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SOLUTION OF SPARSE INDEFINITE SYSTEMS OF LINEAR
EQUATIONS*

C. C. PAIGEt anD M. A. SAUNDERS{

Abstract. The method of conjugate gradients for solving systems of linear equations with a sym-
metric positive definite matrix A is given as a logical development of the Lanczos algorithm for tri-
diagonalizing 4. This approach suggests numerical algorithms for solving such systems when 4 is
symmetric but indefinite. These methods have advantages when A is large and sparse.

1. Introduction. Here some methods are considered for solving
(1.1) Ax=b

when the n x n real symmetric matrix A4 is large and sparse. Unlike matrix fac-
torization, the methods given here for solving (1.1) regard 4 as an operator and
only require matrix-vector products, building up x as a combination of vectors
derived from a Krylov sequence. Some basic theory for different methods of this
type is given in § 2.

One of the best known examples of this type is the conjugate gradients
method (CGM) [2], which can be used to solve positive definite systems. Reid [11]
has indicated that CGM can be very accurate and fast for several problems even
though rounding errors cause it to depart significantly from its ideal path. In the
experience of the present authors, CGM can be relied upon to converge ultimately,
and so is very effective if regarded as an iterative method rather than an n step
process. In fact CGM often gives the solution to the required accuracy in very much
less than n steps.

CGM can break down for A4 having both positive and negative eigenvalues,
and there is a need for methods which can handle large sparse indefinite symmetric
matrices. Luenberger [7], [8] examined the possibility of two methods related to
CGM for indefinite matrices; unfortunately his methods encountered some
unresolved computational difficulties. The method of minimized iterations de-
veloped by Lanczos [5] is closely related to CGM, and Fridman [1] extended this
approach to indefinite symmetric matrices. This method is good in theory, but
no computational experience is mentioned in [1], and it is the experience of the
present authors that the method will usually not converge on large problems.

Both the CGM and the method of minimized iterations are directly related
to the very basic algorithm developed by Lanczos [4] for tridiagonalizing A,
as is explained in [3]. The Lanczos process does not require A to be definite and
so is a good starting point for developing algorithms for solving (1.1) with in-
definite A. A description of the Lanczos process is given in § 3, and the method of
conjugate gradients is developed from it in § 4. This gives computational insights
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into the method and leads to two new algorithms that may be used when 4 is
indefinite ; these are described in §§ 5 and 6. The method in § 6 can also be used if
A is singular and (1.1) is not a consistent set of equations, and some properties of
this method are developed in § 7.

When linear least squares problems are put in the form (1.1), as in [12],
the symmetric matrix A will be indefinite with some zero subblocks. If these prob-
lems are large and sparse, then the new methods given here could be used. When
there are no constraints the algorithms can be simplified to take advantage of the
special form of A, saving storage and computation. This is described in [10],
which also contains FORTRAN subroutines for both indefinite symmetric systems
and the unconstrained least squares problem. However, as a better method has
been found for least squares which is not a direct simplification of the symmetric
case, it will be treated in a separate paper.

Computational results for the new algorithms are discussed in § 8, and these
indicate that they give accurate results, often in much less than n steps. A rounding
error analysis of algorithms of this type will be given in a later report.

The methods given here for symmetric indefinite systems would appear to
be superior to those in [1], [7], [8], as the latter present some difficult unsettled
problems when routine practical application is considered. These particular
problems do not arise here, since the particular development of the algorithms
from the Lanczos process allows a good understanding of their numerical proper-
ties and so some possible numerical instabilities have been avoided.

In the text upper case italic letters denote matrices, lower case italic denote
vectors and lower case Greek denote scalars. The exceptions are ¢ and s (not used
as a superscript), which denote cosine and sine. The symbol || - | denotes the
2-norm of a vector or matrix.

