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We have developed a rapid and completely automatic method for prediction of protein 
side-chain conformation, applying the simulated annealing algorithm to optimization of 
side-chain packing (van der Waals) interactions. The method directly attacks the 
combinatorial problem of simultaneously predicting many residues’ conformation, solving in 
8 to 12 hours problems for which the systematic search would require over 10300 central 
processing unit years. Over a test set of nine proteins ranging in size from 46 to 323 residues, 
the program’s predictions for side-chain atoms had a root-mean-square (r.m.s.) deviation of 
1.77 A overall versus the native structures. More importantly, the predictions for core 
residues were especially accurate, with an r.m.s. value of 1.25 A overall: 80 to 90% of the 
large hydrophobic side-chains dominating the internal core were correctly predicted, versus 
30 to 40% for most current methods. The predictions’ main errors were in surface residues 
poorly constrained by packing and small residues with greater steric freedom and hydrogen 
bonding interactions, which were not included in the program’s potential function. van der 
Waals interactions appear to be the supreme determinant of the arrangement of side-chains 
in the core, enforcing a unique allowed packing that in every case so far examined matches 
the native structure. 

1. Introduction 

Protein folding naturally breaks down into two 
classes of degrees of freedom: the b-$ torsions, 
which determine the main-chain fold, and the x 
torsions, which set the pattern of side-chain 
packing. These two sets of variables are closely 
coupled, because of the tremendous importance of 
side-chain packing for the stability of the overall 
fold. Many efforts at protein structure prediction 
have focused on prediction of side-chain conforma- 
tion (given knowledge of the main-chain) as a less 
complex but nonetheless important subproblem of 
the protein folding problem (Richards, 1977; Blow, 
1983; Janin et al., 1978; Warme & Morgan, 1978a,b; 
Greer, 1981; James & Sielecki, 1983; Narayana 
& Argos, 1984; Lesk & Chothia, 1986; Ponder & 
Richards, 1987; Blundell et al., 1987; Bruccoleri 
& Karplus, 1987; Summers et al., 1987; Reid & 
Thornton, 1989; Summers t Karplus, 1989; Singh & 
Thornton, 1990). As many workers have pointed 
out, the ability to predict side-chain conformation 
accurately from the sequence and a model of the 
main-chain fold would be a useful tool for homology 

modeling (Delbaere, 1979; Blundell et al., 1983, 
1987; Chothia, 1984; Read et al., 1984; Greer, 1985; 
McCormick et al., 1985; Sibanda & Thornton, 1985; 
Chothia et al., 1986; Cohen et al., 1986; Chothia & 
Lesk, 1987; Cohen & Kuntz, 1987; McGregor et al., 
1987; Pearl & Taylor, 1987; Sutcliffe et al., 1987a,b; 
Zvelebil et al., 1987; Strynadka & James, 1988; 
Taylor, 1988; Reid & Thornton, 1989; Weber et al., 
1989a,b) and other applications such as the 
construction of protein models from X-ray diffrac- 
tion data after the initial tracing of the main-chain 
(Jones & Thirup, 1986). 

As with the larger problem of protein folding, the 
principal difficulty in making predictions of side- 
chain conformations is the enormous number of 
structural permutations possible for even small (5 to 
10 residue) prediction problems. Considering side- 
chain torsions as rigid rotations divided into 
discrete 10” steps (so that each x angle has 
360”/10° = 36 distinct possible states), a problem 
containing n torsions permutes to 36” possible struc- 
tures. For five residues with ten x torsions this 
corresponds to 3.7 x 1Ol5 conformations, or about 
lo5 VAX 8650 CPUS years for a rapid energy calcu- 

f Author to whom all correspondence should be $ Abbreviations used: CPU, central processing unit; 
addressed. r.m.s., root-mean-square. 
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lation algorithm performing the systematic search 
for a lowest energy conformation. On the face of it, 
simultaneous optimization of multiple side-chains 
seems an impossibly time-consuming operation 
(Reid & Thornton, 1989; Summers & Karplus, 
1989). 

