A Continuous-Time Agency Model of Optimal Contracting and Dynamic Capital Structure†

Peter M. DeMarzo*
Graduate School of Business
Stanford University

Yuliy Sannikov*
University of California at Berkeley

This Revision: May 23, 2005

ABSTRACT. We explore the financing of a project when the agent can privately benefit by taking actions that reduce cash flows, and investors’ only means of forcing repayment is the threat of termination. We introduce techniques to solve for the optimal contract (given the incentive constraints) in continuous time, and study the properties of the capital structure that implements the contract. The implementation involves a credit line, long-term debt and equity, as in a discrete-time model of DeMarzo and Fishman (2003). The continuous-time setting allows for a much cleaner characterization of the contract in terms of a differential equation, which we can then use to derive a number of new results. The optimal length of the credit line is determined by trade-off between the flexibility to run the project when it temporarily generates losses, and cost of delaying dividends until the credit line is paid off. Surprisingly, we find that the firm’s total debt capacity is relatively insensitive to the project’s volatility or the cost of liquidation. We derive explicitly how the optimal mix of long-term debt and credit varies with project characteristics. For example, the amount of long-term debt decreases with the project’s volatility, the cost of liquidation, and the inefficiency of diversion. In some cases, the optimal long-term debt is negative; i.e., the firm holds a compensating cash balance while simultaneously borrowing (at a higher rate) through the credit line. We consider the implications of our model for security prices, and show that in many settings, the usual agency problems between debt and equity holders (asset substitution, strategic default) do not arise, and that optimal leverage declines with the firm’s past profitability.

† We would like to thank Mike Fishman for many helpful comments. We are also grateful to Edgardo Barandiaran, Zhiguo He, Han Lee, Gustavo Manso, Nelli Oster, Ricardo Reis, Raghu Sundaram, Alexei Tchistyi, Jun Yan, Baozhong Yang as well as seminar participants at the Universitat Automata de Barcelona, UC Berkeley, Chicago, Northwestern, NYU, Stanford, Washington University, and Wharton.

* Stanford, CA 94305. Phone: 650-736-1082, e-mail: pdemarzo@stanford.edu.
* 593 Evans Hall, Berkeley, CA 94720-3880. Phone: 650-303-7419, e-mail: sannikov@econ.berkeley.edu.
1. Introduction

In this paper, we consider a dynamic contracting environment in which a risk-neutral agent or entrepreneur with limited resources manages an investment activity. While the investment is profitable, it is also risky, and in the short-run can generate arbitrarily large operating losses. The agent will need outside financial support to cover these losses and continue the project. The difficulty is that while the distribution of the cash flows is publicly known, the agent may distort these cash flows by taking a hidden action that leads to a private benefit. Specifically, the agent may (i) conceal and divert cash flows for his own consumption, and/or (ii) stop providing costly effort, which reduces the mean of the cash flows. Therefore, from the perspective of the principal or investors funding the project, there is the concern that a low cash flow realization may be a result of the agent’s actions, rather than the project fundamentals. To provide the agent with appropriate incentives, investors control the agent’s wage, and may also withdraw their financial support for the project and force its early termination. We seek to characterize an optimal contract in this framework and relate it to the firm’s choice of capital structure.

We develop a method to solve for the optimal contract, given the incentive constraints, in a continuous-time setting and study the properties of the credit line, debt and equity, which implement the contract as in the discrete-time model of DeMarzo and Fishman (2003). The advantages of the continuous-time setting include a much cleaner characterization of the optimal contract through an ordinary differential equation, a simple determination of the mix of debt and credit, the ability to compute comparative statics and security prices, to analyze conflicts of interest between security holders, and to generalize the model to broader settings.

In the optimal contract, the agent is compensated by holding a fraction of the firm’s equity. The remaining equity, debt and credit line are held by outside investors. The firm draws on the credit line to cover losses, and pays off the credit line when it is profitable. Thus, in our model leverage is negatively related with past profitability. Dividends are paid when cash flows exceed debt payments and the credit line is paid off. If debt service payments are not made, or the credit line is overdrawn, the firm defaults and the project is terminated.

The credit line is a key feature of our implementation of the optimal contract. Empirically, credit lines are an important (and understudied) component of firm financing: between 1995 and 2004, credit lines account for 63% (by dollar volume) of all corporate debt.\(^1\) Our results may shed light on the choice between credit lines and other forms of borrowing, and the characteristics of credit line contracts that are used. In our model, it is this access to credit that provides the firm with the financial slack needed to operate given the risk of operating losses. The balance on the credit line, and therefore the amount of financial slack, fluctuates with the past performance of the firm. Thus, our model generates a dynamic model of capital structure in which leverage falls with the profitability of the firm.

\(^1\) Data from the Loan Pricing Corporation. Public debt (including convertibles) account for 15%, and standard term loans for 22%, of corporate borrowing for this period.
In our continuous-time setting the cumulative cash flows generated by the project follow a Brownian motion with a positive drift. Using techniques introduced by Sannikov (2003), we develop a martingale approach to formulate the agent’s incentive compatibility constraint. We then characterize the optimal contract through an ordinary differential equation. This characterization, unlike the discrete-time Bellman equation, allows an analytic derivation of impact of the model parameters on the optimal contract. The methodology we develop is quite powerful, and can be naturally extended to include more complicated moral hazard environments, as well as investment and project selection.

In addition to this methodological contribution, by formulating the model in continuous-time, we are able to obtain a number of important new results. For example, in the discrete-time setting, public randomization over the decision to terminate the project is sometimes required. This randomization is somewhat unnatural, and we show it is not required in the continuous-time setting – in our model the termination decision is based only on the firm’s past performance.

A second feature of our setting is that, because cash flows are normally distributed, arbitrarily large operating losses are possible. In the discrete-time setting, such a project would be unable to obtain financing. Not only do we show how to finance such a project, we also demonstrate that when the risk of loss is severe, the optimal contract may require that the firm hold a compensating balance as a requirement of the credit line. (A compensating balance is a cash deposit that the firm must hold with the lender to maintain the credit line.) The compensating balance commits outside investors to provide funds to the firm (through interest payments), that it might not be able to raise ex-post. By doing so, it allows for a larger credit line, which is valuable given the risk of the project; and it provides an inflow of interest payments to the project that can be used to somewhat offset operating losses. The model therefore provides an explanation for the empirical observation that many firms hold substantial cash balances at low interest rates while simultaneously borrowing at higher rates.

In our capital structure implementation, the agent controls not only the cash flows but also the payout policy of the firm. We show that the agent will optimally choose to pay off the credit line before paying dividends, and, once the credit line has been paid off, to pay dividends rather than hoard cash to generate additional slack. In the continuous-time setting, the incentive compatibility of the firm’s payout policy reduces to a simple and intuitive constraint on the maximal interest expense that the firm can bear, based on the expected cash flows of the project and the agent’s outside opportunity. This constraint implies that the firm’s total debt capacity is relatively insensitive to the risk of the project, or its liquidation cost. These factors will instead primarily determine the mix of long-term debt and credit that the firm will use. Not surprisingly, riskier firms, or those with higher liquidation costs, will gain financial flexibility by substituting credit for long-term debt. This result does not match standard theories, and is broadly consistent with the empirical findings of Benmelech (2004) (for 19th century railroads).

In addition to enabling us to explicitly compute these and other comparative statics results, our continuous-time framework also allows us to explicitly characterize the market values of the firm’s securities. We show how the market value of the firm’s equity and debt vary with its credit quality, determined by its remaining credit.
Moreover, in addition to the agent’s incentives, we are able to explore the incentives of equity holders. One surprising feature of our model of optimal capital structure is that, despite the firm’s use of leverage, equity holders (as well as the agent) have no incentive to increase risk; that is, under our contract, there is no asset substitution problem. In addition, for a wide range of parameters, there is no problem of strategic default. That is, equity holders have no incentive to increase dividends and precipitate default, or to contribute new capital and postpone default.2

For the bulk of our analysis, we focus on the case in which the agent can conceal and divert cash flows. We show in Section 4 that the characterization of the optimal contract is unchanged if the agent makes a hidden effort choice, as in a standard Principal-Agent model. In Section 5, we endogenize the termination liquidation payoffs by allowing investors to fire and replace the agent, and allowing the agent to quit to start a new project. We also consider renegotiation and solve for the optimal renegotiation-proof contract.

Related Literature

Our paper is part of a growing literature on dynamic optimal contracting models using recursive techniques that began with Green (1987), Spear and Srivastava (1987), Phelan and Townsend (1991), and Atkeson (1991) among others. (See Ljungqvist and Sargent (2000) for a description of many of these models.) As previously mentioned, this paper builds directly on the model of DeMarzo and Fishman (2003). Other recent work developing optimal dynamic agency models of the firm includes Albuquerque and Hopenhayn (2001), Clementi and Hopenhayn (2000), DeMarzo and Fishman (2003b), and Quadrini (2001). With the exception of DeMarzo and Fishman (2003), these papers do not share our focus on an optimal capital structure. In addition, none of these models are formulated in continuous time.3

While discrete-time models are adequate conceptually, a continuous-time setting may prove to be simpler and more convenient analytically. An important example is the principal-agent model of Holmstrom and Milgrom (1987), in which the optimal continuous-time contract is shown to be a linear “equity” contract.4 Several features distinguish our model from theirs: the investor's ability to terminate the project, the agent's consumption while the project is running, the limited wealth of the agent, and the nature of the agency problem. The termination decision is a key feature of our optimal contract, and we demonstrate how this decision can be implemented through bankruptcy.5

2 See Acharya, Huang, Subrahmanyam and Sundaram (2002) for an analysis of the impact of these options held by equity holders on credit spreads and firm value.

3 Radner (1986) demonstrates a folk-theorem result for repeated principal-agent problems. Though the play is continuous in our setting, because of the volatility of the cash flows the first-best cannot be attained.

4 Schattler and Sung (1993) develop a rigorous mathematical framework for this problem in continuous time, and Sung (1995) allows the agent to control volatility as well. See also Bolton and Harris (2001), Ouyang (2003), Detemple, Govindaraj and Loewenstein (2001), Cadenillas, Cvitancic and Zapatero (2003), Sannikov (2003), and Williams (2004) for further generalization and analysis of the HM setting.

5 Spear and Wang (2002) also analyze the decision of when to fire an agent in a discrete-time model. They do not consider the implementation of the decision through standard securities.
In contemporaneous work, Biais et al. (2004) consider a dynamic principal-agent problem in which the agent’s effort choice is binary. They do not formulate the problem in continuous time, but exam the continuous limit of the discrete-time model and focus on the implications for the firm’s balance sheet. We show in Section 4 that their setting is a special case of our model. Tchistyi (2005) develops a continuous-time model that is similar to our setting except that the cash flows follow a binary Markov switching process. That is, cash flows arrive at either a high or low rate, with the switches between states observed only by the agent. The agent’s private knowledge of the state introduces a dynamic asymmetric information problem, which he shows can be solved by making the interest rate on the credit line increase with the balance.

Finally, we note that our continuous-time model of capital structure is loosely related to optimal capital structure models developed by Leland and Toft (1996), Leland (1998) and others. These papers take the form of the securities as given and derive the consequences of capital structure on firm value as a result of taxes, and agency problems such as strategic default and asset substitution. Here, we derive the optimal security design and show that the standard agency problems between debt and equity holders may not arise.

2. The Setting and the Optimal Contract

In this section we present a continuous-time formulation of the contracting problem and show a methodology to characterize the optimal contract the solution through a differential equation. We then implement the contract with a capital structure that includes outside equity, long-term debt, and a credit line, and for which the agent has full control over the firm’s payout policy.

2.1. The Dynamic Agency Model

The agent manages a project that generates potential cash flows with mean μ and volatility σ

$$dY_t = \mu \, dt + \sigma \, dZ_t,$$

where Z is a standard Brownian motion. For now we assume the agent is essential to run the project; in Section 5.1 we allow investors to fire the agent and hire a replacement. The agent observes the potential cash flows Y, but the principal does not. The agent reports cash flows \hat{Y}_t to the principal, where the difference between Y and \hat{Y} is determined by hidden actions on the part of the agent that are the source of the agency problem. The principal receives only the reported cash flows $d\hat{Y}_t$ from the agent. The contract then specifies compensation for the agent dI_t, as well as a termination time τ, that is based on the agent’s reports.

In this section we model the agency problem by allowing the agent to divert cash flows for his own private benefit, and show in Section 4 how to adapt it to the case of hidden effort. The agent receives a fraction $\lambda \in (0,1]$ of the cash flows he diverts; if $\lambda < 1$ there are dead-weight costs of concealing and diverting funds. The agent can also exaggerate
cash flows by putting his own money back into the project. By altering the cash flow process in this way, the agent receives a total flow of income of

\[[dY_t - d\hat{Y}_t] + dl_t, \quad \text{where} \quad [dY_t - d\hat{Y}_t] = \lambda (dY_t - d\hat{Y}_t) \]

(1)

\[\lambda - \text{diversion} \]

The agent is risk-neutral and discounts his consumption at rate \(\gamma \). The agent maintains a private savings account, from which he consumes and into which he deposits his income. The principal cannot observe the balance of the agent’s savings account. The agent’s balance \(S_t \) grows at interest rate \(\rho < \gamma \):

\[dS_t = \rho S_t dt + [dY_t - d\hat{Y}_t] + dl_t - dC_t, \]

(2)

where \(dC_t \) is the agent’s consumption at time \(t \), which must be nonnegative. The agent must maintain a nonnegative balance on his account, i.e. \(S_t \geq 0 \). This resource constraint prevents a solution in which the agent simply owns the project and runs it forever.

