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Abstract

Neurophysiology is largely the study of spike rates of single neurons, under controlled conditions, with the hope that these results
reflect how populations of neurons compute. However, the population response differs radically from the single-neuron response if the
membrane voltage’s rate of change drops dramatically when it is close to the spike-firing threshold. By delaying spiking, this slew-rate
adaptation has been shown to regulate spike rate and prolong synaptic integration at the single-neuron level. We show here that it
sharpens sensitivity and shortens latency at the population level. Thus, slew-rate adaptation enables neurons to process information
faster than their interspike interval by using space-rate coding, instead of time-rate coding. This study also suggests how neural
populations can modulate their gain and synchrony by regulating active conductances. Our results are extrapolated from experiments
and analysis performed on a single silicon neuron, with Ca- and voltage-dependent potassium-channel analogs. © 2001 Elsevier

Science Ltd. All rights reserved.

1. Space-rate coding

The question of information encoding in the brain is still
one of much debate. For many years, the idea that stimuli
were encoded in the mean firing rate of a neuron dominated,
with downstream neurons averaging their inputs temporally
to read this code. However, humans can process information
on a timescale of a few hundred milliseconds (Thorpe, Fize,
& Marlot, 1996), and with neurons firing at an average rate
of 10 Hz, processing through multiple layers seems impos-
sible using a mean rate code. Evidently, a faster method of
computation must be used.

More recently, evidence that stimuli are encoded by
actual spike timing, relative to another signal (stimulus,
intrinsic oscillation, or other inputs, Gerstner, 1999), is
accumulating. Neurons have demonstrated the ability to
accurately reproduce their spike trains to a time varying
input (Buracas, Zador, DeWeese, & Albright, 1998; Mainen
& Sejnowski, 1995). Synchronous firing between neurons,
one form of temporal coding, can encode more information
collectively than individually (Dan, Alonso, Usrey, & Reid,
1998) as well as provide stronger input to downstream
neurons (Alonso, Usrey, & Reid, 1996). Thus, information
need not be encoded in the activity of a single neuron, but
may be represented in the collective activity of a population
of neurons. This distributed representation is called popula-
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tion coding (deCharms & Zador, 2000) or space-rate coding
(Maass & Natschlager, 2000).

Models that abstract a spike train into an analog rate
variable do not capture fast transients in the population
activity due, for example, to synchrony. These fast transi-
ents can be reproduced by a simple integrate-and-fire model
of spike generation. However, integrating current on a capa-
citor produces a linear membrane voltage trajectory. As a
consequence, the distribution of neurons between reset and
threshold is uniform. However, real neurons have other
active conductances—apart from the spike-generating
ones—that can alter this uniform distribution by reshaping
the membrane voltage trajectory. In this paper, we demon-
strate how this redistribution leads to efficient space-rate
coding using an adaptive silicon neuron that includes active
conductances.

In particular, our neuromorphic model includes two
types of active conductances, both of which arise from
ion channels (pores) in the cell membrane that are perm-
able to potassium ions (K). These channels reduce the
rate of change of the membrane voltage by shunting
current out of the cell, thereby throttling the spike rate.
The K channels that we model open when the membrane
voltage rises or when the internal calcium (Ca) concen-
tration increases. These types of K channels are simply
called voltage-dependent and Ca-dependent channels,
respectively.

Active membrane behavior was modeled in silicon in
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Fig. 1. Spike rasters. Spike trains recorded from AdaptSiNeuron in 100 trials, selected at random from a total of 700, in response to a 5.2% step change in input
current. A histogram of all 700 trials is shown below the raster plot; 1 ms bins were used. Step inputs were generated by applying a square wave (between 1 and
10 Hz) from an HP33120A function generator through a 20 M) resistor. This current was supplied through a pMOS current mirror, formed by a 460/6 (width/
length in micrometers) diode-connected transistor in the pad and a 6/12 transistor in the circuit—a step-down ratio of 153. The initial current level was 2.06 nA
for this and all subsequent runs. Latencies were measured with an HP55131A counter under computer control.

Mahowald and Douglas (1991) where spike rate adaptation
in a neocortical pyramidal cell was reproduced by building
Ca- and voltage-dependent K channel analogs. In this
previous work, an analogy was made between a transistor
and an ion channel, and differential (transconductance)
amplifiers were used to realize active behavior. We have
developed a simpler, analytically tractable, circuit model
by abstracting the spike-generation process and using a
simple two-transistor circuit to model the K-channel popu-
lation as well as the internal Ca concentration. Our K-chan-
nel analog has both a fast voltage dependence and a slow Ca
dependence.

The remainder of the paper is organized as follows. We
describe the effects of Ca- and voltage-dependent K chan-
nels in Section 2, and present circuit analogs of these chan-
nels in Section 3, where we describe our adaptive silicon
neuron. We present our single-neuron experimental
measurements, with theoretical fits, in Section 4, and extra-
polate the responses of a population of identical neurons
from them. For a more analytical treatment, we refer the
reader to Appendices A—D, where we present simple, intui-
tive, derivations of AdaptSiNeuron’s diode-capacitor
dynamics, K-current and membrane-voltage trajectories,
spike- and slew-rate adaptation factors, and spike probabil-
ity density, respectively. We conclude the paper with a
discussion in Section 5.