Two different strategies have been used in 
attempts to get around this permutational obstacle. 
The first was to drastically reduce the number of 
conformations allowed for each residue type to only 
a few basic rotamers, as in the method described by 
Ponder & Richards (1987). In this formalism, each 
side-chain is only tested in three to seven fixed 
conformations, instead of being allowed to rotate 
freely; for a five residue zone each with five tested 
rotamers, this reduces the permutations to only 
3125, allowing multiple sequences to be tested. This 
approach has been reported as a powerful method 
for enumerating the possible sequences that can be 
packed into a given region of a protein, and has 
indicated strict limitations imposed by packing on 
core sequences. Since this model still has an expo- 
nential dependence on the size of the problem (e.g. 
109 residues with 5 tested rotamers each would 
require examining 7*9x 106’ permutations) it is 
difficult to apply to large predictions. 

An alternate approach has been simply to forgo 
the attempt to predict all side-chains simul- 
taneously, opting instead to make predictions 
residue by residue, weighing the possible combina- 
tions intelligently, and gradually assigning side- 
chain conformations in order of most reliable to 
least reliable. This strategy has been examined in 
ground-breaking studies both using energy calcula- 
tional methods (Gelin & Karplus, 1975, 1979; 
Bruccoleri & Karplus, 1987; Summers & Karplus, 
1989), and knowledge-based human modelers (Reid 
$ Thornton, 1989). Reid and Thornton, in parti- 
cular, were able to predict side-chain conformations 
of flavodoxin with an overall r.m.s. of 2.41 A 
(1 A = @l nm) starting from C” co-ordinates alone, 
using computational methods to predict main-chain 
atoms, and manual examination and adjustment 
using computer graphics to predict the side-chains. 
The main strength of this approach, its ability to 
cut through the enormous permutations simply by 
ignoring them, unfortunately turns out to be its 
main weakness: it is not able to explore adequately 
the possible combinations of side-chain packings. In 
the protein core, conformations of neighboring side- 
chains are strongly coupled, such that an error in 
one residue often leads to errors in adjacent 
residues, propagating throughout the prediction 
(Reid t Thornton, 1989). In the flavodoxin predic- 
tion, initial misplacement of a core phenylalanine 
residue led to a variety of errors causing the internal 
core to be incorrectly packed. In such cases, it is the 
combination of side-chain conformations that must 
be considered, to determine the best conformation 
for each individual residue, rather than the other 
way around. Thus, the question of how to deal with 
the complexity of solving multiple residues’ posi- 

tions simultaneously appears to be an important 
unsolved problem, critical to accurate side-chain 
prediction. 

We have sought to address this problem directly. 
Since coupling of side-chain positions is mediated 
primarily by the necessity of avoiding steric 
overlap, we decided to approach side-chain predic- 
tion as a problem of minimizing van der Waals 
packing interactions via simultaneous rigid 
rotations of all side-chains. We have thus sought to 
predict side-chain positions solely by finding ways 
that pack them together well. The main difficulty 
lies in finding a search strategy which can locate 
these good packings in a reasonably short amount of 
computing time, since the combinatorix of this 
problem is enormous even for relatively small 
prediction problems. As most observers have 
pointed out, the brute-force strategy of systematic 
search would require impossibly long computations 
(Reid 6 Thornton, 1989; Summers & Karplus, 
1989). In contrast, the simulated annealing algo- 
rithm (Metropolis et al., 1953) has been used with 
success for a variety of similar NP-complete optimi- 
zation problems (Kirkpatrick et al., 1983; Van 
Hemmen t Morgenstern, 1983; Brunger, 1988; 
Subbiah & Harrison, 1989) and allows approximate 
solution of such problems in a fraction of the 
computing time required for the systematic search. 
We have therefore applied simulated annealing to 
the side-chain packing problem, and have assessed 
its performance in predicting side-chain co-ordi- 
nates over a set of nine example proteins. 

This strategy faces two distinct challenges. First, 
it must overcome the combinatorial complexity of 
this problem to find well-packed conformations. In 
densely packed protein cores, only a minute fraction 
of the total conformation space is free of unaccept- 
able steric collisions (Richards, 1977; Ponder & 
Richards, 1987). Finding well-packed conformations 
is thus a significant computational challenge. 
Second, it is unclear that packing energy is a strong 
predictor of actual protein structure. Although each 
protein’s actual structure is by necessity well- 
packed, there might be other good ways of packing 
the internal side-chains, some of which might be 
very different (Ponder & Richards, 1987; Lim & 
Sauer, 1989). If there were such a degeneracy of 
multiple good packings, packing alone would be a 
poor predictor of actual structure, and other inter- 
actions (such as electrostatics) would have to be 
brought into consideration. Indeed, even relatively 
sophisticated potential functions have been found to 
be poor predictors of actual structure (Novotny et 
al., 1984). This issue is of interest because it touches 
on the basic question of the importance of packing 
constraints to determining the structure of proteins. 
For this reason, we have limited our prediction 
method to include only van der Waals interactions 
in its evaluation of side-chain conformations, so as 
to assess explicitly the degeneracy of good packings, 
and their usefulness as predictors of actual 
structure. 
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2. Method 
The principal difficulty in the side-chain packing prob- 

