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Method for determining photoelectron angular distribution, 
total cross section and excitation beam polarisation from 
measurement of the integrated flux into selected solid 
angles 

W D Grobmant, R Willoughbyt and R N Zaret 
t IBM T J Watson Research Center, Yorktown Heights, New York 10598, USA 
t Department of Chemistry, Stanford University, Stanford, California 94305, USA 

Received 11 May 1983 

Abstract. Detector geometries may be chosen to determine the total cross section ulof, 
the asymmetry parameter p and the photon polarisation p while achieving good experi- 
mental statistics by using large acceptance angles in gas-phase photoemission experiments, 
in which the emitted electron current distribution is described by ugot[l + pP2(cos y ) ] / 4 ~ ,  
where y is the angle between the emitted electron and the direction of one of the 
polarisation components of the photon beam. When a cylindrical mirror analyser (CMA) 
with variable acceptance geometry is used, it is possible to determine ulOl, p and the 
incident light polarisation p by measuring the flux with several different restricted 
(vignetted) annular rings whose polar and azimuthal angular acceptance ranges are 
appropriately chosen. The mathematical structure of this problem precludes determination 
of ulolr p and p from the measured photocurrent using a CMA having its aperture vignetted 
only in the azimuthal or polar angle. However, these three parameters can be found when 
the aperture is independently vignetted in both angles. Moreover, uncertainties in the 
derived quantities are readily related to errors in the measured photocurrent and are 
found to depend on such errors in a manner permitting their accurate determination. 
Consequently, a method can be implemented which rapidly provides detailed atomic or 
molecular information, but which also (through measurement of p )  can provide an 
important new technique for calibrating instruments and for measuring optical constants. 

1. Introduction 

For an ensemble of randomly oriented molecules, the total cross section vtot for the 
emission of photoelectrons and the asymmetry parameter /3 are both important for 
understanding the geometrical and electronic structure of the molecules comprising 
the ensemble (Cooper and Zare 1968, 1969, Cooper and Manson 1969, Tully et al 
1968). 

Recently, synchrotron radiation sources have become available for exciting an 
ensemble of target species by tuning through a continuum of photon energies (Winick 
and Doniach 1981, Koch et a1 1983). This possibility of tuning hv continuously 
increases the desirability of finding methods for efficiently collecting electrons (or 
other photofragments) with detectors which subtend a large solid angle (for good 
signal-to-noise characteristics at high scan rates of hv) which is chosen to permit 
atot(hv) and P ( h v )  to be measured as directly as possible. (Here utOt represents the 
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total cross section for emission from orbital j ,  and is often denoted uj.) This measure- 
ment technique contrasts with historical methods of finding utot and @. In these latter 
cases, scanning of hv was not possible, and the use of small solid angle detectors at 
special angles gave adequate count rates for measurements at the few photon energies 
available (Samson 1970, Carlson 1975). 

We deal in this paper with a specific detector geometry, chosen to give either utot 
alone, or to give jointly utot, p and the incident light polarisation p with high efficiency 
using extended solid angles for the detector acceptance region. We consider the 
special case of unpolarised or only partially polarised radiation incident on an 
unpolarised molecular ensemble, with photoelectrons collected by a cylindrical mirror 
analyser (CMA) (a good review is found in Sevier (1972)) with a large (- 1 sr) acceptance 
area. We show that by properly constructing such a system so that one can choose 
between several acceptance geometries, utot(hv), p (hv) and the light polarisation p ( h v )  
can be rapidly measured where utot and @ are also functions of electron binding energy 
EB. By constructing a CMA with two movable aperture stops, one may rapidly 
determine with three scans in hv all the angular information for a particular target 
species and binding energy as well as the incident polarisation. Such a procedure can 
supply detailed information useful for understanding the electronic structure of large 
numbers of molecules. Further, the measurement of p as a function of hv also provides 
an important new approach to calibrating instrumentation and for the measurement 
of optical constants in difficult photon energy regions. 

