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e present a linear active cochlear model that 
er hair cell (OHC) forces, which are delivered 
and downstream basilar membrane (BM) 

gh Deiters’ cells (DCs) and their phalangeal 
). Due to the longitudinal tilt of the OHC 
se and the oblique orientation of the PhP 

x, each BM segment receives both feed-forward 
ard OHC forces. Transverse BM fibers are 
 longitudinally through these bi-directional 

luded in a cochlear model for the first time. We 
on results that demonstrate large amplification 
g, and we analyze the underlying mechanism.  

Outer hair cell, phalangeal process  

NG EFFORTS ON ACTIVE AMPLIFICATION 

brating organ within the cochlea, the basilar 
) is composed of transverse fibers that are 
upled longitudinally. From the base to the 
fibers increase in width and decrease in 
resulting exponential decrease in stiffness 
e passive frequency tuning of the cochlea. 
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mplify BM motion, as they actively change 

hen stimulated electrically [1]. This active 
sults in exquisite sensitivity, high frequency 
high-sound-level compression.  
f modelers have added OHC electro-motility 
hlear models to account for the active 
-6]. These models differ in how the OHCs 

 the BM, and in the role of other structures 
lear partition (CP). A few recently developed 
 models take into account the OHCs’ basal 
e models hypothesized, counter-intuitively, 
plifies BM motion and sharpens its tuning 
orward forces” that act on downstream BM 

e a linear active model that produces realistic 
ses based on a novel interpretation of OHC 

ar to the feed-forward models, our model 
nto account. Equally important in our model, 
oblique orientation of the phalangeal process 
e also take into account. Through the PhP, 
can be transmitted backward onto upstream 
Therefore, the OHC force is exerted on the 
DC) sitting on one BM segment, either 
 OHC or indirectly through the PhP, with 
ts. These feed-forward and feed-backward 
e active bi-directional longitudinal coupling 
gments.  

 
II. ACTIVE BI-DIRECTIONAL COUPLING 

  
Our model hypothesizes that the triangular mechanical unit 
plays an active role in amplifying BM responses, which is 
formed by an OHC, the PhP of the DC on which the OHC 
sits, and the portion of the reticular lamina (RL) between the 
stereocilia end of the OHC and the apical tip of the PhP. 

Fig. 1 shows the arrangement of OHCs in the CP 
(derived from [9, 10]), which divides into a number of 
segments from the base to the apex. Each segment includes 
one DC sitting on the BM, the apical tip of one PhP and the 
sterocilia end of one OHC, both attached to the RL segment. 
Approximating the anatomy, we assume that when the 
stereocilia end of an OHC lies in the segment i-1, its 
basolateral end lies in the immediately apical segment i. 
Furthermore, the DC in segment i sends a PhP that angles 
toward the apex of the cochlea, with its apical end inserted 
just behind the stereocilia end of the OHC in segment i+1.  

In the case of rigid OHCs (without motility), each BM 
segment moves up and down as the pressure difference 
between the fluids in the scala vestibuli (SV) and the scala 
tympani (ST) acts on the BM. Fig. 1B depicts a transverse 
view of the CP, which reveals a critical structure called  

 

 

 
Fig. 1. Microanatomy of the cochlear partition (CP). (A) Longitudinal view. 
Only the outermost row of outer hair cells is shown. Three CP segments are 
labeled (i.e., i -1, i, and i+1).  (B) Transverse view. The tectorial membrane 
(TM) is not shown in A.

A

B 
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arches of Corti. The arches of Corti is formed by the inner 
pillar cell (IPC), the outer pillar cell (OPC) and part of the 
BM transverse fiber. The base of the OPC works as a rigid 
pivot point when the BM fiber vibrates up and down [11]. 
Given this microanatomy, the movement of the BM causes 
the stereocilia in the same segment to deflect due to the 
radial shear motion between the tectorial membrane (TM) 
and the RL.                                                               

In the case of OHCs with motility, the deflection of 
stereocilia in turn results in the contraction or expansion of 
the OHC because their defelection causes ions to flow 
across the OHC’s membrane, resulting in depolarization or 
hyperpolarization of the OHC. Due to its longitudinal basal 
tilt, the OHC in segment i-1 exerts a force on the BM that 
sits in the downstream segment i (through the DC), thereby 
the BM is pulled to or pushed away from the RL. Thus, the 
vibration of BM segment i is enhanced by the displacement 
of the upstream segment,  i-1.  