2. Voltage- and Ca-dependent ion channels

A neuron that lacks passive or active conductances—
except for spike-generating ones—simply integrates input
current on its membrane capacitance, its membrane voltage
increasing (slewing) at a rate proportional to the current
level. This slew rate is constant if the current is fixed. In
that case, we are equally likely to find the membrane voltage
at any point between its reset and threshold levels. Thus,
when we step the input current of a population of these
neurons, their spike latencies will be distributed uniformly
between 0 and 7, the interspike interval. Hence, the spike
probability density is 1/7, and we must increase the current
by 100% to double it. The median latency, which tells us
how long we must wait for half the population to fire, is 7/2.
The sensitivity and latency of these ‘Integrate&Fire’
neurons can be improved—without increasing their
steady-state spike rate—by adding active conductances, as
shown in Fig. 1.

A neuron with voltage-dependent K channels rapidly
increases its membrane voltage after its spike is reset, but
charges more slowly as it approaches threshold, as shown in
Fig. 2a. In this way, its sensitivity and latency improve by
the ratio between the slew rate at the beginning and the end
of the interspike interval, which we define as the slew-rate
adaptation factor, &. Slew-rate adaptation, we propose, is
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Fig. 2. Slew-rate and spike-rate adaptation. (a) Ca- and voltage-dependent K channels. Top: K current shunted from the input builds up each time the neuron
spikes, modeling its Ca dependence—the electrometer cannot follow the fast voltage dependence. Middle: membrane voltage charging from reset (1.5 V) to
threshold (2.2 V), driven by the surplus current. Bottom: spikes generated each time the membrane voltage reaches threshold. The first spike’s median latency
(insert) was 40 ps—32.5 times shorter than the 1.4 ms interspike interval immediately after the step, which is itself 11.4 times shorter than the 16 ms steady-
state interspike interval. (b) Voltage-dependence blocked. The membrane voltage repolarizes slowly because the K current does not shut off when the neuron is
reset. The median latency (insert) increased to 1.3 ms—half as long as the 2.63 ms interspike interval immediately after the step, which is itself 10 times
shorter than the 26 ms steady-state interspike interval. The bias voltages (see Fig. 4a) were V4o =0.350V, V;, =452V, V,,,=1.1V, V,, =341V,
V4 =5.0V and V., =4.01 (a) or 1.35V (b). A 13.5% change in input current was made in both cases.

due to fast, low-threshold, voltage-dependent potassium
channels (Connor & Stevens, 1971; Storm, 1988), which
shut off when the membrane voltage drops, leaving surplus
input current to repolarize it, and come on as the membrane
voltage rises, arresting it. When this voltage dependence is
blocked, slew-rate adaptation disappears, as shown in
Fig. 2b.

A neuron with Ca-dependent K channels responds to a
large increase in its input current with a high-frequency
burst, but fires at a much lower rate after it adapts to the
new input level, as shown in Fig. 2b. In this way, its
sensitivity and latency improve by the ratio between the
spike rate immediately after the step and the rate in
steady state, which we define as the spike-rate adaptation
factor, <. Spike-rate adaptation has been shown to
depend on Ca accumulation in the cell and Ca-dependent
K channels (Madison & Nicoll, 1982), which subtract
out the short-term temporal average of the input activity.
When both voltage- and Ca-dependent channels are
present, slew-rate adaptation plays a role in spike-rate
adaptation, as reducing the slew rate lengthens the inter-
spike interval.

3. Silicon neuron

A block diagram of AdaptSiNeuron, our silicon neuron
model, is shown in Fig. 3a. The integrator’s output, which
represents the intracellular Ca concentration, adjusts the
conductance of the Ca-dependent K-channel analog. This
feedback loop adapts the spike rate. The differentiator’s
output, which tracks rapid changes in membrane potential,
also modulates the K-channel analog. This feedback loop
adapts the slew rate. The two-transistor current-mirror inte-
grator shown in Fig. 3b serves as a voltage- and Ca-depen-
dent K-channel analog, and also models the intracellular Ca
concentration (Boahen, 1997). Its dynamics, which are
analyzed in Appendix A, are evident in the step responses
plotted in Fig. 3c and d. For subthreshold MOS transistor
operation, Iy increases exponentially with the Ca-node
voltage, Vc,, which is capacitively coupled to the membrane
voltage V. In fact, Ix = Iy oexp(«Vc,/Ut), where Uy =
kT/q is the thermal voltage (25 mV at room temperature)
and « is the subthreshold slope coefficient (typically
between 0.6 and 0.8) (Mead, 1989).

