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Abstract

Terrain Relative Navigation (TRN) provides an en-
abling technology for drift-free, low-cost navigation
on many existing underwater vehicles. While high-
performance TRN systems have been demonstrated us-
ing high-quality sensors and terrain maps, these systems
can be very costly and the high-resolution bathymetry
maps used are of limited availability. To extend the
applicability of TRN, the authors previously addressed
the performance trades in utilizing lower-cost, lower-
accuracy sensor systems for terrain navigation. The cur-
rent paper addresses the additional extension of TRN to
coarse, ship-based maps which are more widely avail-
able. Performance studies assessing TRN performance
over varying map resolution are presented for two sets of
real-time field trials, performed over different terrains in
Monterey Bay, CA. A posterior Cramér-Rao bound anal-
ysis provides insight into the terrain characteristics most
relevant to the observed TRN performance reduction
over coarser maps. Finally, the results from these studies
are validated against 20m ship-based bathymetry maps.
In these studies, moving from a 1m to a 30m resolu-
tion map is observed to reduce TRN estimation accuracy
by a factor of only 2-3, resulting in sub-map resolution
accuracies. The presented results indicate that, for the
range of resolutions considered, coarse ship-based maps
can potentially be utilized in place of higher-resolution
AUV-based maps with only mild performance losses.

1 Introduction

Terrain relative navigation can enable drift-free, low-
cost navigation for underwater vehicles, providing a
powerful alternative to other underwater navigation
methods including periodic resurfacing for GPS, dead-

reckoning with high-accuracy inertial sensors, and/or
deploying transponder arrays. TRN generates vehi-
cle position estimates by matching terrain measure-
ments against a stored terrain map. The technology
was initially developed with TERCOM (Terrain Con-
tour Matching) for cruise missile navigation, consisting
of batch correlation of altimeter measurements [1].

Since TERCOM, numerous variants of TRN have
been successfully developed for a range of platforms, in-
cluding underwater vehicles [2], [3], [4], [5], [6], [7],
[8], [9]. Many of these implementations report high
accuracy performance by using a combination of high-
quality instrumentation and high-accuracy Digital Ele-
vation Model (DEM) terrain maps. Nygren, for exam-
ple, demonstrated high performance through TERCOM-
style batch correlation of large sonar measurement
patches, created from combining several multibeam
sonar pings with well-known relative spacing [3].

In [8], the authors demonstrated meter-level accu-
racy in field trials on the Monterey Bay Aquarium Re-
search Institute (MBARI) mapping AUV, using either an
Altimeter or Doppler Velocity Log (DVL) sonar mea-
surements for correlations against a high-resolution (1
meter) DEM map. The presented results were aimed
at evaluating the affect on TRN performance of using
lower-cost, lower-accuracy vehicle instrumentation. En-
abling TRN on these lower-cost sensor systems signifi-
cantly expands the range of potential TRN applications.

This paper continues this work by addressing the ad-
ditional concern of the performance effects in transition-
ing to coarser resolution terrain maps. Enabling effec-
tive TRN over low-accuracy terrain maps can substan-
tially increase its applicability. For example, while DEM
maps are available for much of Monterey Bay, Califor-
nia, only a small percentage have been generated with
meter-level accuracy (e.g. by MBARI’s mapping AUV).
The vast majority of available DEM maps are derived



from ship-based bathymetry, resulting in resolutions on
the order of 10’s of meters.

Utilizing coarser resolution maps for terrain naviga-
tion, however, introduces important performance trade
offs that have not been thoroughly addressed in AUV
navigation literature [10]. The achievable accuracy of
a TRN system is expected to be inversely related to the
coarseness of the utilized terrain map. However, the rate
of performance degradation and its dependence on un-
derlying terrain properties is not well understood.

This paper explores the performance trades involved
in moving to coarse DEM maps for TRN through case
studies on two sets of real-time field trials, performed
over different terrains in Monterey Bay, CA. A TRN
configuration is presented which utilizes DVL sonar
for terrain correlation and a point mass filter for esti-
mate propagation. Empirical studies are presented using
DEMs created at varying resolutions to assess TRN per-
formance over coarser maps.