lem is the tremendous size of the solution space that must 
be searched. The key to overcoming this difficulty is the 
intuitively obvious fact that one need not visit every site 
in the solution space to locate the general regions of 
energy minima. If the energy function is sufficiently con- 
tinuous and exhibits smooth trends throughout the solu- 
tion space, minima can be located by traversing paths 
across the solution space, and using the observed trends 
to direct the search to just those regions where minima 
are likely to be found. 

The simulated annealing algorithm exemplifies this 
approach, and has been used extensively in computer 
science to solve a wide variety of optimization problems 
(Metropolis et al., 1953; Kirkpatrick et al., 1983; Van 
Hemmen & Morgenstern, 1983; Brunger, 1988; Subbiah & 
Harrison, 1989; for a general description of the method, 
see Press et al., 1986). It uses a random walk to traverse 
the solution space, with a bias towards minimal energy 
zones, controlled by the annealing temperature T. 
Specifically, at each stage of the random walk a small 
perturbation from the current position is randomly 
selected aa a move, and the energy change (BE) associated 
with making this move calculated. If AE 5 0 then the 
move is accepted. If AE > 0 then a random number is 
used to decide whether or not to accept the move, with an 
acceptance probability of: 

p = e-M/T, 

where T is the “annealing temperature”. 
In the annealing procedure this walk is started with T 

very large, so that p z 1 regardless of the value of AE; 
thus the walk is effectively unconstrained. Over the 
course of the walk, however, T is gradually reduced, 
causing the walk to become more and more strongly 
biased towards reducing the total energy. This algorithm 
corresponds to walking randomly over the energy land- 
scape, gradually reducing the rate of escape from 
“valleys”. This results in a walk continuously passing 
through segments of most of the major minima, gradually 
increasing the fraction of time spent in the deepest 
minima. Done slowly enough, this focusing procedure 
leads eventually to spending almost all the time walking 
around the region of the deepest minimum. 

For this to work, the random walk must be able to 
traverse the solution space, i.e. travel from one extreme to 
the other along any dimension, rapidly and without 
impediment, so as to pass through all the major minima 
zones Energetic barriers that block travel between 
minima prevent the walk from exploring the space suffi- 
ciently to locate the global minimum. The (12,0)- 
potential ordinarily used for modelling van der Waals 
interactions has the form: 

E = ~o[(70/r)“--2(~0/~)~1, 

where E,, and Y,, are constant parameters describing, 
respectively, the depth of the energy well, and the equili- 
brium interatomic distance for the van der Waals inter- 
action of a given pair of atoms (see Table 1 for values 
used), which becomes infinite as r tends to zero (for a 
general discussion of the Lennard-Jones potential, see 
Atkins, 1986). These infinite energy barriers would block 
simulated annealing from exploring the solution space, 
and have therefore been truncated to a maximum value of 
7 kcal/mol (1 cal = 4 184 J) for each pairwise interaction 
(similar to the “soft atoms” described by Levitt, 1983b). 

Table 1 
Energetic parameters used for side-chain predictions 

Atom, Atom, %(4 E,(kcal/mol) 

C C 4315 00738 
C 0 3916 01168 
C N 4058 0.1746 
C S 4315 @0738 
0 0 3553 O-1848 
0 N 3683 02763 
0 S 3916 01168 
N N 3817 04132 
N S 4058 01746 
S S 4315 0.0738 