2. Vignetting in 8 and 
measurement of crtOt(hv), p (hv) and p (hv) 

of a cylindrical mirror analyser (CMA) aperture for 

We consider the case shown in figure 1 in which the angular acceptance aperture of 
a CMA is vignetted so that the polar angle acceptance range is O 1  S 6 C O2 and the 
azimuthal range between -4t and dt is unobscured. Further, we assume that photons 

Figure 1. The acceptance aperture of a vignetted CMA is shown, with the velocity vector 
V of a transmitted electron having polar angles (0 ,d)  satisfying B 1  < B s 0 2 ;  141 s &. 41 
and Fl are in the photon polarisation directions, with magnitudes proportional to the two 
components of photon flux in equation (7). 
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are incident in the y direction, with fluxes FL and Fii polarised respectively perpen- 
dicular to and parallel to the z axis. This case represents, for example, that of a 
storage ring or other light source incident in the + y  direction into an experimental 
chamber in which a CMA is oriented with its axis in the z direction and its acceptance 
volume centred on the origin of the coordinate system. 

Referring to figure 1, the differential photocurrent dJL due to the flux F,. of photons 
polarised perpendicular to the z axis is 

dJ, = F,K (Ttot [ 1 + ~PZ(COS y,)] dR (la 1 

where K is a constant, y,. is the angle between F, and the detection direction p, and 
P 2 ( x )  = i ( 3 x 2  - 1) is the second Legendre polynomial. The corresponding relation 
for dJl1 is: 

4rr 

In the following, we set K = 1 for convenience. The integral of equation (16) over 
the analyser acceptance solid angle no gives 

where T depends on the analyser geometry only through the angles el and O z .  In 
equation (2), T is given by 

As will be shown below, the choice of two ranges of the limits of integration in 
equation (3), for which T = 0 in one case and T # 0 in the other, will permit determina- 
tion of the radiation polarisation p as well as gtot and p. 

We begin our analysis by deriving an expression for the total photocurrent 
integrated over the detector aperture illustrated in figure 1, and due to both photon 
polarisations. 

We integrate ( la )  over Ro using the addition theorem for spherical harmonics: 

m=-2 

We integrate the electron direction (e, 4 )  over no, and set ( e f ,  4’) ,  the polarisation 
vector direction, equal to (rr/2,0). We obtain 

- 4 ~ J l  = F L v t o t ( l - y + P ( l - T ) -  PT 
. R O  4 4  t (4) 

The total measured photocurrent is 

Jtot = J l l +  J , .  ( 5 )  

Although in general the source may be elliptically polarised (e.g., in the case of a 
synchrotron radiation source), one can show quite generally that the parallel and 
perpendicular components of the electric vector of the light beam cause independent 
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photocurrents as long as the detector is not oriented (Samson and Starace 1975) (does 
not distinguish for example between different electron spins) and the target is not chiral. 

Using (3, we finally obtain 

where F is the total incident flux 

F ~F11+ FA 

p is the polarisation 

and 

(7 )  

The function f(q5t) is plotted in figure In deriving equation (6), we use the identities 
FII/F = (1 +p)/2 and F J F  = (1 -p)/2. See the review by Krause (1981) and the 
references therein for a rather complete discussion of the origin and measurement of 
photoelectron currents from atoms and molecules. 

Q+ (deg! 

Figure 2. The function f(&) =sin 2+1/4q51, which is defined in equation (9). We indicate 
the special values of the function f(&) (0.1719 and -0.0573) which are used in $ 4 ,  and 
values of q5t which are used to obtain these points on the curve. 