In segment i+1 of the CP, the deflection of stereocilia 
due to the upward or downward displacement of the BM 
causes the OHC whose stereocilia end lies in the segment 
i+1 to contract or expand, thus pulling down or pushing up 
the RL to some extent (meanwhile, BM segment i+2 is 
pulled up or pushed down due to the feed-forward 
mechanism). The driven RL segment i+1 then pushes down 
or pulls up the rigid PhP and the whole DC, exerting a force 
on the BM segment i. Thus, the vibration of BM segment i 
is, additionally, opposed by the displacement of the 
upstream segment,  i+1.  

In this way, OHC motility and the microanatomy of the 
CP give rise to feed-forward and feed-backward forces that 
introduce active bi-directional longitudinal coupling 
between BM segments. Hence, each BM segment receives, 
and sends, coupling forces from, and to, its upstream and 
downstream segments. The motion of BM segment i-1 
reinforces that of segment i while the motion of segment i+1 
opposes that of segment i. 

 
 

III. THE 2D LINEAR ACTIVE MODEL 

For the cochlear fluid motion, we define a velocity potential, 
( , , )x y tφ , which, due to its incompressibility, satisfies 

Laplace’s equation:  where is the laplacian 
operator. This potential is related to fluid velocities in the x 
and y directions: 

2 0,φ∇ = 2∇

    and     .x yV x Vφ= − ∂ ∂ = − ∂ ∂yφ  
These velocities, Vx and Vy, match the stapes motion 
( ( )x f tφ∂ ∂ =  at ), go to zero at the bottom and apical 
walls (

0x =
0yφ∂ ∂ =  at  and 0,y = 0xφ∂ ∂ =  at x L= ), and 

match the BM motion in the middle ( y tφ δ−∂ ∂ = ∂ ∂  at 
). Here, y h= δ is the BM displacement and is the 

stapes velocity (inward positive).  
( )f t

According to the Newton’s second law, the BM’s 
vertical motion (downward positive) can be described as 
follows.  

2 2
d OHC ,( ) ( ) ( )t tP F S x x M xδδ β ∂ ∂ ∂ ∂+ = + + δ

),

                

OHC ( )(γ ( ) (F S x x d x dα δ δ= − − +  
where is its stiffness, ( )S x ( )M x is its mass, and 

( ) ζ ( ) ( )x S x M xβ =  is its damping, per unit area. Here, Pd is 
the difference in fluid pressure between the SV and the ST. 
FOHC combines feed-forward and feed-backward OHC 
forces, expressed as a fraction α of the BM stiffness. 
α denotes the OHC motility factor, which represents the 
OHC force per unit BM displacement. γ  is the ratio of the 
feed-forward to the feed-backward coupling, representing 
relative strengths of the OHC forces exerted on the BM 
segment through the DC, directly, and through the tilted 
PhP. d denotes the tilt distance, which is the horizontal 
displacement between the source and the recipient of the 
OHC force. 

As pressure ,P tρ φ= ∂ ∂ we have the BM boundary 
condition: 

2 22 ( ) ( ) ( )
                ( )( ( ) γ ( )),

t S x x t M x t
S x x d x d

ρ φ δ β δ δ
α δ δ

∂ ∂ = + ∂ ∂ + ∂ ∂ +
+ − −

 

at .y h=  The factor 2 accounts for fluid on both sides of the 
membrane; their motions are complementary because the 
fluid is incompressible.       

 
 

IV. SIMULATION RESULTS AND ANALYSIS 
     

First, we present a solution procedure of our model, which 
yields solutions for the BM’s displacement δ  and the 
wavenumber k, following Watts’s approach [12]. For both 
δ and k, we explore the effects of changing the motility 
factor α. Second, we derive closed-form expressions that 
relate k to the model parameters.  

