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Notes 7: PDCO – Primal-Dual Interior Methods

1 Interior methods for linear optimization

First we consider “vanilla” LO problems of the form

LO minimize
x

cTx

subject to
Ax = b, : y
x ≥ 0, : z

where A ∈ Rm×n and (y, z) are the dual variables for the general constraints and bounds.
We assume m ≤ n and rank(A) = m. The dual problem is

LD minimize
y, z

−bTy

subject to
ATy + z = c, : w

z ≥ 0, : x

where w = −x (so will not appear further). We assume that there exists a point (x, y, z)
that is primal-dual feasible:

Ax = b, x ≥ 0, ATy + z = c, z ≥ 0.

We further assume that the interior-point condition is satisfied: that there exists a primal-
dual feasible point (x, y, z) that is strictly interior to the bounds:

Ax = b, x > 0, ATy + z = c, z > 0.

Some important results follow from the feasibility assumption. First note that if (x, y, z)
is primal-dual feasible, then

cTx = xTATy + xTz = bTy + xTz ≥ bTy,

so that xTz is an important quantity. Indeed it is zero at an optimal solution.

Strong Duality If (x∗, y∗, z∗) is a primal-dual feasible point, cTx∗ = bTy∗ and x∗Tz∗ = 0.

Strict Complementarity (Goldman and Tucker [6]) There exists a primal-dual feasible
point (x∗, y∗, z∗) such that x∗Tz∗ = 0 and x∗ + z∗ > 0.

Interior methods (often called interior-point methods or IPMs) differ from primal or
dual simplex methods in their handling of the bounds on x and z and their treatment of
the complementarity condition xTz = 0.

First note that the optimality conditions for LO and LD may be stated as

Ax = b, (1)

ATy + z = c, (2)

Xz = 0, (3)

x, z ≥ 0, (4)

where X = diag(xj) and constraints (3)–(4) are a nonlinear way of imposing the comple-
mentarity condition. (They are a more direct statement of the requirement that at least one
of each pair (xj , zj) be zero, j = 1 :n.) We could replace (3) by the single equation xTz = 0,
or we could replace (3)–(4) by the Matlab-type vector expression min(x, z) = 0. However,
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interior methods advanced dramatically following Megiddo’s 1986 proposal to work with a
perturbed form of Xz = 0 [13].

Simplex methods satisfy the complementarity condition at all times. Primal Simplex
satisfies (1)–(3) and x ≥ 0 while iterating until z ≥ 0. Dual Simplex satisfies (1)–(3) and
z ≥ 0 while iterating until x ≥ 0. In contrast, primal-dual interior methods satisfy x > 0
and z > 0 throughout while iterating to satisfy (1)–(3). A key concept is to parameterize
the complementarity equation and work with the nonlinear system

Ax = b,

ATy + z = c, (5)

Xz = µe,

where e is a vector of 1s and µ > 0. The conditions x > 0, z > 0 are understood to hold
throughout. The interior-point condition ensures that a solution exists for at least some
µ > 0. In fact, (5) gives the unique solution of the convex problem

CO(µ) minimize
x

cTx− µ
∑

j ln(xj)

subject to Ax = b, x > 0,

which is well defined for all µ > 0. The infinite sequence of solutions {(x(µ), y(µ), z(µ))}
for µ > 0 is called the central path for LO and LD.

Primal-dual IPMs apply Newton’s method for nonlinear equations to system (5) with µ
decreasing toward zero in discrete stages. A vital concept is the proximity of the current
estimate (x, y, z) to the central path. The current value of µ is retained for each Newton step
until some measure of proximity is suitably small; for example, max(Xz)/min(Xz) ≤ 1000.
Then µ is reduced in some way (e.g., to (1−α)µ, α ∈ (0, 1)) and Newton’s method continues.

Much research has occurred on interior methods since the mid 1980s (a revival after much
earlier work on penalty and barrier methods). The monograph by Peng, Roos and Terlaky
[20] summarizes much of the theory behind modern IPMs for LO and other problems, and
gives a novel approach to measuring proximity. See also Nocedal and Wright [15].

