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Abstract

This paper discusses the localization portion of a
new iceberg-relative navigation technique for Au-
tonomous Underwater Vehicles (AUVs). An esti-
mator is presented which correlates incoming sonar
range returns with an a-priori iceberg surface map
in order to provide iceberg-relative AUV position
and orientation estimates. The technique works by
maintaining estimates not only of iceberg-relative
AUV position and orientation, but also of the trans-
lational and rotational velocities of the iceberg it-
self. In addition to the a-priori iceberg surface map,
required inputs to the estimator are measured iner-
tial vehicle displacements and measured sonar range
vectors from the vehicle to the iceberg.

Details of a particle filter implementation of the
estimator are provided along with example localiza-
tion results. The example data were collected from
the RVIB Nathaniel B Palmer during circumnaviga-
tion of an iceberg in the Scoita Sea. In the example
results, the vehicle position with respect to the berg
is estimated to within 2 m, and the iceberg trans-
lational and rotational velocities are estimated to
within 20%.

1 Introduction

Large free-floating icebergs are traveling ecosys-
tems of great interest to science. Because they
are relatively difficult and dangerous to approach,
they are attractive targets for exploration by Au-
tonomous Underwater Vehicles (AUVs). However,
because they are moving and rotating, standard
AUV navigation methods are unable to provide
iceberg-relative position estimates. These estimates

can be achieved by a new AUV navigation solution
comprised of two steps: mapping and localization.
The mapping step was described in a recent pa-
per [1]. The localization step is presented here.

Figure 1: Photograph of iceberg used for experiment

To operate in the under-ice environment, an AUV
must possess some capability of navigation with re-
spect to the ice surface. Existing under-ice AUV
navigation systems have typically relied on dead-
reckoning using inertial measurements and/or ve-
locity measurements from a Doppler sonar (both
seafloor-relative and ice-relative). These systems
have been used successfully to move between pre-
programmed waypoints in horizontal inertial space,
with depth determined by reactive terrain-following
(or ice-following) and obstacle avoidance behaviors.
However, these existing systems cannot provide ac-
curate ice-relative position estimates around free-
floating, rotating icebergs. Specifically, accelerom-



eters, gyros, and compasses provide information
about how the AUV moves with respect to an iner-
tial frame, not with respect to the ice. And while
Doppler Velocity Loggers (DVLs) can provide ice-
relative velocity measurements, they cannot account
for any rotation of the ice. Hence, extensions to the
navigation system are required to enable AUV nav-
igation around free-floating icebergs.

Using the localization technique presented in this
paper, an AUV revisiting a previously-mapped ice-
berg can know its position in the map, enabling safe
operation near the iceberg, and the capability to re-
turn to sites of interest. The localization technique
is terrain-relative, using correlation between incom-
ing sonar measurements and the a-priori iceberg ter-
rain map to provide an iceberg-relative vehicle posi-
tion estimate. The technique works by maintaining
estimates not only of iceberg-relative vehicle posi-
tion and orientation, but also of the translational
and rotational velocities of the iceberg itself. This
paper presents details of the algorithm along with
example localization results performed using a set
of ship-based multibeam sonar data taken from an
Antarctic iceberg (pictured in Figure 1). In this ex-
ample, the vehicle position with respect to the berg
is estimated to within 2 m, and the iceberg trans-
lational and rotational velocities are estimated to
within 20%.

2 Background

2.1 AUV Navigation Beneath Sea Ice

The inherent difficulty of accessing the under-ice
environment has driven an increase in the capabil-
ity of AUVs to operate at high latitudes and under
sea ice [2]. AUV navigation in this environment is
made challenging by the inability of AUVs to ob-
tain GPS navigation fixes while beneath ice, by the
reduced performance of navigation instruments at
high-latitudes [3], and by the hazardous presence of
both ice and seafloor obstacles. Nevertheless, many
successful AUV missions have been performed be-
neath sea ice. These missions have all utilized some
form of dead-reckoning navigation, with a variety of
drift-correction techniques.