Due to the model K current’s joint dependence on
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Fig. 3. Modeling K (Ca, V,;) channels in silicon. (a) A pulse generator models the axon—hillock while a variable conductance, modulated by a spike integrator
and a voltage differentiator, models Ca- and voltage-dependent K channels. (b) Charge on a capacitor, C, represents intracellular Ca: I, represents current
through voltage-dependent Ca channels that open each time a spike occurs, while /; represents Ca removal by buffering or pumping. The drain-gate overlap
capacitance of the output transistor, which couples Vc, to V;,, models the membrane-voltage differentiator. The bias voltage, V4, sets the current mirror’s gain
A = exp(Va/Ur) (i.e. Ix/ly). (c) Step changes reveal a slow but sustained dependence of Ik on I¢,, with a time constant of about 20 ms for I, current levels in
the 100 fA range. (d) Step changes reveal a fast, but transient, dependence of Ix on V,,, with the same time constant, and a small passive conductance. In this
simulation, the current-mirror’s transistors where identically sized, at 8 X 8 wm, and V, = 0.3 V; the technology was 1.6 wm, n-well, CMOS. There was no
explicit integration capacitor (i.e. C = 0); the transistor’s gate capacitances played this role.

membrane voltage and Ca concentration, this current
reaches steady state when the membrane voltage’s slew
rate balances the Ca concentration’s decay rate. As the
leaky integrator’s time constant is relatively long, the
membrane voltage homes in on threshold slowly. Separate
voltage- (e.g. the I, current, Connor & Stevens, 1971) and
Ca-dependent (e.g. the Iyyp current, Lancaster & R, 1986)
channel populations would produce qualitatively the same
behavior, with channel inactivation augmenting the role of
Ca decay. However, Ca dependence extends the operating
range by dynamically regulating the K conductance to
match the input current level. Hence, this adaptive behavior
keeps the membrane voltage just below threshold indepen-
dent of current level.

AdaptSiNeuron’s behavior is described by two simulta-
neous differential equations, which we derived by applying
Kirchoff’s current law to the membrane-voltage node and to
the Ca-integration node:

av, -
Cm d_;n = Iin - (1 + %)IK - (ch — rquCa)B(t _ tn)y
ey
dV, .
Ca dfa = ch(lin - IK) + (QCa - rchth)S(; — tn) _ ZIK»

(@)

where 1, is the spike time (i.e. when V,, equals V). The
actual circuit is shown in Fig. 4; it uses the axon-hillock
circuit (i.e. spike generator) described in Mead (1989). C,,
and Cc, are the equivalent node capacitances, and r;,,. and
rem give the fraction of the charge dumped on node V, that
goes to node V., and vice versa; 6(-) is the unit impulse.
Oy 1s the charge subtracted from the membrane capacitor on
reset and g, is the charge added to the Ca-integration capa-
citor each time a spike occurs; A is the current-mirror’s gain.

Eq. (1) captures the dependence of the membrane voltage
on the input current and on the K-channel current. We have
lumped the fast Na current and the delayed-rectifier K
current, responsible for generating spikes (Hodgkin &
Huxley, 1952), into a net repolarization charge, Qy, that is
subtracted from the membrane capacitance. We are not
interested in reproducing the detailed spike profile (which
was achieved in Mahowald & Douglas, 1991). Rather, our
goal is to reproduce the membrane-voltage trajectory during
the interspike interval, as shaped by slow currents such as
the Ca-dependent K current.

Eq. (2) captures the dependence of the K current on the
membrane voltage’s trajectory and on spiking activity. The
first term models the dependence of the K current on the
membrane voltage’s temporal derivative, which is propor-
tional to the net current supplied to the membrane capacitor
(i.e. I;, — Ix). The second term models Ca entering the cell
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Fig. 4. AdaptSiNeuron’s circuit. Two digital inverters, with capacitive positive feedback (C,/C), generate the spike. Two series-connected transistors, tied to
Vi, terminate it. A pMOS transistor, with gate tied to V,, meters g., coulombs onto C; each time a spike occurs. The drain-gate overlap capacitance of current-
mirror’s output transistor, Cy, is isolated from V,, by tying V., which is normally tied high, to 1.35 V (plots in Fig. 2a were obtained this way). The circuit
parameters are: rem = C4/(Cy + Cy + Cy), Fme = C4/(C3 + Cy), Cea = C3 + 1repn(Cy + Cy), Cnh=C; +Cy+ rpGCs, On = CyVyq,
qca = Lasoexp((Vag — kVg)/Up)tgy. The circuit layout is 162 X 108 wm? in 2 wm, double poly, double metal, p-well CMOS technology, made available

through MOSIS.

each time a spike occurs. Part of this charge is lost when the
membrane voltage is reset, hence the —r.,Qy term. The
third term models buffering of Ca within the cell. Ca buffer-
ing can be canceled by a rising membrane voltage, as the
temporal-derivative dependence mimics Ca influx, which is,
indeed, the case in equilibrium.

Note that the K current turns on when the membrane
voltage rises rapidly, and stays on at a steady level of depo-
larization—until Ca buffers reduce the intracellular-Ca
concentration. Hence, the slow Ca dependence is the analog
of the inactivation variable % used for the fast Na conduc-
tance in the Hodgkin—Huxley model. Slow inactivation is
crucial for slew-rate adaptation because a sustained current
is required to cancel the steady input current, so as to arrest
the membrane voltage and hold it just below the threshold.
Of course, the K current can still be turned off quickly by
rapid hyperpolarization, through its voltage dependence.