3. Solution of the equations for gtOt, 0 and p 

Equation (6) is the basic relation between the measured current Jtot and the three 
unknown quantities utot, /3 and p. Upon initial examination, it might be thought that 
equation (6) should allow determination of the cross section and asymmetry parameter 
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(at a given binding energy), and the polarisation at a given photon energy by varying 
4t  alone and performing three independent measurements. Unfortunately, the struc- 
ture of equation (6) does not allow such a simple approach for two reasons: 

(i) the measured quantity JtOt is scaled by utot; and 
(ii) when equation (6) is written as a 3 X 3 linear equation, the determinant of the 

coefficient matrix vanishes. This section examines the mathematical and operational 
(experimental) procedures which are needed to solve this problem. 

A first step is to rearrange the factors in equation (6) and define some terms. We 
assume that the variation of F with hv is measured by using a calibrated photodiode 
at the sample point (e.g., an A1203 photocathode or a sample gas for utot(hv) is 
known). Then we define the normalised measured photocurrent M as 

which represents the measured quantity normalised for the effects of changing incident 
flux or analyser acceptance solid angle. We will treat M as the fundamental measured 
quantity. 

Now, rearrange equation (6) by multiplying by l/Futot and moving terms multiplied 
by p to the left-hand side. This procedure gives: 

MWo- [g!- + (1 - T)f] w1- [$T - (1 - T ) f ]  w, = 1 ( 6 a )  
where 

WO 1 / r i o t  

w , = p / 2  

w,=pp/2. 

and 

Our initial strategy is to determine WO, W1 and W, by forming three separate linear 
equations from (6a) ,  each one representing a measurement at a different value of 4 t  
(q5 t=  q5fo), and c$:"). We denote by fo, f l  and f2 the values of f ( d t )  obtained at 
these three values of &, and by MO, M1 and M,, the corresponding measured values 
of M for these three analyser geometries. The unknown Wk are then determined by 
the 3 x 3 problem 

MO -[$T + (1 - T)fo] -[$T - (1 - T)fO] WO 

MI -[$T+(l-T)f1] - [$T-( l -T)fJ  w1 = 1 (14) 

M ,  -[$T + ( 1 - T)f,]  -[qT - ( 1 - T ) f J  I (w1 c' i 
(15) 

where A is the matrix in equation (14), W is the solution vector of interest, and e is 
the unit vector. 

Equation (15) can be used to show the singular nature of the problem of interest. 
Furthermore, this equation, along with relations arising from it and from ( 6 a ) ,  which 
are discussed in an appendix, provide the means to determine utot, p and p to check 
the validity of data collected during the measurement of photoelectron fluxes. 

or, more compactly 

A W = e  
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Summarising the results of the appendix, it is easily shown that Det A = 0 so that 
a unique solution to (15) does not exist. Further, the result that the determinant of 
some 2 x 2 submatrix of A does not vanish shows that there exists a particular solution 
of (15) with two non-vanishing components: 

AW,=e (16a) 
where for T non-zero 

The general solution to equation (15), for T non-zero, is given by adding to W ,  a 
solution Wh of equation (15) in which the right-hand side is zero (the homogeneous 
solution) multiplied by a free parameter A : 

w =  Wp+hWh. (17) 
In the appendix, it is shown that w h  can be written in the form: 

R - TS/2( 1 - T )  

S and R are invariants and are given by: 

MI -Mj 
fi - f i  

S E  - and for i , j  = 0, 1,2;  i Z j .  

The general solution (for the form of Wh given in (18)) is then 

(20) 
2A T 

-(2T)-'+A[R +3TS/2(1-T)] 
-(2T)-'+A[R -TS/2(1-T)] 

Equation (20) can now be used to develop a strategy for determining utot, p and p ,  

4. Procedure for measuring a,,$, p and p 

The presence of A in (20) shows that three measurements of Jtot against q4 are not 
sufficient at binding energy EB to determine vtot and p as well as p .  An independent 
means of determining A must first be used, and variation of (bt alone does not provide 
enough information. Consequently, we propose that the CMA also provides a method 
for varying the polar angle range-a second degree of vignetting adjustment. 