2. General theory. Given the set of equations
(2.1) r+ Ax = b, Ar =0,

where A4 is a real n x n symmetric matrix which may be both indefinite and
singular, we will consider computing various approximations to x of the form
Vo, Ve =[v,,v,, -, v, where the v, are a given set of linearly independent
vectors. In particular, we will look for solutions x, = V,y, which give stationary
values to

(22) fuly) = (4Vy — bTB(AVy — b),
where B is some symmetric matrix; thus f,(y) will be a norm of the residual if B
is positive definite. Note that this is just a theoretical tool that will lead to different

methods and that B will not be required explicitly.
The function f,(y) has a stationary value at y, if

(2.3) VIABAV,y, = VI ABb,

that is, if
(2.4) VIABr, =0, re = b — Ax,,
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and the methods to be considered will essentially try to solve (2.3). Since the
second derivative of f,(y) is 2V ABAV,, it follows that if ABA is positive definite,
there is a unique y that minimizes fi(y). If ABA is only positive semidefinite, then
the minimizing y is not necessarily unique, while if ABA is indefinite, we only
have a stationary point of f,(y). In any case, X, is an approximation to the solution
in the sense that the residual is restricted to the nullspace of V¥ AB, and V, can be
chosen to reduce the dimension of this nullspace with increasing k.

An obvious choice for Bis A™ for some integer m, and we will restrict ourselves
to this case. Choosing m = —2 would essentially require a knowledge of x on
the right-hand side of (2.3), and for m < —2, solving (2.3) would appear to require
at least as much knowledge as solving the original problem. The choicesm = —1,0
appear to be the most useful and will now be considered.

Case (a). Taking m = —1 would give B = A~, but to allow for the more
general case of singular A, we take B = A, where A~ is a generalized inverse of
A such that A4~ is the orthogonal projector onto %(A), the range of 4. With this
choice, we have from (2.1)

AA™b = AATr + AA” Ax = Ax,
and (2.3) becomes
(2.5) ' VIAV,y, = VIAx = VIb — V7,

which cannot be solved directly for y, unless a value for V[r is known. We will
consider only the case V{r = 0, so the method will be applicable if r = 0 or
v,eAR(A),i=1,---,k, and then

(2.6) ViAViye = Vib,  x, = Viyi

gives a stationary value of (2.2) with B = A~. If the columns of V; span %(A),
then we have the least squares solution of minimum length.
Case (b). Taking m = 0 gives B = I, and we can minimize |r,| by solving

27 VIAWay = Vidb,  x, =V,
where y has been replaced by u to avoid confusion with (2.6). Furthermore, if
Uy, -, U, Span %(A), then x, is the minimum length least squares solution of

(2.1). We will call methods based on (2.7) minimum residual methods. A possible
danger with these is that if 4 is poorly conditioned for solutions of equations, then
the condition of the problem (2.7) can be much worse. Values of m > 0 would
lead to more poorly conditioned problems still and will not be examined here.

3. The Lanczos vectors. If the vectors v,, - - -, v, in § 2 are computed by the
Lanczos algorithm [4], then some important and computationally useful simpli-
fications result. In particular, algorithms arise which are useful for large sparse
matrices : for example the method of conjugate gradients.

The initial vector we will use in the Lanczos algorithm will be

(3.1 vy ="b/B1,  Br=bll;

there are indications that this choice, and possibly v, = Ab/|| Ab||, are the most
computationally viable ones for solving large problems of the form (2.1).
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If we have an initial approximation x, to x in (2.1), then we change the prob-
lem to

r+Ag=ro=b—Ax,, Ar=0, x=x,+¢g,

and proceed as before. With the choice of v, in (3.1), we restrict ourselves to the
case of r = 0 in § 2, Case (a), though there is no such restriction on Case (b).

A satisfactory computational variant of the Lanczos algorithm [9] has as its
jth step, defining vy, = 0,

(3.2) Biv10j4qr = Av; — oo, — By, a; = v] A,
with $;,; = 0 chosen so that |[v;, || = 1. After the kth step,
B2

AV Vil + Boensef, = |72 P ,
(3.3) '
B o
ViVi=T=[er, -, e, Vivee, = 0.

The process will be terminated at the first zero f;, so from now on we can assume
that §; #0, j=1,---, k.

From (3.3) and (3.1), we have VfAV, = T, and Vb = B,e;, and with this
choice of vectors in § 2 Case (a), (2.6) becomes

(3.4 Tiyx = Biey, xx = Vidk,

where the superscript ¢ indicates that it is the solution that would be obtained
using the method of conjugate gradients, as will now be explained.