Once the contract is terminated, the agent receives payoff \(R \geq 0 \) from an outside option. Therefore, the agent’s total expected payoff from the contract at date 0 is given by:

\[W_0 = E\left[\int_0^\tau e^{-rt} dC_t + e^{-r\tau} R \right]. \]

(3)

The principal discounts cash flows at rate \(r \), such that \(\gamma > r \geq \rho \). Once the contract is terminated, she receives expected liquidation payoff \(L \geq 0 \). (In Section 5, we consider how the termination payoffs \(R \) and \(L \) arise, for example, from the principal’s ability to fire and replace the agent, or the agent’s ability to renegotiate the contract or start a new project.) The principal’s total expected profit at date 0 is

\[b_0 = E\left[\int_0^\tau e^{-rt} (d\hat{Y}_t - dl_t) + e^{-rt} L \right]. \]

(4)

The project requires external capital of \(K \geq 0 \) to be started. The principal offers to contribute this capital in exchange for a contract \((\tau, I)\) which specifies a termination time \(\tau \) and payments \(\{I_t; 0 \leq t \leq \tau\} \) that are based on reports \(\hat{Y} \). Formally, \(I \) is a \(\hat{Y} \)-measurable continuous process, and \(\tau \) is a \(\hat{Y} \)-measurable stopping time.

In response to a contract \((\tau, I)\), the agent chooses a feasible strategy to maximize his expected payoff. A feasible strategy is a pair of processes \((C, \hat{Y})\) adapted to \(Y \), such that

6 Eq. (1) implies that the agent pays a proportional cost \((1-\lambda)\) to conceal funds, even if the funds are ultimately put back into the firm. We could instead assume the cost is only paid if the funds are diverted for the agent’s consumption. This change would not alter the results in any way (see Proposition 2).

7 We can ignore consumption beyond date \(\tau \) because \(\gamma \geq r \) implies it is optimal for the agent to consume all savings at termination (i.e., \(S_\tau = 0 \)).

8 Typically for a borrowing-constrained agent the intertemporal marginal rate of substitution is greater than the market interest rate \(r \). To capture this in a risk-neutral setting, we assume \(\gamma > r \). The case \(\gamma = r \) requires either a finite horizon or a bound on the project’s per period operating losses; otherwise it is optimal to postpone the agent’s consumption “forever.” See Section 5.4 for a further justification of this point.
(i) \(\hat{Y} \) is continuous and, if \(\lambda < 1 \), \(Y_t - \hat{Y}_t \) has bounded variation. \(^9\)

(ii) process \(C_t \) is nondecreasing, and

(iii) the savings process, defined by (2), stays nonnegative.

The agent’s strategy \((C, \hat{Y})\) is **incentive compatible** if it maximizes his total expected payoff \(W_0 \) given a contract \((\tau, I)\). An **incentive compatible contract** refers to a quadruple \((\tau, I, C, \hat{Y})\) that includes the agent’s recommended strategies.

We have not explicitly modeled the agent’s option to quit and receive the outside option \(R \) at any time. Because the agent can always under-report and steal at rate \(\gamma R \) until termination, any incentive compatible strategy yields the agent at least \(R \). (In contrast, this constraint may bind in a discrete-time setting, because of a limit to the amount the agent can steal per period.)

The optimal contracting problem is to find an incentive-compatible contract \((\tau, I, C, \hat{Y})\) that maximizes the principal’s profit subject to delivering to the agent an initial required payoff \(W_0 \). By varying \(W_0 \) we can use this solution to consider different divisions of bargaining power between the agent and the investors.

Remark. For simplicity, we have specified the contract assuming the agent's income \(I \) and the termination time \(\tau \) are determined uniquely by the agent's report, ruling out public randomization. This assumption is without loss of generality: Because the principal's value function turns out to be concave (Proposition 1), we will show that public randomization would not improve the contract.

2.2. Derivation of the Optimal Contract

We solve the problem of finding an optimal contract in several steps. First, we show that it is sufficient to look for an optimal contract within a smaller class of contracts, namely contracts in which the agent chooses to report cash flows truthfully and maintain zero savings. Thus we consider a relaxed problem by ignoring the possibility that the agent can save secretly. Finally, we show that the contract is fully incentive compatible even when the agent can save secretly.

We begin with a revelation principle type of result:

Lemma A. There exists an optimal contract in which the agent chooses to tell the truth, and maintains zero savings.

Proof: See Appendix.

The intuition for this result is straightforward – it is inefficient for the agent to conceal and divert cash flows (\(\lambda \leq 1 \)) or to save them (\(\rho \leq r \)). We can improve the contract by having the investors save and make direct payments to the agent. Thus, we can look for an optimal contract in which truth telling and zero savings is incentive compatible.

9 Bounded variation ensures that \([Y_t - \hat{Y}_t]^{\lambda}\) is mathematically well-defined. Intuitively, with unbounded variation of \(Y_t - \hat{Y}_t \), the agent would steal and over-report a dollar infinitely many times, getting income of minus infinity (which would be infeasible).
The Optimal Contract without Saving

Note that if the agent could not save, then he would not be able to over-report cash flows and would consume all income as it is received. Thus,

\[dC_t = dI_t + \lambda (dY_t - d\hat{Y}_t). \]

(5)

We relax the problem by restricting the agent’s savings so that (5) holds and allowing the agent to steal only at a bounded rate. 10 After we find an optimal contract for the relaxed problem, we show that it remains incentive-compatible even if the agent can save secretly or steal at an unbounded rate.

One difficulty with working in a dynamic setting is the complexity of the contract space. The contract can depend on the entire path of reported cash flows \(\hat{Y} \), making it difficult to evaluate the agent’s incentives in a tractable way. Our first task is to find a convenient representation for the agent’s incentives. To do so, define the agent’s promised value \(W_t(\hat{Y}) \) after a history of reports \(\hat{Y}_s, 0 \leq s \leq t \) to be the total expected payoff the agent receives, from transfers and termination utility, if he tells the truth after time \(t \):

\[
W_t(\hat{Y}) = E_t \left[\int_t^\tau e^{-\gamma(s-t)} dI_s + e^{-\gamma(\tau-t)} R \right]
\]

The following result provides a useful representation for \(W_t(\hat{Y}) \).

Lemma B. At any moment of time \(t \leq \tau \) there is a sensitivity \(\beta_t(\hat{Y}) \) of the agent’s continuation value towards his report such that

\[
dW_t = \gamma W_t dt - dI_t + \beta_t(\hat{Y})(d\hat{Y}_t - \mu dt)
\]

(6)

This sensitivity \(\beta_t(\hat{Y}) \) is determined by the agent’s past reports \(\hat{Y}_s, 0 \leq s \leq t \).

Proof: Note that \(W_t(\hat{Y}) \) is also the agent’s promised value if \(\hat{Y}_s, 0 \leq s \leq t \) were the true cash flows and the agent reported truthfully. Therefore, without loss of generality we can prove (6) for the case when the agent truthfully reports \(\hat{Y} = Y \). 11 In that case,

\[
V_t = \int_0^t e^{-\gamma s} dI_s(Y) + e^{-\gamma t} W_t(Y)
\]

(7)

is a martingale and by the martingale representation theorem there is a process \(\beta \) such that \(dV_t = e^{-\gamma t} \beta_t(Y) (dY_t - \mu dt) \), where \(dY_t - \mu dt \) is a multiple of the standard Brownian motion. Differentiating (7) with respect to \(t \) we find

\[
dV_t = e^{-\gamma t} \beta_t(Y)(Y_t - \mu dt) = e^{-\gamma t} dI_t(Y) - \gamma e^{-\gamma t} W_t(Y) dt + e^{-\gamma t} dW_t(Y)
\]

and thus (6) holds. \(\diamond \)

Informally, the agent has incentives not to steal cash flows if he gets at least \(\lambda \) of promised value for each reported dollar, i.e. if \(\beta_t \geq \lambda \). If this condition holds for all \(t \) then

10 Formally, \(Y_t - \hat{Y}_t \) is Lipschitz-continuous (see also footnote 11).

11 By Lipschitz continuity of \(Y_t - \hat{Y}_t \), the probability measures over the paths of \(Y \) and \(\hat{Y} \) are equivalent.
the agent’s payoff will always integrate to less than his promised value if he deviates. If
this condition fails on a set of positive measure, the agent can obtain at least a little bit
more than his promised value if he underreports cash when $\beta_t < \lambda$. We summarize our
conclusions in the following proposition.

Lemma C. If the agent cannot save, truth-telling is incentive compatible if and only if β_t
$\geq \lambda$ for all $t \leq \tau$.

Proof: If the agent steals $dY_t - d\hat{Y}_t$ at time t, he gains immediate income of
$\lambda(dY_t - d\hat{Y}_t)$ but loses $\beta_t(dY_t - d\hat{Y}_t)$ in continuation payoff. Therefore, the payoff from
reporting strategy \hat{Y} gives the agent the payoff of

$$W_0 + E \left[\int_0^\tau e^{-\gamma t} \lambda (dY_t - d\hat{Y}_t) - \int_0^\tau e^{-\gamma t} \beta_t (dY_t - d\hat{Y}_t) \right],$$

(8)

where W_0 denotes the agent’s payoff under truth-telling. We see that if $\beta_t \geq \lambda$ for all t then
(8) is maximized when the agent chooses $d\hat{Y}_t = dY_t$, since the agent cannot over-report
cash flows. If $\beta_t < \lambda$ on a set of positive measure, then the agent is better off
underreporting on this set than always telling the truth.12

Now we use the dynamic programming approach to determine the most profitable way
for the principal to deliver to the agent any value W. We present an informal argument,
which is formalized in the proof of Proposition 1. Denote by $b(W)$ the principal’s value
function (the highest profit to the principal that can be obtained from a contract that
provides the agent with payoff W). To facilitate our derivation of b, we assume b is
concave. In fact, we could always ensure that b is concave by allowing public
randomization, but at the end of our intuitive argument we will see that public
randomization is not needed in an optimal contract.13

Because the principal has the option to provide the agent with W by paying a lump-sum
transfer of $dI > 0$ and moving to the optimal contract with payoff $W - dI$,

$$b(W) \geq b(W - dI) - dI.$$

(9)

Equation (9) implies that $b'(W) \geq -1$ for all W; that is, the marginal cost of compensating
the agent can never exceed the cost of an immediate transfer. Define W^1 as the lowest
value such that $b'(W^1) = -1$. Then it is optimal to pay the agent according to

$$dI = \max(W - W^1, 0)$$

(10)

These transfers, and the option to terminate, keep the agent’s promised value between R
and W^1. Within this range, equation (6) implies that the agent’s promised value evolves
according to $dW_t = \gamma W_t dt + \beta_t \sigma dZ_t$ when the agent is telling the truth. We need to

12 E.g., the agent can report $d\hat{Y}_t = dY_t - dt$ when $\beta < \lambda$ and tell the truth when $\beta \geq \lambda$. Because the probability
measures over the paths of Y and \hat{Y} are equivalent, $\beta(\hat{Y}) < \lambda$ on set of positive measure and the agent will
gain from this deviation.

13 Given the linearity of the incentive compatibility condition, public randomization would only be useful
for allowing stochastic termination of the contract.
determine the sensitivity β of the agent’s value to reported cash flows. Using Ito’s lemma, the principal’s expected cash flows and changes in contract value are given by

$$E[dY + db(W)] = \left(\mu + \gamma Wb'(W) + \frac{1}{2} \beta^2 \sigma^2 b''(W)\right)dt$$

Because at the optimum the principal should earn an instantaneous total return equal to the discount rate, r, we have the following Bellman equation for the value function:

$$rb(W) = \max_{\beta \geq \lambda} \mu + \gamma Wb'(W) + \frac{1}{2} \beta^2 \sigma^2 b''(W)$$

(11)

Given the concavity of b, $b''(W) \leq 0$ and so $\beta = \lambda$ is optimal.\(^{14}\) Intuitively, because the inefficiency in this model results from early termination, reducing the risk to the agent lowers the probability that the agent’s promised value falls to R.

The principal’s value function therefore satisfies the following second-order ordinary differential equation:

$$rb(W) = \mu + \gamma Wb'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W), \quad R \leq W \leq W^1,$$

(12)

with $b(W) = b(W^1) - (W - W^1)$ for $W > W^1$.

We need three boundary conditions to pin down a solution to this equation and the boundary W^1. The first boundary condition arises because the principal must terminate the contract to hold the agent’s value to R, so $b(R) = L$. The second boundary condition is the usual “smooth pasting” condition – the first derivatives must agree at the boundary, and so $b'(W^1) = -1$.\(^{15}\)

The final boundary condition is the “super contact” condition for the optimality of W^1, which requires that the second derivatives match at the boundary. This condition implies that $b''(W^1) = 0$, or equivalently, using equation (12),

$$rb(W^1) + \gamma W^1 = \mu.$$

(13)

This boundary condition has a natural interpretation. It is beneficial to postpone payment to the agent by making W^1 larger because it reduces the risk of early termination. Postponing payment is sensible until the boundary (13), when the principal and agent’s required expected returns exhaust the available expected cash flows.\(^{16}\) An example of the value function is shown in Figure 1.

