Proceedings of the
Computer Science and Statistics:

12th Annual Symposium on the Interface

Edited by Jane F. Gentleman

May 10 & 11, 1979
University of Waterloo

Waterloo, Ontario, Canada

© 1979 by University of Waterloo, Waterloo, Ontario, Canada

Design and Composition: Arnie Dyck and Richard Beach, Dept. of Computer Science
Design and Printing: Graphic Services, University of Waterloo

Availability of Proceedings

12th Jane F. Gentleman

(1979) Dept. of Statistics
University of Waterloo
Waterloo, Ontario
Canada N2L 3Gl

11th Institute of Statistics
(1978) North Carolina State Univ.
P.O. Box 5457
Raleigh, North Carolina 27650
10th David Hogben
(1977) Statistical Engineering Laboratory

Applied Mathematics Division
National Bureau of Standards
U.S. Dept. of Commerce
Washington, D.C. 20234

9th Prindle, Weber, and Schmidt, Inc.
(1976) 20 Newbury St. .
Boston, Massachusetts 02116

8th Health Sciences Computing Facility, AV-111
(1975) Center for Health Sciences

Univ. of California

Los Angeles, California 90024

7th Statistical Numerical Analysis and Data Processing Section
(1974) 117 Snedecor Hall

Iowa State Univ.

Ames, Towa 50010

4,5,6th Western Periodicals Company

(1971, 13000 Raymer Street |
1972, North Hollywood, California 91605
1973)

Future Interface Symposia

13th Interface Symposium (1980):
Univ. of California at Los Angeles
Chairman: Robert M. Elashoff

14th Interface Symposium (1981):)
Carnegie-Mellon Univ., Pittsburgh
Co-Chairmen: William F. Eddy & Michael I. Shamos

SPARSE LEAST SQUARES BY CONJUGATE GRADIENTS:
A COMPARISON OF PRECONDITIONING METHODS

Michael A. Saunders, DSIR, New Zealand and Stanford University, California

The conjugate-gradient method is ideal for sparse least squares because

of its simplicity and low storage requirements, and because it can be

relied upon to converge to a satisfactory solution. However, the number

of iterations required can be unacceptably high if the design matrix X

is ill-conditioned.

In this context, preconditioning means a change of variables aimed at

accelerating convergence. For some nonsingular C, the usual linear

model y = XB + e 1is transformed into

y = XB + e, where X = XC_l.

(The product is not computed explicitly.) If X 1is better conditioned

than X, the transformed problem should require fewer iterations.

Here we give some computational results for two particular choices of

C. The SSOR approach of Bjorck and Elfving promises to give useful

savings generally. When X is very ill-conditioned, it appears that an

LU factorization of X (with C = U) can lead to even faster conver-

gence.

1. INTRODUCTION

The problem discussed here is the usual linear

model
y=XB +e 6]

in which X is large and sparse. If X dis n

by p, we have n > p with both n and p 1large.
The least-squares solution required satisfies the
normal equations XTXB = XTy, but we assume that
both XTX and (XTX)-l are too expensive to
compute.

For such problems, conjugate-gradient methods
offer the advantages of simplicity and low storage
Tequirements. Several conjugate-gradient (cg)
algorithms are known (we refer to two of them
later). 1n practice they must be regarded as iter-
ative methods, and much of the work per iteration

lies in computing two matrix-vector products of the
form

Xp, and Xr, (2)

for certain vectors Py and r If X 1is well-

conditioned, an accurate least-;quares solution B8
can often be obtained in far less than p itera-
tions.

Let the condition of X be defined as
cond(X) = omax/omin
lar values of X (dignoring any oy = 0). Also,

where 9y > 0 are the singu-

let € be the relative precision of the machine
being used; for example, £ = 10—15 for double-
precision arithmetic on an IBM 370. A rough guide

to the number of iterations required is as follows:

cond (X) cg iterations
1
10 ﬁp
1
100 5P
5_1/4 1-2p
e l/2 5 - 15p

The number of iterations also depends on the dis-
tribution of the singular values (in general if the
o; occur in clusters there will be fewer itera-
tions than otherwise) and to a lesser extent on the
accuracy required for the computed B.