For a constant input current, with ;,(#) = I, we can solve
Egs. (1) and (2) for the membrane voltage and K current
trajectories in closed form (see Appendix B). Taking into
account the exponential dependence of Iy on V,, the result-
ing expressions for the trajectories during the interspike

interval from ¢, to t,.1 =1, + T are:

) (=) — m),
3)

1 1
V) = Vitt) = 2 (mrotog ,K((:))
m K\¢n

KO _ !
W g )
0

“4)

Substituting the second equation into the first one yields an
expression for the membrane voltage as a function of time
that is an excellent fit to experimental measurements, as
shown in Fig. 5a, where 7o, B, and m are also defined.
Notice that decoupling these equations by setting n =0
results in pure integrate-and-fire behavior.
AdaptSiNeuron’s membrane voltage responds to a small
step change in its input current, like the one used in Fig. 1, is
shown in Fig. 5b. The spike latency is 10 ms in this parti-
cular example because the membrane voltage was arrested
before it reached threshold. It would have escaped if it was
closer to threshold at the time the step occurred. Indeed, for



650

)
>
1 - —
0.9: n
~0.8:
=0.7!
- ;
0.6: 8
t U
0.5; a
05|/ (@

50 90t (ms)

K. Hynna, K. Boahen / Neural Networks 14 (2001) 645-656

10.0ms

(b)

: tn‘ 0 t_n+l‘

Fig. 5. AdaptSiNeuron’s membrane trajectories. (a) Traces of membrane voltage (V,,) and K current (Ix), during an interspike interval, and two-slope
approximation: I is the constant input current. Dots are measurements; lines are fits. 8 = exp((¢ca — 7emQOw)/QOr) (0.400 for fit) is the fraction of Ik left when
the membrane is reset. 1 = r,(1 + 1y /A (rem + 1/A) (0.9927) is the fraction of the input current drained away when Ik recovers and 7y = Ot/renly
(0.654 ms) is I’s time constant; O = Cc, Up/k is the amount of charge we must add to the Ca node to e-fold Ix(7). V,, repolarizes to within gc, /7., Cy, Vvolts of
threshold before I recovers completely (see Appendix C). (b) Effect of 2% step change in input current applied at the time indicated by the upper trace. This
particular interspike interval is shortened by 35%, but the next one does not differ significantly from the previous one—35 and 37 ms, respectively. Spikes

have been removed.

this 2% change, AdaptSiNeuron fires a spike with extremely
short latency (<1 ms) whenever we catch it in the last 20%
or so of its interspike interval. This escape interval becomes
a larger fraction of the interspike interval as the step size
gets larger. The membrane escapes all the time if the current
increases by more than a factor of exp(qc,/Ot)—the
amount by which each spike multiplies the K current.
Such large current steps invoke spike-rate adaptation.

Both spike-rate and slew-rate adaptation factors are
proportional to the current-mirror’s gain, A (see Appendix
C), which sets the ratio between the Ca-decay and K-current
time constants, 7¢, and 7y, because, increasing 7c, reduces
the slew rate, which, in turn, lengthens the interspike inter-
val. The impact on the interspike interval is less if small Ca
charge increments, gc,, are used, because the membrane
voltage gets closer to threshold before it is arrested (see
Fig. 5a). A stronger K-current voltage dependence (i.e.
larger r.,) also improves slew-rate adaptation, because
smaller voltage increases can compensate for inactivation
through Ca decay. However, this decrease in slew rate has
negligible effect on spike-rate adaptation because the
membrane voltage switches to the slow slew rate closer to
threshold.

4. Extrapolated population responses
Theoretically, for a step change in input current from I, to

I; that occurs at time ¢ = 0 (see Fig. 5a), we can show that
the spike probability density will be

I
- 10>exp(

I, I
==+ +¢ L -
p( n+1) Io § I()

=) -

“Int1

1
)+10
T

&)

Notice that large slew-rate adaptation factors (§) make the
spike density extremely sensitive to fast changes in input

current. This gain is applied to the difference between the
input current and the potassium current, Ix(f), as demon-
strated in Appendix D, where the above result is derived.
Hence, the spike density is insensitive to DC input, or slow
fluctuations, as these signals are canceled by Ik(f), which is a
low pass filtered version of the input current. Setting & =0
yields the result for Integrate&Fire, which is simply 1,/1,Tj.

Experimentally, we can measure spike probability
density using a single neuron by making a step change in
its input current and measuring the latency of the first spike,
repeating over several trials. The test neuron’s state is
randomized from trial to trial, just like for the asynchronous
population state. Hence, when normalized by the number of
trials, these single-neuron measurements recreate the spike
probability density of an ensemble of identical neurons,
which receive the same input, when they fire independently.
Fig. 6a shows the results for AdaptSiNeuron; Fig. 6b shows
the theoretical fit. As expected, the density peaks at zero
latency and decays sigmoidally, in contrast with the pure
exponential decay obtained with linear resistor—capacitor
nerve-membrane models (Gerstner, 2000).

Starting with subpercent step amplitudes, we observe
significant increases in the peak spike density (see Fig.
6a). This peaking is linearly proportional to step amplitude,
and shifts the probability distribution to extremely short
latencies. Thus, the fraction of the population that spikes
in a submillisecond time window is proportional to the
step amplitude—a degree-of-participation code—which
has been named space-rate coding (Maass & Natschlager,
2000). Once the whole distribution has shifted to short laten-
cies, we observe the impact of a shortening K channel time
constant, 7, which is inversely proportional to the new
current level, ;. This tightening pushes the peak up further.
Now, all the neurons fire, but in shorter and shorter time
windows for further increases in step amplitude—a degree-
of-coincidence code (Diesmann, Gewaltig, & Aertsen,
1999).