The following proposition formalizes our findings:

PROPOSITION 1. The contract that maximizes the principal’s profit and delivers to the agent value $W_0 \in [R, W^1]$ takes the following form: W, evolves as

\(^{14}\) The proof shows that $b(W)$ is strictly concave for $W \leq W^1$ (see also fn. 16), so that $\beta = \lambda$ is the unique optimum.

\(^{15}\) Roughly speaking, if there were a kink at W^1, $b''(W^1) = -\infty$ and (12) could not be satisfied.

\(^{16}\) A similar argument shows that public randomization is not useful. For an optimal contract, $rb(W) \geq \mu + \gamma Wb'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W)$, since it is always possible to run the project and delay payment. If public randomization was necessary to convexify $b(W)$, we would have $b''(W) = 0$ where it is used. But then $b'(W) \geq -1$ implies that $rb(W) + \gamma W \geq \mu$. Thus, randomization is not beneficial for $W < W^1$.

\[dW_t = \gamma W_t dt - dI_t + \lambda (d\hat{Y}_t - \mu dt). \]

(14)

When \(W_t \in [R, W^1) \), \(dI_t = 0 \). When \(W_t = W^1 \), payments \(dI_t \) cause \(W_t \) to reflect at \(W^1 \). If \(W_0 > W^1 \), an immediate payment \(W_0 - W^1 \) is made. The contract is terminated at time \(\tau \) when \(W_t \) hits \(R \). The principal’s expected payoff at any point is given by a concave function \(b(W_t) \), which satisfies

\[rb(W) = \mu + \gamma W b'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W) \]

(15)

on the interval \([R, W^1] \) and \(b'(W) = -1 \) for \(W \geq W^d \), with boundary conditions \(b(R) = L \) and \(rb(W^d) = \mu - \gamma W^d \).

PROOF: See Appendix.

![Figure 1: The Principal’s Value Function \(b(W) \)](image)

Hidden Savings

Thus far, we have restricted the agent from saving and reporting strategies. We now show that the contract of Proposition 1 remains incentive compatible even when we relax this restriction. The intuition for the result is that because the marginal benefit to the agent of reporting or consuming cash is constant over time, and since private savings grow at rate \(\rho < \gamma \), there is no incentive to delay reporting or consumption. In fact, in the proof we show that this result holds even if the agent can save within the firm without paying the diversion cost and we remove the bound on the rate that the agent can steal.

PROPOSITION 2. Suppose the process \(W_t \) is bounded above and solves

\[dW_t = \gamma W_t dt - dI_t dt + \lambda (d\hat{Y}_t - \mu dt). \]

(16)
until stopping time \(\tau = \min\{t \mid W_t = R\} \). Then the agent earns payoff of at most \(W_0 \) from any feasible strategy in response to a contract \((\tau, I)\). Furthermore, payoff \(W_0 \) is attained if the agent reports truthfully and maintains zero savings.

Proof: See Appendix.

This result confirms that contracts from a broad class, including the optimal contract of Proposition 1, remain incentive-compatible even if the agent has access to hidden savings. Proposition 2 will help us characterize incentive-compatible capital structures in the next subsection.

2.3. Capital Structure Implementation

The optimal contract in our setting depends upon the history of reported cash flows. This history dependence is captured through the promised payoff \(W \) to the agent. In this section, we show that the optimal contract can be implemented using standard securities: equity, long-term debt, and a credit line. We begin by describing these securities.

Equity. Equity holders receive dividend payments made by the firm. Dividends are paid from the firm’s available cash or credit, and are at the discretion of the agent.

Long-term Debt. Long-term debt is a consol bond that pays continuous coupons at rate \(x \). Without loss of generality, we let the coupon rate be \(r \), so that the face value of the debt is \(D = x/r \). If the firm defaults on a coupon payment, debt holders force termination of the project.

Credit Line. A revolving credit line provides the firm with available credit up to a limit \(C^L \). Balances on the credit line are charged a fixed interest rate \(r^C \). The firm borrows and repays funds on the credit line at the discretion of the agent. If the balance on the credit line exceeds \(C^L \), the firm defaults and the project is terminated.

We now show that the optimal contract can be implemented using a capital structure based on these securities. While the implementation is not unique (e.g., one could always use the single contract, or strip the debt into zero-coupon bonds), it provides a natural interpretation. It also demonstrates how the contract can be decentralized into limited liability securities (equity and debt) that can be widely held by investors. Finally, it shows that the optimal contract is consistent with a capital structure in which, in addition to the ability to steal the cash flows, the agent has wide discretion regarding the firm’s leverage and payout policy – the agent can choose when to draw on or repay the credit line, the amount of dividends, and whether to accumulate cash balances within the firm.

While important for pricing the securities, for the implementation it is not necessary to specify the prioritization of the securities over the liquidation payoff \(L \). But because we compensate the agent with equity, and it is important that the agent does not receive part of the liquidation payoff. Thus, we define *inside equity* as identical to equity, but with the provision that it is worthless in the event of termination.\(^\text{17}\) (With absolute priority this distinction will often be unnecessary, as debt claims will typically exhaust \(L \)).

\(^{17}\) Inside equity could correspond to a stock grant to the agent combined with a zero interest loan due upon termination that equals or exceeds the liquidation value of the equity.
Proposition 3. Consider a capital structure in which the agent holds inside equity for fraction λ of the firm, the credit line has interest rate $r^c = \gamma$, and debt satisfies

$$rD = \mu - \gamma R / \lambda - \gamma C^L. \quad (17)$$

Then it is incentive compatible for the agent to refrain from stealing, and to use the project cash flows to pay the debt coupons and credit line before issuing dividends. Once the credit line is fully repaid, all excess cash flows are issued as dividends. With this capital structure, the agent’s expected future payoff W_t is determined by the current draw M_t on the credit line:

$$W_t = R + \lambda \left(C^L - M_t \right). \quad (18)$$

This capital structure implements the optimal contract if, in addition, the credit limit satisfies

$$C^L = \lambda^{-1}(W^d - R). \quad (19)$$

Proof: See Appendix.

The intuition for the incentive compatibility of this capital structure is as follows. First, providing the agent with fraction λ of the equity eliminates his incentive to divert cash because he can do as well by paying dividends. How can we ensure that the agent does not pay dividends prematurely by, for example, drawing down the credit line immediately and paying a large dividend? Given balance M_t on the credit line, the agent can pay a dividend of $C^L - M_t$ and then default. But (18) implies that the payoff from this deviation is equal to W_t, the payoff the agent receives from waiting until the credit line balance is zero before paying dividends. Finally, because the agent earns interest at his discount rate γ paying off the credit line, but earns interest at rate $r < \gamma$ on accumulated cash, the agent has the incentive to pay dividends once the credit line is repaid.

The role of the long-term debt, defined by (17), is to adjust the profit rate of the firm so that the agent’s payoff satisfies equation (18).\(^\text{18}\) If the debt were too high, the agent’s payoff would be below the amount in (18), and the agent would draw down the credit line immediately. If the debt is too low and the firm’s profit rate too high, the agent would build up cash reserves after the credit line was paid off in order to reduce the risk of termination. Thus, if (17) holds, we say the capital structure is *incentive compatible* – the agent will not steal and will pay dividends if and only if the credit line is fully repaid.

Under what conditions does this capital structure implement the optimal contract of section 2.2? The history dependence of the optimal contract is implemented through the credit line, with the balance on the credit line acting as the “memory” device to track the agent’s payoff W_t. In the optimal contract, the agent is paid in order to keep the promised payoff from exceeding W^d. Here, dividends are paid when the balance on the credit line is $M_t = 0$. To implement the optimal contract, these conditions must coincide. Solving equation (18) for C^L leads to the optimality condition $C^L = \lambda^{-1}(W^d - R)$.

\(^{18}\) One can rewrite (17) as $\lambda (\mu - rD - \gamma C^L) = \gamma R$, which states that the agent’s share of the firm’s profit rate (after interest payments) matches the agent’s outside option when the credit line is exhausted.
There is no guarantee that in this capital structure the debt required by equation (17) is positive. If \(D < 0 \), we interpret the debt as a \textit{compensating balance}. A compensating balance is a cash deposit required by the bank issuing the credit line. The firm earns interest on this balance at rate \(r \), and the interest supplements the firm’s cash flows. The firm cannot withdraw this cash, and it is seized by creditors in the event of default. We examine the settings in which a compensating balance arises in the next section.

The implementation here is very similar to the implementation shown in the discrete-time model of DeMarzo and Fishman (2003).\(^{19}\) There are three important distinctions. First, because cash flows arrive in discrete portions, the termination decision is stochastic in the discrete-time setting (i.e. the principal randomizes when the agent defaults). Second, because cash flows may be arbitrarily negative in a continuous-time setting, the contract may involve a compensating balance requirement as opposed to debt. Lastly, the discrete-time framework does not allow for a simple characterization of the incentive compatibility condition for the capital structure in terms of the primitives of the model, as we do here in equation (17). When \(\gamma \) is close to \(r \), this condition implies that the total debt capacity of the firm:

\[
D + C^L = \frac{\mu}{\gamma} - R/\lambda + (1 - r/\gamma)D \approx \frac{\mu}{\gamma} - R/\lambda.
\]

is relatively insensitive to the volatility \(\sigma \) and liquidation value \(L \) of the project. The mix of debt and credit will depend on these parameters, however, as we explore next.

3. \textbf{Optimal Capital Structure and Security Prices}

The capital structure implementation of the optimal contract inspires many interesting questions. What factors determine the amount that the agent borrows? When will the agent borrow for initial consumption? When is there a compensating balance? What is the optimal length of the credit line? How do market values of securities involved in the contract depend on the firm’s remaining credit? In this section, we exploit the continuous-time machinery to answer these questions and provide new insights.

3.1. \textbf{The Debt Choice}

A key feature of the optimal capital structure is its use of both fixed long-term debt and a revolving credit line. In this section we develop further intuition for how the amount of long-term debt, the size of the credit line, and the initial draw on the credit line are determined.

To simplify the analysis, we focus on the case \(\lambda = 1 \) in which there is no cost to diverting cash flows. In this case, the agent holds the equity of the firm, and finances the firm solely through debt. While this case might appear restrictive, the following result shows that the optimal debt structure with lower levels of \(\lambda \) can be determined by considering an appropriate change to the termination payoffs.

\(^{19}\) An alternative implementation is given in Shim (2004) and Biais et al. (2004) for a specialized setting. Rather than a credit line, they suppose the firm retains a cash reserve and that the coupon payment on the debt varies contractually with the level of the cash reserves.
Proposition 4. The optimal debt and credit line with agency parameter and termination payoffs \((\lambda, R, L)\) are the same as with parameters \((1, R^\lambda, L^\lambda)\) where

\[
R^\lambda = \frac{1}{\lambda} R \quad \text{and} \quad L^\lambda = \frac{1}{\lambda} L + (1 - \frac{1}{\lambda}) \frac{\mu}{\lambda}.
\]

Proof: See Appendix.

When \(\lambda = 1\), the optimal credit limit is \(C^d = W^d - R\). The optimal level of debt is then determined by (17), which in this case can be written

\[
rD = \mu - \gamma R - \gamma C^d = \mu - \gamma W^d
\]

Recall also that in the optimal contract, \(W^d\) is determined by the boundary condition (13):

\[
rb(W^d) + \gamma W^d = \mu
\]

Combining these two results implies that the optimal face value of debt is \(D = b(W^d)\). Figure 2 shows an example, illustrating the size of the credit line and the debt face value when the cash flow volatility is low. From the figure, \(D > L\), so the debt is risky.

![Figure 2: The Optimal Contract with Low Volatility](image)

\((L = 25, R = 0, \mu = 10, \sigma = 5, \gamma = 10\%, \gamma = 15\%, \lambda = 1, K = 30)\)

Note that the optimal capital structure for the firm does not depend on the external capital \(K\) that is required. However, the initial payoffs of the agent and the investors depend upon \(K\) as well as the parties’ relative bargaining power. If investors are competitive, the agent’s initial payoff is the maximal payoff \(W_0\) such that \(b(W_0) = K\) as illustrated in Figure 2. In this example, \(W_0 > W^d\). This payoff is achieved by giving the agent an initial cash payment of \(W_0 - W^d\), and starting the firm with zero balance on the credit line.
(providing the agent with future payoff W^i). In other words, the firm issues long-term
debt to fund the project and pay an initial dividend of $W_0 - W^i$. The credit line is then
used as needed to cover operating losses.

Thus, the firm raises $b(W^i)$ from investors, which is equal to the face value of the debt D.
But because the debt is risky ($D > L$), given coupon rate r it must trade at a discount.
How does the firm raise the additional capital to make up for this discount? Given the
high interest rate γ on the credit line, the lender earns an expected profit from the credit
line, and so will pay the firm upfront an amount that exactly offsets the initial discount on
the long-term debt due to credit risk.