1.1 The Newton system

Linearizing (5) at the current estimate (x, y, z) gives the following equation for the Newton
direction (∆x,∆y,∆z):A AT I

Z X

∆x
∆y
∆z

 =

r1

r2

r3

 ≡

 b−Ax
c−ATy − z
µe−Xz

 , (6)

where Z = diag(zj). We can expect A to be a very large sparse matrix. In some applications,
A may be an operator for which products Av and ATw can be computed for arbitrary v, w.

Note that X and Z are positive-definite diagonal matrices with no large elements but
increasingly many small elements as µ→ 0 (since xjzj → µ as Newton’s method converges
for any given µ). Thus, X and Z both become increasingly ill-conditioned.

This need not imply that system (6) is ill-conditioned (although it may be). If the
iterates stay reasonably near the central path, we know that either xj or zj will be larger
than

√
µ. Scaling the jth row of X and Z by max{xj , zj} should keep the condition of the

3× 3 block matrix similar to the condition of A.
We can make (6) structurally symmetric by interchanging the first two rows: AT I

A
Z X

∆x
∆y
∆z

 =

r2

r1

r3

 . (7)
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This is equivalent to the symmetric system AT Z1/2

A
Z1/2 X

 ∆x
∆y

Z−1/2∆z

 =

 r2

r1

Z−1/2r3

 , (8)

which may be helpful for some sparse-matrix solvers of the future. Indeed, Greif, Moulding,
and Orban [8] analyze the eigenvalues of a similar system for convex quadratic optimization
and advocate working directly with that system rather than eliminating variables.

Nevertheless, systems (6)–(8) are large. Much research has been devoted to finding
efficient and reliable numerical methods for solving such systems by eliminating blocks of
variables to reduce their size. First, it seems reasonable to regard I as a safe block pivot to
eliminate ∆z from (6). Permuting I to the top left gives I AT

X Z
A

∆z
∆x
∆y

 =

r2

r3

r1

 . (9)

Subtracting X times the first equation from the second gives(
Z −XAT

A

)(
∆x
∆y

)
=

(
r3 −Xr2

r1

)
and ∆z = r2 −AT∆y. (10)

Alternatively we can permute X to the top left:X Z
I AT

A

∆z
∆x
∆y

 =

r3

r2

r1

 . (11)

Using X as a (dangerous!) block pivot and defining r4 = r2 −X−1r3 gives(
−X−1Z AT

A

)(
∆x
∆y

)
=

(
r4

r1

)
and X∆z = r3 − Z∆x. (12)

The hard part is solving the 2× 2 block systems in (10) or (12). Those who like to live
dangerously (or don’t know any better!) use Z in (10) or X−1Z in (12) as a block pivot to
eliminate ∆x, giving

A(Z−1X)AT∆y = r1 +AZ−1(Xr2 − r3), Z∆x = r3 −Xr2.

Defining D2 = XZ−1 gives

AD2AT∆y = r1 +AD2r4, ∆x = D2
(
AT∆y − r4

)
. (13)

Often r1 reaches zero before the other residuals (if a full step ∆x is taken). System (13)
is then the “normal equations” for the least-squares problem

min
∆y
‖Dr4 −DAT∆y‖2.

Although this casts immediate doubt, system (13) has better numerical properties than one
might think, as long as the iterates stay near the central path (r3 small); see Wright [27, 28].
Many implementations are based on (13).

The main advantage of the normal-equations approach is that standard sparse Cholesky
factorizations may be applied to AD2AT. A single call to the Analyze (ordering) procedure
suffices because only D changes. Most of the work for solving an LO problem goes into
factorizing only 20 to 50 matrices with constant sparsity pattern. Since parallel Cholesky
factorizations exist (MUMPS [14], PARDISO [18], POOCLAPACK [22, 9], WSMP [30]), it
becomes clear that interior methods are much easier to parallelize than simplex methods.
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1.2 Augmented systems

A mechanical difficulty with (13) is that if A contains one or more rather dense columns,
the matrix AD2AT will itself be very dense (let alone its factorization). Various devices have
been proposed to alleviate this difficulty, but each tends to cast further numerical doubt on
the normal-equations approach.