Reduced map resolution is observed to effect TRN
performance through both decreased accuracy of the
modeled terrain elevations, and a decreased ability of
the map to represent the true terrain gradient variability.
An analytical performance study based on the posterior
Cramér-Rao bound is presented which provides a means
for quantifying these effects for a given terrain. Finally,
the results of these studies are validated against TRN
performance with 20m ship-based bathymetry maps.
The presented investigation shows that the TRN perfor-
mance degrades gradually with decreased map resolu-
tion, implying that coarse ship-based maps on the order
of 10s of meters can be effectively used for TRN without
significant performance losses.

2 TRN Filter Implementation

The performance analysis and field trials presented in
this paper are generated using a point mass filter TRN
algorithm similar to that described in [8]. The terrain
navigation system is modeled by the equation pair:

xt = xt−1 + ut + rt (1)
yt = h(xt) + et (2)

with vehicle state given by:

xt = [xNorth
t xEast

t ]T . (3)

Equation 1 models the state propagation, where ut is
the change in vehicle state measured by an inertial nav-
igation unit, and rt ∼ N(0,Σr) is the process noise
determined by the inertial drift rate and distance trav-
eled. The sonar measurement is modeled by Equation

2, where yt ∈ RN is the N projected sonar measure-
ments of terrain depth, h(xt) is the corresponding ter-
rain depth at the sonar projected beam locations relative
to state xt, and et ∼ N(0,Σe) is the sonar measurement
noise, modeled as 4% of the measured range.

Unfortunately, the true terrain surface in the measure-
ment equation, h(xt), is not generally known. Instead,
the terrain surface must be approximated by a model.
In the geoscience community, the most common such
terrain model is the DEM. A typical DEM represents
the terrain by a grid of elevation values, uniformly dis-
tributed in North and East. The resulting model for ter-
rain depth at any given location, h(xt), is given by Equa-
tion 4:

h(xt) = ĥ(xt) + vt + δz (4)

where ĥ(xt) is the DEM estimated terrain depth at lo-
cation xt, vt is the associated DEM modeling error, and
δz is a depth bias term which accounts for variation in
tide levels between the time of the DEM creation and the
current vehicle mission.

In order to estimate terrain depth at any inter-grid lo-
cation, a linear interpolation method is utilized:

ĥi(xt) =
n∑

j=1

λjh
M
i,j [xt] (5)

where hM
i,j [xt] is the DEM value at the jth grid cell

in the neighborhood of measurement yt,i, and λj is
the associated interpolation weight. Many interpolation
methods can be represented as in Equation 5, including
nearest-neighbor, bilinear, and bicubic. Each of these
were evaluated for the current filter implementation and
it was found that while bicubic interpolation performed
the best, bilinear interpolation provided a better perfor-
mance versus speed trade-off and was thus selected for
the current filter. The tendency of higher order interpola-
tion methods to give small performance gains at the ex-
pense of large computational effort has also been noted
by several in the geoscience community [11], [12].

Using this interpolation method for terrain depth esti-
mation results in the new measurement equation,

yt,i = λThM
i [xt] + δz + vt,i + et,i. (6)

For simplicity, the DEM modeling error has
been approximated as a zero-mean guassian, vt ∼
N(0, diag(σ2

v)), where the covariance is given by:

σ2
v,i = λT Cov(hM , (hM )T )λ (7)

= λTσ2(hM ) + λT
[
A− γ(hM , (hM )T )

]
λ

where Aij = 0.5(hM
i − hM

j )2, and γij is the variogram
of the distance between grid points hM

i and hM
j . A var-

iogram describes the expected mean square difference



between points at a specified spatial separation, and are
fundamental to the field of geostatistics, initially devel-
oped by [13]. They are commonly used as a convenient
means of inferring spatial covariance [14]. In the current
implementation, a fractal variogram model is utilized,
given by Equation 8:

γ(s) = 0.5E[((h(x)− h(x+ s))2]
= a||s||2(3−D) (8)

where s is a separation (lag) distance between data
points, and D is the fractal dimension, related to ter-
rain roughness. Fractal models, initially developed by
[15], are commonly used for representing variability in
natural terrains.