In its Arctic configuration, MIT Sea Grant’s
Odyssey II vehicle used only angular rate and accel-
eration sensors to derive vehicle attitude and head-
ing. Drift in this estimate was corrected by mag-
netic field intensity measurements in all three vehi-
cle axes, however this was done post-mission and
was not an aid to navigation. Position estima-
tion for vehicle navigation was achieved through the

use of pre-deployed long baseline (LBL) or ultra-
short baseline (USBL) acoustic systems. In addi-
tion, Odyssey II used an acoustic homing beacon as
a directional reference when returning to a recov-
ery location. During successful deployment in the
Beaufort Sea (Arctic), an upward-looking sonar on
Odyssey II created a record of ice-draft above the
vehicle’s navigation track [4].

The Canadian AUV, Theseus, was designed to
lay several kilometers of fiber-optic cable beneath
Arctic ice. Theseus navigated to predetermined po-
sition waypoints using dead-reckoning, based on ac-
celeration measurements from an IMU and velocity
measurements from bottom-pinging Doppler sonar.
The dead-reckoned position estimate drifted at a
rate of 0.5% of distance traveled (%DT). To achieve
an order of magnitude improvement in navigation
(to 0.05%DT), the dead-reckoned estimate was up-
dated with position fixes from multiple acoustic bea-
cons, installed at pre-surveyed locations along the
desired vehicle path [5].

In October 2001, the Monterey Bay Aquarium
Research Institute operated the ALTEX AUV in the
Arctic to test the operation of various navigation in-
struments at high latitudes. Dead-reckoning using
bottom-pinging (or ice-pinging) Doppler sonar, the
ALTEX vehicle achieved position error better than
0.05%DT, without the use of external navigation
aids (such as an LBL array). Under-ice missions on
this deployment were approximately 5km long [3].

In February 2002, a Cambridge team deployed a
Martin 150 AUV in East Greenland pack ice to ob-
tain the first AUV-based sidescan sonar imagery of
arctic pack ice. The Martin Positioning (MARPOS)
system relied on dead-reckoning integration of in-
ertial accelerations, angular rates from a ring-laser
gyro, and velocities from bottom-pinging Doppler
sonar. This system achieved 0.1%DT horizontal er-
ror, as long as bottom-pinging was possible. The
vehicle used differential GPS at the surface to ob-
tain periodic position fixes [6]. In April 2007, an-
other Cambridge team used an ice-lanuched Gavia
vehicle to obtain three-dimensional digital terrain
maps of the underside of sea ice in the Beaufort
Sea. This vehicle maintained a position estimate by
dead-reckoning with ice-pinging Doppler sonar, and
was recovered via a tether [7].

The British Autosub Under Ice (AUI) program
has deployed the Autosub AUV under both Arctic
and Antarctic sea ice. AUI missions in Greenland [8]
and Antarctica [9] returned three-dimensional im-
ages of under-ice topography, taken with upward-
looking swath sonar from the AUV. Autosub uti-
lized reactive obstacle avoidance for these missions,



but was navigated using dead-reckoning techniques
in which velocity measurements were made using
bottom-pinging or ice-pinging Doppler sonar. Au-
tosub navigated to its recovery point by following a
ship-deployed acoustic homing beacon.

2.2 Terrain-Relative Navigation

TRN systems are used to eliminate accumulated
drift error in vehicle position estimates by correlat-
ing terrain contour measurements with a-priori ter-
rain maps. The Terrain Contour Matching (TER-
COM) algorithm was one of the first implemen-
tations of this principle, and was used to correct
drift in cruise missile navigation systems for many
years [10]. Sequences of single-beam altitude mea-
surements from along missile trajectories form the
inputs to the TERCOM algorithm.

More recently, TRN techniques have been used
(in place of GPS or acoustic transponder arrays)
to correct drift error in underwater vehicle systems.
Implementations have been fielded which provide
real-time corrections to vehicle navigation, while
others are used in post-processing [11–13]. In all
implementations, the achievable precision and accu-
racy of the navigation estimates are limited by the
resolution and quality of the a-priori map. Further-
more, the terrain in the operating area must have
sufficient texture to be used in identifying vehicle
position - TRN techniques provide no benefit over
large areas of completely flat terrain.

2.3 Bayesian Estimators

In many applications (including underwater TRN),
vehicle position estimates are often multimodal
probability distributions, which are not well approx-
imated by unimodal Gaussians or other parame-
terized distributions. A number of Bayesian tech-
niques have been developed for estimation problems
with nonlinear belief distributions. The goal of any
Bayesian estimator is to approximate the posterior
probability distribution, p(xk|z1:k, u1:k). In vehicle
localization, this is the probability that a given vehi-
cle state, xk, represents the truth at epoch, k, condi-
tioned upon all previous sensor measurements, z1:k,
and all previous vehicle controls, u1:k.

