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Two alternative methods for the reduction of observed line positions to spectroscopic 
constants are compared. In the direct approach, the line positions are fit directly to ex- 
pressions for the energy level differences in which the upper and lower state molecular 
constants enter as unknowns. In the traditional term value approach, a two-step procedure 
is followed where first a set of intermediate unknowns, the upper and lower state term 
values are calculated from the observed line positions and secondly these term values for 
each vibrational state, are fit separately to energy expressions in which the molecular con- 
stants of that state enter as unknowns. It is shown that there is correlation between the 
term values of all vibrational states included in the reduction. Thus, the separate fitting 
of term values to energy level expressions for each vibrational state does not retain this 
correlation and the molecular constants found in this manner cannot be the minimum- 
variance, linear, unbiased (MVLU) estimates and the accompanying standard deviations 
cannot be unbiased estimates. However, if the molecular constants of all the vibrational 
levels are determined simultaneously from all the term values in a correlated least-squares 
fit, then the molecular constants will be equal to those determined from the direct approach, 
i.e., the MVLU set. Furthermore, missing lines and the frequent occurrence of two inde- 
pendent sets of lines within a band both cause the molecular constants obtained from the 
traditional term value approach to differ even more from the MVLU set. Finally, the limi- 
tations of reducing groups of bands simultaneously are discussed. Certain singlet systems 
are given as examples of the above conclusions. 

I. INTRODUCTION 

There are basically two classes of problems in reducing spectroscopic line position 
measurements to molecular constants: (a) constructing the proper elements of the 
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Harniltonians for the electronic states involved and (b) fitting the measured line posi- 
tions either directly or indirectly to the eigenvalues of these Hamiltonians using a 
sound statistical procedure. Our preceding paper (1) deals primarily with the first of 

these problems; the present paper considers the second. 
The time-honored method of determining the rotational constants B, and D, is the 

use of combination differences, which permits the separation of the upper and lower 

vibrational states of the transition. The combination difference 

AsF.)‘(J”) = R(J” - 1) - P(J” + 1) (1) 

is associated with the energy difference between the rotational levels J” - 1 and J” $ 1 
of the lower state, since the lines R(J” - 1) and P(J” + 1) both arise from the rota- 

tional level J’ = J” of the upper state. Furthermore, this combination difference is 

related, for the example of a singlet state, to the lower state rotational constants b> 

A$,“(J”) = ,Bv”(J” + 4) - D,“[(6 - 8,“,)(J” + 4) + S(J” + t)“] (2) 

The evaluation of B,” and D,” using Eq. (2) and all such A2Fu”(J”) values from the 
lines of a band has usually been done graphically. The upper state rotational constants 
follow from a similar set of combination differences that are associated with energy dif- 
ferences between upper state rotational levels. The band origins Y,(zJ’, 21”) have been 

determined either from the observed lines and the computed rotational constants, or, 
more commonly, from the lines alone using graphical techniques. Finally, where ap- 

plicable, the spin-orbit, lambda-doubling, spin-spin, and spin-rotation constants have 
been determined separately either by appropriate differences between the observed 

lines or the above constants. Herzberg (2) describes all of these techniques extensively. 

While combination differences are extremely useful to establish or check the assign- 
ment of rotational quantum numbers of observed lines, to search for common vibra- 
tional or electronic states among a set of band measurements, and to detect isolated 
faulty measurements, their use in graphically computing rotational constants suffers 
from several deficiencies. Combination differences can be graphically applied only to 
those rotational energy levels that can be represented by relatively simple algebraic 
expressions similar to Eq. (2). Thus, in many cases, only the lines from a fraction of the 
observed branches can be used in determining the rotational constants. Furthermore, for 
each line that must be omitted from the analysis due to blends, overlaps, rejection 
criteria, etc., two combination differences are usually lost. Graphical reduction of data 
is inherently subjective, and, even though a spectroscopist with sound intuition and an 

intimate knowledge of the data may use it to an advantage, it also often leads to unduly 
optimistic estimates of the experimental uncertainties of the resulting molecular con- 
stants. The deficiencies of using graphical analysis with combination differences to reduce 
the data for the 0, X3Zg- state are examined in a following paper (3). 

Replacing the graphical analysis by the method of least squares should provide more 
realistic estimates of the uncertainties in the molecular constants, but it does not 
eliminate the deficiencies inherent in the method of combination differences itself. In 
addition to those given above, there are further, perhaps more subtle, reasons why the 
use of combination differences is less than optimum statistically. Identify-ing the com- 
bination difference AzF,“(J”) in Eq. (1) as an energy that is characteristic of the lower 
state alone makes the implicit assumption that all of the measurement errors are as- 
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sociated with the lower state alone. This is, of course, not correct; the measurement errors 

are shared between the upper and lower states. Furthermore, determining the rotational 

constants B, and D, separately from the band origin and the spin-orbit, A-doubling, 
and other molecular constants is not a statistically sound procedure. 

This paper considers the two commonly used alternatives to the use of combination 
differences to reduce line position measurements. Section II examines the details of 
fitting the observed line positions directly to expressions for the energy levels that con- 

tain the upper and lower state molecular constants as unknown parameters. Section III 
considers the two-step procedure that introduces a set of intermediate unknowns, the 

term values for the upper and lower state rotational levels. The closing section con- 
trasts the term value approach to the direct approach and examines the relative strengths 
and weaknesses with the aid of examples of singlet systems. 

II. DIRECT APPROACH 

For the purpose of examining the details of the direct approach to obtaining molecular 

constants from observed line positions, we will consider one band of a singlet system in 
which A-doubling and the centrifugal distortion constants H, and higher-order may be 

ignored. This simple example is sufficient to compare the direct and term value ap- 
proaches and yet it does not require a complex notation. Furthermore, the results de- 
veloped here can be easily extended to more complicated systems. 

