. 12(b). This gate produces an output when at
least one cell acknowledges. Nevertheless, the remaining cells
have sufficient time to read the column data, as the row-spanning
wired OR line is slow due to its large capacitance. The OR gate’s
output, , is cleared when all the cells’ acknowledges are clear.
Until this is the case, cannot clear because the pFET is
sized to be weaker than the nFETs.
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IV. SUMMARY AND CONCLUSION

We have described an address-event receiver that writes all
events destined for a particular row in parallel. While these
events are being written, it decodes the next burst’s column ad-
dresses, in preparation for the next parallel write. Bursts con-
sist of a sequence of addresses: one for the row and additional
ones for the column of each active cell in that row, plus a termi-
nation signal. They are communicated using a three-wire hand-
shake: a row request, a column request, and a common acknowl-
edge. In return for the extra request line, input pads are cut by
50% without sacrificing throughput as the row address is not re-
peated.

In terms of cell area, the cost of the parallel-write design
is practically the same as prior receiver designs. Prior designs
require a four-transistor NAND gate to combine the row- and
column-select signals (this can be reduced to three if an NMOS-
style design is used [22]), similar to our four-transistor C-el-
ement [see Fig. 12(a)]. They require an additional transistor
to pull down the acknowledge line, similar to our staticized
wired-OR [see Fig. 12(b)]. However, we made our design ef-
ficient by eliminating the staticizer, which would have added
four more transistors. It is acceptable to cut corners here be-
cause the output is in the high-impedance state (i.e., )
only briefly. Thus, the increased throughput and scalability par-
allelism offers [20] is attained at no cost in hardware.

We also illustrated how to synthesize an asynchronous im-
plementation starting from a high-level specification by way
of a concrete example. The result was six asynchronous logic
circuits that, together, can be used to implement a burst-mode
word-serial address-event receiver of any desired size. These
circuits include an improved decoder that eliminates glitches by
using dual-rail encoding. We have laid out a library of cells (in
MOSIS DEEP_SUBM rules) for these circuits and written a sil-
icon compiler to tile them to fit any desired pixel or array size.
Thus far, this tool has successfully compiled receivers for three
generations of chips, fabricated in 0.6-, 0.4-, and 0.25- m tech-
nology [20].

APPENDIX

LOGIC SYNTHESIS

When compiling HSE into PRS, we perform two passes. On
the first pass, we make the wait before an action the guard
for its production rule. For example, , the
passive port’s sequence, is realized by the set

, which is implemented by a wire. On the second
pass, we strengthen guards that can become true at some other
point in the sequence by ANDing with another boolean variable.
If all signals are in exactly the same state at these two points, we
add a state variable to distinguish them, setting it after we pass
the first point and clearing it after we pass the second point, or
vise versa.

For example, the CHP process , where is passive
and is active, could be augmented with the state variable as
follows:

�[[pi];po+;[~pi];s+;po-;
ao+;[ai];s-;ao-;[~ai]].

’s state now distinguishes the point where ends and begins
from the point where ends and repeats. Alternatively, the
ambiguous state can be eliminated if we begin before ends.
For instance

[[pi];po+;ao+;[ai];[ pi];po-;ao-;[ ai]]

which we used for the decoder (see in Sec-
tion III-B and Fig. 10), is unambiguous. This reshuffling, if ac-
ceptable, is cheaper to implement, as it does not require a state
variable.

We can often avoid adding state variables by reshuffling se-
quences in this way, provided the change in sequencing is be-
nign. When compiling such sequences into PRS, multiple pre-
ceeding waits are ANDed together (e.g., ) and
preceeding actions become guards too (e.g., ). An-
other goal of reshuffling is symmetry: clearing signals in the
same order that you set them. Such symmetry makes the sig-
nals that appear in the pull-up and the pull-down the same. This
duplicity usually results in a simpler implementation, as the
pull-up is disabled when the pull-down is active, and vise versa.

It is sometimes possible to convert a state-holding gate into
a combinational one, thereby avoiding the need for a staticizer.
That is, to make the gate’s pull-up and pull-down

complementary . Such conversion is typ-
ically done by ORing terms with the pull-up and ANDing
terms with the pull-down , or vise versa. For example,

requires a staticizer, since is not an
identity. However, is combinational,
since is an identity. In fact, that is a NAND gate.
These added terms must have a benign effect, such that
at all points in the sequence, where is the original guard and

is the weakening term.

A. Demux

Making ’s port passive and its and ports ac-
tive (see Section III-A) yielded these HSE sequences for the
three-to-four-wire converter

�[[ari];ao+;ro+;[ri];[~ari];ao-;ro-;[~ri]]
k�[[aci];ao-;[~aci];ao+;co+;[ci];co-;[~ci]]

where two-phase handshakes communicate the row address and
the end-of-burst signal on and on . To avoid storing
the addresses locally, we moved the communications into the
middle of the communications. This way, occurred im-
mediately after , passing on the address immediately. And

did not occur until , stalling till the address was read.
Downward transitions follow the same sequence. We reshuf-
fled the column-address communications in the same way, even
though the second halves of these handshakes are meaningless.
Thus, we obtained the sequences presented in Section III-A

.
We compiled these reshuffled sequences into the following

PRS:

ari->ro+ ari&~_aci->co+ ri&~ci->ao+
ari->ro- ~arij_aci->co- ~rijci->ao-.
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We strengthened the guard for with , oth-
erwise, it would fire at start-up, before we have the chance to
set high. We weakened the complementary guard to make
the gate combinational. The corresponding circuit is shown in
Fig. 8.