Particle filters and point mass filters are examples
of Bayesian estimators. [14] shows that each of these
is suitable for underwater TRN, and that the local-
ization accuracy of either method is approximately
equal to the horizontal resolution of the terrain map
used. [14] also concludes that the point mass fil-
ter is slightly more accurate and robust than the

particle filter, but that its computational expense
increases dramatically with additional state dimen-
sions. This work uses a particle filter due to the
additional states used to estimate terrain motion.

2.4 Particle Filters

Particle filters represent the posterior,
p(xk|z1:k, u1:k), with a set of random state
samples drawn from the posterior. Ideally, the
probability of a particular state, xk, being included
in the set of samples is proportional to its Bayes
posterior [15]. To achieve this, particle filters rely
on incorporation of vehicle sensor measurements
into a periodic resampling of the particle distri-
bution. After every measurement, each particle
is assigned a weight equal to the probability of
making that measurement, zk given that particle’s
state, xk. These weights are often expressed
as exponentials, allowing them to be updated
multiplicatively following each new measurement.
When appropriate, a resampling step then throws
out particles with low weights, and replaces them
with new particles in highly-weighted regions of the
state space. In this way, the particle filter uses a
finite number of particles efficiently - only in likely
regions of the state space.

3 Problem and Approach

For TRN, map-correlation of a single (2-
dimensional) multibeam sonar ping is generally
insufficient to uniquely identify the position of
the vehicle. Rather, several pings (giving a 3-
dimensional representation of the surface) are
required to localize a vehicle. The central problem
in using TRN around a free-floating iceberg is
that in order to use multiple pings, the ice-relative
displacement of the vehicle between pings must be
known, yet only the inertial displacement of the
vehicle is readily measured.

Typical iceberg motion (although varied geo-
graphically) involves 0.03–0.08 m/s translational
speeds, and 5–10 deg/hr rotation rates, while trans-
lational speeds up to 0.27 m/s and rotation rates up
to 40 deg/hr have been observed [16], [17]. Given
an AUV operating speed of 1.75 m/s, this typical
iceberg motion represents a drift rate of 1.7 to 4.6
percent of distance traveled (%DT). Compared with
the 1%DT error achieved by high-accuracy dead-
reckoning positoning systems, this motion is signif-
icant.

However, while iceberg velocities are significant,
they also change very slowly compared to the up-



date rate of a TRN estimator. Hence, they can be
estimated explicitly as slowly-changing parameters,
and accounted for during each motion update. This
way, after several motion updates, measurement up-
dates will allow the estimator to learn not only the
berg-relative vehicle position, but also the inertial
velocities of the berg.

Specifically, the estimator presented here esti-
mates the following nine degrees of freedom: all
three iceberg-relative vehicle position states, all
three iceberg-relative vehicle orientation states, an
Easterly iceberg velocity, a Northerly iceberg veloc-
ity, and an iceberg heading rate. It requires inertial
measurements of vehicle position and orientation
(for motion updates), as well as multibeam sonar
measurements of range to the iceberg surface (for
map-correlation in measurement updates).

AUVs are commonly equipped with Doppler ve-
locity loggers (DVLs) which can provide ice-relative
vehicle velocity information. Lacking an iceberg-
relative heading reference, this sensor does not com-
pletely solve the iceberg-relative navigation prob-
lem, but does provide a measurement which will
be useful in future versions of the localization al-
gorithm. Because no DVL instrument was available
during collection of the data presented here, the al-
gorithm detailed below does not utilize Doppler ve-
locity measurements.

4 Algorithm

While various Bayesian estimator TRN formula-
tions could appropriately be extended to estimate
iceberg velocities, this work utilizes the particle fil-
ter formulation due to the ease and efficiency with
which particle filters handle the estimation of larger
numbers of state variables. Each particle repre-
sents a hypothesized system state, and is defined
completely by its weight and the values of its nine
states - position and orientation with respect to the
iceberg and iceberg northerly, easterly, and head-
ing rates. Together, all the particle weights form a
sample-based approximation to the posterior prob-
ability density distribution, p(xk|z1:k, u1:k), where
each z is a multibeam sonar measurement, and each
u is a measured vehicle displacement.