A set of equally weighted,2 uncorrelated line position measurements vi, i = 1,2, - * a, n, 
for a singlet band may be represented by the n equations 

pi = ~0 + B,,‘[Ji(Ji + 1) - A”] - Dr’[Ji’(Ji + 1) - ~“1~ 

- B,“[Ji”(Ji” + 1) - A”*] + Dv”[Ji”(Ji” + 1) - A”*]’ + 6i, 

i= 1,2 > “‘,I&, (3) 

where vO, B,‘, D,‘, B,“, and D,” are the five unknown molecular constants; Ji’, A’, Ji’!, 
and A” are the assumed-known quantum numbers; and & are the unknown, uncor- 

related measurement errors assumed to have zero mean and common unknown variance 
u2. In matrix notation, Eq. (3) can be written quite succinctly as 

v = up+s, (4) 

where v, 0, and 6 are the column vectors 

(5) 

and U is a n X 5 matrix with elements given by 1, 

[Ji’(Ji’ + 1) - A’*], [J;‘(J;’ + 1) - A’@], 

and the square of these latter two, all of which are known. 

*The specification of equal weights is only for simplicity. There is no difficulty in generalizing to the 
situation of unequal weights (4), indeed, this is always desirable when practical. 
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Since n is usually much greater than five, the system is strongly overdetermined 
,.. 

and the method of least squares may be applied to obtain @, the minimum-variance, 
linear, unbiased (MVLU) estimate of @ (4) : 

8 = (VU)-lU%, (6) 

where Ut is the transpose of U and ( UtU)-l is the inverse of the matrix product U'U. 
The associated unbiased estimate of the variance a2 is 

82 = $(v - U@)“(v - u$. (7) 

The 5 X 5 symmetric matrix given by 

9 = 62 (utu)-l (8) 

is the estimated variance-covariance matrix of @. Specifically, the diagonal elements 
pii are the estimated variances (i.e., the squares of the standard deviations) of the 
estimated values of the unknowns vO, B,‘, D,‘, B,“, and D,” and the off-diagonal 
elements ~~~ (; # j) are their estimated covariances. The usefulness of the covariance 

between two quantities is best examined by normalizing 9 to form the correlation 
matrix C, the elements of which are given by 

cij = l&/ ( Piiii Pjj) +, (9) 

and lie in the range -1 < Cij < 1. The Cij are functions only of the known matrix U, 
since the factor 62 involving the measurements cancels in Eq. (9). Note that the cor- 
relation does not depend on the accuracy of the measurements, but rather on the extent 

of the measurements and the form of the equations (i.e., models) linking the measure- 
ments to the unknowns. If the correlation coefficient Cii between the estimates of two 
molecular constants is very near + 1 or - 1, it is relatively difficult to determine accurate 
values of the two constants simultaneously. On the other hand, if Cii is near zero, the 
two constants are relatively independent of each other. 

For a first example, this direct approach is applied to the high resolution data taken 
by Edvinsson, Selin, and aslund (5) for the (0,O) band of the G’A-H19 system of 
Th03. The MVLU estimates given by Eq. (6) for the molecular constants are the first 
column of numbers in Table I. Also, in parentheses, are the estimates of the associated 

standard deviations vii*, given by Eqs. (7) and (8). The high quality of these data is 
demonstrated by the relatively low value of the estimate of u, 8 = 0.014 cm-l. Table II 
lists the correlation coefficients Cij given by Eq. (9) for the five molecular constants. 
Note that B( and Bd’, as well as Di and Do”, are highly correlated. This merely ex- 
presses quantitatively a well-known spectroscopic fact; namely, AH = B{ - Bi’ and 
AD = Do’ - Do” can be determined more accurately than Bo’ and B,,” or Do’ and Da”. 

3 Edvinsson, Selin, and iislund (5) interpreted one set of singlet bands as a ‘&‘A system by analogy 
with the band spectra of TiO and 230. However, Edvinsson, Bomstedt, and Nylen (6) discovered that 
the ‘A state is actually the upper state of this singlet system. Therefore the transition formerly called 
HW-G'A has now been given the new assignment GrA -He. Edvinsson, Bomstedt, and NylCn extended 
the (0,O) band, but, for the purposes of this example, we have used only the data of Edvinsson, Selvin, 
and iislund. 
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TABLF II 

Correlation Coefficients for the Molecular Constants of the (0,O) 

Band of the ThO G 'A - H '@ System 

\ Vo(O,O) BO' D,,' BO' DO0 

~,(%a 

Bo’ 1 

DO’ 0.896 1 

BOB 0.999 0.898 1 

DOC 0.028 0.891 0.999 0.895 1 

Table II also shows that the pairs (B’, 0’)) (B”, D”), (B’, D”), and (B”, 0’) are also 
strongly correlated but to a lesser extent. Finally, the band origin is relatively uncorre- 

lated with the other constants. 

For electronic states more complex than the simple states considered here, Eq. (3) 
is generally nonlinear. The use of nonlinear least-squares in the direct approach to re- 
ducing spectroscopic data is examined in a preceding paper (1). 

With the increasing availability of large computers, more and more spectroscopists 

are using the approach outlined above, rather than the graphical application of com- 
bination differences, to obtain the molecular constants directly from the measured line 
positions for each band. Furthermore, with the interactive technology that is also be- 

coming available in many computer centers, spectroscopists could effectively use the 
intuition gained by their detailed familiarity with their measurements directly in the 

reduction of the data. 

While the illustration above has been for a single band, it is straightforward, at least 

conceptually, to extend this approach to include simultaneously all of the bands of a 
system, provided all of the measurement errors belong to the same distribution. Since 
the bands of an observed system will often have several vibrational states in common, 
the resulting single values for the molecular constants associated with these states will 
be the optimum values for these common states. Continuing in this vein, one could ex- 
tend this approach to include all of the observed band systems of a molecule; i.e., a 
simultaneous reduction of all of the bands of all of the band systems. Again, the single 
values obtained for the electronic states that are common to more than one band system 

will be the optimum values. The column vector v would then contain all of the lines 

measured for the molecule, and @ would contain the unknown molecular constants for 

each of the appropriate vibrational levels of all of the electronic states. Since the matrix 

U relates v to & it may now be on the order of 10 000 X 1000. Arrays of this size with 

elements that may differ in magnitude by lOa cannot be handled very effectively by most 

computers. Consequently, this is one of the major reasons why the direct approach has 

commonly been used in a band-by-band reduction of spectroscopic data, rather than in 

a simultaneous reduction of all bands. 
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III. TRADITIONAL TERM VALUE APPROACH 

An alternative approach to reducing spectroscopic data has been developed by 

Aslund (7) and coworkers, who have applied it to the problem introduced above, 
namely a simultaneous determination of all possible molecular constants for a molecule 

from all observed lines for the molecule. The approach is to introduce intermediate 
unknowns, the term values Y,(J) of the rotational levels. The problem then divides into 
two parts: (1) the determination of the term values from the measured line positions, 

and (2) the determination of the molecular constants from the term values. 