This same problem, not traversing the solution space 
sufficiently to locate the global minimum, can also be 
caused by lowering the annealing temperature T too 

rapidly. If the temperature is reduced too quickly, 
preventing the walk from crossing the energy barriers 
between minima, the walk will most likely be trapped in a 
local minimum. In practice, T is lowered in discrete steps, 

so that both the number of random walk moves per 
T-step and the amount of temperature decrease per 
T-step determine the effective rate of cooling. The 
number of moves per step has been chosen to guarantee 
extensive and repeated traversal of the solution space 
during each T-step. Since the r.m.8. deviation of a random 
walk of n unitary steps is ,/n, the number of steps needed 
to generate an r.m.8. deviation d from the starting posi- 
tion is just d2 (Van Kampen, 1981). Using 10 deg. incre- 
ments and a 50% probability of moving a given torsion 
on each step, the number of steps necessary to generate on 
average a 180” deviation is (180/10)2/(050) = 048. We 
have found that 10,000 move-steps per T-step works well 
for this problem, giving around 15 traversals of the solu- 
tion space per T-step. Following previous reports 
(Kirkpatrick et al., 1983; Subbiah & Harrison, 1989), we 
decrease the annealing temperature by 2% each T-step. 

Application of this method to the side-chain packing 
problem has been relatively straightforward. In each step 
all side-chain torsion angles are randomly moved - lo”, 0” 
or + 10” as rigid rotations, with all bond lengths and 
angles held to equilibrium values used previously in 
molecular dynamics simulations (given in Table 3 of 
Levitt, 1983o). Hydrogen atoms have not been included 
in the molecular representation; instead we use the 
slightly augmented van der Waals radii appropriate for 
the “united atom” representation commonly employed in 
molecular dynamics, such as the program ENCAD of M. 
Levitt (personal communication) (see Table 1). We have 
made no attempts to find parameters that optimize 
prediction accuracy, nor have we made any modifications 
of the parameters from their standard values. 

To make simulated annealing function well for the side- 
chain packing problem, we have added several features 
that enhance its ability to seek minima and escape ener- 
getic “traps”. To improve the program’s ability to locate 
conformations in which all side-chains are well-packed, we 
developed an algorithm to identify individual residues 
that were well-packed. After every move, each residue’s 
total van der Waals interaction with its surroundings was 
calculated. If this residue energy was less than a threshold 
good packing value, the residue was placed in refinement 
mode; for the next 1009 steps, its move probability was 
reduced 2-fold. In this way residues that are found to be 
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well-packed are gently constrained while the program 
seeks good conformations for those that are not. This 
method helps the walk approach the global minimum 
much faster. For prediction problems larger than about 5 
residues, the simulated annealing walk typically became 
trapped in local minima at temperatures well above those 
needed to seek the global minimum. To help the program 
escape such traps, we altered the move algorithm to 
Slowly increase its move size (from 10” to 20” to 30” etc.) 
whenever it became trapped (i.e. when the program failed 
to find a single acceptable move in over 100 consecutive 
steps), gradually enlarging the range of its allowed moves 
until it was able to find an acceptable move. The move 
size was then reset to normal. 

To speed energy calculations during the annealing run, 
a variety of precalculations were performed. First, simple 
torsional potentials: 

A = 1.5 kcal/mol, only for x1 and xZ, and van der Weals 
interactions between side-chain atoms and main-chain 
atoms, which remain immobile throughout the walk, were 
precalculated and stored. To calculate interactions 
between side-chain atoms more efficiently during 
annealing, condensed lists of all pairwise interactions 
approaching close enough for significant van der Waals 
interaction were prepared beforehand. To assess the 
closest approach distance for each pair of side-chain 
atoms, every pair of side-chain atoms was “aimed” at one 
another by twisting the appropriate torsions to minimize 
the distance between them. If this approach distance was 
less than 5A, the pair was added to the list. During 
annealing, the total list of these possible pairwise inter- 
actions was scanned periodically, and only pairs that were 
less than 5 A apart at that step were calculated during the 
10 subsequent steps, thus further reducing the number of 
interactions that had to be calculated to just those mak- 
ing a significant contribution. Since the r.m.s. deviation 
for 10 steps of this random walk is JlO x 050 x 
10” x 20”, the updating is repeated frequently enough to 
preserve the accuracy of the calculated energy. 

To start the annealing, all side-chain torsions are set to 
random angles selected from a uniform probability distri- 
bution 0 to 360”, and an initial temperature chosen to 
ensure free movement over most energy barriers. 
Following previous reports (Kirkpatrick et al., 1983), we 
select our starting temperature so as to give a move 
accept/reject ratio of l/l, that is, the temperature at 
which 50% of the proposed moves are accepted (referred 
to hereafter as T5c). At this temperature, the average 
energy and standard deviation of the energy are similar to 
that of the entire solution space, and the walk frequently 
attains energy levels signifying energy maxima. To find 
this T,,, value the program initially adjusts its tempera- 
ture rapidly until the accepts fraction falls close to 50%; 
then annealing is begun. As the annealing temperature is 
gradually reduced and the walk locates minima, the 
lowest energy structures found are noted and stored. 
When the accepts fraction falls below 20%, the walk is 
terminated. 