Assuming that the sonar measurement noise is uncor-
related with the map error and errors between beams
are independent, the probability of acquiring the current
sonar measurement, yt, given vehicle state xt and depth
bias δz is given by:

p(yt|xt, δz) = α exp

(
−1

2

N∑
i=0

wi

[
yi,t− ĥi(xt)− δz

]2)
(9)

where

wi =
1

σ2
e,i + σ2

v,i

. (10)

The resulting likelihood distribution is thus a three-
dimensional function over xt and δz. However, the
depth bias term, which represents the depth offset due
to tidal variations, is simply the offset between the map
depth and the true vehicle depth plus altitude. As a re-
sult, δz is deterministic given the true vehicle position.
Thus, the three-dimensional probability in Equation 9
can be approximated as a two-dimensional surface by
replacing the depth bias term with its maximum likeli-
hood estimate, given in Equation 11. This approxima-
tion is exact for a single time step.

δẑ(xt) =
1∑
i wi

∑
i

wi(yi,t − ĥi(xt))

= ηwT (yt − ĥ(xt)) (11)

The effect of this resulting depth bias term is to con-
strain the search to the sonar-measured altitude above
the map and apply contour matching rather than depth
profile matching. Both [3] and [4] use a similar contour-
matching based TRN algorithm. The resulting two-
dimensional likelihood of making measurement yt at lo-

cation xt is given by Equation 12:

p(yt|xt) = α exp

(
−1

2

N∑
i=0

wi

[
Π(yt − ĥ(xt))

]2
i

)
(12)

where
Π = IN − ηuwT . (13)

The likelihood surface is clearly highly nonlinear
in the state, primarily due to the natural nonlinearity
of the terrain function, ĥ(x). This nonlinearity has
been widely noted for terrain navigation filter applica-
tions, and increases with fewer measurement beams.
As a result, a full Bayesian, non-parametric filter is
needed for successful tracking of the vehicle state es-
timate. In this work, a point mass filter (PMF), or his-
togram filter, is utilized for state propagation. For low-
dimensional search, the PMF is advantageous over other
non-parametric filters, such as a particle filter, due to its
higher robustness [4] and efficient indexing of DEM val-
ues. The PMF filter equations are given by:

p̃(xt) =
∑

x

p(xt|xt−1, ut)p(xt−1) (14)

p(xt) = αp(yt|xt)p̃(xt) (15)

where p(xt|xt−1, ut) describes the vehicle motion prob-
ability distribution, p(xt−1) is the prior belief of the ve-
hicle state, p(yt|xt) is the likelihood function given in
Equation 12, and α is a normalization constant.

3 Baseline TRN System with AUV-
Based Maps

The map resolution studies performed in this paper are
based on data collected from two sets of field trials per-
formed in 2008 on the MBARI Dorado mapping AUV
in Monterey Bay, California. The mapping vehicle, pic-
tured in Figure 1, is a high-performance system utilized
by MBARI primarily for generating bathymetry maps
with up to 30cm vertical precision and less than one me-
ter lateral resolution [16]. It is equipped with several
sonar systems, including a 200kHz multibeam sonar,
two sidescan sonars and a subbottom profiler. The navi-
gation system consists of an integrated Kearfott INS and
RDI 300 kHz DVL which provides an inertial drift rate
of 0.05% of distance traveled, provided the DVL main-
tains bottom lock throughout the mission [17].

The terrain navigation algorithm described in Section
2 was implemented using the DVL sonar measurements
from the vehicle’s navigation system for terrain correla-
tions. For these trials, 1m resolution DEM maps were
used, previously generated by the mapping AUV. Utiliz-
ing these high-resolution maps in combination with the



Figure 1: Picture of retrieval of the MBARI Dorado
mapping AUV. c©MBARI.

mapping AUV’s high-performance navigation allows for
the creation of performance baselines for the described
TRN system, necessary for the performance studies in
Section 4. The precise navigation system is particularly
important for the presented studies as it allows for sepa-
ration of performance effects due to sensor accuracy and
those purely due to terrain map accuracy. For these field
trials, both the resulting TRN estimation bias and vari-
ance are used as performance benchmarks for the analy-
sis in Section 4 over coarser map resolutions.

On both missions, the TRN filter was run in real-time
on-board the vehicle at an update rate of 0.1Hz, resulting
in filter updates every 15 meters. This lower rate was
chosen to minimize the load on the CPU, a LiPPERT
Cool SpaceRunner 2 with 300MHz processor speed and
128MB SDRAM. Even at this lower rate, however, the
terrain navigation algorithm successfully converged for
both field trials.