Returning to the 2 × 2 system (10), we may symmetrize it in various ways. For ex-
ample, a similarity transformation involving ∆x = X1/2∆x̄ preserves the eigenvalues (but
unfortunately not the singular values!):(

−Z X1/2AT

AX1/2

)(
∆x̄
∆y

)
=

(
X1/2r2 −X−1/2r3

r1

)
. (14)

Alternatively, with ∆x = β∆x̃, the equivalent system(
−βI DAT

AD

)(
∆x̃
∆y

)
=

(
r4

r1/β

)
(15)

has good numerical properties if β is judiciously small (and r1 is not too large). Fourer and
Mehrotra [4] obtained good performance applying their own symmetric indefinite LBLT

factorizer (involving block-diagonal B with blocks of order 1 or 2).
System (12) can also be solved using an LBLT factorization. Wright [29] has analyzed

this approach for both non-degenerate and degenerate LO problems and shown it to be
more reliable than expected from the block-pivot on X.

1.3 Quasi-definite systems

Sparse Cholesky-type factorizations of augmented systems became viable with the concept
of symmetric quasi-definite matrices (Vanderbei [25]) and the advent of LOQO [12, 26].
By judicious formulation of the LO problem itself, Vanderbei ensures that the augmented
systems have the form

M =

(
−E AT

A F

)
, (16)

where E and F are positive definite. Factorizations PMPT = LDLT exist for arbitrary
symmetric permutations P , with D diagonal but indefinite.

Such factorizations are easier to justify with the help of certain perturbations to the LO
problem, as discussed next.

2 Regularized linear optimization

To improve the reliability of Newton’s method, and to generate quasi-definite formulations
with guaranteed stability, we consider perturbations to problem LO. We define a regularized
LO problem to be

LO(γ, δ) minimize
x, r

cTx+ 1
2‖γx‖

2 + 1
2‖r‖

2

subject to Ax+ δr = b, x ≥ 0,

where γ and δ are typically 10−3 or 10−4 on machines with today’s normal 15–16 digit
floating-point arithmetic. (We assume that the data (A, b, c) have been scaled to be of order
1.) With positive perturbations, LO(γ, δ) is really a strictly convex quadratic problem with
a unique, bounded, optimal solution (x, r, y, z). Small values of γ and δ help keep this unique
solution near a solution of the unperturbed LO. For least-squares applications we set δ = 1.
(Such problems tend to be easier to solve.)
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2.1 The barrier approach

As before, we replace the non-negativity constraints by the log barrier function to obtain a
sequence of convex subproblems with decreasing values of µ:

CO(γ, δ, µ) minimize
x, r

cTx+ 1
2‖γx‖

2 + 1
2‖r‖

2 − µ
∑

j lnxj

subject to Ax+ δr = b,

where µ > 0 and x > 0 are understood. The first-order optimality conditions state that the
gradient of the subproblem objective should be a linear combination of the gradients of the
primal constraint. Thus,

Ax+ δr = b, ATy = c+ γ2x− µX−1e, δy = r,

where X = diag(x), y is a vector of dual variables, and e is a vector of 1s. Defining
z = µX−1e and immediately converting to the equivalent condition Xz = µe, we obtain a
system of nonlinear equations that has a unique solution for each µ:

Ax+ δ2y = b
ATy + z = c+ γ2x

Xz = µe,
(17)

where we have eliminated r = δy. These are the parameterized nonlinear equations for
LO(γ, δ) corresponding to (5) for the vanilla LO problem. Since the perturbations appear
as γ2 and δ2, they tend to be negligible on well behaved problems (with ‖x‖ and ‖y‖ of
order 1). Otherwise they help prevent those norms from becoming large.

We now apply Newton’s method for nonlinear equations, with a steplength restriction
to ensure that the estimates of x and z remain strictly positive.

2.2 The Newton system

Linearizing (17) at the current estimate (x, y, z) gives the system A δ2I
−γ2I AT I
Z X

∆x
∆y
∆z

 =

r1

r2

r3

 ≡

 b−Ax− δ2y
c+ γ2x−ATy − z

µe−Xz

 , (18)

where Z = diag(zj). The analogue of (12) is(
−(X−1Z + γ2I) AT

A δ2I

)(
∆x
∆y

)
=

(
r4

r1

)
(19)

with r4 = r2 −X−1r3 again. Defining D2 = (X−1Z + γ2I)−1, we have(
AD2AT + δ2I

)
∆y = AD2r4 + r1 (20)

with ∆x = D2
(
AT∆y− r4

)
as before. Regularization reduces the condition of both D2 and

(AD2AT + δ2I
)
, thereby helping the normal-equations approach.