4. Derivation of the conjugate gradients method from the Lanczos process. The
conjugate gradients method [2] can be developed in a straightforward manner
from the Lanczos process. The purpose of giving this development here is to
divide the conjugate gradients method into separate computational algorithms
whose numerical properties are more clearly understood ; this leads to some new

and useful methods.
If A is positive definite then so is T = Vi AV, in(3.4), and hence the Cholesky

factorization
(4.1) T, = L%

exists. Here 9, is diagonal with positive elements, and %, is unit lower bidiagonal,
and these can be developed as k increases. Unfortunately y, in (3.4) changes fully
with each increase in k, and so V,y, cannot be accumulated as k increases. This
difficulty can be overcome if we define p, = £fy, and C, = V;Z, " so that (3.4)
becomes

4.2) LD = ey, Xi = Cipy-

The columns of C, can be found in ascending order by solving

(4.3) ZCt=Vv{
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for the rows of C¥, and since p, can be developed similarly from (4.2), it follows
that xj; = C,p, can be accumulated as the algorithm progresses, and the columns
of ¥, and C, need not be kept once they have been used in the Lanczos algorithm
and in forming xj. The columns of C, are 4-conjugate, since

(4.4) CiAC, = L' T.%: " = 9,

and a comparison with [3] shows that this method is mathematically equivalent
to the method of conjugate gradients. The approach here is computationally a
little different, for example, involving unnecessary normalization of the Lanczos
vectors ; but the advantages are that it emphasizes how the method is based on the
Lanczos algorithm, with the eigenvalues and therefore the spectral condition
number, of T, approaching those of A as k increases. Furthermore, the role of the
Cholesky decomposition becomes apparent, with the subsequent need for A4
to be positive definite to ensure numerical stability.

If 4 is an indefinite symmetric matrix, then the factorization (4.1) can still
be tried, often with success, but it does not always exist and can no longer be relied
upon numerically.

5. An algorithm for indefinite symmetric systems. The possible failure of the
method of conjugate gradients in problems involving indefinite symmetric matrices
leaves a need for a numerically stable method based on the Lanczos vectors.
Several such methods are possible, using various stable factorizations of T; in
(3.4), but the method we found to be most theoretically and numerically satisfying
is that based on the orthogonal factorization

(5'1) 7;c = Eka’ QkTQk =1,

with L, lower triangular. The bar is used to indicate that L, differs from the k x k
leading part of L, in the (k, k) element only. As before y, in (3.4) need not be
computed ; instead, if we define

(52) Wcz[wl""awk—lawaEV;Ql{’
(53) Ze= s Ge 007 = Qo
then (3.4) becomes

(5:4) Lz, = Pey, X = Wiz,

and it turns out once more that the v; and w; can be formed, used and discarded
one by one. This gives mathematically the same solution as does conjugate
gradients, but here the factorization is numerically stable even when T, is indefinite.

The factorization (5.1) can be obtained by a series of orthonormal matrices
Q.+, cach of which differs from the unit matrix only in the elements

9ii = —qiv1,i+1 =€ =C€080;,G; ;11 = qi1,; = 5; = sin 0. Thus
(71 )
02 72
(5.5) LQ12 Q-1 = TO{ = L= &3 03 73 >

L & Ox Jx
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where in the next step we compute
(5.6) =G + Bes )V, k= T/ Vi> Sk = B+ 1/Vk-

In the following discussion we will use L, to denote L, with 7, replaced
by y,. Similarly, following (5.2) and (5.3), we define z, = ({;, -, ()" and
W, = [w,, -, w,], where z, is found from

(5.7) Lyz, = ey,
so from (5.4) and (5.6)
(5.8) & = Bl = alis
finally from (5.2) and the form of Q ;. in (5.5) we have
_ Cy Sk _ o
(59) (Wi, Uk 1] = [Wi, Wir1]s with w; = v;.
Sk —Ck

Although the rotation matrices Q;;,; allow an easy description of the
decomposition of T,, Professor B. Parlett pointed out that a saving can be made
by using the fast Givens transformations introduced by Gentleman [13], [14].
Equations (5.1) and (5.2) can be combined to give

LV, WK) = QT Vi),

showing that L, and W, are obtained by transforming (T, V1) to upper trapezoidal
form. By using fast transformations to do this, we obtain diagonal D,, lower
triangular L,, and W, such that

Qu T, Vi) = DULY, W).
It turns out that this use of stable 2 or 3 multiplication rotations can give a saving

of about n multiplications per step over the algorithm SYMMLQ programmed in
[10]. Combining the above two equations with (5.4) then gives

Lz, = LiDyzy = Brey,
I =y
xp = Wiz = WDz, = By Wil “e;.