A typical annealing run generates about 2000 low 
energy (more than 30 below the mean) conformations. 
To synthesize a single predicted structure from this 
aggregate set, a weighted average energy is calculated for 
each residue in each of its possible conformations, and its 
conformation with the lowest energy average over the 
set is taken as the predicted structure for the residue. The 
weighted average energy for a given conformation 

(specified by x1 and xz) is calculated according to: 
JyJxl, X2) = 1 EiJX1, X2) ,-wn.Xw*l/~ e-EdXI.X211E~t, 

where E,,,, is the weighting energy determining how selec- 
tive the average should be. This is simply a Boltzman 
average, treating the set of reported structures as a 
canonical ensemble. For side-chains with 3 or more 
torsions, the best position for the x1 and x2 torsions is 
determined via the weighted average; once all residues 
have been solved out to x2 in this way, the remaining x3 
and x4 torsions are solved simply by spinning them 
independently through their full range to find the lowest 
energy conformation for each residue. 

(a) Selection of residues for prediction 

Although the method was originally designed to predict 
side-chain conformations in local zones of 5 to 15 residues 
within a protein, we have found it useful for simultaneous 
prediction of whole proteins. For the results described in 
this paper, 9 proteins (crambin, lcrn (Hendrickson & 
Teeter, 1981); bovine pancreatic trypsin inhibitor, 5pti 
(Wlodawer et aE., 1984); the C-terminal domain of the 
ribosomal protein L7/L12, lctf (Leijonmarck & Liljas, 
1987); human lysozyme, llzl (Artymiuk & Blake, 1981); 
ribonuclease A, lrn3 (Borkatoti et al., 1982); 434cro, 2cro 
(Mondragon et al., 1989); flavodoxin, 4fxn (Smith et al., 
1977); thermolysin, 3tln (Holmes & Matthews, 1982); and 
penicillopepsin, 2app (James & Sielecki, 1983)) from the 
Brookhaven Protein Data Bank (Bernstein et al., 1977) 
were chosen for their high-resolution, accurate structures, 
and for comparison with other predictive methods that 
have been applied on these proteins. The 7 smaller struc- 
tures fell well within program memory limitations for 
simultaneous prediction of all side-chains possessing free x 
torsions. In each of these cases the native co-ordinates for 
main-chain and C? atoms, and all proline atoms, were 
used as the basis for the predictions, which were each 
generated in a single annealing run per protein. In order 
to keep our definition of side-chain r.m.s. deviation con- 
sistent with previous reports, we have included CB atoms 
in the calculation of side-chain r.m.s. values; however, it 
should be noted that these atoms were drawn directly 
from the native co-ordinate set. In our experience, this 
approach produces side-chain r.m.s. deviations only very 
slightly lower than those obtained using C? positions 
predicted from native main-chain co-ordinates. For side- 
chains with a rotational symmetry axis (Phe, Tyr, Asp, 
Glu), r.m.s. and torsion angle comparisons against the 
X-ray structure took symmetry into account, by 
explicitly applying the symmetry operator (in this case a 
2-fold rotation axis) to each such residue and selecting the 
conformation with the lower error. 

For each of the 2 larger proteins (app, tln), only the 100 
or so most buried residues were predicted, due to memory 
limitations that prevented running the whole proteins. In 
both of these cases, only main-chain, C?, and proline 
atoms were fed to the prediction; to avoid prejudicing the 
predictions, the co-ordinates for the remaining unpre- 
dicted surface side-chains were wholly deleted prior to 
annealing. This was done out of concern that the presence 
of the surface side-chains locked into their correct confor- 
mations would strongly bias the predictions towards the 
native structure. No attempt was made to compensate for 
their loss, and the empty space left inside the protein by 
their disappearance does not appear to have weakened the 
prediction. To select the buried residues for prediction, a 
simple algorithm which calculates the fraction of access- 
ible surface area for each residue (similar to the method of 
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Connolly, 1985) was employed with a simple cutoff value 
that included about one-third of the residues in each 
protein. For purposes of comparison, residues in the other 
proteins of the set have been defined aa ‘Lcore” in Tables 2 
and 3 if their accessible surface area fractions were below 
this same threshold value. 