2.3 Quasi-definite systems

With γ and δ positive, we recognize system (19) to be symmetric quasi-definite (SQD).
Thus, an indefinite Cholesky-type factorization exists for any symmetric permutation. The
question is, under what conditions are the SQD factors stable?
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First note that if M in (16) is SQD, then the matrix M̄ = MĪ is positive definite:

Ī =

(
−I

I

)
, z =

(
x
y

)
,

M̄ = MĪ =

(
E AT

−A F

)
, zTM̄z = xTEx+ yTFy ≥ 0.

More generally, we find that for any permutation P ,

PMPT = LDLT if and only if PM̄PT = LD̃U,

where Ĩ ≡ P ĪPT , D̃ ≡ DĨ, and U = ĨLT Ĩ. (Both L and U have unit diagonals, and D and

D̃ are indefinite but nonsingular diagonal matrices.) Thus, Golub and Van Loan’s analysis
of LDU factorization of unsymmetric positive-definite systems without permutations [7]
provides a similar analysis of LDLT factors of SQD matrices. This observation was exploited
by Gill et al. [5] to show that PMPT = LDLT is stable for every permutation P if

• ‖A‖ is not too large compared to ‖E‖ and ‖F‖;
• diag(E,F ) is not too ill-conditioned.

Regarding system (19) as Mv = r, we have

M =

(
−E AT

A δ2I

)
, E = D−2 = X−1Z + γ2I

and we find that the effective condition number of M is

Econd(M) ≈ cond(M)

min{γ2, δ2}
.

Hence the LDLT approach should be stable until (x, y, z) approaches a solution (with
cond(M) becoming increasingly large).

A more uniform bound was obtained later [23] by writing (19) as the system(
−δI DAT

AD δI

)(
∆x̂
∆y

)
=

(
Dr4

r1/δ

)
≡ M̂ v̂ = r̂, (21)

where ∆x = δD∆x̂. This is still an SQD system and the same theory shows that

cond(M̂) ≈ ‖AD‖
δ
≈ 1

γδ
, Econd(M̂) ≈ 1

γ2δ2

(assuming ‖A‖ ≈ 1). Hence, indefinite Cholesky factorization should be stable for all
primal-dual iterations as long as γ2δ2 � ε (where ε is the floating-point precision—typically
2.2 × 10−16 on today’s machines). Thus we need γδ � 10−8. For least-squares problems
with δ = 1, this is readily arranged. For regularized LO problems, γ = δ = 10−3 is safe.

Such factorizations have been implemented successfully within IBM’s OSL (Optimization
Subroutine Library). The sparse Cholesky solver in WSMP [30] is applied to either M or
AD2AT + δ2I (whichever is more sparse). A major benefit is that any dense columns in A
are handled sensibly without special effort.

2.4 Least-squares formulation

With δ > 0, we have an alternative to SQD systems and normal equations. We may write
(20) as a least-squares problem even when r1 6= 0:

min
∆y

∥∥∥∥(Dr4

r1/δ

)
−
(
DAT

δI

)
∆y

∥∥∥∥2

. (22)

This may be solved inexactly by a conjugate-gradient-type iterative solver such as LSQR
[16, 17] or LSMR [2]. It is especially useful when A is an operator, but is also applicable
when A is explicit. Clearly δ should not be too small (and δ = 1 is ideal).

This approach was used by PDSCO in the Basis Pursuit DeNoising (BPDN) signal de-
composition software Atomizer [1]. (PDSCO has been superseded by PDCO.)
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3 Convex optimization with linear constraints

PDCO (Primal-Dual Method for Convex Optimization) [19] is a Matlab solver for opti-
mization problems that are nominally of the form

CO minimize
x

φ(x)

subject to Ax = b, ` ≤ x ≤ u,

where φ(x) is a convex function with known gradient g(x) and Hessian H(x), and A ∈
Rm×n. The format of CO is suitable for any linear constraints. For example, a double-sided
constraint α ≤ aTx̃ ≤ β (α < β) should be entered as aTx̃− ξ = 0, α ≤ ξ ≤ β, where x̃ and
ξ are relevant parts of x.