AdaptSiNeuron’s peak spike density increases much
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Fig. 6. Spike probability density. (a) Experimental latency measurements binned at 0.232 ms; 2000 trials were performed for each of 12 current step
amplitudes. Biases were set to Vg, =4.37 V and V, =225 mV. (b) Theoretical fits with & =301.8, T) = 11.0 ms, and 7o = 0.586 ms.

faster than its spike rate does with step amplitude, as shown
in Fig. 7. That is, step amplitudes of 0.51 and 3.5% double
the peak density and the spike rate, respectively, based on
theoretical fits to these measurements. The measured
density will be even more sensitive if infinitesimally small
bin sizes were used, instead of averaging the first 0.5 ms, as
was the case in this data analysis. In theory, based on the
value of ¢ =301.8 used to fit the data, we expect a 0.33%
change in the input to double the spike density at zero
latency. Nevertheless, AdaptSiNeuron is much more sensi-
tive than Integrate&Fire, which requires a 100% increase in
input current to double either its spike density or spike rate.

Our theoretical results suggest that the slew-rate adapta-
tion factor, &, determines how sensitive the spike density is
to changes in input current. We investigated this directly
with AdaptSiNeuron by changing the bias voltge Vi,
which exponentially controls ¢ (see Appendix C). Our
results, shown in Fig. 8, show the expected exponential
dependence (see Fig. 9), confirming the theory. Changing
V4 from 205 to 265 mV changed the gain (i.e. ratio between
the percentage changes in input current and spike density)
from 104 to 1220. This increase was accompanied by a

1.75
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1.25
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0.75

o
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-
FE R B
0 2 4 6 8
Step (%)

Fig. 7. Spike density versus spike rate. Spike density (triangles) in the first
0.5 ms bin and spike rate (squares) immediately after step (calculated from
fitted parameter values), versus step amplitude, for the same data shown in
Fig. 6a. Lines are theoretical results for 7,y = 0.25 ms and #, = 0, respec-
tively, using parameter values from the fit shown in Fig. 6b. A linear
regression yields slopes of 17,900 and 2590 sfl, close to zero, with inter-
cepts at 92.1 and 90.9 s, respectively.

decrease in baseline spike rate from 312 to 34.6 Hz, due
to the dependence of the spike-rate adaptation factor, 7y,
on ¢ (see Appendix C). We also confirmed that changing
Ve, over a range from 4.32 to 4.37 V, did not change the
gain (data not shown), although it did change the baseline
spike rate, from 32.0 to 90.4 Hz, due to the dependence of y
on ¢gca-

5. Discussion

Extrapolating our results to a neural population, with
states randomized across the ensemble, just like the test
neuron’s state is randomized from trial to trial, we conclude
that AdaptSiNeurons can fire in synchrony to encode step
changes in their input currents linearly and immediately.
Linearity and immediacy are possible because current deter-
mines flux—the rate at which neurons cross threshold
(Knight, 1972). Abstractions that ignore actual spike timing,
using differential equations to model the spike rate itself
instead (Cohen & Grossberg, 1983; Hopfield, 1984; Wilson
& Cowan, 1972), completely miss these features of the
population spike density. Slew-rate adaptation, due to fast
K-channel voltage dependence, make AdaptSiNeuron’s
spike density much more sensitive than its spike rate and
its latency much shorter than its interspike interval—
exceeding the performance of simple Integrate&Fire
neurons analyzed previously (Gerstner, 2000; Knight,
1972).

Space-rate coding was originally motivated by the need to
improve processing speed (Maass & Natschlager, 2000) and
a mechanism based on probabilistic synaptic transmission
was proposed previously to achieve space-rate coding
(Maass & Natschlager, 2000). We have demonstrated here
that random neuronal states can be exploited instead. If
states are randomized, a different subset of the population
is recruited each time, as only neurons that are close enough
to threshold participate. However, in order to process a new
input every interspike interval, the perturbed probability
density must return to the uniform distribution rapidly.
Unlike Integrate&Fire neurons, where the perturbation
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Fig. 8. Gain modulation. (a) Relative change in spike density versus relative change in current for seven values of V (see legend). A complete data set, like that
shown in Fig. 7a, was obtained for each value of V,, and fitted to obtain the lines in the plots.

persists indefinitely in the absence of noise (Gerstner, 2000),
AdaptSiNeurons return to the asynchronous state on a
submillisecond time scale—set by the potassium current’s
voltage dependence (see Appendix D). As shown in Fig. 1,
this complete randomization occurs for step sizes less than
the amount by which the Ca increment boosts the potassium
current. Thus, our approach has no throughput limitation for
the range of current-step sizes over which space-rate coding
occurs.

Attempts were made previously to improve the sensitivity
of space-rate coding by suppressing fluctuations in the spike
density using all-to-all inhibitory connections (Mar, Chow,
Gerstner, Adams, & Collins, 1999). The improvement in
sensitivity, which was dependent on population size, could
be as high as two orders of magnitude for 1000 neurons. Our
results suggest that cellular mechanisms can be used to
achieve similar improvements in signal-to-noise ratio.
Spike-rate adaptation attenuates noise, by reducing the
background firing rate, and slew-rate adaptation amplifies
signals coherently, by reducing the dependence of spike
latency on neuronal state. Both forms of adaptation are
realized just by adding active conductances to the simple
Integrate&Fire model studied previously (Mar et al., 1999).