 
A.  Simulation Results 

 
We assume a solution form for the velocity potential that 
represents a wave traveling in the +x direction, while 
satisfying Laplace’s equation and the bottom wall boundary 
condition: 

( )( , , ) cosh( ) ,i t kxx y t B ky e ωφ −=   
where B is a constant. Based on this guess, the form of δ can 
be expressed as  

( )( , ) sinh( ) .i t kxx t iBe k khωδ ω−=  
By substituting these forms and their corresponding 
derivatives into the BM boundary condition, we derive a 
dispersion relation, which describes the relation between the 
wave’s energy (i.e., frequency) and its momentum (i.e., 
wavenumber k) (see Section IV.B). Given any input 
frequency, we can solve this dispersion relation for k, and 
hence obtain the BM displacement ( , ).x tδ  
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Fig. 2.  BM gain and its phase. The amplification becomes larger and the 
tuning gets sharper as α increases from 0.0 to 0.2. 
 

Fig. 2 shows the amplitude and phase of the BM 
displacement, normalized by the stapes displacement, for a 2 
KHz tone, with the motility factor α varying from 0.0 to 
0.2. The model parameters we used in the simulation for 
both δ and k, which are from the cat cochlea (similar to 
those used in [5]), are listed in Table I. As α increases from 
0.0 to 0.15, gain increases, tuning sharpens, and the 
characteristic place moves apicalward. Values of Q10s, peak 
heights, and characteristic places are listed in Table II. 
When α = 0.15, the BM displacement gain amounts to 85 
dB; the phase accumulation at the characteristic place is 
about 10 cycles. When α = 0.2, the BM response explodes. 
We will return to this in Section V. 

TABLE I 
THE MODEL PARAMATERS 

Parameters and denotation Values Unit  
Cochlear duct height h 1.0 mm 
Cochlear duct length L 25.0 mm 
Fluid density ρ  1.0·10-3 g/mm3

BM mass per unit area M(x) 3.0·10-5 g/mm2

BM stiffness per unit area S(x) 5.0·104 e -0. 4 x g/(mm2 s2) 
BM damping ratio ζ  0.2  
Tilt distance d 7.1· 10-2 mm 
Segment length  ∆ 7.1· 10-2 mm 
OHC motility factor α  0.0-0.2  
Forward/backward ratio γ  0.3  

 
TABLE II 

SUMMARY OF MODEL RESPONSES  
OHC motility 

factor α  Q10
Peak Amplitude 

(dB SPL) 
Characteristic 
Place (mm) 

0.0 0.56 22.93 11.43 
0.05 0.57 27.03 13.07 
0.10 2.88 51.03 14.50 
0.15 5.44 85.29 14.57 

          A                                           B A 

 

B 

Fig. 3. Wavenumber loci for 2KHz . (A) OHC motility factor α = 0.0. (B) 
α  = 0.05, 0.1, 0.15, and 0.2. The dots mark where the BM displacement 
peaks. 
 

For wave propagation in the +x direction, the real part 
of the wavenumber, kr, is inversely related to the 
wavelength, whereas the imaginary part, ki, is related to the 
wave-amplitude. Thus, wave propagation in the passive and 
active models may be compared by plotting the real and 
imaginary parts of the wavenumber. Fig. 3 shows the loci of 
the wavenumber k when input is a 2KHz tone, with the 
motility factor α varying from 0.0 to 0.2. As the wave 
propagates, it transitions from long wave to short wave, 
where its wavelength becomes much smaller than the 
cochlear duct’s height.  
 
B. Analytical Treatment 

         
We derive approximations that describe three characteristic 
features of the wave-number locus, particularly for the 
active case (i.e., 0α > ). First, why does it enter the first 
quadrant? Second, what is the asymptotic value of the real 
part? And, third, when is the imaginary part equal to zero? 
The first question sheds light on how active amplification 
arises. The second addresses why the wavelength remains 
short in the cut-off region, unlike the passive case. And the 
third reveals how the characteristic place depends on the 
model's parameters. 