Recall that the optimal credit line results from the following trade-off: a large credit line
delays the agent’s consumption, but also gives more flexibility to delay termination.
Payments on debt are chosen to give the agent incentives to report truthfully: if payments
on debt were too burdensome, the agent would draw down the credit line immediately
and quit the firm; if they were too small, the agent would delay termination by saving
excess cash flows when the credit line is paid off. In Figure 3, we illustrate how these
intuitive considerations affect the optimal contract for different levels of volatility. With
an increase in volatility, the principal’s profit function drops. Riskier cash flows require
more financial flexibility, so the credit line becomes longer. Given the higher interest
burden of the longer credit line, the optimal level of debt shrinks.

With medium volatility (as shown in the left panel of Figure 3), the face value of the debt
is below the liquidation value of the firm ($D < L$). Thus, if the long-term debt has priority
in default, it is now riskless. The firm will therefore raise D through the long-term debt
issue. However, in this case $D < K$. The additional capital needed to initiate the project
is raised through an initial draw on the credit line of $W^i - W_0$. Because $b' > -1$ on $(W_0,$
$W_1)$, the draw on the credit line exceeds $K - D$. The difference can be interpreted as an
initial fee charged by the lender to open the credit line with this initial balance; this fee
compensates the lender for the negative NPV of the credit line due to the firm’s greater
credit risk.

With high volatility (as shown in the right panel of Figure 3), the principal’s profit falls
further. This very risky project requires a very long credit line. Note that in this case $D =
b(W^i) < 0$. We can interpret $D < 0$ as a compensating balance requirement – the firm
must hold cash in the bank equal to $-D$ as a condition of the credit line. Both the
required capital K and the compensating balance $-D$ are funded through a large initial
draw of $W^i - W_0$ on the credit line. Given this large initial draw, substantial profits must
be earned before dividends will be paid.

The compensating balance provides additional operating income of rD to the firm. This
income increases the profitability of the firm, making it incentive compatible for the
agent to run the firm rather than consume the credit line and immediately default. Also,
by funding the compensating balance upfront, investors are committed to providing the
firm with income rD even when the credit line is paid off. This commitment is necessary
since investors’ continuation payoff at W^i is negative, which would violate their limited
liability. The compensating balance therefore serves to tie the agent and the investors to
the firm in an optimal way.
Finally, note that if we increase volatility further in this example, the maximal profit for the principal falls below K. Thus, while such a project is positive NPV, it cannot be financed due to the incentive constraints.

Figure 3: The Optimal Contract with Medium and High Volatility ($\sigma = 12.5, \sigma = 19.07$)

Remark. Here we have assumed investors are competitive, but other possibilities are straightforward. For example, if the principal were a monopolist hiring the agent, the contract would be initiated at the value W^* that maximizes the principal’s payoff $b(W^*)$. The optimal capital structure would be unchanged, but the firm would always start with a draw on the credit line. Comparing Figure 2 and Figure 3, while higher volatility decreases $b(W^*)$, the effect on the agent’s payoff W^* is not monotonic. Thus the agent might prefer to manage a higher risk project.

3.2. Comparative Statics

How do the credit line, debt, and the agent’s and investors’ initial payoff depend on the parameters of the model? In the discrete-time setting, many of these comparative statics are analytically intractable, and must be computed for a specific example. A key advantage of the continuous time framework is that we can use the differential equation that characterizes the optimal contract to compute these comparative statics analytically.

Here we outline a new methodology for explicitly calculating comparatives statics. First, we derive the effect of parameters on the principal’s profit. We start with the HJB equation for the principal’s profit for a fixed credit line, which is represented by the interval $[R, W^t]$:

$$rb(W) = \mu + \gamma Wb'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W)$$
The effect of any parameter \(\theta \) on the principal’s profit can be found by differentiating the HJB equation and its boundary conditions with respect to \(\theta \). During differentiation we keep \(W^1 \) fixed, which is justified by the envelope theorem. As a result, we get an ordinary differential equation for \(\frac{\partial b(W)}{\partial \theta} \) with appropriate boundary conditions. We apply a generalization of the Feynman-Kac formula to write the solution as an expectation

\[
\frac{\partial b(W)}{\partial \theta} = E\left[e^{-rT} \left(\frac{\partial \mu}{\partial \theta} + \frac{\partial \gamma}{\partial \theta} W_t b'(W_t) + \frac{1}{2} \frac{\partial (\lambda^2 \sigma^2)}{\partial \theta} b''(W_t) \right) dt + e^{-rT} \frac{\partial L}{\partial \theta} \bigg| W_0 = W \right] \tag{20}
\]

where \(dW_t = \gamma W_t dt - dI_t + \lambda dZ_t \), as before. Intuitively, equation (20) counts how much profit is gained or lost on the path of \(W_t \) due to the modification of parameters. For example,

\[
\frac{\partial b(W)}{\partial L} = E\left[e^{-rT} \bigg| W_0 = W \right],
\]

which is expected discounted value of a dollar at liquidation time.

Once we know the effect of parameters on the principal’s profit, we deduce their effect on the debt and credit line by differentiating the boundary condition \(rb(W^1) + \gamma W^1 = \mu \), and on the agent’s starting value by differentiating \(b(W_0) = K \) (or \(b'(W^*) = 0 \) when the principal is a monopolist). For example, the effect of \(L \) is found as follows:

\[
 r \left(\frac{\partial b(W^1)}{\partial L} + b'(W^1) \frac{\partial W^1}{\partial L} \right) + \gamma \frac{\partial W^1}{\partial L} = 0 \Rightarrow \frac{\partial W^1}{\partial L} = -\frac{r}{\gamma - r} E\left[e^{-rT} \bigg| W_0 = W^1 \right]< 0.
\]

As \(L \) increases, the inefficiency of liquidation declines, so a shorter credit line optimally provides less financial flexibility for the project. By similar methods, we can quantify the impact of the model parameters on the main features of an optimal contract. The precise derivations are carried out in the appendix.

<table>
<thead>
<tr>
<th>(dL)</th>
<th>(dC^L)</th>
<th>(dD)</th>
<th>(dW_0)</th>
<th>(dW^*)</th>
<th>(db(W^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(dR^{20})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(d\gamma)</td>
<td>-</td>
<td>(\pm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(d\mu)</td>
<td>+</td>
<td>+ (if (\lambda = 0))</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(d\sigma^2)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(\pm)</td>
<td>-</td>
</tr>
<tr>
<td>(d\lambda)</td>
<td>- (if (R = 0))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(\pm)</td>
</tr>
</tbody>
</table>

Table 1: Comparative Statics for the Optimal Contract

The intuition for these results is clear. For example, consider the mix of debt and credit. We have already shown that credit decreases as \(L \) increases, since liquidation is less inefficient and financial slack is less valuable. If the agent’s outside option \(R \) increases,

\(\text{These are found for the case when the project is profitable even if the agent does not have any initial cash, which implies that } b'(R) > 0. \)
the agent becomes more tempted to draw down the credit line and default. The length of the credit line decreases to reduce this temptation, and payments on debt decrease to make it more attractive for the agent to run the project, as opposed to taking the outside option. If the mean of cash flows μ increases, the credit line increases to delay termination and debt increases because the principal can extract more cash flows from the agent. If the agent’s discount rate γ increases, then the credit line decreases because it becomes costlier to delay the agent’s consumption. On the other hand, the amount of debt could move either way due to two effects. For small γ, debt increases in γ because the agent is able to borrow more through debt when the credit line is smaller. When γ becomes large, the project becomes less profitable due to the agent’s impatience, so the agent is able to borrow less through debt. We saw in Section 3.1 that the credit limit increases and the debt decreases with volatility σ—riskier projects require longer credit line and therefore the agent is able to borrow less through debt. Finally, the effect of λ is the most complex, and it is easiest to discuss for a special case when $R = 0$. Then the credit line is decreasing in λ: the cost of delaying dividends becomes larger when the impatient agent owns a larger fraction of equity. At the same time, debt increases to offset the decreased credit line.

The effect of parameters on both W_0 and $b(W^*)$ is the same since they both reflect the profitability of the project. When L or μ increase the project becomes more profitable. At the same time, the project becomes less profitable with an increase in the risk of the project σ^2, the agent’s impatience γ, the magnitude of the agency problem λ, or the agent’s outside option R. Finally, the effect of the parameters on the agent’s starting value W^* when investors have all the bargaining power is determined by the following trade-off: larger W^* delays termination at a greater cost of paying the agent.

We conclude by computing the quantitative effect of the parameters on the debt choice of the firm for a specific example in Figure 4. Note for example that a compensating balance is required if σ is high (to mitigate risk), if R is high or μ is low (to increase the profit rate of the firm to maintain the agent’s incentive to stay), or if λ is very low (when the agency problem is small, a smaller threat of termination is needed, and thus the credit line expands and debt shrinks). (Though not visible in the figure, it is also true as $\gamma \to r$.)

Figure 4: Comparative Statics (base case: $L = 0, R = 0, \mu = 10, \sigma = 10, r = 10\%, \gamma = 15\%, \lambda = 1$)
3.3. Security Market Values

We now consider the market values of the credit line, long-term debt and equity that implement the optimal contract. For this we need to make an assumption regarding the prioritization of the debt in default. We assume that the long-term debt is senior to the credit line; similar calculations could be performed for different assumptions regarding seniority.21 With this assumption, the long-term debtholders get $L_D = \min(L, D)$ upon termination. The market value of long-term debt is therefore

$$V_D(M) = E\left[\int_0^t e^{-rt} x \, dt + e^{-rt} L_D \right]$$

Note that we compute the expected discounted payoff for the debt conditional on the current draw M on the credit line, which measures the firm’s “distance to default” in our implementation.

Until termination, the equity holders get total dividends of $dDiv_t = dI_t / \lambda$, with the agent receiving fraction λ. At termination, the outside equity holders receive the remaining part of liquidation value, $L_E = \max(0, L - D - C^d) / (1 - \lambda)$ per share, after the debt and credit line have been paid off.22 The value of equity (per share) to outside equity holders is then

$$V_E(M) = E\left[\int_0^t e^{-rt} dDiv_t + e^{-rt} L_E \right]$$

Finally, the market value of the credit line is

$$V_C(M) = E\left[\int_0^t e^{-rt} (dY_i - x \, dt - dDiv_t) + e^{-rt} L_C \right]$$

where $L_C = \min(C^d, L - L_D)$. For the optimal capital structure, the aggregate value of the outside securities equals the principal’s continuation payoff. That is, from (18),

$$b(R + \lambda(C^d - M)) = V_D(M) + V_C(M) + (1 - \lambda) \, V_E(M).$$

We show in the appendix how to represent these market values in terms of an ordinary differential equation, so that they may be computed easily. See Figure 5 for an example. In this example, $L < D$ so that the long-term debt is risky. Note that the market value of debt is decreasing towards L as the balance on the credit line increases towards the credit limit. Similarly the value of equity declines to 0 at the point of default. The figure also shows that the initial value of the credit line is positive – the lender earns a profit by charging interest rate $\gamma > r$. However, as the distance to default diminishes, additional draws on the credit line result in losses for the lender (for each dollar drawn, the value of the credit line goes up by less than one dollar, and eventually declines).

21 Recall that only the aggregate payments to investors matter for incentives; the division of the payments between the securities is only relevant for pricing.

22 Lemma E in the Appendix shows that $L < D + C^d$ when $\lambda = 1$ and there are no outside equity holders, so in that case we can set $L_E = 0$ to compute the “shadow price” of outside equity.
Figure 5: Market Values of Securities for $\mu = 10, \sigma = 10, \lambda = 50\%, r = 10\%, \gamma = 15\%, L = 10, R = 0$

Figure 5 also illustrates several other interesting properties of the security values. Note, for example, that the leverage ratio of the firm is not constant over time. When cash flows are high, the firm will pay off the credit line and its leverage ratio will decline. On the other hand, during times of low profitability, the firm increases its leverage. Finally, cash flow shocks lead to persistent changes in leverage. These results are broadly consistent with the empirical behavior of leverage.

Asset Substitution and Equity Issuance

One surprising observation from Figure 5: the value of equity is concave in the credit line balance, which implies that the value of equity would decline if the cash flow volatility were to increase. In fact, we can show:

Proposition 5. When debt is risky ($L < D + C^d$), for the optimal capital structure the value of equity decreases if cash flow volatility increases. Thus, equity holders would prefer to reduce volatility.

Proof: See appendix. *

This is counter to the usual presumption that risky debt implies that equity holders benefit from an increase in volatility due to their option to default. That is, in our setting, there is no “asset substitution problem” related to leverage. Note also that the agent’s payoff is
linear in the credit line balance, so that the agent is indifferent regarding changes to volatility.\footnote{Leland (1994) notes that covenants that force default as soon as asset values fall below the face value of debt eliminate the asset substitution problem. Here, there is no asset substitution despite the fact that debt may be risky.}

In Section 2.3 we demonstrated that the optimal capital structure implies that the firm’s payout policy is incentive compatible for the agent; that is, the agent finds it optimal to pay dividends if and only if the credit line is fully repaid. What about equity holder’s incentives? Would they prefer an alternative payout policy? And could the firm raise new equity capital to delay default? That is, could equity holders benefit from a strategic default policy?