The particle filter algorithm consists of three
steps, and is run every time a new multibeam sonar
measurement is recorded (each epoch, k). First, the
particles undergo an iceberg-relative motion update.
Second, the particle weights undergo a measurement
update based on map-correlation of the new multi-
beam measurement. Third, the particle distribution

may be resampled in order to allocate particles to
the most meaningful regions of the state space.

The motion update step of the particle filter al-
gorithm adds the ice-relative vehicle displacement
(since the last update) to each particle. This relative
displacement is calculated as the difference between
the measured inertial vehicle displacement and the
estimated inertial iceberg displacement. The dis-
placement added to each particle also includes an
additive Gaussian random noise term, sized to rep-
resent the uncertainty in the measured inertial ve-
hicle displacement. The contribution to the motion
update due to inertial iceberg displacement is dif-
ferent for each particle since each particle maintains
its own iceberg velocity estimates. For each motion
update, these velocities are treated as constant over
the period of the update. However, small Gaussian
random noise is added to each particle’s iceberg ve-
locity estimates between motion updates such that
slow changes in the iceberg motion can be learned.

Equation (1) details the motion update step for
the mth particle between epochs k − 1 and k. Each
particle’s state vector represents a hypothesis over
iceberg-relative vehicle position (x, y, and z) and
orientation (φ, θ, and ψ), as well as the Northerly,
Easterly, and heading rates of the iceberg through
inertial space (Ẋice, Ẏice, and Ψ̇ice). The measured
displacements in the six vehicle pose states (∆x
through ∆ψ) come from an inertial measurement
unit. ν is a zero-mean, unit-variance normally dis-
tributed random noise vector, sized by Σ6x6

IMU (usu-
ally diagonal) to account for uncertainty in the iner-
tial displacement measurements, and by Σ3x3

ice (usu-
ally diagonal) to allow for slow changes in iceberg
motion parameters. R[m]

k is the 2x2 rotation matrix
which transforms vectors from the inertial frame to
the iceberg frame. This rotation is based on the the
iceberg’s heading, which is not explicitly estimated
as a state, but rather computed for the mth particle
as the difference between the vehicle (inertial) com-
pass heading and ψ[m]

k , the particle’s estimate of the
iceberg-relative vehicle heading.

The measurement update step computes and nor-
malizes the weights of the particles. For each parti-
cle, the weight is proportional to the probability of
making all multibeam measurments since the last
resampling operation, given the trajectory of that
particle. This update is recursively computed af-
ter each measurement by multiplicatively updating
each particle weight based on the likelihood of mak-
ing only the current measurement given the parti-
cle’s current position. For the mth particle, each
update term takes the form given in Equation (2),
where zk is a the current measurement vector, and
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z[m]
k is the projection of the measurement into the

map frame under the particle’s state, x[m]
k , and

a[m]
k is the vector of points on the iceberg surface

which are closest to their corresponding measure-
ment points in z[m]

k . Thus, the vector z[m]
k − a[m]

k

is the measurement error vector, representing the
distance from the mapped iceberg face of each pro-
jected sounding in the current measurement.

In this common Gaussian model for measurement
error, the particle weight is assigned according to
the assumption that the probability of a set of mea-
surement errors is a zero-mean Gaussian, with co-
variance given by Σ. Here, |Σ| becomes σ2n (where
n is the number of beams being used in the measure-
ment) under the assumptions that the beam mea-
surement errors are uncorrelated and that the mea-
surement variance, σ2, is the same for each beam.

Resampling is only performed when two condi-
tions have been met. First, a sufficiently high num-
ber of soundings must have been used to calculate
the particle weights. Second, the variance of the
particle weights must be sufficiently high. These
two requirements prevent particle deprivation - a
loss of diversity in the particle distribution. When
sampling is performed, it is done according to the
low-variance sampling algorithm presented in [15],
which avoids particle deprivation and is inexpen-
sive to perform. A small, normally distributed noise
term is added to each state of a resampled particle
in order to explore the nearby state space.

5 Experimental Results

5.1 The Data Set

In June 2008, multibeam sonar data were taken
from an iceberg in the Scotia Sea. During data
collection, the berg translated at approximately

0.09 m/s (0.18 kts), and rotated at approximately
20 deg/hr. The sonar data were recorded by a
sideways-looking 400KHz Reson multibeam sonar
head mounted on a pole 10 m beneath the RVIB
Nathaniel B Palmer (see Figure 2).