B. Delay

To delay delivering row addresses directed to ’s port
to the row decoder until the burst ends (see Section III-A), our
initial choice for an HSE sequence was

�[[gi];go+;[~gi];go-;po+;[pi];po-;[~pi]]

which has an active input port and an active output port .
However, we postponed to avoid creating an ambiguous
state, which would have required us to introduce a state vari-
able. However, must occur before , otherwise, another
ambiguous state would occur. We also postponed as long as
we could to maximize the time we have to decode the address
and write data to that row. Relocating this wait to just before

occurs in the next cycle gave us the reshuffling presented
in Section III-A .

In compiling the reshuffled HSE, we introduced a local vari-
able, , that is cleared when becomes false and set when
becomes false. Hence, the sequence we implemented was

�[[gi];go+;[~gi];u-;[~pi];po+;[pi];go-;

u+;po-].

The following PRS resulted:

~po&gi->go+ go&~gi->u- ~u&~u->po+

po&pi->go- gij~go->u+ u->po-.

We strengthened the guard of with to disable it when
fired. And we weakened the guard of to make the gate com-
binational. Notice that introducing avoids a three-transistor
chain in ’s pull-up, which would compromise performance.
The corresponding circuit is shown in Fig. 9.

C. Buffered Data Latch

Making ’s input port passive and its output port also
passive (see Section III-C) yielded the following bit-level HSE
sequence:

[[ci];co+;[ pi];co-;
[vi];vo+;[ vi];vo-].

We introduced an intermediate communication in order to ob-
tain more slack, and thereby expanded this sequence into two
concurrent processes

�[[ci];co+;[~ci];co-;qo+;[qi];qo-;[~qi]]

�[[bi];bo+;[~bi];bo-;[vi];vo+;[~vi];vo-]

where the intermediate communication is called in the first
process and called in the second one (i.e., the active port is
tied to the passive port).

Reshuffling the first process gave us the HSE sequence pre-
sented in Section III-C . Specifically, we ad-
vanced to the middle of to eliminate the ambiguous
state created by returning to the initial state halfway through
the sequence. We restored symmetry by postponing to the
next cycle, placing it immediately before ’s new location.
Reshuffling the second process gave us the other HSE sequence
presented in Section III-C - . All we did was
to postpone the second half of to the middle of .

We compiled the reshuffled buffer sequence into the fol-
lowing PRS:

~qo&ci->co+ co&~qi->qo+

qo&~ci->co- ~co&qi->qo-.

The corresponding circuit is shown in Fig. 11(a).
We compiled the reshuffled data-latch sequence into the fol-

lowing PRS:

~vi&bi->bo+ bo&vi->vo+

vo&~bi->bo- ~bo&~vi->vo-.

We guarded with instead of to prevent inactive cells
from setting after becomes high. Otherwise, would
fire when becomes true, since is true for inactive cells. It
would be followed by , since also is true. Thus, the next
burst’s events would end up in the row that the current burst is
being written to. Using the global signal, , instead of the local
signal, , prevents this scenario, postponing in inactive
cells until the on-going write is completed, at which point
becomes false. The corresponding circuit is shown in Fig. 11(b).

However, blocking with may also lock out the last
event in the current burst. Since the pipelined column decoder
provides almost half-a-cycle of slack, the three-to-four-wire
converter’s communication finishes while the ’s
communication is only halfway through (see Fig. 6). That is,
the converter issues at the same time issues ,
which corresponds to - ’s (see Section III-C). As

triggers the row-address-delay block to issue the write-re-
quest (i.e., above), correct operation requires sufficient
delay to ensure becomes true first. Fortunately, this timing
assumption is easily satisfied, as the buffer-to-data latch path
involves just one channel, while the other path involves several,
and includes signaling off-chip.

D. Row Cell

Making ’s and ports passive and its port active
yielded this bit-level HSE sequence

[[ri];ro+;[ci];co+;[ ci];co-;
po+;[pi];po-;[ pi];[ ri];ro-]

where two-phase handshakes implement the pair of commu-
nications (see in Section II-C). We chose to ran in
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lock-step with , which made redundant. And we moved the
first and second halves of to the middle of the first and second

communications, respectively. Keeping at the end guar-
anteed mutual exclusion. Hence, we obtained the sequence pre-
sented in Section III-C .

We compiled the reshuffled sequence into the following PRS:

ri&ci->po+ pi->ro+

~ri&~ci->po- ~pi->ro-.

The corresponding circuit is shown in Fig. 12(a).
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