To illustrate this traditional term value approach the example of one singlet band 
without A-doubling is continued. The first step of the term value approach is to express 
the set of equally weighted,2 uncorrelated line position measurements pi as differences 
between upper and lower state term values : 

vi = Yi’ - Y,” + 6i, 

In matrix notation, these n equations become 

i = 1, 2, . . *, IL 00) 

where the column vector Y, 

v=wY+s, (11) 

Yt = [Y{, Y2’, * * .) Y,‘, Y,r’, Y,“, . * *, Y4/‘]) (12) 

contains the unknown Yi’, i = 1, 2, . - +, p, and Y;“, i = 1, 2, . - ., p term values; the 

column vector S contains the uncorrelated measurement errors & with zero mean and 
common variance u?; and the n X (p + a) matrix W (where n > p + 4) contains the 
known coefficients. 

On casual examination, this first step appears to be a backward step. For 
the (0,O) ThO G’A-H’@ band, 219 unknown term values must now be determined, 
rather than five unknown molecular constants. Furthermore, Eq. (11) is barely over- 

determined, 298 equations for 219 unknowns, compared to 298 equations for 5 unknowns 
for Eq. (4). However, these disadvantages are counteracted by the fact that most of 
the elements of the 298 X 219 W matrix are zero and the few nonzero elements are $1 

or -1. This means that the matrix multiplications in the expression for the MVLU 

estimates for the term values 

t = (WW)-iwrv (13) 

are simple. Hence, the only technical difficulty associated with Eq. (13) is the large 
order of the matrices, particularly in taking the inverse of W”W. This problem, how- 
ever, can be handled rather straightforwardly using the techniques developed by 
Tewarson (8) for such “sparse” matrices. Aslund (7) has used a technique to obtain 

the MVLU estimates of the term values that avoids the need for large storage, namely, 
the normal equations that lead to Eq. (13) are never explicitly formed; instead, the 
term values are obtained by a partitioning technique (7). 

In the second step of the traditional term value approach, Aslund and coworkers 
assume that all of the term values are uncorrelated and have equal variance; hence, the 
upper and lower state molecular constants are determined separately from the pi’ 
and pii,’ values, respectively. In the upper state, for example, the term values are related 
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to the molecular constants by the matrix equation 

P = Z’@ + E’, (14) 

where the column vector f’ contains the upper state term values pi’ from the first step; 

@’ contains the unknown rotational constants Bo’ and DO’ and the unknown energy 
reference F,’ ; and E’ contains the errors. The elements of the p X 3 matrix Z' (with 

p > 3) are 1, [Ji’(Ji’ + 1) - LI’~] and [Ji’(Ji’ + 1) - ~‘~12, all of which are known. 
The estimates of the molecular constants are given by 

6’ = (Z0ZI)-lZII@, (15) 

and the estimated variances of these values are given by the diagonal elements of the 
3 X 3 matrix 

ii21 = &2’2(Z’tr)--1, (16) 

where 

i2’2 =Z [l/Q - S)](pI - Z$)@ - ZQ’). (17) 

The molecular constants for the lower state are determined similarly, but separately. 
The band origin is the difference F,’ - F,“. When applied to the data for the 

(0,O) H19-G1A ThO band considered above, this traditional term value approach 
yields the results in the second column of numbers in Table I. For electronic states other 
than the singlet states considered here, the individual least-squares fits made in this 
second step become more complicated and perhaps nonlinear. In the first step, however, 
the single least-squares fit will always be linear. 

The extension of the traditional term value approach to include all of the observed 
bands of a band system and then all of the observed band systems of a molecule in a 

simultaneous reduction is straightforward. The matrix W in the first step (Eq. 11) be- 
comes very large indeed, but most of its elements are still zero and the nonzero elements 

are regularly distributed values of -1 or +l. For the second step, this extension to all 
of the observed bands only increases the number of least-squares fits, rather than their 
complexity, since the term values of each vibrational level are fitted separately. Thus, 
Aslund (7) maintains that introducing the intermediate unknown term values and 
performing the reduction in two steps has circumvented the problem of handling a great 
bulk of numbers of widely different magnitudes encountered in the direct approach; 
namely, the first step is a fit that involves a large quantity of rather simple numbers, 
and the second step is a collection of individual and separate fits, each of which is 

relatively simple. It is further maintained that the traditional term value approach offers 

a gain in accuracy, often a decimal digit or more, over the combination difference 

method. _&slund and coworkers have reduced the data of several molecules using this 

method.3 For example, Edvinsson et al. (5) simultaneously reduced the data of all seven 

band systems of ThO, comprising a total of twenty bands, with a computer of only 

modest size. 

8 Essentially all of the applications of the traditional term value approach have been published in the 
journal Ark& fiir Fysik and its successor Physica Scripta. 
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Variance-Covariance Matris 
IV. CRITIQUE 

Close comparison of the first two columns of numbers in Table I reveals that the 
values obtained for the molecular constants of the ThO (0,O) GIA-B1@ band by the 
direct approach and the traditional term value approach are, in this case, similar. 

Indeed, the standard deviations of the residuals between calculated and observed line 
positions using the two sets of molecular constants are essentially the same. In contrast, 

however, the standard deviations of the estimated molecular constants are very different. 

The traditional term value approach gives standard deviations that are, for the rota- 
tional constants, about a factor of six smaller than the comparable values given by the 

direct approach, and approximately the opposite is true for the uncertainties of the 

band origins. In terms of the standard deviations given by the direct approach, the 
differences between the values of the rotational constants is about one standard devia- 

tion. On the other hand, in terms of the standard deviations given by the traditional 
term value approach, these differences are about five standard deviations. 