The first set of trials was performed in July, 2008 at
Soquel Canyon in Monterey Bay. Figure 2 shows the
DEM map along with both the inertial estimate and ter-
rain navigation estimate of the vehicle trajectory. The
trajectory was chosen along this narrow strip of the
mapped canyon in order to ensure that the vehicle would
start at a shallow enough depth to maintain DVL lock,
and thus precise navigation, for the duration of the mis-
sion. The 90% confidence ellipsoids of the TRN esti-
mate are also shown. Figure 3 shows the filter estimates
for North, East and Depth versus distance traveled. The
TRN filter converges after approximately 30 measure-
ments, or 400 meters.

The second set of trials was performed in August,
2008 at Portuguese Ledge in Monterey Bay, the same
site as previous trials described in [8]. The DEM map,
inertial estimate and TRN estimate of vehicle trajectory
are shown in Figure 4. This vehicle route was selected
to maximize the variability of the terrain under the vehi-
cle path, enabling faster estimator convergence than was
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Figure 2: Soquel Canyon high resolution (1m) map with
both Inertial and TRN estimated vehicle tracks. 90%
confidence ellipses are shown around the TRN estimate.
Figure generated using MB-System c©.
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Figure 3: TRN estimator results in North, East and
Depth for the Soquel Canyon field trial data.



achieved in the prior trials at this site. The vehicle was
able to acquire DVL lock for the entire mission due to
the shallowness of this site, ensuring high-performance
inertial navigation. The terrain navigation estimates ver-
sus distance traveled are shown in Figure 5. The estima-
tor converges rapidly upon reaching the rougher part of
the terrain, after just 20 measurements or 300 meters.

−108.75

−105.00

−101.25

−97.50

−93.75

−90.00

−86.25

−82.50

−78.75

−75.00

−71.25

T
op

og
ra

ph
y 

(m
)

0 m

200 m

400 m

600 m

800 m

1000 m

N
or

th

200 m 400 m 600 m 800 m 1000 m 1200 m

East

Portuguese Ledge 1m AUV Map with Vehicle Route and TRN Estimates

Figure 4: Portuguese Ledge high resolution (1m) map
with both Inertial and TRN estimated vehicle tracks.
90% confidence ellipses are shown around the TRN es-
timate. Figure generated using MB-System c©.

Table 1 shows the final TRN estimate variance and
bias from inertial for both field trials.

Table 1: TRN Estimates for Field Trials using 1m Reso-
lution Maps

North(m) East(m) Depth(m)
Soquel Bias -2.94 21.6 -0.65
Canyon σ 2.48 1.9 0.16

Portuguese Bias 11.15 -12.54 0.51
Ledge σ 3.22 2.74 0.05

Since the terrain navigation filter provides a terrain-
relative position estimate, the resulting bias is a com-
bination of both inertial navigation error and map geo-
registration error. The inertial drift component of the
navigation error is expected to be small for these tri-
als due to the high-precision INS unit, at most 1-2m
for both trials. Surface initialization errors in the iner-
tial navigation may also exist, however, which may also
contribute to the observed bias. The expected magni-
tude of the geo-registration error was assessed by us-
ing a 2D correlation technique to register the coarse
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Figure 5: TRN estimator results in North, East and
Depth for the Portuguese Ledge field trial data.

ship-based maps from Section 5 with the high-resolution
AUV-based maps for both sites. The resulting expected
geo-referencing errors are shown in Table 2.

Table 2: Estimated Geo-Referencing Errors for AUV-
Based DEMs

North(m) East(m)
Soquel Canyon 1.1 11.3

Portuguese Ledge 17.4 -13.3

Given this combination of expected error sources, the
resulting magnitudes of the TRN estimation biases in Ta-
ble 1 are very reasonable.

4 Map Resolution Performance
Studies

Utilizing coarser terrain maps for terrain relative naviga-
tion is expected to degrade the overall achievable accu-
racy, with the degree of performance reduction depend-
ing on several factors including both terrain variability
and vehicle trajectory. In order to evaluate this perfor-
mance trade-off, both analytical and empirical perfor-
mance studies were completed using the recorded data
from the field trials discussed in the previous section
over a set of generated coarse terrain maps.

The coarse maps used in these studies were generated
using the same processed multibeam sonar soundings
used to generate the 1m resolution AUV maps utilized



in the online field trials. The open-source software MB-
System c©was used to generate lower resolution maps
from this sonar data. The employed gridding function
computes each DEM grid cell value by a Gaussian-
weighted average of the sonar soundings falling within
that cell. This map generation method was used be-
cause it is the same method employed to generate the
ship-based bathymetry maps, thereby resulting in more
comparable DEMs than simple sub-sampling or regular
averaging. For the following studies, the coarse maps
were generated for both Portuguese Ledge and Soquel
Canyon at resolutions of 2m, 5m, 10m, 15m, 20m, 25m
and 30m.