However, for simplicity we will continue with the description that uses ordinary
rotations.

The algorithm defined by (5.1) to (5.4) should not be implemented directly,
since it is wasteful to update x§ fully each step in (5.4), while if L, is singular in (5.4)
then Z, is undefined. Instead we see from (5.5) and (5.6) that L, is nonsingular if
Bi+1 # 0,50 z, is defined in (5.7), and rather than updating xj each step, we update

(5.10) xi = Wiz = xi—1 + {we,
where L indicates we are using L, rather than L,. Since (5.4) and (5.10) show that
(5.11) Xia1 = X + Ger 1Wer 1

we are always able to obtain x{ , , if it is needed. Because L, has better condition
than L,, solving (5.7) will probably also give better numerical results than solving
(5.4).
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In theory, the Lanczos iteration will stop with some f,,; = 0, and then
X{ = xt = x, but in practice it is rare to have even a very small S, ;, and some
other stopping criterion must be used ; here x§ and x+ will be different, and the one
which gives the smaller residual would usually be chosen. x{, is often a much better
approximation to x than x£, and so (5.11) is usually carried out at the end of the
iteration ; there is no facility for doing this in the version of our algorithm described
by Lawson [6], but it is included in the FORTRAN subroutine SYMMLQ in [10].
Note that W, has orthonormal columns, so that if

(5.12) dk = x — xf, &= x — xg,

then df, but not df, must decrease in 2-norm every step. Thus xf is the best approxi-
mation to x lying in the space spanned by w, ---, w, and is monotonically in-
creasing in size every step ; apparently this space is usually not as good an approxi-
mation space as that spanned by wy, -+, w,_, W,.

For the algorithm using (5.7) and (5.10) to be theoretically well-defined it is
still necessary to show that there is no possibility of L, being singular. Now from
the discussion following (2.5) and the choice of v, in (3.1), we see that methods
based on (3.4) will only be useful when r = 0in (2.1), in which case (3.2) shows that
v;€R(A),i = 1,---, k; but the only possibility of L, being singular is if §,,; = 0,
giving AV, = V, T, in (3.3), from which we see that T, cannot be singular. We see
then that L, = L, = T,QF cannot be singular in (5.7), and therefore z, = z, must
be well-defined at the final step, even if §,,, = 0.

In any practical computation, we will be interested in monitoring the size of
the residual, usually to decide when to terminate, so when L, is nonsingular, we
see from (3.1), (3.4) and (3.3), that

(5.13) re=b— Axg = vy — AViyi .
= B1v; — ViTiyk — B+ 10+ 1€ Yk = — Bic+ 1MV + 15

where 7, is the kth element of y,. The vector y, is not directly available in the
computation, but since T, = Ty = Qi L{, (3.4) gives

(5.14) Liye = B1Qer,

and from the last element on each side

(5.15) il = B1S1S2 *+* Sk—1,
so with (5.6)

(5.16) e = —(B15152 ** S /C)V+1-

Thus ||r¢| is directly available without ever forming xj, and in fact, it will be shown

in a later paper that when rounding errors are present, the norm of the residual

using (5.16) is within O(e)|| Al || x| of the true residual norm corresponding to the

computed x§, where ¢ specifies the relative accuracy of floating-point computation.
A slightly longer algebraic manipulation shows that

(5.17) rl’f =0 - Axllc‘ = VPt 10k 1041 — 8+ 20kVk+2
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so that
(5-18) I7Ell? = yes1livs + f42lh

is directly available during the computation and may be used to decide whether
to exit with x§ or xf. Finally, it is theoretically interesting to compare these two
approximations to x. From (5.11), (5.10) and (5.8), it follows that

xi = x¢ + G(Wi/ew — wy),
but from (5.9) W, = ¢,wy + S Wi+, gIVing
(5.19) Xk = Xk + S/ )W+ 15

and since from (5.2) WIw,,; = 0, we see from (5.10) that w,, ; and xF are ortho-
gonal, so that

(5.20) Ikl = lIxgll-
For later reference, we shall call the method of this section SYMMLQ.