The cause of this inconsistency lies with the traditional term value approach. The 
two steps of this approach, as described above and as used in the literature (5,7), do not, 
in general, yield statistically optimum estimates for the molecular constants, and, 

particularly in the example above, for the standard deviations of these estimates. The 
difficulty arises because the second step, which determines the molecular constants 

from the upper and lower state term values separately, is based on the assumption that 

all of the calculated term values are uncorrelated and have equal variance, when actually 
they are correlated and have unequal variance, in general. Although this underlying 

assumption has been acknowledged (5,7) its consequences have never been pointed out. 

Improved Term Value Approach 

Since there is correlation between the term values of the upper and lower states, 
these two sets of term values cannot be fitted separately without losing the effect of 
this correlation on the estimates of molecular constants and their standard deviations. 

Instead, to be correct, the upper and lower state molecular constants must be determined 
from a correlated least-squares fit to both the pi and p:’ simultaneously. In such a fit, 

the calculated term values are related to the molecular constants by 

f = 29 + E, 

where 9 is now the column vector that includes both pi;’ and pi”: 

pt = [P,‘, &, . . .) &J, p, pp, . . .) Q]; 

@ is the column vector containing vg, B,‘, D,‘, B,“, and D,"; and Z is the known coef- 
ficient matrix, A correlated least-squares fit yields as the MVLU estimate of the un- 

knowns (4) 
Q = (Zl QlZ)-IZt $1-19, 

(20) 

where 
* 
v1 = 6?(W1W)--I, (21) 
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with 

(22) 

is the estimated variance-covariance matrix of $! from the first step. The estimated 
variances of 6 are given by the diagonal elements of 

where 

A 
vz = 822(ZtWtWZ)-i, (23) 

8$ = [(i’ - Z&(WiW(f - Z$]/(p + q - 5). (24) 

When this improved term value approach is applied to the (0,O) band of the 
ThO GlA-H ‘9 system, the results listed in the third column of numbers in Table I are 

obtained. Note that these values for the molecular constants are identical with those 
obtained from the direct approach. The standard deviations are slightly different. The 
reason for this difference is that # in Eq. (7) is an estimate of the variance u2 of the 

original measurements vi based on n - 5 degrees of freedom, whereas b? and &z2 are 

estimates of bz based on n - ($J + 4) and p + q - 5 degrees of freedom, respectively. 
Here n - 5 = 293, n - (p + q) = 79, and p + q - 5 = 214. The estimates are made 
differently and need not be identical. 

On the other hand, it is easy to show that 6 given by the improved term value ap- 
proach must be identical to that given by the direct approach. The known coefficient 
matrix U from the direct approach can always be related to the known coefficient 
matrices W and Z from the first and second step, respectively, of the improved term 

value approach by 
u = wz. (23) 

When Eq. (13) for the term values from step one is substituted into Eq. (20) for 6 in 
the correlated-case second step, one obtains 

@ = (z~w~wz)-lz~(w~w) (W”W)-‘W%. 

Substituting Eq. (25) into Eq. (26) yields 

(26) 

lj = (VU)-iuc, 

which is identical with Eq. (6) of the direct approach. 
In matrix notation, the basic assumptions of the traditional term value approach, in 

which ?’ and ?‘I are fitted separately to yield @ and e”, can be expressed very $mply ; 

namely, the diagonal elements of the estimated variance-covariance matrix V1 from 
the first step [Eq. (21)] are assumed to be equal and the off-diagonal elements are 

assumed to be zero, i.e., 9, = ~1, where c is a constant and I is the identity matrix. 

For illustration, if the variance-covariance matrix 9, in Eqs. (20), (23), and (24) is re- 
placed by 61, the results obtained for the (0,O) ThO GlA-H ‘9 band are only very 
slightly different from those obtained from the traditional term value fit in Table I. 
The slight difference undoubtedly arises because F,’ and F/ must be separately fitted 
unknowns in one case and are combined into y0 in the other. The neglect of the covari- 
antes appears to be more serious than the neglect of the unequal variances. If instead 
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of replacing VI by 61, it is replaced by another diagonal matrix D, where the elements 

Dii are the variances qlii, the values obtained for the molecular constants and the 

associated standard deviations change only slightly from those obtained under the 

assumption ?, = ~1. Thus, in this example, the correlation between the upper and 
lower state term values contributes much more to the uncertainty of the molecular 
constants than does the inequality of the standard deviations of the term values. 

It is clear from the foregoing (an additional example is also given below) that if the 

term value approach is to yield MVLU estimates for molecular constants and unbiased 

estimates of the associated standard deviations, then the variance-covariance matrix $1 

must be carried from the first step into the second step; i.e., the improved rather than ,. 
the traditional term value approach must be used. It must be noted that VI is by no 
means a “sparse” matrix. Its number of elements is the square of the number of term 

values. Thus, in the simultaneous reduction of many bands, the term value approach, 
if it is to be done correctly, is encumbered with very nearly the same problem of large 
matrices that made the direct approach unwieldy in such cases. 

This (0,O) ThO GH band also may be used to show the limitations of using com- 

bination differences to obtain estimates for the molecular constants. The fourth column 
of numbers in Table I lists the estimates of the rotational constants and the associated 
uncertainties obtained from the AzF(J) combination differences [Eq. (2)]. Note that 

these values differ substantially from the MVLU estimates. In fact, in this example, the 

traditional term value approach gives estimates that are in better agreement with the 

MVLU estimates than are the values from the combination difference approach. On the 

other hand, the standard deviations of the combination difference approach are more 

realistic than those of the traditional term value approach. Since combination differences 

are not used to estimate the band origin, no value for this constant has been listed in the 

fourth column. 