4.1 Empirical Performance Studies

In order to assess TRN performance with decreased map
resolution, experimental tests were performed first by
running the terrain navigation filter over the generated
low-resolution DEMs for both field data sets. Figure
6 shows the resulting filter performance for the Soquel
Canyon data, shown as root mean squared error (RMSE)
for both North and East. The RMSE is further decom-
posed into bias and variance. The bias is computed as
the deviation in the TRN estimate from the nominal es-
timates over 1m resolution maps, shown in Table 1. Fig-
ure 7 shows the equivalent results for the Portuguese
Ledge data set.
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Figure 6: Root mean square error of the final TRN esti-
mate for varying map resolution at Soquel Canyon. Re-
sults are shown as total RMSE as well as the component
bias and standard deviation for both North and East.

The results from these experiments show that the in-
crease in RMSE of the TRN estimator with decreased
map resolution occurs gradually. Furthermore, despite
differences in the relative decomposition of bias and
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Figure 7: Root mean square error of the final TRN es-
timate for varying map resolution at Portuguese Ledge.
Results are shown as total RMSE as well as the com-
ponent bias and standard deviation for both North and
East.

variance for the two data sets, the overall rate of per-
formance degradation is highly comparable. In order to
understand the underlying cause of these observed simi-
larities and differences between the two terrains, analyt-
ical studies were performed for both data sets, which are
discussed in the following section.

4.2 Analytical Performance Studies
A posterior Cramér-Rao Lower Bound (PCRLB) analy-
sis was utilized to provide an analytical bound on TRN
performance over the generated low-resolution maps.
The PCRLB is an extension of the common Cramér-Rao
Lower Bound (CRLB), which provides a lower bound
on the mean square error of any unbiased estimator for
time-invariant systems. The CRLB is defined as the
inverse of the Fisher Information matrix, J , computed
directly from the measurement probability distribution
(e.g. [18]):

CRLB = J−1 ≤ E
[
[x̂− x][x̂− x]T

]
(16)

where

J = −E
[
∂2 ln p(y|x)
∂xi∂xj

]
. (17)

For dynamic systems where the state exhibits uncertain
change, a posterior Cramér-Rao bound can be found by
utilizing the full Fisher information matrix over the joint
probability distribution of the measurement and state:

J̄n = −E
[
∂2 ln p(yn, xn)

∂xi∂xj

]
. (18)



While applicable to many systems, the PCRLB is par-
ticularly powerful as a performance assessment tool for
non-linear filters, such as the point mass filter used in
this paper. Tichavksy et al. [19] developed a very useful
formulation of this bound specifically for discrete-time
nonlinear filters. The authors show that J̄n can be cal-
culated via the Ricatti-like recursion shown in Equation
19

J̄n+1 = D22
n −D21

n (J̄n +D11
n )−1D12

n (19)

where

D11
n = E

[
− ∂2

∂x2
n

log p(xn+1|xn)
]

D12
n = E

[
− ∂2

∂xn∂xn+1
log p(xn+1|xn)

]
D21

n = [D12
n ]T

D22
n = E

[
− ∂2

∂x2
n+1

log p(xn+1|xn)
]

+E
[
− ∂2

∂x2
n+1

log p(zn+1|xn+1)
]

= D22
n1 +D22

n2. (20)

For systems with additive Gaussian process and mea-
surement noise, as with the TRN system, Equation 19
simplifies significantly with D11

n = D12
n = D22

n1 = Σ−1
r,n

and D22
n2 = J , the Fisher Information matrix for the

standard CRLB. In this simplified case, the PCRLB is
the covariance of the Extended Kalman Filter.