Our procedure is first to choose el and e2 so that T vanishes, and to choose # t  

so that f(dt) = 0. (Determination of el and B 2  so that T(B1, e2) = 0 is discussed in the 
appendix.) For this geometry, as equation (6) shows, Jtot depends only on mtot. 

This independent measurement of utot can now be used in (20) for non-vanishing 
T to fix A .  Thus, the analyser is next changed to a configuration in which T is 
substantially different from zero so that p and p in the second and third components 
of equation (20) depend with higher accuracy on the measured quantities M1 and Mz,  
which determine S and R (see equation (19)). 
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Now only two different values of 4t, i.e., two additional scans in hv, are needed to 
determine the remaining quantities p and p .  

By considering a specific example, it becomes clear how this general result can be 
implemented experimentally. We propose an explicit set of procedures and analyser 
geometries which can be used to determine crtot, p and p .  This example also shows 
the practical significance of our work by giving the precision with which p and p can 
be determined as a function of the precision of the measurements of the photocurrents 
obtained for different geometries, and of the precision with which the apparatus can 
achieve the desired geometries. 

We propose vignetting of the analyser to achieve three specific analyser aperture 
geometries (described in table 1) for which equation (6 )  takes special, simple forms. 
These geometries are labelled 0, +, and -, and for each geometry the relevant 
symbol is used as a superscript on quantities such as acceptance solid angle, or 
photocurrent, which are achieved at that analyser geometry. 

Table 1. Analyser geometries for the example of 9: 4. 

Geometry 81 (deg) 82 (ded 6 (deg) ?YO1, e2) f(4J (sr) 

0 46.60 62.60 90 0 0 0.7128 
+ 46.60 54.60 64.59 0.1028 0.1719 0.2431 

46.60 54.60 102.05 0.1028 -0.0573 0.3840 - 

Geometry '0' is the one for which T(O1, 02 )  and f(c$J are both zero. In that case, 
equation (6 )  reduces to: 

This special geometry yields a signal directly proportional to utOt, independent of p 
and p .  It satisfies the requirement that the free parameter A of the previous section 
must be determined with an analyser geometry which changes the structure of equation 
(6). 

Next we consider the geometries '+' and '- '. In these geometries, the analyser 
polar angle acceptance range is changed to one in which T(O1, 0 2 )  is substantially 
non-zero, and is the same for both of these cases. This value of T(O1, Oz) is denoted 
T,. Then 4, is set at one of two different values, for which f(q5J is equal to 

causing in each case one of the terms in large round brackets in equation (6 )  to vanish. 
Thus, we obtain for geometry ' + ' 

and for geometry ' - ' 
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Next we divide equation (22) by equation (21) and solve for P in terms of the ratio 
of photocurrents J::: and Ji:: : 

Similarly, we can divide equation (23) by equation (21) to obtain the polarisation 

The solutions in equations (24) and (25) exhibit all of the properties discovered while 
analysing the formalism of Q 3. They exhibit the singularlity of the solutions T(O1, Oz) + 
0. In order for P and p to be determined, the measured photocurrents for geometries 
‘ + ’ and ‘ - ’ are normalised to that measured in geometry ‘O’, which corresponds to 
the fixing of the free parameter A. Also, p cannot be determined until p has been 
found and is substantially non-zero. 

We now replace the quantities in equations (24) and (25) by their numerical values 
from table 1 and obtain 

and 

9.718 J L? p = - (  1.86 (o) - 1). 
P Jtot  

These results for P and p are plotted in figures 3 and 4, respectively. Figure 3 shows 
that (Jf::/J{::) varies from about 0.31 to 0.41 a sp  varies over the physically meaningful 
range -1 to 2. A 33% change in the measured ratio covers the entire range within 

Figure 3. The relationship between J ~ ~ ~ / J ~ 8 ~  and 
0, from 9: 4, for the physically accessible values of p. 