If the firm increases its payouts by paying additional dividends, for each dollar paid outside equity holders receive $(1-\lambda)$. On the other hand, the increased draw on the credit line changes the value of outside equity by $(1-\lambda) V'_E(M)$. Thus, equity holders prefer that the firm not pay dividends as long as

$$V'_E(M) \leq -1$$

(21)

Alternatively, the firm could pay down the credit line by raising new capital through an equity issue. Each dollar raised increases the value of outside equity by $-(1-\lambda) V'_E(M)$. Thus, the firm cannot raise additional equity capital as long as

$$V'_E(M) \geq -1/(1-\lambda)$$

(22)

The wedge between equations (21) and (22) results from the fact that the agent participates in dividend payments, but cannot contribute new equity capital to the firm. We have the following result:

Proposition 6. When debt is risky \((L < D + CL)\), equation (21) is satisfied and holds with equality at \(M = 0\). Thus, equity holders would not wish to alter the firm’s payout policy. In addition, the firm cannot raise new equity capital if (22) holds for \(M = CL\).

Proof: See appendix.

Thus, equity holders have no incentive to alter the firm’s dividend policy. To verify that that equity issues will not occur, it is only necessary to check (22) at the default boundary. Numerically, (22) appears to hold as long as \(\lambda\) is not too small (e.g., it holds for the example in Figure 5). In Section 5.2 will consider renegotiation-proof contracts, for which equation (22) is guaranteed to hold.

4. **Hidden Effort**

Throughout our analysis we have concentrated on the setting in which the cash flows are privately observed, and the agent may divert them for his own consumption. In this section we consider a standard principal-agent model in which the agent makes a hidden binary effort choice. This model is also studied by Biais et al. (2004) in contemporaneous work. Our main result is that, subject to natural parameter restrictions, the solutions are identical for both models. Thus, all of our results apply to both settings.
In a standard hidden effort model, the principal observes the cash flows. Based on the cash flows, the principal decides how to compensate the agent, and whether to continue the project. Thus, there are only two key changes to our model. First, since cash flows are observed, there is no issue of misreporting. Second, we assume that at each point in time, the agent can choose to shirk or work. Depending on this decision, the resulting cash flow process is

\[d\hat{Y}_t = dY_t - a \, dt, \quad \text{where } a = \begin{cases} 0 & \text{if the agent works} \\ A & \text{if the agent shirks} \end{cases} \]

Working is costly for the agent, or equivalently that shirking results in a private benefit. Specifically, we suppose the agent receives an additional flow of utility equal to \(\lambda A \, dt \) if he shirks.\(^{24}\) With \(r < \gamma \) the agent consumes all payments immediately, so that

\[dC_t = dI_t + \lambda \, a \, dt. \]

Again, \(\lambda \) parameterizes the cost of effort and therefore the degree of the moral hazard problem. We assume \(\lambda \leq 1 \) so that working is efficient.

Our first result establishes the equivalence between this setting and our prior model:

PROPOSITION 7. The optimal Principal-Agent contract implementing high effort is the optimal contract of Section 2.

PROOF: The incentive compatibility condition in Lemma C is unchanged: to implement high effort at all times, we must have \(\beta_t \geq \lambda \sigma \). But then Proposition 1 shows that our contract is the optimal contract subject to this constraint. \(\star\)

It is not surprising that our original contract is incentive compatible in this setting, since shirking is equivalent stealing cash flows at a fixed rate. What is surprising is that the additional flexibility the agent has in the cash flow diversion model does not require a “stricter” contract.

Proposition 7 assumes that implementing high effort at all times is optimal. Because the reduction in cash flows due to shirking is bounded – unlike the case of diversion – it may be optimal to stop providing incentives and allow the agent to shirk after some histories. Specifically, when the agent shirks his payoff would not need to depend on cash flows, so that the agent’s promised payoff would evolve as

\[dW_t = \begin{cases} \gamma W_t \, dt - dI_t + \lambda(d\hat{Y}_t - \mu \, dt) & \text{if } a = 0 \\ \gamma W_t \, dt - dI_t - \lambda A \, dt & \text{if } a = A \end{cases} \]

Because the principal’s continuation function is concave, this reduction in the volatility of \(W_t \) could be beneficial. For that not to be the case, and for high effort to remain optimal, it must be that for all \(W_t \), the principal’s payoff rate from having the agent shirk would be less than under our existing contract:\(^{25}\)

\(^{24}\) While we assume the effort choice is binary, nothing would change if it were continuous, as long as the marginal cost to the agent of increasing the drift remained constant at \(\lambda \).

\(^{25}\) Formally, condition (23) is required in the proof of Proposition 1 for \(G_t \) to remain a supermartingale for either effort choice.
The agent and principal’s payoff if the agent shirks forever are given by

\[w^s = \lambda A / \gamma \] and \[b^s = (\mu - A) / r = (\mu - \gamma w^s / \lambda) / r, \]

Then we have the following necessary and sufficient condition, as well as a simple sufficient condition, for high effort to remain optimal at all times:

PROPOSITION 8. Implementing high effort at all times is optimal in the Principal-Agent setting if and only if

\[b^s \leq f \left(w^s \right) \]

where \(f(z) = \min_w b(w) + \frac{r}{\gamma} (z - w) b'(w). \) A simpler sufficient condition is

\[b^s \leq \frac{\gamma}{r} b \left(w^s \right) + \left(1 - \frac{\gamma}{r} \right) b(W^s) \]

Given \(\lambda, \) both of these conditions imply a lower bound on \(A, \) or equivalently, \(w^s. \)

PROOF: See Appendix.

We can interpret Proposition 8 as follows. The point \((w^s, b^s)\) represents the agent’s and principal’s payoff if the agent shirks forever. Thus, shirking is never optimal if and only if this point lies below the function \(f. \) The function \(f \) is concave and below \(b, \) with equality only at the maximum, as shown in Figure 6. The factor \(\gamma / r \) increases the steepness of \(f \) relative to \(b; \) when \(\gamma = r, f \) and \(b \) coincide. Proposition 8 puts a lower
bound on \(w^s \), or equivalently on \(A \), the magnitude of the cash flow impact of shirking. For example, in Figure 6, if \(w^s \geq \tilde{w}^s \), then high effort is always optimal. This is the case for \((w^s_1, b^s_1)\).

On the other hand, if \(A \) is too small so that \(w^s < \tilde{w}^s \), then the optimal principal-agent contract will involve shirking after some histories. Still, the optimal contracting techniques of this paper may apply. For example, see \((w^s_2, b^s_2)\) in Figure 6. In this case, the optimal contract calls for high effort until the point \((w^s_2, b^s_2)\) is reached; once it is reached the agent is paid a fixed wage and shirks forever. Thus, the optimal contract is again as in our model, but with a fixed wage and shirking in place of termination so that \((R, L) = (w^s_2, b^s_2)\).\(^{26}\)

Remark. We can also consider a hybrid model, in which the agent can both divert cash flows and choose effort. Let \(\lambda_d \) parameterize the benefit the agent receives from diverting cash flows, and let \(\lambda_a \) represent the benefit from shirking. Then we can show that the optimal contract implementing high effort is the optimal contract of Section 2 with \(\lambda = \max(\lambda_d, \lambda_a) \). (See Shim (2004) for a discrete-time model of this sort.)

5. Further Extensions of the Model

In this section we consider various extensions of the basic model. First, we allow the termination payoffs \((R, L)\) to be determined endogenously by either the principal’s option to hire a new agent or the agent’s option to start a new project. Second, we consider the construction of an optimal renegotiation-proof contract. Third, we consider the case in which the agent and principal disagree about key parameters of the model, such as the project’s profitability, or the agent’s impatience.

5.1. Endogenously Determined Termination Payoffs.

Thus far, we have treated the termination payoffs \((R, L)\) as exogenous. Suppose, however, that they are endogenously determined as in the following to examples:

Firing and Replacing the Agent: Suppose the agent can be fired and replaced at cost \(c_a\) to the principal/investors. The agent’s termination payoff if fired is \(R \). Investors choose the optimal contract with a new agent, and so receive termination payoff

\[
L = b(W^*) - c_a
\]

(25)

Inalienable Human Capital: Suppose the agent can quit the firm and start a new firm by raising external capital \(K \) from new investors. If the agent quits, the old investors liquidate and receive \(L \), while the agent receives

\[
R = e^{-\gamma L} \tilde{W}_0
\]

(26)

\(^{26}\) This result holds when \(A \) is small enough that shirking yields the highest possible payoff for the investors. For intermediate values of \(A \), an optimal contract calls for shirking only temporarily, and a more complicated contract than the one described in this paper will be necessary to achieve optimality.
where Δt is the time required to start a new firm and W_0 satisfies $b(W_0) = K$.

The optimal contract in either case takes exactly the same form as described in Section 2. The only change is that now the boundary condition (25) or (26) replaces $b(R) = L$. The solution is illustrated in Figure 7. Because $db(W^*)/dL < 1$, when assets are unique the liquidation value L is decreasing in c_a. From the results of Section 3.2, the credit line increases and the debt decreases in c_a. This is intuitive, because the project requires more financial flexibility when it is more difficult to replace the agent. Similarly, when the agent is unique, as Δt falls and it becomes easier for the agent to start a new firm, R rises. This leads to a decrease in both the credit line and in debt. Note that as $\Delta t \to \infty$ and starting a new firm becomes impossible, $R \to 0$, and as $\Delta t \to 0$ and restarting is costless, $R \to R^*$, the point at which $b'(R^*) = 0$. (These are but two special cases – other cost structures can be considered, and both settings may operate simultaneously.)

![Figure 7: Determining L or R endogenously](image)

The left panel considers the case in which the agent can be fired and replaced at cost c_a, so that $L = b(W^*) - c_a$. The right panel considers the case in which the agent can quit and raise capital K (in the example, $K = L$) to start a new firm with delay Δt, so that $R = e^{-\gamma \Delta t} W_0$.

5.2. Renegotiation

The optimal contracts we have derived need not be renegotiation-proof. When $b'(R) > 0$, both the principal and the agent would like to renegotiate termination and restart the contract with the agent’s value $W > R$, which gives the principal profit $b(W) > L$. In terms of our implementation, renegotiation corresponds to recapitalizing the firm to avoid default. (For example, in Figure 5, the security holders would be willing to “forgive” some of the debt to avoid default.)

27 This setting is similar to Hart and Moore’s (1994) notion of “inalienable human capital” and its relationship to optimal debt structure.
To be renegotiation-proof, the principal’s profit function \(b(W) \) must not have positive slope. Renegotiation effectively raises the agent’s minimum payoff when running the project to a point \(R^* \) such that \(b'(R^*) = 0 \). This is equivalent to the case in Section 5.1 of an agent that can restart the firm immediately (\(\Delta t = 0 \)).

A renegotiation-proof contract under which the principal breaks even exists only if the required external capital \(K \leq L \). Until termination the agent’s continuation value evolves in the interval \([R^*, W^1]\) as

\[
dW_t = \gamma W_t \, dt + \lambda (dY_t - \mu \, dt) - dI_t + dP_t,
\]

where processes \(I \) and \(P \) reflect \(W_t \) at endpoints \(W^1 \) and \(R^* \) respectively. The project is terminated stochastically whenever \(W_t \) is reflected at \(R^* \). The probability that the project continues at time \(t \) is

\[
\Pr(\tau \geq t) = \exp \left(\frac{-P_t}{R^* - R} \right).
\]

Then \(W_t \) is the agent’s true expected future payoff. Indeed, whenever \(W_t \) hits \(R^* \) and \(dP_t \) is added to the agent’s continuation value, the project is terminated with probability \(dP_t / (R^* - R) \) to account for this increment to the agent’s value.

The implementation of a renegotiation-proof contract involves a credit line and debt as in the optimal contract of Section 2.3 with \(R^* \) in place of \(R \). Since \(R^* > R \), both the credit line and debt decrease. Renegotiation-proofness effectively reduces the profitability of the project.\(^{28}\)

5.3. Private Benefits and Differing Opinions

Suppose the agent receives private benefits of control from running the project. Specifically, suppose that prior to termination the agent earns additional utility at rate \(\gamma \omega \). With this private benefit, the agent’s continuation value evolves according to

\[
dW_t = \gamma (W_t - \omega) \, dt - dI_t + \lambda (dY_t - \mu \, dt)
\]

How does this alter the form of the optimal contract? Interestingly, as the following result shows, this is equivalent to reducing the agent’s outside opportunity by \(\omega \).

Proposition 9. Suppose the agent earns private benefits at rate \(\gamma \omega \) while running the project. Then the optimal contract is the same as the optimal contract without private benefits and termination payoff \(\hat{R} = R - \omega \). Under this contract, given a value of the state variable \(W_t \), the agent’s total payoff including private benefits is \(W_t = \hat{W}_t + \omega \).

Proof: See Appendix. \(\diamondsuit \)

\(^{28}\) Gromb (1999) considers renegotiation-proofness in a related discrete-time model. While not providing a complete characterization, he does show that in an infinite-horizon stationary setting the maximum external capital the firm can raise is the liquidation value \(L \). Note also that we can relax the renegotiation constraint by assuming costs of renegotiation and adapting the approach in Section 5.1.
Using our comparative statics results for R from Section 3.2, increasing the agent’s private benefits increases the optimal credit limit and amount of debt. Intuitively, the potential threat of losing the private benefits in termination enhances the agent’s incentives and hence increases the debt capacity of the firm. Moreover, because \hat{W}_0 rises as \hat{R} falls with ω, the agent’s total payoff rises by more than a dollar for each dollar of private benefits, all else equal, due to the “commitment effect” of private benefits.