6. The minimum residual method. We will now examine the simplifications
that result when we use the Lanczos vectors in the minimum residual method
described in § 2 Case (b). From (3.3) we see that

(6.1) : ViA* Vi = T} + Bisieser,
(6.2) VIAb = B,VTAv, = By Tre,.

The matrix in (6.1) is pentadiagonal and at least positive semidefinite, and so
could be used directly in (2.7) with the Cholesky decomposition, in a very similar
manner to the method of conjugate gradients. Forming the matrix in (6.1) and
then factorizing would lead to an unnecessary loss of accuracy, but fortunately
there is a simpler approach.

If we carry out the orthogonal factorization in (5.5) and use (5.6) we see that

(6.3) Ti + Birieer = LiL{ + Bivreed = LiL{,

so that we have the Cholesky factor directly from T,. In (2.7), we then have to solve
(6.4) LiLiw = B1LiQue; -

But since from (5.5) and (5.6)

(6.5) L, = L.D,, D, = diag(1,1,---, 1,¢y),

and while L, is nonsingular, (6.4) gives

(6.6) Liw, = B:DyQue; = (11, -+, w)" = 1,

6.7) 7, = B¢y, T; = 15185 - Si_1Cys i=2,---,k,

so there is minimal error in computing L{u,. Clearly u, cannot be found until
the algorithm is completed, but it is not really needed ; instead we form

(68) MkE[ml""’ka= I/kl‘k_T
column by column (cf. (4.3)), and then in (2.7)
(6.9) x¢' = Ve = Vil TLiw, = My,
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where t, is developed in (6.7), and the superscript M shows this is the vector which
gives the minimum residual. Again it can be seen that previous vectors need not
be held, and this is ideal for very large sparse matrices.

Note that much of the ill-conditioning suggested by (2.7) has been avoided,
but nevertheless, as k increases the condition number of L, in (6.8) approaches
that of A, so that if A is ill-conditioned then some of the vectors m, arising in (6.8)
could be very large and somewhat in error, leading to errors in x}' in (6.9). In fact,
this minimum residual method has been found to suffer a little computationally
on very poorly conditioned problems, whereas no such trouble has been found
with the method in § 5. This is probably because the vectors w; in (5.10) are theoreti-
cally orthonormal.

The minimum residual method could also have been derived by considering
solving (3.4) using a QR factorization of T. For since from (5.1) Tf = T, = Q{L{,
(3.4) becomes

(6.10) Liye = B1Qsers Xk = VL)~ "L yxs
and a small change to make the computation slightly faster by using (6.5) leads to
(6.11) xt' = ViLy T(B1DiQiey)-

In fact, x{ could be found from (6.10) or via (6.11), but neither way is as accurate
as the method in § 5 for the same reasons that the minimum residual method is
suspect.

The minimum residual method will later be referred to as MINRES.

7. Some properties of the minimum residual method. The minimum residual
method described in § 6 does not give as accurate results as the method in § 5
when the problem is very ill-conditioned, but it still appears to give very good
results in other cases. It can also be used for inconsistent equations whereas
the method as described in § 5 cannot. Furthermore, as the only way we have of
deciding when to terminate the iteration is by testing the size of the residual, the
method which minimizes this is likely to take fewer iterations than other methods.
The other methods occasionally took a significant percentage more iterations
than the minimum residual method, and so it will be of interest to examine the
latter method further.