FIG. 1. Observed transitions and rotational energy levels of the (0, 3) and (1, 3) bandsof the Hz 
BILu+-X1&+ Lyman system recorded by Herzberg and Howe (10). 
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TABLE III 

~~le&_ar eonstmts ktermined by Different Methods of Reduction of the (0,3) and (1,3) Banas of 

the H B 'C + 
2 u- 

x 5," Bystema 

Simultaneously fit (0,3) and (1,3) bands Individually fit (0,3) and (1,3) bands 
direct approach 

Direct 
approach 

Traditional 
term value 
approachb (093) (1,3) 

v,(0,3) 

Uo(l'3) 
, 

BO 

DO' 

9' 

% 
I 

B3' 

D3 
I 

degrees Of 
freeam 

B 

78 421.17(16) 78 421.55(3ec 78 421.00(4) 

79 739.77(17) 79 739.97(37Y 79 739.80(18) 

lg.463(26) 19.441(l) 19.437(6) 

0.01546(56) 0.01482(3) 0.01474(13) 

18.454(35) l&477(11) 18.472(39) 

o.ol.l7(ll) 0.0129(4) 0.0123(u) 

50.662(22) 50.700(44) 50.584(a) 50.686(P) 

0.0410(5) 0.0421(10) 0.0383(2) 0.0417(6) 

14 4d 2e 2f 2g 6 6 

0.27 0.12~ 0.01~ 0.08~ 0.38~ 0.056 0.27 

a The number(s) in parentheses is the uncertainty in the last digit(s) that correspond to one 

StandaTa deviation. All units are reciprocal centimeters. 

' vo(0,3) is the difference Fo'(v'=O) - F,"(v'=3), where Fo'(v'=O) = 39 210.635(10) and Fo' 

(v/=3) = - 39 2lo.91(37). ~~(1'3) is the difference Fo'(v'=l) - F *(v'=3), where Fo'(v'=l) = 

40 529.06(6). 

'.The values for X frm the fits to the vK = 3 and the v' = o ana 1 OWENS BE 39 ao.27(16), 

3g 2lO.429(4), and 39 210.43(3), respectively. 

d step one. 

e step two, v' = 1. 

f step two, v' = 0. 

6 Step two, vu = 3. 

The importance of unbiased estimates4 of the standard deviations of the molecular 
constants should not be minimized. It is generally the relative magnitudes of an esti- 
mated molecular constant and its standard deviation that determine whether the inter- 
action represented by that constant is statistically significant for the data (e.g., deter- 
mining whether H, is needed for a particular set of data). Furthermore, rotational 
constants from different investigations must often be combined in some logically 
weighted fashion to construct potential curves for an electronic state (9). Realistic 
error estimates provide one basis for selecting relative weights. The fact that the biased 

4 Unbiased estimates of variance do not yield unbiased estimates of standard deviation since taking 
the square root is a nonlinear operation. However, the biis is appreciable only for very small degrees of 
freedom. 
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TABLF,Iv 

The Term Values and their Standard Deviations for v' = 0 and. 1, B 

and ve = 3, x +rg+ state, of H2 

1+ v’ = 0, B C, VI = 1, B1s+ v'=3, x lx + 
g 

term standard term standard term standard 
value deviation value deviation value aetiation 

YO’ 0 YO , 1318.57 0.17 YO I 0 

Yl' 78 459.0% 0.10 Yl ' 79 776.43 0.10 Yi" -78 319.93 0.12 

Y2 116.33 0.16 
I " 

Y2 1 429.10 0.16 Y2 302.26 0.12 

, 
y3 78 652.23 0.16 *3‘ 79 959.31 0.16 y3 

I 
-77 819.19 0.17 

Y4' 383.10 0.20 Y4' 1683.01 0.20 Y4" 996.44 0.17 

*5' 78 990.97 0.20 y5 ’ 80 282.23 0.20 Y5# -76 937.74 0.20 

'6' 790.59 0.24 'Sr YsJl 2054.39 0.24 

estimates of the standard deviations of the rotational constants given by the traditional 
term value approach in Table I are about a factor of five too small (and are even smaller 
in the second example below), strongly suggests that the claimed gain in accuracy of 
another decimal digit or so resulting from the traditional term value approach is not 
entirely due to fitting all of the data of a molecule simultaneously, but is due, to some 
extent, to the improper neglect of the variance-covariance matrix of the calculated 

term values. 

Two Independent Sets of Term Values 

There is an additional reason why the ThO GiA-H’@ band is a special case for the 

term value approach. If A-doubling had been observed in all of the rotational levels of 
the G’A state, the observed lines of this band would then be divided into two independent 
sets, where each set is associated with one parity in each state. The independence of these 
two sets requires special consideration in the term value approach, but not in the direct 

approach. To examine this effect, a new example is introduced. 
Figure 1 shows the lines and rotational energy levels of two lZ+-Q+ bands that have a 

common lower vibrational state. In fact, this diagram depicts the 22 lines of the (0,3) 
and (1,3) bands of the Hz B '2,+-X Qg+ Lyman system recorded definitively by Herz- 
berg and Howe (10). Note that the dashed set of lines never arise from or terminate on 

any of the lower or upper state levels joined by the solid set of lines. This is, of course, a 

consequence of the parity selection rule : + d -, + q? +, - 8 -. The fact that the 
observed lines do divide into two completely independent sets causes no alteration in the 
direct approach. Equations (44) remain unchanged, and the first column of numbers in 
Table III contains the molecular constants obtained from the (0,3) and (1,3) bands 
simultaneously.5 

On the other hand, the term value approach, either the improved or the traditional, 
requires consideration that there are two independent sets of lines. Since in the first 

5 II,' and Z&,” are not well determined for these bands and have been omitted from this example. 
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step of the term value approach, the term values are determined from the observed lines, 

there will also be two independent sets of term values : one set associated with the levels 

joined by the dashed lines in Fig. 1, and the other set associated with the levels joined 

by the solid lines. The zero energy reference point for each set can be arbitrarily estab- 
lished. For example, in Fig. 1, a simple choice would be to set Y{‘(v” = 3) = 0 and 

Yr’(v’ = 0) = 0. 
Since the size of this example is somewhat smaller than the preceding ThO example, 

it is practical and informative to tabulate the results of the first step of the term value 

approach. Table IV lists the term values and their standard deviations. The two in- 
dependent sets are easily discerned since they have very different magnitudes. Note 

that the term values are not equally well determined; the variances differ by as much 
as a factor of about six. Table V lists the correlation coefficients of the term values. Note 
that the correlation is often strong, as high as 0.87, between the term values of different 

vibrational states. The correlations are indeed zero between the two independent sets. 
In the second step of either the improved or the traditional term value approach, the 

molecular constants must now be determined from a least-squares fit to a collection of 
term values consisting of members from both independent sets. 