A similar result follows if the agent and the investor have different beliefs about the mean of the cash flows, μ. For example, suppose the agent believes the mean is $\mu + \delta$. Holding these beliefs fixed, the agent’s continuation payoff should evolve according to

$$dW_t = \gamma W_t dt - dI_t + \lambda (d\hat{Y}_t - (\mu + \delta) dt) = \gamma (W_t - \lambda \hat{\delta} / \gamma) dt - dI_t + \lambda (d\hat{Y}_t - \mu dt)$$

Thus, a discrepancy δ between the agent’s and investor’s beliefs is equivalent to a private benefit of magnitude $\omega = \lambda \delta / \gamma$.

5.4. Estimating γ

As with other optimal contracting settings, the form of our optimal contract depends upon the parameters of the agent’s utility function; in our case, the dependence is on the impatience parameter γ.

While $\gamma = r$ may be a natural (or at least neutral) assumption, we argue here that it is more robust to consider optimal contracts with γ exceeding r. First, note from Figure 4 that the optimal debt-credit mix is very sensitive as $\gamma \to r$, but is much less sensitive when γ exceeds r by more than 0.5%. Indeed, it is generally the case that $\partial D/\partial \gamma = +\infty$ when $\gamma = r$.

Second, the following result implies that to design a contract, the principal has a strong incentive to overestimate, rather than underestimate, γ:

Proposition 10. Suppose that the principal offers a contract designed for an agent with discount rate γ. If the agent’s true discount rate is $\gamma' < \gamma$, then the principal’s payoff is the same as if $\gamma' = \gamma$, while the agent earns a payoff greater than W_0 by accumulating a positive cash reserve prior to paying dividends. If the agent’s true discount factor γ' is greater than γ, then the agent will draw the entire credit line and default immediately. The agent earns W_0, whereas the principal earns $L - (W_0 - R)$.

Proof: See Appendix.

Thus, if there is some uncertainty regarding the agent’s impatience, when using our contract investors will set γ at the high end of the range. While they could do better designing a contract to “screen” for γ, the benefits of doing so would be minor. This result also offers an explanation for the use of cash reserves in our setting.

29 For example, suppose $r = 10\%$ and γ is between 10% and 11%, with all other parameters as in Figure 2. Suppose investors have monopoly power and hire the agent. By choosing the contract for $\gamma = 11\%$, if the true γ is below 11%, investors lose at most about 2½% of the payoff they could have attained by choosing γ correctly. But if they choose a contract with $\gamma < 11\%$, and the true γ is higher, investors lose about 90% of their payoff. If investors’ prior for γ were uniform, setting $\gamma = 11\%$ when using our contract would be best for the investors.
6. Conclusion

We analyzed a situation in which an agent or entrepreneur needs to raise external capital to (i) start-up a profitable project, (ii) cover future operating losses that may occur, and (iii) consume. In our setting, the agent can divert cash flows from the project for personal consumption without the investor’s knowledge. To enforce payments, the investors can threaten to withhold future funding and terminate the project. We analyze an optimal contract between the investors and the agent in this setting.

An optimal contract involves a credit line, debt and equity. Debt, outside equity, and possibly the credit line provide the funds for start-up capital and initial consumption for the agent. For the duration of the project, the credit line provides the flexibility to cover possible operating losses. The agent has incentives to pay interest and not consume from the credit line because in case of default he has to surrender the project to investors. The agent holds an equity stake and has discretion over the payment of dividends. The agent’s equity stake is sufficiently large that he does not divert excess cash flows for personal consumption, but pays them out as dividends appropriately.

The continuous-time setting of our paper has several advantages. First, the features of an optimal contract are cleaner. Unlike in discrete time, an optimal contract in continuous time does not require stochastic termination. Second, a continuous time model provides a convenient characterization of the optimal contract through an ordinary differential equation. With this characterization we can say a great deal about how the optimal capital structure is determined by the specific features of the project. Also, we are able to compute the values of securities that are involved in the implementation of an optimal contract, and show that typical conflicts of interest between debt and equity holders do not arise. Finally, we can easily analyze extensions. For example, we show how our contract also solves a standard principal-agent setting with costly effort. Other extensions are considered; in many cases the solution only involves finding the appropriate boundary conditions for the differential equation that defines an optimal contract.

Our results open several thought-provoking questions for future research. For example, how can the contract be designed to elicit information regarding the agent’s impatience? How does the agency problem considered here affect project selection, investment, and the scope of the firm? In a trading context, can a model like the one developed here, in which inefficient termination is necessary to provide incentives, provide a rational for “limits to arbitrage”? These and other questions are the subject of ongoing research.

7. Appendix

Proof of Lemma A: Consider any incentive-compatible contract \((\tau, I, C, \hat{Y})\). To prove the proposition, we show that there is a new incentive-compatible contract, which gives the same payoff to the agent and the same or greater payoff to the principal, under which the agent reports cash flows truthfully and maintains zero savings. This contract is \((\tau'(Y) = \tau(\hat{Y}(Y)), I'(Y) = C(Y), C, Y)\). Note that the agent’s consumption is the same as under the old contract, so he earns the same payoff. Let us show that the agent’s strategy is incentive-compatible and that the principal earns the same or greater payoff.
Under the new contract the agent cannot improve his payoff by a deviation (C', \hat{Y}), because any feasible consumption C' is feasible under the old contract as well. If C' is feasible under the new contract, then the agent always has nonnegative savings if he reports $\hat{Y}(\hat{Y}(Y))$ and consumes C' under the old contract. Indeed,

$$S_t(C', \hat{Y}') = \int_0^t e^{\rho(t-s)}(dI_t(\hat{Y}(\hat{Y}')) - dC_t') =$$

$$\int_0^t e^{\rho(t-s)}(dI_t(\hat{Y}(\hat{Y}')) - dC_t') + \int_0^t e^{\rho(t-s)}(dC_t(\hat{Y}')) - dC_t') \geq 0.$$

To show that the principal is at least as well-off before, note that the new contract avoids the inefficiency due to stealing and due to inefficient savings (at rate $\rho < r$) by the agent. Therefore, the principal’s profit improves by

$$E \left[\int_0^\tau e^{-rt} \left((1-\lambda)(dY_t - d\hat{Y}_t) + (r-\rho)S_t dt \right) \right],$$

where S denotes the agent’s savings under the old contract.

PROOF OF PROPOSITION 1. First, let us verify that function b defined in the Proposition is concave. Note that $b'(W) \geq -1$ and $rb(W) < \mu - \gamma W$ imply that $b'' < 0$. Therefore, to the left of point W^d with boundary conditions $b'(W^d) = -1$ and $rb(W^d) = \mu - \gamma W^d$ function b enters the region where it is concave. It stays concave, because a concave function can never exit this region (this can be seen geometrically).

Next, let us prove that b represents the principal’s optimal profit under, which is achieved by the contract outlined in the Proposition. Define

$$G_t = \int_0^t e^{-rs} (dY_s - dI_s) + e^{-rt}b(W_t).$$

Under an arbitrary incentive-compatible contract, W_t evolves according to (6). Then from Ito’s lemma,

$$e^{rt}dG_t = (\mu + \gamma W_t b'(W_t) + \frac{1}{2} \beta_t^2 b''(W_t) - rb(W_t))dt - (1 + b'(W_t))dI_t + (\sigma + \beta_t b'(W_t))dZ_t$$

From (15) and the fact that $b'(W_t) \geq -1$, G_t is a supermartingale. It is a martingale if and only if $\beta_t = \lambda \sigma$, $W_t \leq W^d$ for $t > 0$, and I_t is increasing only when $W_t \geq W^d$.

We can now evaluate the principal’s payoff for an arbitrary incentive compatible contract. Note that $b(W_t) = L$. For all $t < \infty,$
Finally, for a contract that satisfies the conditions of the proposition, \(G_t \) is a martingale until time \(\tau \) because \(b'(W_t) \) stays bounded. Therefore, the payoff \(b(W_0) \) is achieved with equality.

Remark. It is easy to modify this proof to show that the principal cannot improve her profit by adding additional randomization. Such randomization would add an extra term to the expression for \(dG_t \), but the process \(G_t \) would still be a supermartingale since \(b(W) \) is a concave function.

Proof of Proposition 2: Recall that the rate of return on savings is \(\rho \leq r \). We consider the case \(\rho = r \) in which savings is most attractive without loss of generality. We also generalize the setting to allow the agent to save within the firm and on his own account (this will be useful in our implementation of the optimal contract). Savings within the firm are represented by \(S_t^f \) and evolve according to

\[
dS_t^f = rS_t^f dt + (dY_t - d\hat{Y}_t) - dQ_t
\]

Here, \(dQ_t \) represents the agent’s diversion of the cash flows to his own account, which evolves according to

\[
dS_t = rS_t dt + [dQ_t] + dI_t - dC_t
\]

Note that the agent bears the cost of diversion when moving funds outside the firm. Both accounts must maintain non-negative balances. We show that for an arbitrary feasible strategy \((C, \hat{Y})\) of the agent,

\[
\hat{V}_t = \int_0^t e^{-\gamma s} dC_s + e^{-\gamma t} S_t \left(\gamma + \lambda S_t^f + W_t \right)
\]

is a supermartingale. Now,

\[
e^{\gamma t} d\hat{V}_t = dC_t + dS_t - \gamma S_t dt + \lambda (dS_t^f - \gamma S_t^f dt) + dW_t - \gamma W_t dt
\]

Using (16) and the definitions of \(dS_t^f \) and \(dS_t^f \),

\[
e^{\gamma t} d\hat{V}_t = (dQ_t) - \lambda dQ_t - (\gamma - r) (S_t + \lambda S_t^f) dt + \lambda (dY_t - \mu dt)
\]

\[
= -(1 - \lambda) dQ_t - (\gamma - r) (S_t + \lambda S_t^f) dt + \lambda \sigma dZ_t
\]
Because $\lambda \leq 1$, dQ^-t is non-decreasing, $\gamma > r$, and the savings balances are non-negative, \hat{V} is a supermartingale until time τ because W_t is bounded below. If W_t is bounded above and there is no savings, $S_t = S^- t = 0$, and the agent reports truthfully so that $d\hat{Y}_t = dY_t$ and $dQ_t = 0$, then \hat{V} is a martingale. Thus,

$$W_0 = \hat{V}_0 \geq E[\hat{V}_\tau] = E\left[\int_0^\tau e^{\gamma t} dC_s + e^{\gamma \tau} (S_\tau + \lambda S^- \tau + R)\right]$$

with equality if the agent maintains zero savings and reports truthfully. This is true even if $Y_t - \hat{Y}_t$ is not Lipschitz-continuous.

PROOF OF PROPOSITION 3: Let Div_t be an increasing process representing the cumulative dividends paid by the firm. Then the credit line balance evolves according to

$$dM_t = \gamma M_t dt + x dt + dDiv_t - d\hat{Y}_t.$$

where we can assume $dDiv_t$ and $d\hat{Y}_t$ are such that $M_t \geq 0$. Defining W_t from (18), and using, from (17), $\lambda x = \lambda r D = \lambda \mu - \gamma (R + \lambda C^-)$, we have

$$dW_t = -\lambda dM_t = -\gamma \lambda M_t dt - \lambda x dt - \lambda dDiv_t + \lambda d\hat{Y}_t$$

$$= \gamma (W_t - (R + \lambda C^-)) dt - (\lambda \mu - \gamma (R + \lambda C^-)) dt - \lambda dDiv_t + \lambda d\hat{Y}_t$$

$$= \gamma W_t dt - \lambda dDiv_t + \lambda (d\hat{Y}_t - \mu dt)$$

Letting $dI_t = \lambda dDiv_t$, the incentive compatibility result of Proposition 3 follows from Proposition 2. Optimality follows from (19), since then $M_t = 0$ implies $W_t = W^1$.