It is straightforward to compare x' with x{, for (3.4) and (6.8) give

Xp = Vil TL{yx = M{L{y,,
0Ty = Ly = B1Qiers
so with (6.5) and (6.6)
xi = M Dy 'Ly, = M, Dy *t,
(7.1) = xM + ey ? — Dmy = xM + t,(s/ci)*my.
Note that x§ can easily be obtained during the computation of x}, but the reverse

is not true. The m, and w; are related in a simple manner, for if the Lanczos process
stops with f,,4; = 0, then 4V, = V, T,,, T,, = L,Q,,,and M,, = V,,L, 7, so

(72) AM,, = Vo T,L;" = V0% = W,
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Using this result with (7.1) gives
(7.3) il = 1= Al — xi) = s/ Wi,
so that with (5.16) and (6.7)
re =b — At = P11y SSWi — Ver 1)/

but from (5.9) v,4 ;= $W, — C,Wi+ 1, SO

(7.4) el = B1S1Sz St 1 [Wes =1,
which shows clearly how the residual norm decreases each step. Also using (5.16),
(7.5) 70 = led lIrill < lirl

except at the last step, where theoretically s, = 0.

It is interesting to note from (5.16) and (7.4) that the sizes of the residuals
rf and rM are given directly by the size of b and the LQ decomposition of T}, ,,
and so are immediately available whichever of these algorithms is used. Equation
(5.18) shows that ||rE| is also available if (5.7) is solved.

8. Computational experience. Algorithms SYMMLQ and MINRES have
been programmed and tested on various systems of equations in order to obtain
an impression of their numerical properties. A comparison has also been made in
some cases with Reid’s version 2 of the conjugate gradients method (CGM) [11].
We make the following observations.

1. On symmetric positive definite systems, SYMMLQ gives essentially
the same results as CGM. For example, the problem involving the Laplacian
matrix of order 4080 (15 x 16 x 17 grid) was solved with SYMMLQ under the
same conditions as described by Reid [11] for CGM, viz., single precision on the
IBM System/360. A graph of ||x — x| lagged markedly behind the curve for
CGM shown in [11, Fig. 3], but SYMMLQ terminated at the same point as
CGM by taking a final step from xj to x§ , ; asin (5.11). For test purposes all points
x¢,, were computed from the points xf, and the quantities ||x — x§| were seen
to follow the curve in [11, Fig. 3] almost exactly.

2. Although SYMMLQ obtains the same final point as CGM, it is clear that
for positive definite systems CGM is to be preferred as it is more efficient.

3. The variant of CGM described in §4 gave almost identical results for
positive definite matrices as CGM in [11]. This confirms that the derivation of
CGM from the Lanczos vectors and the Cholesky factorization of T, is computa-
tionally similar to CGM, aside from their mathematical equivalence.

4. Algorithm MINRES has behaved well on some examples involving the
2-dimensional Laplacean matrix, giving a rapid and very smooth decrease in
both |[¥¥| and |x — x}||. On the other very ill-conditioned problems the estimate
of |[¥¥| in (7.4) decreased steadily but departed from the true ||| and thus caused
premature termination. In such cases, it was also observed that if iterations were
continued, the true ||r¥|| stayed essentially constant while the true error | x — x|
continued to decrease until it reached quite an acceptably low level.

5. Anexcellent application of SYMMLQ and MINRES is in solving symmetric
systems of the form (4 — ul)x = b in the style of inverse iteration, since if p is
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near an interior eigenvalue A of 4, the matrix A — pl is indefinite. If x is sufficiently
close to A and b is chosen appropriately then the computed x will bé a good
approximation to an eigenvector of 4, and in practice it appears that the number of
iterations required by SYMMLQ or MINRES is very small. In [15] Ruhe and
Wiberg used CGM when A — ul was definite, or nearly so. Here there are no such
restrictions.

6. Figure 1 illustrates the behavior of SYMMLQ on a symmetric system
(B? — ul)x = b of order n = 50, where u = \/5 is not near an eigenvalue of B>
but was chosen to make the system indefinite. The matrix B is tridiagonal with
typical nonzero row elements (—1, 2, —1), so that B? is pentadiagonal with
typical row (1, —4,6, —4,1). Computation was performed on a Burroughs
B 6700 with floating-point precision ¢ = 8 12 = 1.455 x 1071,

Estimates of the size of the residual vectors rf, § and r¥ are all available
from SYMMLQ, and these were used to give estimates of log; [7¢|l, 10g10 7¢I,
log,, M| which are plotted in Fig. 1 against iteration number k. Of interest is
the sharp reduction in residual obtained by taking a final step from x%, to the
CGM point x5; (see dotted line in Fig. 1). Note also the sharp jumps in ||ri]| at
k = 11 and 24. These indicate regions of instability in the CGM sequence xj,

— logyo k] (sTMMLQ)

e 10y ||,~<k3|| (CGM)
w10, 0 | ] (MINRE'S)

T

0
o
T

k = iteration no.