TABLEVI 

Elements of the MatriX Z in Eq. (18) for the Term Values for Y' = 0 and 1, B state, 

and v" = 0 > x lx + 
kl+ 

g State,of H* 

u&0,3) Bo' DO' vo(l,3) 9' D1' B3 
u 

D3' 

YO’ 

5 
v’ = 1 Y2’ 

Y3' 

Y4' 

Y5' 

Ylfl 

Y2' 

Y" = 3 
Y3 If 

Y4# 

Y5 
I 

YsO 

1 2 

0 6 

1 12 

0 20 

1 30 

-0 42 

-1 0 

0 0 

-1 0 

0 0 

-1 0 

0 0 

-1 0 

0 0 

-1 0 

0 0 

-1 0 

0 0 

-4 

-36 

-144 

-400 

-900 

-1764 

1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

-4 0 

-36 0 

-144 0 

-400 0 

-go0 0 

0 2 

0 6 

0 12 

0 20 

0 30 

0 42 

0 

0 

0 

0 

0 

0 

-4 

-36 

-144 

-4co 

-go0 

-1764 
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The improved term value approach handles this type of fit rather straightforwardly 

since the correlation requires that the molecular constants for the lower and upper states 
be determined simultaneously from all of the term values (Eqs. 18-2-I). The energ] 

difference between the two zero reference points may always be expressed in terms of the 
known quantum numbers and the unknown molecular constants. In our example, this 
difference is simply v&0,3). Therefore, in Eq. (18) the coefficient matrix Z is written 
so that the unknown v,(O,3) is subtracted from each term value associated with the 
dashed lines, thereby effectively placing the zero of this set of term values at the zero of 

the set associated with the solid lines, zl” = 3,J” = 0. The coefficient matrix Z for this 
sample is given in Table VI. The values of the molecular constants obtained by applying 

the improved term value approach to this example are, as expected, identical with 
results listed in the first column of numbers in Table III obtained from the direct 

approach (and hence are not listed). 
However, since the traditional term value approach ignores the correlation between 

the term values and least-squares fits are made separately to the term values of the 
v’ = 0, v’ = 1, and U” = 3 vibrational states, then the problem of the two independent 
sets of term values with different zero energy reference points must be handled in a 
different way. Aslund (5,7) and coworkers solve this problem by introducing a new 
unknown constant, X, the value of which must be determined along with the molecular 
constants of each state. If 2X represents the unknown energy separation between the 
zero energy reference points of the two independent sets of term values, then the equa- 

tions relating the term values of each vibrational state to the molecular constants of that 

state are 

21’ = 0: F: = F,‘(O) + Bo’Ji’(Ji’ + 1) - D,l[Ji’(_7i + 1)-J” 

- (-l)Js’X + pi’; (27) 

v’ = 1: Pii’ = F,‘(l) + BI’Ji’(Ji’ + 1) - Dl’[Jil(Ji’ + l)]’ 

- (-l)Ji’X + e;‘(l); (28) 

Z”’ = 3 : Pl’ = F,“(3) + &“Ji”(Ji” + 1) - &“[Ji”(Ji” + l)]’ 

+ (-l)Ji”X + ~~“(3). (29) 

Three values of 2 are obtained from the three separate least-squares fits and these values 
should be the same, within experimental uncertainties. The term values pi, which are 
based on two different zero energy references, can be converted into a new set of term 

values Ti that have a common zero energy reference by6 

p’il = &t + (-l)“Q (30) 

and 

p;, = p;, - (-_l)J,“~_ (31) 

It is the fi that are normally reported as “the term values,” although it should be 

8 To facilitate comparison to iislund (7), we have followed his practice of using Y; to denote term values 
that have two independent zero energy reference points and Z’i to denote term values that have one zero 
energy reference point. In the ThO GA’-H* example considered earlier, Ti = Yi. 
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recognized that usually, as in the example above, the molecular constants are deter- 

mined from the p; rather than the T;.’ 

The second column of numbers in Table III contains the results from the three 
separate fits. The values for the molecular constants differ considerably from those in the 
first column given by the direct (or the equivalent improved term value) approach. If 

the values from the traditional term value approach are used to compute a set of cal- 
culated lines, the residuals between these and the observed line positions have a standard 

deviation of 0.37 cm-‘, compared to 0.27 cm-’ arising from the direct-approach values, 
the true MVLU estimates. Furthermore, the neglect of the variance-covariance matrix 
has once again caused the standard deviations to be unrealistic. For example, the 
standard deviation of Bo’ is a factor of 26 too small. 

The need of the traditional term value approach to introduce the new unknown X is 
particularly unfortunate in this example. In each of the separate fits the number of term 

values is six and the introduction of X raises the number of unknowns from three to four, 
making each fit much less overdetermined. Furthermore, the constant X is weakly cor- 
related with F,, B, and D and its presence in the fit will slightly influence the values ob- 

tained for these molecular constants. More importantly, in each state, F,(v) is rather 

highly correlated with B, and D,, much more so than Y~(zJ’,v”) is with any B, and D, 

in the direct (or the improved term value) approach. For example, F,‘(v’ = 0) is cor- 

related with Bo’ and DO’ by - 0.83 and - 0.70, respectively. The v’ = 1 and v” = 3 
states exhibit similar correlations. In contrast to these, v,(1,3) is correlated to & by 

- 0.56 and to Do’ by - 0.07. The other (v,,B) or (vo,D) correlation coefficients lie be- 
tween these two values. This relatively larger correlation (up to a factor of ten larger) 
between F,(v) and the rotational constants may be the reason why, in Tables I and III, 
the standard deviations of v0 = F,’ - F,” from the traditional term value approach 

are higher than those of v0 obtained from the direct approach. 