Both versions of the Cramér-Rao bound have been
successfully applied to performance assessment in ter-
rain navigation systems, with the CRLB being used for
batch TRN systems [3] and the PCRLB for non-linear
Bayesian TRN implementations [5], [20]. The PRCLB
for the current TRN filter implementation described in
Section 2 is identical to that derived by Bergman [20],
with a modified J term for the likelihood function de-
scribed in Equation 12. Using the Matrix Inversion
lemma to rearrange Equation 19, the resulting PCRLB
for the employed TRN filter is given by:

PCRLBn = J̄n
−1 ≤ E

[
[x̂n − xn][x̂n − xn]T

]
(21)

where

J̄n+1=HT
n+1ΠT

n+1Σ−1
w,nΠn+1Hn+1+(J̄−1

n +Σr,n)−1 (22)

and Hn = ∇xĥ(xn) is the terrain gradient matrix for
the current measurement. Note that the terrain gradients
in Hn are the gradients seen by the estimation filter, not
the true gradients of the physical terrain. Thus this ma-
trix is determined by both the utilized DEM map and the
employed interpolation method.

Figure 8 shows the result of applying the PCRLB in
Equation 22 to the Soquel Canyon data set over the gen-
erated coarser maps. The root mean square error from
the empirical studies is shown as well for comparison.
The corresponding results are shown in Figure 9 for the
Portuguese Ledge field data.
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Figure 8: Posterior Cramer-Rao Lower Bound for the
Soquel Canyon data set shown along with the experi-
mentally determined RMSE.

For both data sets, the estimator performance trend
follows that of the PCRLB. For Soquel Canyon, the gap
between estimator RMSE and the PCRLB is noticeably
larger than that for Portuguese Ledge, a result of the
larger biases observed in the estimator for coarser map
resolutions.
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Figure 9: Posterior Cramer-Rao Lower Bound for the
Portuguese Ledge data set shown along with the experi-
mentally determined RMSE.

While the PCRLB is not an exact predictor of esti-



mator performance (i.e., the performance bound is not
met for this data), it can still provide a meaningful tool
for assessing the sources of performance variability for
these different terrains. From Equation 22, reduced TRN
estimator performance can be attributed to two primary
factors: (1) decreases in H , corresponding to reduced
variability in the represented terrain gradients, and (2)
increases in Σw, corresponding to decreased accuracy
of individual DEM points. Thus to better understand the
performance similarities and differences noted in Sec-
tion 4.1, comparisons of these two factors were made
for the two sets of field trials.

Figure 10 shows a comparison of terrain gradient
statistics for the Portuguese Ledge and Soquel Canyon
maps for varying resolutions. The terrain slopes used for
these statistics were computed for the section of terrain
along the vehicle path. For both terrains, the slope mag-
nitude and variability is seen to decrease primarily from
1m to 5m, and then level off for coarser map resolutions.
This leveling behavior mimics the concave, gradual in-
cline of the PCRLB curves seen in Figures 8 and 9.
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Figure 10: Comparison of terrain slope statistics along
vehicle path for Soquel Canyon and Portuguese Ledge.

Figure 10 further illustrates that the Soquel Canyon
terrain maps exhibit both significantly larger overall
slope variability and slope magnitude than the Por-
tuguese Ledge maps for nearly all map resolutions. This
characteristic alone suggests higher performance TRN
for the Soquel Canyon terrain. However, as noted earlier,
the performance is also effected by the DEM accuracy.

DEM accuracy is represented in Σw by the σ2
v term,

defined in Equation 8. The magnitude of σ2
v depends on

both the accuracy of the DEM generation process and
the underlying variability in the terrain, represented by
the variogram, γ(s). Indeed, the RMSE of interpolated
DEM values has been shown to be a direct function of
the variogram [11]. Thus for the same quality under-
lying DEM measurements, the accuracy of interpolated

DEM elevations will be larger for terrains with larger
variograms.

Figure 11 shows the variograms for the Soquel
Canyon and Portuguese Ledge terrains over the range
of map resolutions considered in these studies. The
variograms were computed using the fractal model de-
scribed in Equation 8.
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Figure 11: Comparison of Variograms

Note that the variogram for Soquel Canyon increases
significantly with lag distance, compared to a much
more gradual incline for Portuguese Ledge. As a result,
the Soquel Canyon data is expected to exhibit notice-
ably reduced DEM accuracy at coarser resolutions. This
reduced map accuracy combined with large slope vari-
ability noted in Figure 10 makes the Soquel Canyon ter-
rain much more susceptible to terrain model errors than
the Portuguese Ledge data set, resulting in the larger ob-
served estimator biases. In addition, however, the large
terrain gradients observed for the Soquel Canyon data
balance the reduced DEM accuracy in terms of the esti-
mator variance, predicted by the PCRLB.