Figure 4. The relationship between J ~ ~ / / J ~ ~ ~  and p ,  
from 9: 4, for the physically meaningful range -1 c 
p c + 1, for values of p from -1 to +2. 
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which p is to be found, Consequently, a 1% precision in the measured photocurrent 
ratio corresponds to a precision in p of about 0.1. Furthermore, in such a set of 
measurements obtained while scanning hv, the extrema of P ( h v )  would be found to 
high precision even in the case in which errors in setting the analyser geometry cause 
the absolute value of p to be somewhat uncertain. 

The result for p represented by equation (27) is plotted in figure 4 for different 
values of p. The most favourable case is for p = 2. The polarisation then varies over 
its accessible range -1 < p  < + 1 as J{ij/J{:! varies from about 0.43 to 0.65, e.g., by 
about 50%. In this case a 1% precision in the measured photocurrent ratio represents 
a precision of about 0.04 in p. 

An important application of the technique described here would be the determina- 
tion of the polarisation of synchrotron radiation in a sample region, as a function of 
photon energy. For this purpose, a simple closed-shell atomic vapour with s-electron 
emission (e.g., He gas) would represent an ideal calibration sample, since for such a 
gas the emission well above threshold would give p = 2. Once p ( h v )  was determined 
from equation (27) in this manner, the determination of p for an arbitrary species 
could proceed using equation (6) directly, i.e., by making two measurements (at 
different values of dt) leaving the polar angular acceptance range fixed. This technique 
could also be used to help determine optical constants of a reflecting sample by 
measuring its effect on p ( h v ) .  

When using synchrotron radiation, the value of p (hv) is fixed and it is very awkward 
to change the spatial orientation of the corresponding polarisation ellipse. However, 
this is not the case for most laboratory light sources, such as lasers. For such sources, 
it is usually straightforward to rotate the polarisation ellipse. It is useful to consider 
what CMA detection strategy could then be employed. Call Jlii the total photocurrent 
obtained with a flux Fl1 along z and F,. along x ; call Ji?; the total photocurrent with 
Fl1 along x and F, along 2. Then it follows from equation (6) that: 

Hence the sum of JfAi and Ji?i is independent of p .  Moreover, once again utot and 
p can be found simply by appropriately vignetting (in dt) the CMA while leaving the 
polar angular acceptance range fixed. Finally, this last result (equation (28)) can be 
used with synchrotron sources provided one is able to rotate the CMA about the y axis. 

5. Summary and conclusions 

In the analysis in this paper, we have discovered several interesting facts concerning 
the determination of all three quantities (+tot, p and p by vignetting a CMA. We have 
seen that the mathematical structure of the fundamental equation (6) is such that two 
separate angular vignetting degrees of freedom must be used in order to determine 
these three quantities unambiguously. 

Variation of dt  alone always results in solutions with a free, undetermined para- 
meter. One must first set T = 0 by proper choice of O1 and & in order to determine 
vtot. Then and O2 are changed so that T is substantially different from 0 in order 
to find p and p .  While the first step proceeds with an analyser whose polar angular 
acceptance range includes the 'magic angle' (Samson 1969, Samson and Gardner 
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Table 2. Location of the detector centre, x, as a function of the acceptance half-angle E 

so that T = 0. This gives the polar angle acceptance range O1 s O s 02. 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 

54.74 
54.68 
54.52 
54.24 
53.80 
53.17 
52.24 
50.86 
48.70 
45.00 

54.74 
49.68 
44.52 
39.52 
33.80 
28.17 
22.24 
15.86 
8.70 
0.00 

54.74 
59.68 
64.52 
69.52 
73.80 
78.17 
82.24 
85.86 
88.70 
90.00 

1972) 8 M  (BM=~Os-' 3-*'2)), it can provide large flux due to the significant range in 
8 which can be chosen (table 2), which permits relatively fast scans in hv and the 
measurement of utot for a large number of binding energies in a short time. This is 
in contrast to early detectors based on use of the magic angle for utot measurements- 
detectors in which the solid angle of acceptance was small. 