Figure 2: Sideways-looking multibeam sonar be-
neath the R.V. Nathaniel B Palmer

The ship’s track in inertial space was measured
by GPS. Sonar imagery of the shallowest 250 m (ap-
proximately) of the iceberg’s submerged perimeter
was collected as the ship made a steady 400 ◦ cir-
cumnavigation of the berg in just under 40 minutes.
A photograph of the iceberg appears in Figure 1.

5.2 Data Processing

Each multibeam sonar ping is tagged with the ori-
entation and GPS position of the ship at the time
of the ping. Raw sonar data were edited using the
open-source, NSF-supported MB-System software



package. Bad beams (e.g. max range, zero range,
or excessive noise) were flagged using MB-System.
The differential location between the ship’s position
sensors and the multibeam sensor was added to the
vehicle-frame sonar range vectors.

5.3 The A-Priori Map

The multibeam sonar soundings were assembled into
a self-consistent map, representing the shape of the
iceberg (as described in [1]). This map appears in
Figure 3. Since the publication of [1], the map
has been updated to include further cleaning of
the sonar data and a refined approximation of er-
ror smoothing (corresponding with an assumed con-
stant iceberg motion) used for the mapping. Note
that there are sections of the iceberg where sufficient
map data could not be collected, and the map sur-
face is left undefined. As the vehicle passes by these
regions of the berg, measurement updates (map cor-
relations) for localization are not possible.

In order to speed the terrain correlation compu-
tation, and allow for surface plotting of the iceberg
map, the map data have been reduced by the follow-
ing method. All soundings were transformed into
a cylindrical coordinate system (azimuth, depth,
range) centered over the iceberg. The range data
were then gridded over azimuth and depth. In each
cell with five or more soundings, the average range
value forms a surface point estimate along with the
azimuth and depth values for that cell. Grid cells
with fewer than five soundings are not assigned a
surface point. The Delaunay triangulation over all
surface points defines the triangular surface patches
used for plotting. Superior (more probabilistically
appropriate) methods for surface recovery and deci-
mation representation exist in the computer graph-
ics literature, and must be implemented in map-
ping icebergs whose surfaces cannot be well approx-
imated by cylinders.

In this experiment, the same multibeam sonar
data are being used to localize the vehicle within
the map as were used to create the map in the first
place. This means that the assumed iceberg mo-
tion used to create the map can be considered truth,
since the map projection depends entirely on that
motion. Thus, if the estimator were to perform per-
fectly, it would yield an iceberg motion estimate ex-
actly matching the assumed motion. Ideally, there
would also exist a second sonar data set, along with
GPS ground-truth for the iceberg motion so that
the envisioned operational case of localization dur-
ing a re-visit to a previously-mapped iceberg could
be tested. Unfortunately, such a data set was not

collected.

Figure 3: Iceberg Map and Segment of Vehicle Tra-
jectory

5.4 Localization Results

In this experiment, the estimator is initialized to a
broad distribution, and converges to a useful esti-
mate of system state after a series of motion and
measurement updates. Approximately four seconds
pass between measurement updates. Figures 4 and
5 show the vehicle pose and iceberg velocity esti-
mation errors, respectively. Each of the smaller,
magenta dots represents a hypothesized state value
corresponding to a single particle. The larger, blue
dots represent the weighted mean of the distribu-
tion. (Since depth, roll, and pitch are readily mea-
sured, estimation errors for these parameters are not
shown).

Figure 4: Iceberg-relative vehicle pose estimation
errors



Figure 5: Iceberg velocity estimation errors

Following convergence, the error in the weighted
mean of the distribution is less than 2 m for the
iceberg-relative position states, less than 1 degree
for the iceberg-relative vehicle heading, less than
10% for the iceberg translational velocity estimates,
and less than 20% for the iceberg heading rate es-
timate. Note that very few map correlations (mea-
surement updates) are possible due to holes in the
map between updates 125-170. Thus, the distri-
bution isn’t resampled during this period, and it
spreads out. However, when measurement updates
become available again, the distribution can be re-
sampled, and converges once again. The ability of
the motion updates to keep the position estimates
reasonable in the absence of measurement updates
depends on how well the iceberg motion state esti-
mates have converged before the measurement up-
dates become impossible.