PROOF OF PROPOSITION 4: Let b be the optimal continuation function for parameters $(1, R^\hat{\lambda}, L^\hat{\lambda})$ and define

$$b^\hat{\lambda}(W) = \lambda b(W/\lambda) + (1 - \lambda)(\mu/r)$$

We claim that $b^\hat{\lambda}$ is the optimal continuation function with parameters (λ, R, L). To see this, we can easily check that $b^\hat{\lambda}(R) = L$. Since

$$b^\hat{\lambda}'(W) = b'(W/\lambda) \quad \text{and} \quad b^\hat{\lambda}''(W) = \frac{1}{\lambda} b''(W/\lambda),$$

then $b^\hat{\lambda}'(W^1) = -1 \Rightarrow b'(W^1/\lambda) = -1$ and $b''(W^1/\lambda) = 0 \Rightarrow b^\hat{\lambda}''(W^1) = 0$. Thus, $b^\hat{\lambda}$ satisfies both boundary conditions at W^1. In addition, for $W \in [R, W^1]$,

$$rb^\hat{\lambda}(W) = \lambda rb(W/\lambda) + (1 - \lambda)\mu$$

$$= \lambda \left[\mu + \gamma (W/\lambda) b'(W/\lambda) + \frac{1}{2} \sigma^2 b''(W/\lambda)\right] + (1 - \lambda)\mu$$

$$= \mu + \gamma Wb^\hat{\lambda}'(W) + \frac{1}{2} \lambda^2 \sigma^2 b^\hat{\lambda}''(W)$$

so that $b^\hat{\lambda}$ satisfies (12) and hence is the optimal continuation function. Thus, $W^\hat{\lambda}$ is the dividend boundary for parameters (λ, R, L) if and only if $W^\hat{\lambda}/\lambda$ is the dividend boundary for $(1, R^\hat{\lambda}, L^\hat{\lambda})$. Thus, from (17) and (19), the optimal debt structure is unchanged.
Market Values of Securities:

The following lemma is useful for computation of market values of securities and for comparative statics:

Lemma D. Suppose \(W_t \) evolves as

\[
dW_t = \gamma W_t dt - dI_t + \lambda (\bar{Y}_t - \mu dt)
\]

in the interval \([R, W^1]\) until time \(\tau \) when \(W_t \) hits \(R \), where \(I_t \) is a nondecreasing process that reflects \(W_t \) at \(W^1 \). Let \(k \) be a real number, and \(g: [R, W^1] \to \mathbb{R} \) a bounded function. Then the same function \(G: [R, W^1] \to \mathbb{R} \) both solves equation

\[
rG(W) = g(W) + \gamma W G'(W) + 1/2 \lambda^2 \sigma^2 G''(W)
\]

with boundary conditions \(G(R) = L \) and \(G(W^1) = -k \) and satisfies

\[
G(W_0) = \mathbb{E} \left[\int_0^\tau e^{-r t} g(W_t) dt - k \int_0^\tau e^{-r t} dI_t + e^{-r \tau} L \right]
\]

Proof: Suppose that \(G \) solves (27), and let us show that it satisfies (28). Define

\[
H_t = \int_0^t e^{-r u} g(W_u) du - k \int_0^t e^{-r u} dI_u + e^{-r t} G(W_t)
\]

Then using Ito’s lemma,

\[
e^{rt} dH_t = \left(g(W_t) + \gamma W_t G'(W_t) + 1/2 \lambda^2 \sigma^2 G''(W_t) - rG(W_t) \right) dt - (k + G'(W_t)) dI_t + G'(W_t) \lambda \sigma dZ_t
\]

From equation (27), condition \(G(W^1) = -k \), and the fact that \(I \) increases only when \(W_t = W^1 \), \(H \) is a martingale. Because \(G \) is bounded, \(H \) is a martingale until time \(\tau \), so

\[
G(W_0) = H_0 = \mathbb{E}[H_\tau] = \mathbb{E} \left[\int_0^\tau e^{-r u} g(W_u) du - k \int_0^\tau e^{-r u} dI_u + e^{-r \tau} L \right]
\]

This completes the proof.

The values of credit line, debt and equity can be expressed in terms the following functions, which can be computed by Lemma D:

\[
G_x(W) = \mathbb{E}[e^{-r \tau} | W_0 = W] \quad \text{and} \quad G_y(W) = \mathbb{E}\left[\int_0^\tau e^{-r u} dI_u | W_0 = W \right]
\]

By Lemma D, both of these functions solve differential equation

\[
rG(W) = \gamma W G'(W) + 1/2 \lambda^2 \sigma^2 G''(W)
\]

(29)
with boundary conditions $G_\tau(R) = 1$, $G_\tau(W^d) = 0$ and $G_i(R) = 0$, $G_i(W^d) = 1$. Functions G_τ and G_i can be easily computed. To evaluate market values of securities, we also use the fact that

$$E\left[\int_0^\tau e^{-rt} dt \mid W_0 = W\right] = \frac{1 - G_\tau(W)}{r}$$

Then, market values the credit line, debt and equity are

$$V_c(M) = E\left[\int_0^\tau e^{-rt} \left(dY_t - xdt - \frac{dI_t}{\lambda} \right) + e^{-rt}L_c \mid W_0 = W\right] = \frac{\gamma W^1}{\lambda} \frac{1 - G_\tau(W)}{r} - \frac{G_i(W)}{\lambda} + L_cG_\tau(W)$$

$$V_D(M) = E\left[\int_0^\tau e^{-rt} xdt + e^{-rt}L_D \mid W_0 = W\right] = \lambda \frac{1 - G_\tau(W)}{r} + L_DG_\tau(W)$$

$$V_E(M) = E\left[\int_0^\tau e^{-rt} \frac{dI_t}{\lambda} + e^{-rt}L_E \mid W_0 = W\right] = \frac{G_i(W)}{\lambda} + L_EG_\tau(W), \text{ where } W = W^d - \lambda M.$$

PROOF OF PROPOSITION 5: When $L < D$, then $L_E = 0$. Then, to demonstrate that equity holders prefer less volatility, we need to prove that G_i is concave. From the stochastic representation, we see that G_i is an increasing function. From (29),

$$1/2 \lambda^2 \sigma^2 G_\tau''(R) = -\gamma RG_\tau'(R) < 0.$$

Suppose that G_i were not concave somewhere on $[R,W^d]$, and let $V = \inf\{G_i'(W) > 0\}$. Then $V > R$ and $G_i''(V) = 0$ by continuity of G_i''. But then from (29)

$$1/2 \lambda^2 \sigma^2 G_\tau''(V) = (r-\gamma) G_\tau(V) - \gamma V G_\tau'(V) = (r-\gamma) G_\tau'(V) < 0,$$

so $G_i''(V + \varepsilon) < 0$ for all sufficiently small $\varepsilon > 0$, contradiction. •

PROOF OF PROPOSITION 6: Note that $L_E = 0$ when debt is risky. First, equation (21) holds with equality at $M = 0$ because from (29), $G_\tau(W^d) = -1$. Furthermore, (21) holds for $M > 0$ because G_i is concave (see the proof of Proposition 5). Also, from the concavity of G_i it follows that if $V_E(C^d) \geq -1/(1-\lambda)$, then $V_E(M) > -1/(1-\lambda)$ for all $M < C^d$, and the firm cannot raise equity capital. •

The following lemma tells us that when there are no outside equity holders, then no funds remain after debt and credit line holders are paid from the liquidation value.

LEMMA E. If $\lambda = 1$, then in the optimal contract, $L < D + C^d$.

PROOF: When $\lambda = 1$, $D + C^d = b(W^d) + W^d - R$. Since $b'(W) > -1$ for $W \in (R,W^d)$, $b(W^d) + W^d > b(R) + R = L + R$. Thus, $D + C^d > L$. •
Comparative Statics Results:

Lemma F. Suppose θ is one of parameters L, μ, γ, σ^2 or λ^2 and denote by $b_\theta(W)$ the optimal continuation function for that parameter value. Then

$$\frac{\partial b_\theta(W)}{\partial \theta} = E\left[\int_0^\tau e^{-\tau t} \left(\frac{\partial \mu}{\partial \theta} + \frac{\partial \gamma}{\partial \theta} W_t b'_{\theta}(W_t) + \frac{1}{2} \frac{\partial \lambda^2 \sigma^2}{\partial \theta} b''_{\theta}(W_t)\right) dt + e^{-\tau} \frac{\partial L}{\partial \theta} | W_0 = W\right]$$

Proof: Consider a value of W^d and a corresponding incentive-compatible contract of Proposition 5: one in which process I reflects W_t at \bar{W}^d. Then the principal’s profit under this contract is

$$b_{\theta,w^d}(W) = E\left[\int_0^\tau e^{-\tau t} \mu dt - \int_0^\tau e^{-\tau t} dI_t + e^{-\tau} L | W_0 = W\right]$$

By Lemma D, $b_{\theta,w^d}(W)$ solves equation

$$rb_{\theta,w^d}(W) = \mu + \gamma W b'_{\theta,w^d}(W) + \frac{1}{2} \lambda^2 \sigma^2 b''_{\theta,w^d}(W) \tag{30}$$

with boundary conditions $b_{\theta,w^d}(R) = L$ and $b'_{\theta,w^d}(W^1) = -1$. Denote by $W^d(\theta)$ the choice of W^d that maximizes the principal’s profit $b_{\theta,w^d}(W_0)$ for a given value of parameter θ. Then $b_\theta(W) = b_{\theta,w^d(\theta)}(W)$. By the Envelope Theorem,

$$\frac{\partial b_\theta(W)}{\partial \theta} = \frac{\partial b_{\theta,w^d(\theta)}(W)}{\partial \theta} \bigg|_{W^d = W^d(\theta)} \tag{31}$$

Differentiating (30) with respect to θ at $W^d = W^d(\theta)$ and using (31) we find that $\frac{\partial b_\theta(W)}{\partial \theta}$ satisfies equation

$$r \frac{\partial b_\theta(W)}{\partial \theta} = \frac{\partial \mu}{\partial \theta} + \frac{\partial \gamma}{\partial \theta} W b'_{\theta}(W) + \gamma W \frac{\partial}{\partial W} \frac{\partial b_\theta(W)}{\partial \theta} + \frac{1}{2} \frac{\partial \lambda^2 \sigma^2}{\partial \theta} b''_{\theta}(W) + \frac{1}{2} \lambda^2 \sigma^2 \frac{\partial^2}{\partial W^2} \frac{\partial b_\theta(W)}{\partial \theta}$$

with boundary conditions $\frac{\partial b_\theta(R)}{\partial \theta} = \frac{\partial L}{\partial \theta}$ and $\frac{\partial b_\theta(W^1)}{\partial \theta} = 0$. The conclusion of the lemma follows from Lemma D.

Corollary. From Lemma F and we obtain that

$$\frac{\partial b(W)}{\partial L} = G_x(W), \quad \frac{\partial b(W)}{\partial \gamma} = G_y(W), \quad \frac{\partial b(W)}{\partial \mu} = \frac{1 - G_x(W)}{r},$$

$$\frac{\partial b(W)}{\partial \sigma^2} = \frac{\lambda^2}{2} G_x(W) \quad \text{and} \quad \frac{\partial b(W)}{\partial \lambda} = \lambda \sigma^2 G_x(W) \tag{32}$$
where

\[G_z(W) = E \left[e^{-\tau r} | W_0 = W \right], \quad G_1(W) = E \left[\int_0^\tau e^{-\tau r} b'(W_r) dt | W_0 = W \right], \]

and \(G_2(W) = E \left[\int_0^\tau e^{-\tau r} b''(W_r) dt | W_0 = W \right]. \) \tag{33}

Additionally, because the principal’s profit remains the same if the agent’s outside option increases by \(dR \) and liquidation value decreases by \(b'(R)dR \), the effect of a change in \(R \) on the principal’s profit is captured by

\[\frac{\partial b(W)}{\partial R} = -b'(R)G_z(W). \]

To find the effect of the parameters on \(W^d, W_0 \) and \(W^* \) we need to differentiate \(rb_o(W^1) + \gamma W^1 = \mu, b_o(W_0(\theta)) = K \) and \(b_o'(W'(\theta)) = 0 \) with respect to \(\theta \) and use the Corollary of Lemma F. As a result, we get the following table of comparative statics, which is an expanded version of Table 1.

<table>
<thead>
<tr>
<th>(\frac{dC^L}{dL})</th>
<th>(\frac{dD}{d\lambda^{-1}(W^1 - R)})</th>
<th>(\frac{dW_0}{d\mu})</th>
<th>(\frac{dW^*}{d\mu})</th>
<th>(\frac{db^(W^)}{d\theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-rG_z(W^1) \lambda(\gamma - r))</td>
<td>(\frac{\gamma G_z(W^1)}{\lambda(\gamma - r)} > 0)</td>
<td>(-G_z(W_0) > 0)</td>
<td>(-G_z'(W^*) < 0)</td>
<td>(G_z(W^*) > 0)</td>
</tr>
<tr>
<td>(\frac{rb'(R)G_z(W^1)}{\lambda(\gamma - r)} - \frac{1}{\lambda} < 0)</td>
<td>(-\frac{rb'(R)G_z(W^1)}{b'(W_0)} < 0)</td>
<td>(b'(R)G_z(W^*) > 0)</td>
<td>(-b'(R)G_z(W^*) < 0)</td>
<td>(G_z(W^*) < 0)</td>
</tr>
<tr>
<td>(-W^1 + rG_z(W^1) \lambda(\gamma - r))</td>
<td>(\frac{W^1 + \gamma G_z(W^1)}{\lambda(\gamma - r)} > 0)</td>
<td>(-G_z(W_0) < 0)</td>
<td>(-G_z'(W^*) < 0)</td>
<td>(G_z(W^*) < 0)</td>
</tr>
<tr>
<td>(\frac{G_z(W^1)}{\lambda(\gamma - r)} > 0)</td>
<td>(-\frac{1 - G_z(W_0)}{rb'(W_0)} > 0)</td>
<td>(-G_z'(W^*) > 0)</td>
<td>(\frac{1 - G_z(W^*)}{r} > 0)</td>
<td>(\frac{\lambda G_z(W^*)}{2b'(W_0)} > 0)</td>
</tr>
<tr>
<td>(\frac{\gamma G_z(W^1)}{2(\gamma - r)} > 0)</td>
<td>(-\frac{\lambda G_z(W_0)}{2b'(W_0)} > 0)</td>
<td>(-\frac{\lambda G_z(W^)}{2b''(W^)} > 0)</td>
<td>(\frac{\lambda G_z(W^)}{2b''(W^)} > 0)</td>
<td>(\frac{\lambda G_z(W^)}{2b''(W^)} > 0)</td>
</tr>
</tbody>
</table>

Table 2: Explicit Comparative Statics Calculations

\[^30 \text{Positive if } \lambda = 1. \]
We did not include a row for λ, but it is easy to see that λ and σ have the same effects on W_0, W^* and $b(W^*)$, and the effect of λ on C^d and D can be found using Proposition 4:

$$\frac{\partial C^d}{\partial \lambda} = \frac{R}{\kappa^3} - \left(\frac{\mu}{r} - L + Rb'(R)\right) \frac{rG_1(W^1)}{\kappa^3(\gamma - r)} \geq 0 \quad \text{and} \quad \frac{\partial D}{\partial \lambda} = \left(\frac{\mu}{r} - L + b'(R)R\right) \frac{\gamma G_1(W)}{\lambda^3(\gamma - r)} > 0.$$

Most of the signs in this table are obvious, except for a few entries in parentheses, which we justify below. The following Lemma allows us to compare the principal’s profit for different γ’s and to sign two entries that involve $G_1(W)$.