Our finding that slew-rate adaptation makes the spike
density much more sensitive than the spike rate suggests
that it may play a significant role in amplifying small
signals. Indeed, primary neurons in the lateral lemniscus
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Fig. 9. Exponential adaptation factor dependence. Slew-rate adaptation
factor, &, versus bias voltage. ¢ was obtained from the slopes of the data
fits in Fig. 8. The fit yields a thermal voltage of Ur = 24.3 mV and voltage
dependence ratio r., = 0.024.

of the central auditory pathway (Fu, Wu, Brezden, &
Kelly, 1996) and in the lateral geniculate and medial habe-
nular nuclei of the thalamus (McCormick, 1991; McCor-
mick & Prince, 1987), as well as inhibitory interneurons
in the CA1 region of the hippocampus (Fricker & Miles,
2000) and in the neocortex (Gupta, Wang, & Markram,
2000) display behavior similar to the slew-rate adaptation
we have described here. In some instances, it was even
demonstrated that slew-rate adaptation disappears when K
conductances are blocked (Fricker & Miles, 2000; Fu et
al.,1996), and that this led to a decrease in sensitivity and
an increased latency (Fricker & Miles, 2000), as our model
predicts.

Our finding that this sensitivity can be controlled by regu-
lating voltage-dependent channels, Ca channels, or internal
Ca buffers, suggests that slew-rate adaptation may play a
role in gain modulation. There is evidence that the brain
uses gain modulation to realize selective attention
(Reynolds, Pasternak, & R, 2000), and that this increase
in sensitivity is accompanied by increased synchrony
(Steinmetz, Roy, Fitzgerald, Hsiao, Johnson, & Niebur,
2000), which is consistent with a slew-rate adaptation
based mechanism. It is infeasible to change the gain, or
sensitivity, of integrate&fire neurons, since this requires
modifying the membrane capacitance. However, when
active conductances are present, sensitivity can be increased
by up-regulating voltage-dependent K channels or down-
regulating Ca leakage or buffering to increase the slew-
rate adaptation factor. Such regulation may happen through
the action of neuromodulators, or through the action of
metabotropic receptors, which can act much more rapidly.
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Appendix A. Diode-capacitor leaky integrator

The current-mirror integrator is shown in Fig. 3b; it is
based on the well-known -current-copying circuit. For
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subthreshold current levels, the exponential current—voltage
dependence makes the circuit nonlinear, so we cannot
obtain a closed-form solution for any arbitrary input wave-
form. Instead, we derive an integral solution in this section.

The current-mirror integrator’s dynamic behavior is
described by a simple differential equation:

d VCa
dr

e = 1)~ Ly =T — I, ©)
where A = exp(V,/Uy) is its current gain. The current
passed by a MOS translator in saturation (i.e. V4 — V>4
Up) is related to its gate and source voltages by
lys = Lisoexp((kVy — V)/Ur), in the subthreshold region.
Hence, we can eliminate the voltage V¢, and rewrite this
equation solely in terms of the input and output currents:

Ix(®)
Ly

d 1
QTEIOg( ) = I, (1) — ZIK(t)a 7

where Ot = CUt/k is the amount of charge required to e-
fold the current.

To gain insight into diode-capacitor dynamics, we rewrite
the above differential equation in the following form:

Or di/b) 1 1
Ie() dt Al I’

This equation is a simple first-order ordinary differential
equation in 1/Ix with ‘time constant’ Q/lc,—which is
fixed only if Ic,(¢) is constant. In that case, the difference
/Ix — 1/(Alc,) decays like exp(—#/7), where 7= QO/lc,.

If the input current is zero, multiplying both sides of the
above equation by I, (#)/Qr reveals that:

d/Ig) 1 1 (9
dr AQr Or Ik’
That is, 1/Ix grows linearly at the rate 1/(AQr) when
Ic,(t) = 0. Hence, Ik decays like 1/-—the current gain, A,
determines the one-over-f decay rate. That is,
1
t(AQt) + 1/Ix(0)°

k()=

Now, we tackle the general case, for any arbitrary input
waveform, Ic,(¢). Integrating both sides of Eq. (7) from ¢, to
t, yields

IK(I) 1 ! _ 1 t
Og(IKao)) T aor J s = o J Ieal(s)ds,

after moving the Ix(f) term on the right to the left. Expo-
nentiating both sides and integrating a second time from ¢, to
t, yields

u=t t u

1 u 1
exp(E JI IK(s)ds) = L exp(a Jr ICa(s)ds)du.

Evaluating the expression on the left at the limits, u = f,
(which equals 1) and u =1, moving the constant to the

AQr
Ik (1)

u=ty

other side, and taking the log of both sides yields

1 1
E J’to IK(S)dS

I ! 1 (
= log( jgi) . exp(Q—T LO ICa(s)ds>du + 1).