15

S

1.1. Preconditioning

The broad aim of preconditioning is to trans-

form the original problem (1) into one of the form
y = X + e

in which X is better conditioned than X. To
this end, let C be a nonsingular matrix of order
p and consider the problem
—1-
y=XC B +e 3)
in which X = XC—1 is not computed explicitly but
is regarded as the product of two separate opera-
tors. When a cg algorithm is applied to (3) to
compute E, the matrix-vector products in (2)
become
-1 -T,T

XC Tpy and C Xr; - Y]
Hence the only additional work required per itera-
tion lies in solving two linear equations of the

form
T
Ct, = p and C's, =W, . (5)

On termination the original parameters can be ob-
tained from one final system CB = B.

Clearly it will be advantageous to use this
type of preconditioning if the extra work in (5) is
offset by a sharp reduction in the number of cg
iterations. Our aim here is to compare the effect-
iveness of two particular matrices C. In both
cases C is upper triangular. The comparison is
more computational than analytical. The results
suggest that the best choice of C depends on the

condition of X.

2. SSOR PRECONDITIONING

This is a new method due to Bjorck and Elfving
(1978). (See also Bjdrck (1979) in this proceed-
ings.) It was derived as a means for accelerating
the Symmetric SSOR method when the latter is
applied to the normal equations. For simplicity
we shall assume that columns of X have been
scaled to unit length. Then XTX =L+1I+ LT
where L 1is strictly lower triangular, and the

conditioning matrix suggested by SSOR proves to be

16

C=1+ oLl

for some relaxation parameter w > 0. Bjdrck and
Elfving show that the matrix-vector products in (4)
can be computed efficiently without forming L.
They give a Fortran implementation of the resulting
cg algorithm, subroutine CGPCNE.

Algebraically, the matrix-vector products with
cC=1+ wLT involve exactly twice as much arith-
metic as when C = I. Thus in broad terms, SSOR
preconditioning will give a useful saving in compu-
tation time if the total iteration count 1is reduced
by a factor of 2 or more. The method's advantages
are that it applies to arbitrary sparse matrices,
it can be coded easily as demonstrated by sub-
routine CGPCNE, and in this form it requires no

additional storage to implement the preconditioning.

2.1. The Choice of w

For an arbitary statistical application the
optimal relaxation parameter is not likely to
be known in advance. Bjorck and Elfving recommend
setting w = 1 when no other information is avail-
able. On the least-squares problems of Sectiom 4
below, subroutine CGPCNE converged significantly
more quickly with w = 0.9, 1 and 1.1 than it did
with the more extreme values 0, 1.2, 1.5 and 119
Although this range of values is incomplete, it
appeared that w =1 was very close to optimal for
these examples. We therefore use w = 1 in the

comparisons below.

3. LU PRECONDITIONING

Caussian elimination with row interchanges may
be used to compute a stable, sparse factorization
X = LU, where L is a product of permutations and
elementary triangular matrices, and U is upper
triangular. The row interchanges can be biased
towards keeping L well-conditioned. Since

-1 Ses s EE
L = XU ~, the natural conditioning matrix 1s

and if cond(L) is significantly smaller than
cond(X) a useful reduction in cg iterations should
result. This general approach was first suggested

by Bjorck (1976). Some preliminary computational

results have been given by Paige and Saunders

(1978) .

e e

An LU factorization may be computed in several
ways, each giving a different L and U. In this
context a product of elementary matrices will be

used to reduce X to triangular form:

|l u
cor EgE,EX -[) :I]

-1 -1 -1 I
so that L would be the product E1 E2 E3 "'[O]'
(This is never needed explicitly.) The condition
of L 1s controlled by keeping the multipliers in
each Ej less than 1/t for some pivot tolerance

t 1in the range (0,1).

3.1. Row-wise Elimination

The simplest method is to eliminate the rows of
X 'one by one in any convenient order. The matrices
Ej do not need to be saved. The nonzeros in U
can be stored compactly by rows in an ordered list,
with pointers marking the start of each row. When-
ever a row interchange is required (thus causing
"fill-in") a modified row can be moved to the end
of the list, leaving behind its previous nonzeros.
Occasional compression of the list recovers disusgd
storage. -

The time to compute U in this manner is
equivalent to about 5 or 10 cg iterations. This
is not a serious overhead.

In implementing this row-wise elimination we
included a preliminary pass through the rows of X
to select a triangular subset with maximal diagonal
elements. These rows can be placed directly into
U. The remaining rows were included one at a time
in their natural order. The pivot tolerance used
was T = 0.9. (The resulting LU factors were
slightly more sparse and well-conditioned than with
T =0.99.)