Lemma G. Let $\lambda = 1$. Suppose that the principal offers a contract designed for the agent with discount rate γ to an agent whose true discount rate is $\gamma' < \gamma$. Then this agent would derive utility greater than W_0, and the principal would receive profit of exactly $b(W_0)$.

Proof: Let us investigate how an agent with discount rate γ' responds to a contract created for an agent with discount rate γ. The agent’s value W_t can be interpreted as the agent’s balance on a high-interest savings account. It evolves as

$$dW_t = \gamma W_t dt + (d\hat{Y}_t - \mu dt)$$

where $d\hat{Y}_t - \mu dt$ is the flow of deposits. The high-interest account has a cap of W^d. The agent’s consumption is

$$dC_t = dY_t - \mu dt - (d\hat{Y}_t - \mu dt) - dQ_t$$

where μdt is a tax and dQ_t is the flow of deposits onto the low-interest savings account. The balance on that account is

$$dS_t = \rho S_t dt + dQ_t$$

With these two accounts, it is optimal to never have positive balance on the low-interest account, unless the high-interest account is full (i.e. $W_t=W^d$). Also, it is optimal to deposit all cash flows onto the high-interest account and not consume when $W_t<W^d$, because those cash flows earn a higher interest rate than the agent’s own discount rate. The agent consumes only when $W_t=W^d$ and the balance on his own savings account is positive. This strategy gives the agent a higher payoff than the payoff W_t he would get by drawing down credit line and defaulting immediately.

Let us show that the principal still earns $b(W_t)$ when the agent follows such a strategy. When $W_t<W^d$, the agent deposits all cash flows onto the credit line, just like an agent with discount factor γ would do. The only difficulty can come from the fact that when $W_t=W^d$, the agent may manage his own savings account with cash flows from the project, and keep the balance on the credit line at 0 by paying the principal a flow $\mu - \gamma W^d$ of coupon payments on long-term debt. This modification in the agent’s strategy does not alter the principal’s profit because $\mu - \gamma W^d = rb(W^d)$, which is exactly what the principal needs to get to realize a profit of $b(W^d)$. \hfill \blacksquare

Note that the contract in Lemma G is not optimal for agent γ'. An optimal contract would give the principal higher profit for the same value of the agent. Therefore, to every point $(W, b_\gamma(W))$ with $W \geq W^*(\gamma)$, there is a point $(W', b_\gamma(W')) > (W, b_\gamma(W))$. We conclude that $b_\gamma(W)$ must be increasing as γ falls for all $W \geq W^*(\gamma)$, so $G_1(W) < 0$. This conclusion holds
even if $\lambda < 1$, because the profit function for parameters λ, σ is identical to the profit function for parameters $\lambda'=1$ and $\sigma'=\lambda\sigma$.

Corollary. $-\frac{G_i(W_0)}{b'(W_0)}<0$ and $G_i(W^*) < 0$.

The following Lemma allows us to sign of $dW'/d\gamma$.

Lemma H. $G_1'(W) < 0$ whenever $G_1(W) < 0$. Therefore, $G_1'(W) < 0$ on $[W^*,W^d]$.

Proof. We will prove the lemma in two steps. Suppose that $G_1(W) < 0$. First, we will show that if $G_1(W) \geq Wb'(W)$ then $G_1(W') < G_1(W)$ for all $W' > W$. Second, we will show that if $G_1(W) \leq Wb'(W)$ then $G_1(W') > G_1(W)$ for all $W' < W$. Therefore, G_1 must be decreasing whenever it is negative.

If $0 > G_1(W) \geq Wb'(W)$ then $W > W^*$ and $wb'(w)$ is decreasing for $w \in [W,W^d]$. If $W' > W$,

$$G_1(W') = E \left[\tilde{t} e^{-\tilde{t}W}b'(W')dt + e^{-\tau}G_1(W)|W_0 = W' \right],$$

where $\tilde{\tau}$ is the first time when W_t hits W. Because $Wub'(W) < Wb'(W) \leq G_1(W)$, it follows that $G_1(W') < G_1(W)$.

If $0 > G_1(W) \leq Wb'(W)$ then $wb'(w) > G_1(W)$ for all $w < W$ because $wb'(w)$ is decreasing on the range $[W^*,W^d]$ and nonnegative on the range $[R,W^d]$. If $W' < W$,

$$G_1(W') = E \left[\tilde{t} e^{-\tilde{t}W}b'(W')dt + e^{-\tau}G_1(W)|W_0 = W' \right] > G_1(W),$$

where $\tilde{\tau}$ is the first time when W_t hits W, and $W_t b(W_t)$ is interpreted to be 0 in the first integral if $t > \tau$. It follows from Lemma G that $G_1(W) < 0$ when $W \geq W^*$. Therefore, $G_1'(W) \leq 0$ on $[W^*,W^d]$.

For the remaining two entries of Table 2, we need to relate $b'(W)$ and $G_i(W)$.

Lemma I. The following inequality holds for all $W < W^d$:

$$b'(W) < \frac{(\gamma - r)G_i(W)}{rG_i(W^d)} = \frac{\gamma - r}{r}.$$ \hspace{1cm} (34)

Proof: Differentiating equation (35) with respect to W we find that $b'(W)$ satisfies

$$(r - \gamma)b'(W) = \gamma Wb''(W) + \frac{\sigma^2}{2} b'''(W)$$ \hspace{1cm} (36)

with boundary conditions $b'(W^d) = -1$ and $b''(W^d) = 0$. Denote the right hand side of (34) by $g(W) - \gamma/r$. From (33), we know that $g(W)$ satisfies
with boundary conditions \(g(W_1) = (\gamma r)/r \) and \(g'(W_1) = 0 \). Denote \(f(W) = g(W) - \gamma r - b'(W) \). To prove the lemma, we need to show that \(f(W) > 0 \) for all \(W < W^d \). Since \(f(W^d) = 0 \), this property follows if we show that \(f'(W) < 0 \) for all \(W < W^d \). Subtracting (36) from (37),

\[
\frac{\sigma^2}{2} f''(W) = (r - \gamma) f(W) + (r - \gamma) \frac{\gamma r}{r} + \gamma g(W) - \gamma W f'(W) \tag{38}
\]

with boundary conditions \(f(W^d) = 0 \) and \(f'(W^d) = 0 \). From (38) we find that

\[
\frac{\sigma^2}{2} f''(W^1) = (r - \gamma) \frac{\gamma r}{r} + \gamma \frac{\gamma r}{r} = 0
\]

\[
\frac{\sigma^2}{2} f''(W^1) = (r - 2\gamma) f'(W^1) + \gamma g'(W^1) + \gamma W^1 f''(W^1) = 0, \text{ and}
\]

\[
\frac{\sigma^2}{2} f^{(4)}(W^1) = (r - 3\gamma) f''(W^1) + 2\gamma g''(W^1) + \gamma W^1 f'''(W^1) > 0
\]

Therefore, \(f'(W) < 0 \) for \(W < W^d \) in a small neighborhood of \(W^d \). If \(f'(W) < 0 \) fails for some \(W < W^d \), there has to be a largest point \(V \) at which it fails. Then \(f'(V) = 0 \) and \(f(W) \) is positive and decreasing on \([V, W^d) \). But then from (38)

\[
\frac{\sigma^2}{2} f''(V) = (r - \gamma) f(V) + (r - \gamma) \frac{\gamma r}{r} + \gamma g(V) > 0, \text{ since } g(V) > \frac{\gamma r}{r}.
\]

We conclude that \(f'(V+\epsilon) > 0 \), which contradicts our definition of \(V \) as the largest point at which \(f'(V) \geq 0 \). We conclude that \(f'(W) < 0 \) and \(f(W) > 0 \) for \(W < W^d \), so (34) holds. ♦

Now we can sign the remaining two fields in Table 2.

Corollary. Applying (34) at \(W = R \), we have

\[
\frac{rb'(R)G_z(W^1)}{\gamma - r} - 1 < -\frac{\gamma G_z(W^1)}{\gamma - r} < 0 \quad \text{and} \quad 1 - \frac{\gamma G_z(W^1)}{\gamma - r} > \frac{rb'(R)G_z(W^1)}{\gamma - r} > 0.
\]

Hidden Effort and Extensions:

Proof of Proposition 8: Let \(w^s = \lambda A/\gamma \) and \(b^s = (\mu - A)/r \). We can rewrite (23) as \(b^s \leq b(W) + \frac{\lambda}{r} \left(w^s - W \right) b'(W) \), and this must hold for all \(W \), leading to the condition

\[
b^s \leq f(w^s) = \min_w b(W) + \frac{\lambda}{r} \left(w^s - W \right) b'(W). \tag{39}
\]

To prove that condition (24) of Proposition 8 guarantees (39), it is sufficient to show that for all \(w \),
\[b(w') - \frac{r - r'}{r} \left(b(W^*) - b(w')\right) \leq b(W) + \frac{\gamma}{r} (w' - W)b'(W) \]

(40)

Note that since \(b \) is concave and \(\gamma > r \),

\[b(w') \leq b(W) + (w' - W)b'(W) \leq b(W) + \frac{\gamma}{r} (w' - W)b'(W) \]

if \((w' - W)b'(W) > 0 \), which implies (40) for \(W \) not between \(w' \) and \(W^* \). For \(W \) between \(w' \) and \(W^* \), note that

\[b(w') - \frac{r - r'}{r} (b(W^*) - b(w')) \leq b(w') - \frac{r - r'}{r} (b(W) - b(w')) \]

\[\leq b(w') - \frac{r - r'}{r} (W - w'^*)b'(W) \]

\[\leq b(W) + (w' - W)b'(W) - \frac{r - r'}{r} (W - w'^*)b'(W) \]

\[= b(W) + \frac{\gamma}{r} (w' - W)b'(W) \]

so that (40) again holds, verifying the sufficiency of condition (24).

Note that \(f'(w') = \gamma/r \ b'(W) \geq -\gamma/r \), whereas \(\partial b'/\partial w' = -(\gamma/r)/\lambda \). Thus, both (39) and (24) imply a lower bound on \(w' \) (or equivalently \(A \)).

Finally, we note the following properties of \(f \) described in the paper: Setting \(W = w' \) in (39) implies \(f(w) \leq b(w) \). Also, since \(f' \) is the lower envelope of linear functions it is concave. Finally, (24) implies that \(f(W^*) = b(W^*) \).

Proof of Proposition 9: Let \(b \) be the optimal continuation function given boundary condition \(b(R - \omega) = L \). Then define \(b^*(W) = b(W - \omega) \). Then \(b^*(R) = L \) and

\[rb^*(W) = rb(W - \omega) = \mu + \gamma(W - \omega)b'(W - \omega) + \frac{1}{2} \lambda^2 \sigma^2 b''(W - \omega) \]

\[= \mu + \gamma(W - \omega)b^*(W) + \frac{1}{2} \lambda^2 \sigma^2 b^*''(W) \]

Finally, \(b'(W) = -1 \) implies \(b''(W + 1) = -1 \) and \(b'''(W + 1) = 0 \). Thus, by the same arguments as in the proof of Proposition 1, \(b^* \) is the optimal continuation function for the setting with private benefits.

Proof of Proposition 10: The first result holds by Lemma G. Next, suppose the agent’s true discount factor \(\gamma' \) is greater than \(\gamma \). The process

\[\hat{V}_t = \int_0^t e^{-r_s} dC_s + e^{-r_t} (S_t + W_t) \]

is a strict supermartingale. Indeed, \(e^{r_t} d\hat{V} = -(1 - \lambda)(dY_t - d\hat{Y}_t)^- - (\gamma' - \gamma)W_t dt - (\gamma' - \rho)S_t dt + \lambda \sigma dZ_t \)

so \(\hat{V} \) has a negative drift. Since \(W_t \) and \(S_t \) are bounded from below, \(\hat{V} \) is strict supermartingale until time \(\tau \). If the agent draws the entire credit line and defaults at time \(0 \), then he gets a payoff of \(W_0 \). If he follows any other strategy, then \(\tau > 0 \) and the agent’s payoff is
\[
E\left[\int_0^T e^{-\gamma s} dC_s + e^{-\gamma \tau} (S_\tau + W_\tau) \right] = E\left[\hat{V}_\tau \right] < \hat{V}_0 = W_0
\]

Therefore, the agent will draw the entire credit line immediately if \(\gamma' > \gamma \).

8. References