Finally, differentiating both sides yields

Ig(H) = AQy %log( Ijgi) i exp(é L ICa(s)ds)du + 1)
3)

1
exp( o fﬁo ICa(s)ds)

1
I exp(Q— I ICa(s)ds)du +1
T

- IK(tO) IK(t0)~ (9)

AQr

Appendix B. K current and membrane voltage
trajectories

We can use the saturation current expression [ =
Lioexp(kVc,/Ur) to obtain a differential equation for I by
eliminating Vc, from Eq. (2). Thus, we obtain the following
system of equations:

dv,,
CmF =1y — rodg — (O — Tmeqc) 0t — 1), (10)
Cc,Urp d I (¢ .
caUt _10g( K( )) =1, — T L — (O — qedlran) S — 1,).
Temk  dt Tys0 Tem

(1)

We introduced the factor rp =1 + r,./A to account for
current discharging the membrane capacitor and the factor
Fek = Fem T 1/A to account for current discharging the
calcium capacitor. The two additive terms describe compo-
nents that arise from the potassium-channel transistor or the
diode-connected transistor, and crossover from one capaci-
tor to the other through C,; both are proportional to Ix().

To solve for the membrane voltage trajectory, in integral
form, we express Ix(?) in terms of its derivative, using Eq.
(11), and substitute this expression into Eq. (10). Integrating
over time, starting at #,, the time that the last spike occurred,
yields:

_ _ . Qm, (Ik® L
Valt) = Vatt) = 1 1og( 1K<r,1))+(1 e L,Im(ndr,
(12)

where Q1 = Cc,Ut/(Krey) is the amount of charge we
must add to the membrane node to e-fold Ix(¢), I,(¢) =
I, (1) — (Om + Aqc)0(t — t,41) is the current supplied to
the membrane node, and 1 = ryFon/ro 1S the fraction of
this current that is drained away.

To solve for the potassium current trajectory, observe that
its differential equation (11) is homologous with that for the
current-mirror integrator (Eq. (7)), with the following
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analogies:
CCa UT

FemK

- QT’

rcm
—

Fek

Iin(t) - (ch - CICa/rcm)a(t - tn) - ICa(t)'

Hence, we can use our general integral solution for the
current-mirror integrator (Eq. (9)) to obtain the potassium
current’s response to any arbitrary time-varying current,
Ic.(%), supplied to the calcium capacitor. The result is:

I
oo 524)
rckIK(tn) J-; e < ;l ICa(S) dS)dI/t +1
rchTm ! ! QT

m
For the AdaptSiNeuron circuit, Ic,(t) = I;,(f) — (Op —
qcaltem)O(t — t,+1) and, for the special constant current
case (i.e. I;,(r) = Iy), we can readily evaluate the integrals
in Egs. (12) and (13). The results are given in the text (Eqs.
(3) and (4)).

i

Ix() =

Ix(5,). (13)

Appendix C. Adaptation factors

To compute the slew-rate adaptation factor, we compare
how fast the input current charges the membrane capaci-
tance with how fast it charges after the potassium current
turns on and steals a fraction 7 of the input (see Fig. 5a). We
have:

g=to WVl M AT e (14)
Cn, dt |= I1—n L = remPme

where t = ¢, at the end of the interspike interval. This adap-
tation factor is achieved in practice only if the potassium-
channel current is virtually shut off when the membrane
voltage is reset. If the residual fraction B of the potassium
current is not negligible, the actual slew-rate adaptation
drops by a factor of (1 — ). For the fit shown in Fig. 5a,
this approximation predicts ¢ = 84.1 from the fitted values
of n and B, which is pretty close to the value of & =78.9
obtained by measuring the slew rates directly.

To compute the spike-rate adaptation factor, we use the
two-slope approximation for the membrane voltage trajec-
tory shown in Fig. 5a. However, first, we need to know how
close the membrane voltage is to threshold when it switches
to the slow slew rate. Let us assume that this happens when
Ix(¢) returns to the level it had before the membrane voltage
was reset. Hence, the shortfall in the membrane voltage
must exactly cancel the charge, gc,, added to the calcium
capacitor by the spike to boost Ix(f). This intuition leads us
to conclude that the voltage shortfall is gca/(¥eCrm), as
shown in Fig. 5a, taking into account the capacitive—divider
ratio rp,.

Hence, switching to a slow slew rate is equivalent to

elevating the threshold by &gc./(remCrm), as the membrane
voltage changes 1 + & times more slowly over the last
qcal(remCry) volts. Thus, the period becomes (Qg +
&G calTem)! O times longer. Therefore, the spike-rate adapta-
tion factor, vy, is related to the slew-rate adaptation factor, &,
by

T, A+ )

y= 0 _lzi@_ "me  4Ca (15)
ch/IO em th 1- TemTme ch

as the steady-state interspike interval, T, is

(O + &qcalTem)!y, but would be Qy/I, without adaptation.'

Appendix D. Spike density

The time-scaling ratio, dt,/dt,, is all we need to know
to compute how an adapted neuron’s spike density is
reshaped by its input current. This function tells us exactly
how much to shrink or stretch time intervals as we map
spikes from ¢, to #,+; (see Fig. 5b). By our definition, a
neuron is adapted if its behavior only depends on the most
recent spike. That is, its state at time ¢ is entirely determined
by the time elapsed since it last spiked, # — ¢,. In that case,
we can determine the spike probability density for a popula-
tion of identical neurons, p(t,+), at time t,4+1, if we know the
density, p(t,), at time z,.