Setting the forward to backward ratio 1γ = ( 0.3γ =  
used for above simulations) as an approximation, we obtain 
a dispersion relation of the form: 

2

2 2

tanh( ) 2
1 ( ) tanh( )sin( ) ( ) ( ) ( )

k kh
i S x k kh kd S x i x M x

ρω
α ρω ωβ

=
+ + ω−

In the short-wave region, t . Substituting this 
approximation yields 

anh( ) 1kh ≈

22 sin( ) (ζ ( 1)) 2 ( / ( )) 0,k kd i k i M xα ρ− Ω + Ω − − Ω =  
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where nω ωΩ = and n ( ) ( )( ) .S x M xxω = As ( )sin kd kd≈  
when 1kd , we have 

2 22 (ζ ( 1)) 2 ( / ( ))dk i k i M xα ρ− Ω + Ω − − Ω = 0.  
Near the base, the input frequency is much lower than n ,ω  
so . And we can assume that   as well. 
Hence, we find that 

2 1Ω ζ 1Ω

( 16 ( / ( )) 1 ) 4 .i d M x ik dα ρ αΩ− −=  
Ω  increases as the wave propagates, due to the decrease in 

n .ω  Thus, the first term pushes the wavenumber into the 
first quadrant if 0.α >  Therefore, a non-zero OHC motility 
factor is the source of active amplification. 

In the cut-off region, the input frequency is much higher 
than the resonant frequency, so  If we ignore the 
other terms, we find that 

2 1.Ω

22 sin( ) 0.kd iα − Ω =  
This equation is satisfied when the real part of the wave 
number r π .k d≈ This result predicts that the wavelength 
gets no shorter than twice the tilt distance, and explains why 
kr asymptotes to the same value independent of .α  For a tilt 
distance d = 71µm, this estimate yields the value of 44.2, 
which is quite close to the simulation result of 49.5. This 
discrepancy is mostly attributed to the difference in the 
values of γ we used in the simulation and the approximation. 

Finally, to zero the imaginary part, ki, we have to 
simultaneously satisfy 

2
r r( )( 1) 2 0    and    2 sin( ) ζ 0.M xk kρ αΩ − + Ω = − Ω =d  

The first equation guarantees that the imaginary terms 
cancel out while the second is what is left to constrain the 
real terms. We can assume r rsin(  if the peak 
occurs near the cut-off region and still ignore Ω

) πk d k d≈ −
2 if it is not 

too close. In that case, we obtain 

r
ζ 2 ζ 2

1 π
    and    π,

1 1m

m
k

dα
= Ω =

+ m α+
 

where ( ) 2m M x dρ= , which is equal to 0.21 for our 
parameter values. For α = 0.1, 0.15, and 0.2, these 
approximations yield values of kr  =  36.5, 38.8, and 40.0, 
and = 0.55, 0.58, and 0.60, respectively. The first two 
estimates for k

Ω
r are reasonably close to the simulation results 

of 30.9 and 34.9. However, the simulation diverged in the 
third case (i.e., when α = 0.2). 
 
 

V. DISCUSSION 
 

As the OHC motility factor α changed, we observed 
radically different behavior outside the long-wave region. 
When α is zero (Fig. 3A), kr drops near zero after the 
characteristic place whereas it stays almost unchanged in the 
active case (Fig. 3B). Thus, the wave speeds up apical to the 
peak position in the passive case, whereas it stays slow in 
the active case. For ki, whereas the sign remains negative in 
the passive case, we observe positive values right before the 
peak location in the active case. It is these positive values 

that produce large amplification of BM displacement in the 
active case.  

We observed a bifurcation at 0.159α =  (corresponding 
responses not shown in Fig. 2 and 3). Above this value, the 
BM response explodes (Fig. 2A and 3B). Further analytical 
work is required to understand the nature of this bifurcation. 
Our preliminary numerical simulations indicated that 
including the saturation of the OHC forces eliminates this 
instability; this modification to our linear model produced 
compression at high sound levels as well.  

In conclusion, the present linear active model shows 
responses comparable to physiological data. Adding active 
OHC forces, exerted on the BM through its own cell body 
forwardly and through the PhP backwardly, to a passive 2D 
cochlear model greatly enhances amplification and 
frequency selectivity. These bi-directional, feed-forward and 
feed-backward, OHC forces cooperate to locally enhance 
BM motion when the wavelength is just right, acting like a 
spatial filter.  
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This corrigendum applies to our paper tilted “A Linear 

Cochlear Model with Active Bi-directional Coupling”, which 
was presented at the 25th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society in 2003 
(EMBS’03). Only part B, Analytical Treatment, of Section IV—
Simulation Results and Analysis, is affected; we rederived our 
results, to obtain more sound approximations. In addition, the 
value of BM stiffness per unit area S(x) in Table I should be 
corrected as 5.0·106 e-0.4 x g/(mm2s2), the actual parameter value 
that was used for all the simulations in the paper. 
 