In some applications of the traditional term value approach (6,11), the molecular 

constants have been determined from the Pi, rather than pi as described above. An 
example of this application would be a S211 transition. Linear expressions for the 

energy levels of the 9 state can be established rather unequivocally, whereas, for the 

% state, the expressions are generally nonlinear and complex. From a fit of the linear 
expressions to the PC’ values of the 22: state, the molecular constants for that state and 
a value for X is determined. This value of X is then used to convert the pii,’ of the *II 

state into pi” values using Eq. (31). V arious models can then be tried on the ~II state 
with particular attention paid to interactions like A-doubling and spin-orbit coupling. 
This procedure has also been applied to bands in which one state is perturbed (6). It 

has been considered widely that the term values Ti are independent of a model and that 
this is one of the virtues of the term value approach. This is, of course, not correct since 
the calculation of the pi require a value for X that must be determined from some set 
of I’; using a model. While it is certainly true that 8 often may be determined from a 
relatively simple state, this is by no means generally true. Consider the 211,-211, bands 

7 The pi, rather than the Ft, would also be used to retrieve unidentified lines from among the identiiied 
lines on a plate, since the pi do not require a determination of X. It should be noted, however, that this 
procedure can retrieve only those unidentified lines that arise from rotational levels whose term values 
have been established by identified lines. Only the molecular constants offer the possibility of extrapolat- 
ing to new rotational levels. 
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of O,+. The “II, state is near Hund’s case (b) and the “II,, state is near Hund’s case (a) 
and no other band system includes either of these two states (12). Underlying all of this, 
of course, is also the fact that in treating the upper and lower state term values 

separately, all correlation between them has been lost and the molecular constants can- 
not be MVLU estimates and the standard deviations cannot be unbiased. 

Systematic Errors 

The main application of the traditional term value approach has been in the simul- 
taneous reduction of all the bands of all of the band systems of a molecule and, indeed, 
this has been generally considered its forte. The consequences of the neglect of the (huge) 

variance-covariance matrix have been discussed above. However, even if the improved 
term value approach or the equivalent direct approach, is used, this simultaneous reduc- 
tion is valid only if all of the measurement errors are members of the same distribution. 

The (0,3) and (1,3) Ly man bands serve as an example of this problem. 

The third and fourth columns of numbers in Table III contain the molecular constants 
obtained by applying the direct approach to the (0,3) and (1,3) bands individually. The 

standard deviations imply that the (0,3) band is the better-measured band. It is in- 
structive to compare the values obtained from these individual fits with those in the 
first column, which were obtained from a simultaneous reduction also using the direct 
approach. The differences between the values for y0(l,3), Bl’, and D1’ are each well 
within one of either of the standard deviations, which are themselves very similar. 
However, it is a different situation for ~,(0,3), &‘, and Do’. The differences are com- 
parable to about five standard deviations given by the separate fit. Apparently, the 

requirement that the better-measured (0,3) band be fitted simultaneously with the 

poorer-measured (1,3) band has degraded the values obtained for the r’ = 0 state. 
This is not surprising in view of the correlation that exists between all of the rotational 

constants in the simultaneous tit. The separate fits yield two values for B,” and D,“. 
It can be shown by a modified Student t test (13), which is applicable to coefficients in 

a least-squares fit as well as to means, that the two values differ by more than can be 
expected on the basis of their estimated standard deviations.* Thus, systematic errors 
occur in one or the other or both sets of data. Such errors are not totally unexpected, 
since the two bands occur at different wavelengths. 

Since systematic errors are present, the direct approach to the combined data of the 
two bands does not give the best estimates of Ba” and D3” and a few examples will be 

given of the possible ways of combining the values. A weighted average of the two values 
from the separate fits would be more realistic if it takes account of the systematic errors. 
For example, if the systematic error substantially exceeds the standard deviations of 
random error, as in this case, a simple unweighted average is a good combined estimate : 
B3” = 50.635 and OS” = 0.0400 cm-‘. Slightly better estimates can be obtained from 

89.5 percent confidence intervals for the differences between the two Bg” values and the two D,” 
values, can be calculated to have the end points 0.102 f 0.075 and 0.0034 f 0.0016 cm-i, respectively 
(where, for the degrees of freedom at hand, the half-lengths 0.075 and 0.0016 cm-l are 2.4 times the re- 
spective standard deviations of the differences). Since neither of these intervals include zero, the differ- 
ences between the two B3” values and the two D,” values are significant at the 5 percent level. (The 
differences between the two B 3” values and the two 03” values cease to be significant at about the 2 and 
0.5 percent levels, respectively.) 
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a more sophisticated statistical model that includes systematic error (from a common 

“superpopulation” of systematic errors) as well as differing standard deviations of 
random errors (14). These better estimates (“minimum-variance, linear, unbiased 
estimates”) are &” = 50.629 and OS” = 0.0400 cm-‘, so that the estimates are the 
same to better than three significant figures. The estimated standard deviations (sd.) 
of these estimates are negligibly smaller than those of the unweighted averages above : 
s.d. B3” = 0.949, s.d. 4” = 0.0016 cm-‘, as compared with s.d. B3” = 0.051, s.d. 
D3” = 0.0017 cm-r. Each of the latter standard deviations is simply half the absolute 

difference of the two separately fitted values. Each of the former standard deviations 

is calculated from a more complicated formula that will not be given here (14). Note 
that the estimates of Bs” and OS” are substantially different from those that would be 

obtained by a weighted average ignoring systematic error (i.e., using reciprocals of 
internal variances) and that the standard deviations are considerably larger. 

It appears, therefore, that fitting many bands simultaneously may mask the existence 
of systematic errors. This strongly suggests that the improved term value approach be 
applied band-by-band where applicable.g A band-by-band fit would, at least, indicate the 

severity of the problem of systematic errors. The common values could be combined in 
a judicious way and the bands with common levels refitted with these common values 
to determine the extent of variation in the other constants due to systematic errors. On 

the other hand, if all of the measurement errors essentially belong to the same distribu- 

tion, then the value obtained by combining the values from common levels, as described 
above, will be identical to the value obtained from reducing the set of bands 

simultaneously. 

Missing L&es 

There are often lines or a group of lines that are missing in a set of measured line 
positions. These gaps arise because of poorly resolved lines near the band heads, over- 
lapping lines from another band, statistically rejected lines, etc. These missing lines 

cause no problem for the direct approach. They simply mean one less equation in the 
set given in Eq. (3) f or each line that must be omitted. However, for either the improved 
or traditional term value approaches, missing lines usually require special handling. 

Figure 2 shows the lines that connect the lower rotational levels in a 1Z-1Z band. 

The R(4) line has been deliberately omitted. Note that there are now three independent 
sets of lines-dashed, solid, and hatched-rather than two. The term values associated 

with each set are also independent and the zero energy of each independent set must be 

referenced independently. If there are other such missing lines, the number of in- 

dependent groups of term values will increase. 