The theory also provides a means for correcting for systematic errors due to 
non-ideal detector construction which might render the analyser acceptance not 
precisely proportional to For example, measurements of Jtot for several values of 
c $ ~  can be used with equation (19) to check the internal consistency of the measurements 
due to the fact that the ratio S or the quantity R in equation (19) is an invariant 
which is independent of 

Measurements of p in the vacuum ultraviolet and soft x-ray regions can be difficult, 
especially at large photon energies for which reflection-based techniques are inefficient. 
The present method constitutes a new approach to such measurements, using an 
appropriately chosen sample gas and a modified CMA. The theory we have described 
requires, however, that an orbital with p significantly different from 0 be chosen in 
a given range of photon energy if p is to be determined. Determination of p in relation 
to hv can prove valuable for experiments in which the degree of polarisation is 
unknown due to uncertain optical constants for gratings and other optical elements 
in vuv and soft x-ray monochromators. 

Also, p ( h v )  can be measured after reflection from specular samples at several 
different angles of incidence to provide a new and potentially powerful technique for 
the determination of optical constants in experimentally difficult ranges of photon 
energy. 

Finally, note that implementation of the technique suggested here requires 
significant modification of the usual CMA design. The variable apertures used for 
vignetting must be implemented in a way which does not affect the detected photocur- 
rent except through the solid-angle effect. A good way to achieve this goal is through 
use of variable apertures near the electron detector rather than near the sample region. 
Near the detector, electron optics can be used to accelerate the electrons prior to 
vignetting so that varying contact potentials in the vignetting aperture mechanism 
are unimportant. The technique can in this case work with minimal systematic errors 
even with pass energies of only a few eV, for which the apertures suggested in table 
1 give resolution sufficient to resolve vibrational structure. 



Measurement of integrated flux into selected solid angle 4477 

Acknowledgment 

We wish to thank C Denise Caldwell who corrected a significant error in the derivation 
leading to equation (6) in an earlier version of this paper. One of us (RNZ) gratefully 
acknowledges support of the National Science Foundation under NSF PHY 82-06400. 

Appendix 

In this mathematical appendix, we cover two topics. We first derive the relationship 
between 61 and 6 2  which ensures that T(61,62) = 0 (see equation (3)), thereby describ- 
ing the polar angle range used for determination of utot independently of p and p .  
Then a discussion of the structure of equation (14) and of its solutions follows, for 
the general case in which T is non-zero. 

A. 1. Values of 61 and 62 for which T(61, 62) = 0 

We define angles x and E such that 

~ I = X - E  6 2 = ~  + E .  (A.1) 

For cos 61 # cos 6 2 ,  we find by substituting equation (A.1) into equation (3) and setting 
T equal to zero: 

C O S 2 ( X + E ) + C O S ( X + E ) C O S ( x - E ) + C O S 2 ( X - & ) = 1 .  (A.2) 

With the use of the identities cos(x + E )  = cos x cos E -sin x sin E and cos(x - E )  = 
cos x cos E +sin x sin E ,  equation (A.2) reduces to the expression 

2 cos2 E 
cos x = 

4 cos2 E - 1 

which has the solution 
1/2 

x = c o s - q  4 cos E - 1 ) . 

(A.3) 

(44.4) 

Equation (A.4) expresses the detector location x as a function of the detector half-angle 
E .  Table 2 lists some typical solutions of equation (A.4). We conclude that for large 
finite acceptance angles, the detector should be placed at a polar angle close to the 
magic angle. Indeed, the position of the detector is surprisingly insensitive to the 
value of the half-angle for values of E <20°, differing from the magic angle by less 
than one degree. 