TRN performance reduction with coarser maps can
thus be ascribed to the decreased ability of the resulting
terrain model to accurately represent both the true slope
variability and elevation. For flatter terrains, the per-
formance reduction will primarily result from reduced
DEM slope variability. Conversely, TRN over terrains
with larger slope and elevation variability will be ef-
fected primarily by reduced DEM elevation accuracy.
Thus in many physical terrains, the effect of H and Σw

in the PCLRB are expected to counter-balance, resulting
in comparable TRN performance reductions regardless
of the underlying terrain.

5 TRN with Ship-Based Maps

While the studies in the previous section are insightful,
it is important to assess how well this analysis on artifi-
cially coarse maps matches with truly coarse DEM maps



generated from ship-based bathymetry. As noted ear-
lier, ship-based bathymetry is available for a large sec-
tion of Monterey Bay, including the sites for both of the
presented field trials. Using this ship-based multibeam
sonar data, 20m resolution DEM maps were generated
for both Portuguese Ledge and Soquel Canyon using
the same MB-System c©gridding method as described in
Section 4.

Figures 12 and 13 show the DEM maps for Soquel
Canyon and Portuguese Ledge, respectively, overlaid
with the terrain navigation estimated vehicle tracks and
90% confidence ellipses. The corresponding final esti-
mation bias and variance are shown in Table 3, along
with the PCRLB performance bound computed in Sec-
tion 4.2 for a 20m resolution map.
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Figure 12: TRN estimator results for Soquel Canyon
field trials, using ship-based, 20m resolution bathymetry
map. Figure generated using MB-System c©.

Note that since these maps are generated from ships
which can maintain gps lock during data acquisition, the
contribution of the geo-referencing error to the resulting
TRN bias is expected to be small. However, initializa-
tion errors in the inertial navigation are still plausible.
In addition, TRN estimation bias on the order of a cou-
ple meters is expected simply due to the decreased map
resolution, observed in Section 4.1.

For both of these data sets, the observed estimator
variances are very comparable to the predicted estima-
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Figure 13: TRN estimator results for Portuguese Ledge
field trials, using ship-based, 20m resolution bathymetry
map. Figure generated using MB-System c©.

Table 3: TRN Estimates for Field Trials using 20m Res-
olution Ship-Based Maps

North(m) East(m) Depth(m)
Soquel Bias -7.31 14.86 0.31
Canyon σ 4.53 3.64 0.23

RMSE 8.6 15.3 0.38√
PCRLB 3.79 3.03 –

Portuguese Bias -3.15 0.03 0.3
Ledge σ 5.16 3.91 0.03

RMSE 6.05 3.91 0.3√
PCRLB 4.09 3.75 –

tion performance provided by the PCRLB. In addition,
the resulting estimation bias from the inertial naviga-
tion is reasonable given the expected bias sources noted
above. This similarity of predicted and actual perfor-
mance indicates that the presented map resolution stud-
ies in Section 4 are realistic predictions of TRN perfor-
mance on actual coarse DEMs.

6 Conclusions

The presented performance studies in this paper indi-
cate that, while TRN performance does degrade with
decreased map resolution as expected, this reduction oc-
curs gradually. Moving from a 1m to a 30m resolution
map was observed to decrease estimator accuracy from
∼ 2m to ∼ 6m RMSE. A posterior Cramér-Rao bound



analysis demonstrated that the observed degree of per-
formance reduction is primarily related to two counter-
acting characteristics in the underlying terrain: variabil-
ity in terrain slope and elevation.

For a fairly flat terrain, reduction in map resolution
significantly decreased the overall terrain gradient dis-
tribution, resulting in reduced achievable TRN perfor-
mance. However, this reduction was counteracted by
the terrain’s small elevation variability, resulting in min-
imal DEM inaccuracies at coarser resolutions. In a more
steeply sloped terrain, these effects were found to be
opposite. It is expected that these two characteristics
will naturally compete in any terrain surface, resulting in
comparable performance reduction rates for many natu-
ral terrain surfaces.

The results in this paper thus suggest that readily
available ship-based bathymetry can provide sufficient
terrain information to achieve TRN accuracies less than
the map resolution. While the use of high-resolution
AUV-based maps will provide improved performance
when available, such maps are not crucial to successful
TRN and may be unnecessary for many applications.
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