Aslund (7) and coworkers keep the number of independent sets to two by interpolat- 

ing approximate values for the missing lines or groups of lines if these missing lines would 

form new independent groups. The measured and interpolated lines then serve as the 

9 We note that, for a band involving a 2 state and another B state or a singlet non-sigma state with 

A-doubling, term values would be determined from an exact fit, at best. This implies that the improved 

term value approach, in the present form, cannot be applied to systems with a band-by-band reduction. 

Although the traditional term value approach can be carried out, it still suffers the drawbacks described 

earlier. The direct approach, of course, can always be applied in such cases. 
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‘i ” 

FIG. 2. Three independent groups of transitions in a ‘Z-2 band with the R (4) transition missing. 

input to the first step of the term value approach. Although this interpolation can some- 
times be done very accurately, this is an unattractive requirement of the term value 
approach that increases the labor of applying the term value approach and decreases 

the statistical validity of the results. 

V. SUMMARY AND CONCLUSIONS 

It is clear that a spectroscopist faced with a fresh plate should use every method at his/ 

her disposal to assign the quantum numbers to the observed lines. For this purpose, com- 

bination differences provide a powerful technique (2). However, it is equally clear that, 
to obtain final values of the molecular constants, a statistically sound technique should 
be employed. This warrants abandoning the combination difference approach for that 
purpose. We summarize in what follows two alternative approaches. 

The term value approach to obtainin g molecular constants from line positions con- 
sists of two steps. In the first step, intermediate unknowns-the term values for the 
rotational levels-are determined by a least-squares fit to the observed line positions. 
In the second step, the term value approach has two major variations depending on 
whether correlation and unequal variances are accounted for or ignored. The second 
step of the improved term value approach determines the molecular constants from a 
correlated least-squares fit to the term values using the variance-covariance matrix 
of the first step. The molecular constants determined from the improved term value 
approach are identical with those obtained from the direct approach, i.e., a deter- 
mination of the molecular constants from a direct least-squares fit of the observed 
line positions. On the other hand, the second step of the traditional term value ap- 
proach determines the molecular constants for each vibrational state separately by 
fitting the term values of that state alone. Thus, the traditional term value approach 
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ignores the correlations between the term values of different vibrational states. As it has 

been applied in the literature, this approach also ignores the correlation between the term 

values of the same state and ignores the fact that the variances of the term values are 
unequal. In short, the traditional term value approach assumes that the variance- 
covariance matrix is a constant times the identity matrix. Because of this generally 
erroneous assumption, this approach cannot, in general, yield minimum-variance, linear, 
unbiased (MVLU) estimates of the molecular constants and unbiased estimates of the 

standard deviations, as does the direct approach and the equivalent improved term 
value approach. The degree to which the molecular constants and their uncertainties 

determined from the traditional term value approach will differ from the MVLU 

estimates will depend on the particular application. 
It is clear that the improved term value approach and the direct approach require the 

simultaneous specification of two model Hamiltonians in the reduction of one band to 
molecular constants. Thus, there is no way to correctly break the correlation between the 
upper and lower state constants without, of course, fixing the constants of one state to 
values obtained more accurately by another means.‘O 

There are instances where one state of a system is so massively perturbed that a model 
Hamiltonian for that state cannot be specified. Then, neither the direct approach nor the 

improved term value approach can be applied. However, the traditional term value ap- 
proach can still be applied to obtain molecular constants of the simpler state for which 

a model Hamiltonian can be specified. It should be recognized that these values will not 
be the MVLU estimates and the associated standard deviations are not unbiased. Be- 

cause of the biased standard deviations, it may often be difficult to be certain of the 

statistical need of constants like D,, H,, yu, etc. that represent relatively small effects. 
Thus, if the traditional term value approach is to be applied to one state alone because 
of difficulties with the model of the other state in the transition, the advantages gained 
by avoiding the model of the more complex state must outweigh the disadvantages of 
obtaining non-MVLU estimates and biased standard deviations for the simpler state. 

The separate fit to the term values of each vibrational state used in the traditional 

term value approach requires the determination of a molecular constant representing 
the reference energy F,(v). This constant may be rather strongly correlated to the other 
molecular constants of that state, much more so than Y~(o’, 21”) is correlated to the other 

molecular constants in either the direct or the improved term value approaches. 

In most bands, the parity selection rule divides the lines of a band, and hence the term 

values, into two independent sets. This causes no alteration in the direct approach and 

none of consequence in the improved term value approach. However, the traditional 

term value approach must introduce a new unknown X that is related to the independent 

and arbitrary zero energy reference of each set of term values. The value of this un- 

known must be determined along with the molecular constants in the second step. 

Furthermore, if the number of lines recorded in a band is small, the introduction of 

another unknown makes the second step of the traditional term value approach less over- 

determined. Finally the determination of X requires a model for the rotational energy 

lo It may be hoped that advances in microwave, Raman, and other related techniques will yield suffici- 
ently accurate measurements of ground state energy levels that only one model Hamiltonian will be 
necessary in the reduction of optical spectra. 
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levels. Therefore, any term values that have been normalized to one zero energy ref- 
erence using 2 are also model dependent. 

Missing lines may often cause the number of independent sets of lines in a band to 

be greater than two. To avoid more than two independent groups, the term value ap- 
proach, as has been applied in the literature, used interpolated lines for those missing 
lines that would introduce new independent sets. Although such interpolation may often 

be done accurately, fitting to anything other than the measured line positions is, in 

general, less than ideal and introduces ambiguity in the statistical indicators of the fits. 

There have been several cases in the literature where all of the bands of all of the band 
systems of a molecule have been reduced simultaneously. Indeed, this has been the 
main application of the traditional term value approach, since the neglect of the 
variance-covariance matrix makes such a reduction practicable. However, even the use 
of the direct approach or the improved term value approach would be valid only if all 
of the measurement errors have the same distribution. Systematic errors, such as wave- 
length-dependent errors? could be masked in such a simultaneous reduction. A band-by- 

band reduction gives much more information about these types of errors and hence a 
more realistic estimate of the absolute accuracies. The values of the molecular constants 

for common states obtained from a band-by-band reduction can be combined in a variety 
of ways, depending on the severity of the systematic errors, to yield the final single 

values for these constants. 

RECEIVED: September 12, 1972 
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