To allow for constrained least-squares problems, and to ensure unique primal and dual
solutions (and improved stability), PDCO really solves the regularized problem

CO2 minimize
x, r

φ(x) + 1
2‖D1x‖2 + 1

2‖r‖
2

subject to Ax+D2r = b, ` ≤ x ≤ u,

where D1, D2 are specified positive-definite diagonal matrices. The diagonals of D1 are
typically small (10−3 or 10−4). Similarly for D2 if the constraints in CO should be satisfied
reasonably accurately. For least-squares applications, some diagonals of D2 will be 1. Note
that some elements of ` and u may be −∞ and +∞ respectively, but we expect no large
numbers in A, b, D1, D2. If ‖D2‖ is small, we would expect A to be under-determined
(m < n). If D2 = I, A may have any shape.

3.1 The barrier approach

First we introduce slack variables x1, x2 to convert the bounds to non-negativity constraints:

CO3 minimize
x, r, x1, x2

φ(x) + 1
2‖D1x‖2 + 1

2‖r‖
2

subject to

Ax+D2r = b
x− x1 = `
x+ x2 = u
x1, x2 ≥ 0.

Then we replace the non-negativity constraints by the log barrier function, obtaining a
sequence of convex subproblems with decreasing values of µ (µ > 0):

CO(µ) minimize
x, r, x1, x2

φ(x) + 1
2‖D1x‖2 + 1

2‖r‖
2 − µ

∑
j ln([x1]j [x2]j)

subject to
Ax+D2r = b : y

x− x1 = ` : z1

−x− x2 = −u, : z2

where y, z1, z2 denote dual variables for the associated constraints. With µ > 0, most
variables are strictly positive: x1, x2, z1, z2 > 0. (Exceptions: If `j = −∞ or uj = ∞, the
corresponding equation is omitted and the jth element of x1 or x2 doesn’t exist.)

The KKT conditions for the barrier subproblem involve the three primal equations of
CO(µ), along with four dual equations stating that the gradient of the subproblem objective
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should be a linear combination of the gradients of the primal constraints:

Ax+D2r = b

x− x1 = `

−x− x2 = −u
ATy + z1 − z2 = g(x) +D2

1x : x

D2y = r : r

X1z1 = µe : x1

X2z2 = µe, : x2

where X1 = diag(x1), X2 = diag(x2), and similarly for Z1, Z2 later. The last two equations
are commonly called the perturbed complementarity conditions. Initially they are in a
different form. The dual equation for x1 is really

−z1 = ∇(−µ ln(x1)) = −µX−1
1 e,

where e is a vectors of 1’s. Thus, x1 > 0 implies z1 > 0, and multiplying by −X1 gives the
equivalent equation X1z1 = µe as stated.

3.2 Newton’s method

We now eliminate r = D2y and apply Newton’s method:

A(x+ ∆x) +D2
2(y + ∆y) = b

(x+ ∆x)− (x1 + ∆x1) = `

−(x+ ∆x)− (x2 + ∆x2) = −u
AT(y + ∆y) + (z1 + ∆z1)− (z2 + ∆z2) = g +H∆x+D2

1(x+ ∆x)

X1z1 +X1∆z1 + Z1∆x1 = µe

X2z2 +X2∆z2 + Z2∆x2 = µe,

where g and H are the current objective gradient and Hessian. To solve this Newton system,
we work with three sets of residuals:(

∆x−∆x1

−∆x−∆x2

)
=

(
r`
ru

)
≡
(

`− x+ x1

−u+ x+ x2

)
, (23)(

X1∆z1 + Z1∆x1

X2∆z2 + Z2∆x2

)
=

(
c`
cu

)
≡
(
µe−X1z1

µe−X2z2

)
, (24)(

A∆x+D2
2∆y

−H1∆x+AT∆y + ∆z1 −∆z2

)
=

(
r1

r2

)
≡
(

b−Ax−D2
2y

g +D2
1x−ATy − z1 + z2

)
, (25)

where H1 = H +D2
1. We use (23) and (24) to replace two sets of vectors in (25). With(

∆x1

∆x2

)
=

(
−r` + ∆x
−ru −∆x

)
,

(
∆z1

∆z2

)
=

(
X−1

1 (c` − Z1∆x1)
X−1

2 (cu − Z2∆x2)

)
, (26)