PR YN YOO NN TR SRUNY SN0 (NN WA WY YUY WA UUNNY SN N WU NSO ST S T N W WS W RO WA S St

5 10 15 20 25 30

FiG. 1. Solution of an indefinite symmetric system of equations (B> — ul)x = b, using subroutine
SYMMLQ
Notes 1. Dimension of system is n = 50; u is not close to an eigenvalue of B.
2. rk, S, rM are residual vectors for iteration paths taken by algorithms SYMMLQ, CGM,
MINRES, respectively. Estimates of the norms of these quantities are all computed by
subroutine SYMMLQ.
3. Note large jumps in the size of ||r;||, reflecting intermediate near-singularities which would
cause the standard method of conjugate gradients to break down.
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as described more fully in the next section, and if the standard method of conjugate
gradients were used to compute the points xj, it is to be expected that the iterates
[ré] would diverge from the path shown.

The final residual norm obtained was 7.83 x 10~°, while the computed
estimate of |45 was 7.65 x 10~°. This illustrates that the computed estimate of
5] remains a good measure of the residual for the computed point x§, in spite of
the fact that the computed points are significantly different from those that would
be obtained with exact computation. The same is true of the computed estimate of
7).

9. Summary. We can now distinguish two reasons why the method of con-
jugate gradients (CGM) may fail to solve the symmetric system Ax = b if 4 is
not positive (or negative) definite. Recall that CGM attempts to compute a sequence
of approximations to x§ which satisfy

(9’1) xfczl/ka_lﬂlel7 k=172"",m

for some m > 0, where VIV, = I, VI AV, = T, and the matrices T, are tridiagonal,
with T,,, having T, as its k x k principal submatrix. Recall also that CGM
effectively computes the Cholesky factorization of each T,. The basic problem
we must contend with is the following:

If 4 is indefinite, it is possible for some T, to be singular or nearly singular

(k < m), even if T,, is well conditioned.

Now if T is nearly singular it happens that the Cholesky factorization of T; is
poorly determined numerically for all j > k. Even more seriously, if T, is singular
the corresponding point x{ in (9.1) is not properly defined. Thus we see that
CGM’s use of (9.1) is doubly doomed to failure.

The main features of algorithms SYMMLQ and MINRES can now be put
into perspective. First of all, the orthogonal factorization T, = L,Q, is well
defined regardless of any near-singularities in T; for j < k. In fact, as (5.11) and
(5.19) show, we could compute the CGM sequence of points using

9.2) xf = Xp_1 4+ (G — Com1Sk—1/Ch— )Wk

without the aid of the Cholesky factorization ; but the more fundamental difficulty
remains that xj does not exist if T}, and hence L, are singular. In such cases {,
in (9.2) is undefined.

Secondly, then, instead of using L, to compute the CGM sequence x§, we
define two new sequences x£ and x) in terms of a matrix L, which is the k x k
principal submatrix of L, , and is guaranteed to be nonsingular. By this means,
we effectively step around any irrelevant intermediate singularities in the CGM
sequence (9.1). Some near-singularities are shown by the peaks in ||| in Fig. 1.
We see from (5.6) and (7.5) that ||ri|| = |[rM] - Iyil/I74] so we will get a large jump in
|74 when T, is nearly singular but A is not.

Finally we note that the CGM points xj are not to be discarded completely,
since at least half of them are well defined by (9.1). This can be seen from the fact
that if both T; and T, , are singular then so are all T;, j = k; hence if A is non-
singular, there cannot be two singular 7;’s in a row. Thus in algorithm SYMMLQ
provision is made to terminate iterations at a CGM point whenever advantageous.
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