To show how dr,/dr, . is related to the spike density
p(t.+1), let dr, be a time interval starting at 7, and let dz, .
be a time interval starting at ¢,4,. Demarcate the second
interval such that in each case where a spike occurs in the
first interval, then it is followed by a spike that falls in the
second interval—spikes are conserved. Thus, we must have

d
"oy, (16)

dtn+1p(tn+1) = dtnp(tn) :p(tn-*-l) = d—
Lit1

Notice that higher time-scaling ratios yield higher spike
densities.

To derive the time-scaling ratio, dz,/dt, ., observe that
no net charge can be supplied to the membrane capacitor
over a complete cycle. Hence, if the last spike is shifted by
dt,, then the next spike must be shifted by dz,.; to compen-
sate for the amount of charge lost—charge is conserved.
Thus, we must have:

dtn I(tn+1)

de, 1 1(¢ =dt I(t,) =
n+l (n-H) n (n) dtn+1 I(ln) 5

A7)

where I(f) is the net current flowing into the membrane
capacitance at any time ¢. In the case of AdaptSiNeuron,

! Alternatively, we can solve for the steady-state interspike interval T}, by
imposing the adaptation condition Ix(f; ) = Ix(tg )/B, between the potas-
sium current levels at the beginning and the end of the interspike interval,
on Eq. (3), and setting V,,(t; ) — Viu(tg) = Qup/Cy, Where t; =ty + Ty is
the time the next spike occurs and 8 = exp((gca — 7emQw)/Qr)- This rigor-
ous approach yields the same result.
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this yields

dtn _ Iin(tn+1) B rmkIK(tn+1) (18)
dt, 4y Ln(t) = rdi (8)
as the factor ;. = 1 + r,./A accounts for both Ix(f) and the
current through C,. Given the input current waveform, I;,(7),
and the initial condition, Ik(z,), we can use Eq. (13) to
compute I (t,+1)-

Now, let us consider a cycle starting just before the time,
t,, that the last spike occurred and let us assume that I () has
reached steady state at the starting point (i.e.
Ix(t,) = remlo/re, from Eq. (11)). In that case, Eq. (18)
gives us

dr,  Lin(ts1) = radx@11)

dt, 41 Iy — mly

Lin(f1) = Fodx (B41)
Iy

=1+ , (19)
using the definitions 1 = rpy r.,/ro and € = n/(1 — 1) (see
Appendix C). This result applies if the input current remains
constant sufficiently long, as is the case for sparse sporadic
synaptic inputs superimposed on a constant background
current level.

For a step change in the input current from / to /;, we can
readily compute Ik(t,+) from Eq. (13). If we assume Ix(?) is
in steady state when the step occurs, we obtain

Iltye) = e
(il 5
Iy I ul Iy
assuming the step occurred at t= (0. To obtain the spike
density, we substitute this result into Eq. (19), and then
multiply by p(t,), which equals 1/7) if spikes are uniformly
distributed. Thus, we obtain the result given in the text (Eq.
(5)). This result applies only if the step occurs in the slow
slew-rate phase of the membrane voltage’s trajectory, as
shown in Fig. 5b, due to the steady-state assumption.
Finally, we need to determine where the distribution cuts
off, which requires us to compute the maximum latency, 7.

To do this, we integrate p(t,+,) from O to T, and equate the
result to 1. Thus, we obtain

I . I — I T I
Ty = I—lTl — §7’010g(—1 Oexp(——l) + —0), 21
0 T T

1

(20)

after substituting 7y = (I;/ly)7;. We solved this equation
numerically to obtain 7', after substituting the values of &
and 7, used to fit Eq. (5) to the density measurements; T
was determined by measuring the density in the absence of a

2 An exact relationship between 7,;; and #, can be derived by substituting
the general solution for /x(f) (Eq. (13)) into the membrane voltage equation
(Eq. (12)) and evaluating integrals over the interspike interval, stepping the
input current from /, to ; at t=0. Differentiating this result implicitly
yields an exact equation for dt,/dt,.,. A precise value of Iy(r]) can be
obtained by imposing the adaptation condition, Iy (¢; ) = Ix(t5)/B, on the
constant-input solution for Ix(#) given by Eq. (13).

step. As T, is equal to the interspike interval immediately
after the step, we used its reciprocal to obtain the spike-rate
fit shown in Fig. 7. This result overestimates the spike rate at
large step sizes because of the steady-state assumption,
which effectively ignores the fast slew-rate phase when
the membrane is further away from the threshold, leading
to shorter estimates for the interspike interval.’

By repeating this procedure, to relate p(#,+,) to p(t,+1), we
can determine how quickly the perturbation in the spike
density disappears. We have

Iin(tn+2) - rmkIK(tn+2)
Iin(tn+l) - rrkIK(thrl)

_ Tin(ti2) = rdx (@ 40) 1
Lin(8,) — Tk (8,) Ty '

using Eqgs. (16) and (18), and setting p(z,) = 1/T,. The net-
current ratio evaluates to I,/ if Ix(?) is in steady state when
t=t,1, as well as when =1, Given that the K-current
trajectory is similar to that in Eq. (20), the density becomes
uniform for t,,, > t,41 + 47,—a time period much shorter
than the interspike interval.

pt,2) = Ptyi1)

(22)
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