H2 ≡ H +D2
1 +X−1

1 Z1 +X−1
2 Z2

w ≡ r2 −X−1
1 (c` + Z1r`) +X−1

2 (cu + Z2ru)
(27)

we find that (
−H2 AT

A D2
2

)(
∆x
∆y

)
=

(
w
r1

)
. (28)
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3.3 Keeping x safe

If the objective is the entropy function φ(x) =
∑
xj ln(xj), for example, it is essential to

keep x > 0. However, problems CO3 and CO(µ) treat x as having no bounds (except when
x − x1 = ` and x + x2 = u are satisfied in the limit). Thus (since April 2010), PDCO

safeguards x at every iteration by setting

xj = [x1]j if `j = 0 (and `j < uj),

xj = −[x2]j if uj = 0 (and `j < uj).

3.4 Solving for (∆x,∆y)

If φ(x) is a general convex function with known Hessian H, system (28) may be treated
by direct or iterative solvers. Since it is an SQD system, sparse LDLT factors should be
sufficiently stable under the same conditions as for regularized LO: ‖A‖ ≈ 1, ‖H‖ ≈ 1,
and γδ � 10−8, where γ and δ are the minimum values of the diagonals of D1 and D2.
If K represents the sparse matrix in (28), PDCO uses the following lines of code to achieve
reasonable efficiency:

s = symamd(K); % sqd ordering (first iteration only)

rhs = [w; r1];

thresh = eps; % eps ~= 2e-16 suppresses partial pivoting

[L,U,p] = lu(K(s,s),thresh,’vector’); % expect p = I

sqdsoln = U\(L\rhs(s));

sqdsoln(s) = sqdsoln;

dx = sqdsoln(1:n);

dy = sqdsoln(n+1:n+m);

The symamd ordering can be reused for all iterations, and with row interchanges effectively
suppressed by thresh = eps, we expect the original sparse LU factorization in Matlab to
do no further permutations (p = 1:n+m).

Alternatively a sparse Cholesky factorization H2 = LLT may be practical, where H2 =
H + diagonal terms (27), and L is a nonsingular permuted triangle. This is trivial if φ(x) is
a separable function, since H and H2 in (27) are then diagonal. System (28) may then be
solved by eliminating either ∆x or ∆y:

(ATD−2
2 A+H2)∆x = ATD−2

2 r1 − w, D2
2∆y = r1 −A∆x, (29)

or (AH−1
2 AT +D2

2)∆y = AH−1
2 w + r1, H2∆x = AT∆y − w. (30)

Sparse Cholesky factorization may again be applicable, but if an iterative solver must be
used it is preferable to regard them as least-squares problems suitable for LSQR or LSMR:

min
∆x

∥∥∥∥(D−1
2 A
LT

)
∆x−

(
D−1

2 r1

−L−Tw

)∥∥∥∥2

, D2∆y = D−1
2 (r1 −A∆x), (31)

or min
∆y

∥∥∥∥(L−1AT

D2

)
∆y −

(
L−1w
D−1

2 r1

)∥∥∥∥2

, LT∆x = L−1(AT∆y − w). (32)

The right-most vectors in (31)–(32) are part of the residual vectors for the least-squares
problems (and may be by-products from the least-squares solver).

3.5 Success

PDCO has been applied to some large web-traffic network problems with the entropy function∑
xj lnxj as objective [24]. Search directions were obtained by applying LSQR to (32) with

diagonal H = X−1 and L = H
−1/2
2 , and D1 = 0, D2 = 10−3I. A problem with 50,000

constraints and 660,000 variables (an explicit sparse A) solves in about 3 minutes on a
2GHz PC, requiring less than 100 total LSQR iterations. At the time (2003), this was
unexpectedly remarkable performance. Both the entropy function and the network matrix
A are evidently amenable to interior methods.
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4 Interior methods for general NLO

Reference [3] gives an overview of the theory of interior methods for general nonlinear
optimization.

With exact second derivatives increasingly available (in particular within GAMS and
AMPL), general-purpose software for large-scale nonconvex optimization with nonlinear con-
straints is becoming increasingly powerful and popular. Some commercial examples are
IPOPT, KNITRO, LOQO, and PENOPT [10, 11, 12, 21]. To allow for general (non-diagonal)
Hessians, they all use sparse direct methods on indefinite systems analogous to (28). To
allow for nonconvex problems, the matrix H2 must be modified in some way (often by the
addition of multiples of I).
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