Subsequent use of the operator XU—-1 involves
back-substitution with U and multiplication with
X. Similarly for the transposed operator. Hence
the additional work per iteration depends solely on
the density of U. If U contained as many non-
zeros as X, the time per iteration would be vir-
tually the same as for SSOR preconditioning. How-
ever there is often very little net fill-in, and so
U 1is likely to contain only p/n times as many
nonzeros as X. In statistical applications this

factor is typically less than 1/2.

For problems A and B below (n = 1033,
p = 320), the ratio of nonzeros in U and X
proved to be exactly p/n = 0.31. For two larger
examples (n = 1850, p = 712) the ratio was 0.40
and 0.49, compared with p/n = 0.39. This confirms
that the time per iteration with LU preconditioning
will typically be midway between the times for cg

with and without SSOR preconditioning.

3.2. Column-wise Elimination

If columns rather than rows are eliminated one at
a time there is reason to believe (e.g., Wilkinson
(1965) pp. 162-166) that the final L will be
better conditioned. Hence the final U should be
more effective for preconditioning.

In this case some additional storage is requir-
ed for the matrices Ej during the factorization,
but there are no fill-in difficulties with U, which
is formed sequentially by columns. A rather complex
strategy is néeded to order the rows and columns of
X. The Markowitz strategy used in many linear-
programming codes can easily be generalized to
handle a rectangular X and would probably be
ideal. (Duff and Reid (1976) have used such a
scheme in some experiments with non-iterative least~
squares methods.)

This form of LU factorization has not been
tested here, but we wish to note certain implica-
tions. First, suppose that the rows of X selected
"

form a submatrix X,. Thus for

to be "pivot rows 1

some permutation P,

where Xl

torization of X 1is really just the LU factoriza-

is square and nonsingular. The LU fac-

tion of PX without further row interchanges.

Ignoring any column permutations, we have

We can now make the following deductions.
1. Xl = LlU is the factorization that would be
obtained if the same column-wise elimination

were applied to Xl.

2. 1L is well-conditioned and Ll is not large.

3. 14 is well-conditioned and “L2“ is not large.
4. “LZL_l" should not be large.

1
I I
5. -1} = -1| should be reasonably well-
X2X1 L2L1
conditioned.

(By "not large" we mean that the quantity is not
directly related to cond(X), although it may be a
function of n and p.)

The conclusion is that C = Xl should be use-
ful as a conditioning matrix.

The least-squares problem to be solved now

takes the form

Y1 I <
= lxxt BT e :
) 21 2

To improve efficiency a new factorization X1 = L1U
should be computed with greater emphasis on the
sparsity of the factors. (The condition of L1 is
no longer vital, so a smaller pivot tolerance T
should be used.) If L1 and U are almost as
sparse as Xl’ the subsequent time per iteration
should not be much greater than without precondi-
tioning. '

It remains unclear which of the options

c=1
C=1+ mLT
C=1U
C = LlU = Xl

should be used in general, but the choice C = Xl
has given excellent results in one practical
example quoted by Chen (1975). In this case Xl
was already triangular and was known in advance.
For other cases, column-wise elimination may be the

only practical method for finding a useful Xl.

4., COMPUTATIONAL RESULTS

Here we compare the effectiveness of the

matrices

]
—

I+1L

]
[=]

18

[

for solving the least-squares problem y = XB + e
where X = XC-l. The run-times quoted below are
seconds of processor time on a Burroughs B6700,
using Fortran routines and single-precision arith-
metic (e = 0.7 X 10_11).

Subroutine LSQR of Paige and Saunders (1978)
was used as the basic cg algorithm for all three
operators X. The SSOR operator was implemented
as in Bjorck and Elfving's subroutine CGPCNE, with
very slight changes to take advantage of the fact
that the columns of X were already normalized.

LSQR provides estimates of “i“, cond(i) and

standard errors for E. It terminates when

-T
———HX xl < ATOL
X1 el

where r =y - X8 and ATOL 1s set by the user.
There are theoretical reasons for choosing ATOL
to be the relative error in the data X. 1In this

case the relevant value was ATOL = 10—8.