5.5 Initialization

The more closely an estimator can be initialized to
the true distribution, the less time it will take to
converge. However, the initial distribution must be
set realistically based on the capability of AUV op-
erators to estimate the system state at the time of
an AUV’s deployment. While this capability varies
based on experience and available instrumentation,
the independent Gaussian parameter distributions
used for initialization in the present example are
listed in Table 1. These distributions can also be
seen visually in Figures 4 and 5 as the magenta
points in the first column.

Table 1: Initial Distribution
Parameter Units Mean Var

Relative Vehicle Pos. 1 m 27.84 20

Relative Vehicle Pos. 2 m 292.30 20

Vehicle Depth m 0.13 0.1

Vehicle Roll deg 1.14 0.1

Vehicle Pitch deg 5.34 0.1

Relative Vehicle Heading deg 179.47 10

Iceberg North Velocity m/s -0.05 0.02

Iceberg East Velocity m/s 0.08 0.04

Iceberg Heading Rate deg/hr 20.63 6.55

5.6 Tradeoffs

As with any estimator implementation there are
tradeoffs to be considered in implementing this par-
ticle filter. Map correlation of each sounding for
each particle is the most expensive step in the al-
gorithm. Three parameters which strongly influ-
ence the computation time are the number of par-
ticles (300 were used here), the measurement up-
date period (4 seconds was used here, approximately
10 times slower than the maximum update rate of
the sonar), and the number of beams from each
multibeam ping which are actually used for corre-
lation (492 were used here). The estimation per-
formance tradeoff between precision and robustness
is affected by the minimum number of soundings
(individual beam measurements) required before re-
sampling (5000 was used here), and the size of the
exploratory noise added to particle states during re-
sampling. Choices in these trades depend strongly
on the uncertainty characteristics of the available
sensors.

6 Conclusion

Typical iceberg motion is significant enough that
existing AUV navigation methods are insufficient
for navigation with respect to free-floating icebergs.
A terrain-relative navigation (TRN) estimator has
been presented which performs measurement up-
dates using correlation between incoming multi-
beam sonar ranges and an a-priori iceberg surface
map. A key feature of this technique is the explicit
estimation and incorporation into the motion up-
date of iceberg translational and heading velocities.
Once the estimator has converged to a correct esti-
mate of terrain motion, it is robust to areas of tex-
tureless terrain and to periods of time when multi-
beam measurements may be unavailable. Successful
implementation of the estimator was demonstrated



using ship-based sonar data taken from an iceberg
in the Scotia Sea.

During initialization (and assuming sufficiently
textured terrain), the estimates of position states
converge quickly because the measurement update
depends directly on position. However, several mo-
tion updates must occur before errors in iceberg mo-
tion state estimates are manifested as position errors
and therefore penalized during during the measure-
ment update. Estimates of the iceberg velocities
therefore require more time to converge. A further
extension to the estimator would allow separate re-
sampling of the vehicle position and iceberg motion
states based on whether the position estimate had
converged.

In this experiment, a very rough grid-based tech-
nique was used to reduce the map data to a surface
representation. A better surface representation of
the map would improve the performance of the al-
gorithm, and will be required in order for the algo-
rithm to be used with icebergs whose shapes are not
well approximated by cylinders. Automation of the
sonar data cleaning process will also be required for
a truly autonomous, deployable version of the algo-
rithm.
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[14] Kjetil Bergh Ånonsen and Oddvar Hallingstad,
“Terrain aided underwater navigation using
point mass and particle filters”, in Position,
Location, And Navigation Symposium, 2006.
IEEE/ION, April 2006, pp. 1027– 1035.

[15] S. Thrun, W. Burgard, and D. Fox, Proba-
bilistic Robotics (Intelligent Robotics and Au-
tonomous Agents), MIT press, Cambridge,
Massachusetts, USA, 2005.

[16] R. Gladstone and G.R. Bigg, “Satellite track-
ing of icebergs in the weddell sea”, Antarctic
Science, vol. 14, no. 03, pp. 278–287, 2002.

[17] P. Wadhams and M. Kristensen, “The response
of antarctic icebergs to ocean waves”, Journal
of geophysical research, vol. 88, no. C10, pp.
6053–6065, 1983.