Alternatively we may use equation (A.3) to express the detector half-angle as a 
function of the detector location. We find 

E =cos-I (4 c:::- 1> 
which has the same functional dependence 
(AS) show that x and E satisfy the identity 

(4 COS' x - 1)(4 COS' E - 1) = 1. 

6 5 )  

as equation (A.4). Equations (A.4) and 

(A.6) 
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The maximum value of E is 45" corresponding to the detection of all flux in one 
hemisphere. 

A.2. The solution of equation (14) 

If system (14), with T chosen non-zero, has a solution for a finite value of utot, then 
there exists a one-parameter family of solutions. The determination of these solutions 
is here discussed for the general case of non-zero T, which is the form of the problem 
which must be addressed in order to find the three unknown quantities of interest. 
In $ 4  we also consider the special case T = 0, which fixes the physically correct value 
of the free parameter which is left undetermined in the general case for which T is 
non-zero. 

To find the general (non-zero T )  solution, we first introduce the following cyclic 
difference vector 

(A.7) 
This vector is perpendicular to the right-hand side, e,  of (14) and to the second and 
third columns of the coefficient matrix A. Thus 

(MIT = ( f l  - f z ,  f z  -fo, f o  - f d .  

0 = (AfITe = (AflT(AW) = C(Af)TMl(l/(+tot). 
Since vtot is finite, we have 

(Af)TM = 0. 

Expanding the determinant of A = det(A) along the first column yields 

det(A) = 2 T ( 1 -  T)(MTAf)  = 0. (A.9) 

Since 27'(1- T ) ( f i  -h) # 0 in general for i # j ,  i, j = 0,  1,2, the matrix A has rank 2 
(i.e., there is at least one 2 x 2 submatrix of A with non-zero determinant). There is 
a theorem (see for example Hohn 1958) which states that in such a case, when the 
left null vector g of A (gTA = 0) also satisfies gTe = 0 then there exists a one-parameter 
family of solutions of equation (14) of the form 

W =  Wp+hWh (A. 10) 

where A is a free parameter, W, is a particular solution (A W ,  = e),  and Wh is a solution 
to the system, A Wh = 0. In this case, g = Af satisfies these conditions. 

To obtain W ,  we set WO = 0 and then W1= W2 = - (27')-'. 
In order to determine Wh we note that if we substract equation (6a)  for Mj from 

equation (6a)  for Mi with i # j ,  then 

(M;-Mj)WO-(l-T)(fj-fi)(W1- Wz)=O 

so 

is an invariant, i.e., does not depend on which pair (i, j )  we choose. 
We define the invariants 

Mi -Mi 
f i  -fi 

SE ___ i # j , i , j = O ,  1,2  (A. 11) 
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and 

R =Mi - fis. (A.12) 

R can be seen to be independent of i by forming the difference (Mi -fiS) - (Mi -LS) 
which vanishes for any i, j .  

In the homogeneous case the 0, 1 and 2 components of Wh are in the same 
proportion as the cofactors of the components of the first row of A since det(A) = 0. 
That is, the first, second and thrid components of the homogeneous solution are equal 
respectively to the following three determinants (which may be all multiplied by an 
arbitrary constant): 

Thus, within a multiplicative constant, the homogeneous solution is 

2T 

R - TS/2( 1 - T )  
(A.13) 

This result for the homogeneous solution is derived by using the properties of the 
matrix which is adjoint to A (see the discussion of the adjoint matrix i.n Hohn 1958). 
If B is adjoint to A then 

AB = BA = det(A)I 

where I is the unit matrix. Since det(A) = 0, the columns of B are solution vectors to 
the homogeneous equation, and are all the same within a multiplicative constant. 
However, from Hohn (1958) the components of a column of B are the cofactors of 
the rows of A. (That is, the adjoint matrix B is the transpose of the matrix of cofactors 
of A.) This property then leads to the construction of the homogeneous solution from 
the cofactors of a row of A as was done above. 
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