4.,1. Test Problems

Two representative least-squares problems were
obtained from an application in geophysics involv-
ing the analysis of gravity-meter observations (see
Paige and Saunders (1978)). In both cases X 1is
1033 by 320, with 3 to 5 nonzero elements per Trow.
The cases are distinguished by the condition of X:

Problem A cond(XA) >z 3100,

6

Problem B cond(XB) 107 .

a

Although Problem B is extremely ill-conditioned,

only some of the parameters are poorly determined.
When it became clear that convergence was intol-
erably slow (without preconditioning), the model

was reformulated to obtain Problem A. Algebraically,
XA = XBT for some triangular T which shifted the
origin for some of the parameters without altering
the sparsity of XB. Even with direct methods,
unnecessary ill-conditioning of this kind should be
avoided, but it is all the more important when cg

methods are in use.

| xS

4.2. Comparison
Some statistics for the three conjugate-
dient methods are summarized in the tables and
gra

figures below. The main results apparent are the
igu

following:

1. For both Problems A and B, SSOR preconditioning
led to a substantial reduction in iterations
and a significant saving in total computation
time.

2. LU preconditioning had a negative effect on

Problem A, but performed excellently on Problem
B. In particular, the rate of convergence was
almost identical for the two examples in spite

of problem B's poor condition.

logely - X st

SSOR

160

1oge|y - X 3Bl

Ly

200 400

Precondi-
tioning _q1 Time per Total Total
method cond(XC 7) iteration iterations time
None C=I 3100 1.4 250 340
SSOR C=I+L' 900 2.4 114 260
LU C=U 2600 1.6 375 600
Statistics for Problem A
Precondi-
tioning B Time per Total Total
method cond(XC ™) iteration iterations time
*
6 * *
None C=I 10 1.4 4000 5500
ssor c=1+.T 10° 2.4 1600 3700
LU Cc=U 2900 1.6 390 620
*
Estimates
Statistics for Problem B
Problem A
versus iteration number
(R = xc™! tor various choices of C)
Néne w
300 oo
Problem B
versus lteration number
\
SSOR
500 800 1000
19

e

5. DISCUSSION

Until the various preconditioning methods are
compared on a wider range of examples it would be
unsafe to draw too many conclusions. At this stage
it does appear that Bjdrck and Elfving's SSOR
approach has many advantages for sparse least-
squares problems in general, and yet computation
time is likely to remain unacceptably high when the
design matrix X is very ill-conditioned.

For LU preconditioning the limitation appears
to be at the other end of the spectrum. If X is
already well-conditioned, the transformed operator

XU_1 = L need not be any better.

Even if it is,
the distribution of its singular values may be less
favorable and lead to a greater number of cg itera-
tions (cf. Problem A). Only when X is extremely
ill-conditioned is there room for a substantial
reduction in condition number (cf. Problem B).

One might argue that well-formulated models
are typically very well-conditioned and will con-
verge rapidly without transformation, whereas
badly-conditioned problems are very sensitive to
data changes and should not be solved at all.

However, we believe that many real-life appli-
cations lie somewhere between the two extremes..
The conjugate-gradient approach has so many intrin-
sic advantages that any effort to accelerate its
convergence is very easily justified. This paper
has given results for two practical methods and
suggested a third. It is hoped that the methods
will find widespread use amongst practitioners.
The computer codes used here are written in ANST

Standard Fortran and are available from the author.

6. REFERENCES

[11 A. BIORCK (1976). Methods for sparse linear
least squares problems. In J.R. Bunch and
D.J. Rose (eds.), Sparse Matrix Computations,
Academic Press, New York, 177-199.

[2] A. BJIORCK (1979). SSOR-preconditioning methods

for sparse least squares problems. In this
proceedings.
© .

[3] A. BJORCK and T. ELFVING (1978). Accelerated

projection methods for computing pseudoinverse
solutions of systems of linear equatioms.
Research Report LiTH-MAT-R-1978-5, Department
of Mathematics, LinkOping University, Sweden.
To be published in BIT, 19 (1979).

20

[4]

(5]

(6]

[7]

Y.T. CHEN (1975). Iterative methods for linear
least-squares problems. Research Report
CS-75-04, Department of Computer Science,
University of Waterloo, Canada.

I.S. DUFF and J.K. REID (1976). A Comparison
of some methods for the solution of sparse
overdetermined systems of linear equations.
J. Inst. Math. and its Applics., 14, 267-280.

C.C. PAIGE and M.A. SAUNDERS (1978). A
bidiagonalization algorithm for sparse linear
equations and least-squares problems. Techni-
cal Report SOL 78-19, Department of Operations
Research, Stanford University, USA.

J.H. WILKINSON (1965).
value Problem.

The Algebraic Eigen-
Oxford University Press

(Clarendon), London and New York.