Analytical Treatment 

         
We derive approximations that describe three characteristic 
features of the wavenumber locus, particularly for the active 
case (i.e., 0α > ). First, why does it enter the first quadrant? 
Second, what is the asymptotic value of the real part? And, 
third, when is the imaginary part equal to zero? The first 
question sheds light on how active amplification arises. The 
second addresses why the wavelength remains short in the 
cut-off region, unlike the passive case. And the third reveals 
how the characteristic place depends on the model's 
parameters. 

Setting the forward to backward ratio 1γ = ( 0.3γ =  
was used for above simulations) as an approximation, we 
obtain a dispersion relation of the form: 

2

2 2

tanh( ) 2
1 ( ) tanh( )sin( ) ( ) ( ) ( )

k kh
i S x k kh kd S x i x M x

ρω
α ρω ωβ

=
+ + ω−

2

In the short-wave region, . Substituting this 
approximation yields 

tanh( ) 1kh ≈

22 sin( ) (ζ ( 1)) 2 ( / ( )) 0,k kd i k i M xα ρ− Ω + Ω − − Ω =  

where nω ωΩ = and n ( ) ( )( ) .S x M xxω =  (Note: Omission 
of the second Ω2 term led to errors that are corrected below.) 
        As ( )sin when kd kd≈ 1kd near the base, we have 

2 2 22 (ζ ( 1)) 2 ( / ( ))dk i k i M xα ρ− Ω + Ω − − Ω = 0.  
The input frequency is also much lower than n ,ω  so 

. And we can assume that   as well. Hence, 
we find that 

2 1Ω ζ 1Ω

2( 16 ( / ( )) 1 ) 4 .i d M x ik dα ρ αΩ − −=  
Ω  increases as the wave propagates, due to the decrease in 

n .ω  Thus, the first term pushes the wavenumber into the 
first quadrant if 0.α >  Therefore, a non-zero OHC motility 
factor is the source of active amplification. 

Near the apex, the input frequency is much higher than 
the resonant frequency, so  Therefore, we have 2 1.Ω
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22 sin( ) (1 2 /( ( )) 0.kd i kM xα ρ− + Ω =  
This equation is satisfied when the real part of the wave 
number r πk d≈  if 2 / ( )k Mρ .x  This result predicts 
that the wavelength gets no shorter than twice the tilt 
distance, and explains why kr asymptotes to the same value 
independent of .α  For a tilt distance d = 71µm, this estimate 
yields the value of 44.2, which is quite close to the 
simulation result of 49.5. This discrepancy is mostly 
attributed to the difference in the values of γ  we used in the 
simulation and the approximation. 

Finally, to zero the imaginary part, ki, we have to 
simultaneously satisfy 

2 2
r r( 1) 2 / ( ) 0 and 2 sin( ) ζ 0        .k M x k dρ αΩ − + Ω = − Ω =

The first equation guarantees that the imaginary terms 
cancel out while the second is what is left to constrain the 
real terms. We can assume  if the peak 
occurs near the cut-off region and still ignore Ω

rsin( ) πk d k d≈ − r
2 if it is not 

too close. In that case, given / 4π,α ζ  we obtain 

r
π 1 1

2 1 1/ 1 1/
    and     ,

d d m m
k ζ

α π π
−

+ +
≈ Ω ≈  

where ( ) / 2 ,m M x dρ=  which is equal to 0.21 for our 
parameter values. The predicted value of Ω  is 0.63, which 
is independent of ,α  a good approximation. For α = 0.1, 
0.15, and 0.2, these approximations yield values of kr  =  
35.4, 38.3, and 39.8, respectively. The first two estimates for 
kr are reasonably close to the simulation results of 30.9 and 
34.9. However, the simulation diverged in the third case 
(i.e., when α = 0.2). 


	II. ACTIVE BI-DIRECTIONAL COUPLING
	III. THE 2D LINEAR ACTIVE MODEL
	ACKNOWLEDGMENT
	REFERENCES