(b) Computing time 

The prediction procedure is broken into 3 separate 
stages: setup, annealing and averaging. The setup 
program performs a variety of precalculations, generating 
parameter files needed to drive the annealing program. 
For prediction of all residues in flavodoxin (138 residues), 
setup took 30 min running on 1 CPU of a Silicon Graphics 
Iris 4D/240GTX. The annealing program performs a 
single cooling cycle of simulated annealing and saves the 
low energy conformations it finds; for the same flavodoxin 
prediction this required 8 CPU h. Finally, the stored 
conformations are combined in a Boltzman-weighted 
average to produce the final prediction. This step took 
2 min CPU time for flavodoxin. 

3. Results 

To test this method’s accuracy for both exposed 
and buried residues, we used it to predict side-chain 
conformations for a set of nine proteins ranging in 
size from 45 to 323 residues (Tables 2 and 3; the 
flavodoxin prediction is illustrated in Fig. 1). In 
seven of these cases, all side-chains possessing x 
torsions were moved and predicted simultaneously; 
for the largest two proteins (app and tln) only the 
most buried residues (roughly l/3 of the residues in 
each protein) were included in the predictions. The 
predictions ranged in accuracy from 2.61 A r.m.s. 
(worst) to 1.12 A (best), with an overall r.m.s. error 
of 1.77 A for the prediction set (see Table 2). As 
expected, the method worked considerably better 
for buried than exposed residues, predicting the core 
residues of app and tln with r.m.s. values of 1.12 a 
and 1.28 d, respectively. The overall r.m.s. error for 
core residues (see Methods for selection criteria) was 
1.25 d for the entire set of predictions. Apart from 
slight reductions in the tryptophan and phenylala- 
nine r.m.s. the core predictions did not seem so 
much an improvement in the r.m.s. values of indivi- 
dual residues types, as an exclusion of the residue 
types for which the method performs badly (such as 
arginine and lysine; see Table 3). 

Histograms of residue prediction errors measured 
as r.m.s., x1 and xZ deviations showed that the 
errors in the worst cases (pti and cro) were due 
primarily to a small fraction of the total residues 
predicted (Fig. 2). For pti (overall side-chain 
r.m.s. = 2.61 A), 71% of the residues had r.m.s. 
values < 2 A, while 76% of the x1 predictions and 
55% of the xZ predictions were within 40 degrees of 
correct. Similarly, in cro (r.m.s. = 2.39 A) these frac- 
tions were 77 %, 89% and 69%, respectively. The 
prediction errors giving rise to these proteins’ high 
overall r.m.s. values were concentrated in only a few 
t,ypes of residues, and were mostly at the protein’s 
surface (see Table 3). In pti, arginine (r.m.s. = 
451 d, number of cases n = 6), lysine (r.m.s. = 

2.71 A, n = 4) and glutamate (r.m.s. = 2.60 d, 
n = 2) were the only residue types with r.m.s. values 
as large or larger than the overall value (2.61 A), 
and were all located at the protein surface. Surface 
residues constituted the bulk of the remaining errors 
as well. The unusually high 2.17 A r.m.s. for pheny- 
lalanine in pti (compared with 1.29 A in the overall 
set) was due to a single surface phenylalanine which 
the program rotated out into solvent in its over- 
zealous efforts to relieve van der Waals collisions. 
The prediction for this exposed residue had an r.m.s. 
error of 4.20 d, while the other three phenylalanine 
residues in the protein were within @48 a and 
@71 A r.m.s. A similar error was made for a single 
surface tyrosine (r.m.s. = 3*43A, versus 019A to 
@94 A r.m.s. for the other 3 tyrosine residues in pti). 
The only other residue types in pti with r.m.s. 
values greater than 1.5 A were aspartate (r.m.s. = 
1.81 8, n = 2) and asparagine (r.m.s. = 1.56 A, 
n = 3), all exposed. 

The prediction errors responsible for the high 
overall r.m.s. value of cro (2.43 8) followed the same 
pattern. Arginine (443 8, n = 5), phenylalanine 
(3.35 8, ?z = 2), and lysine (2.87 A, 12 = 6) were the 
only residue types with r.m.s. values at or above the 
overall value, and in all these cases the errors were 
for surface residues largely unconstrained by 
packing. Of the two phenylalanine residues in cro, 
the one at the surface was predicted to be rotated 
into solvent (r.m.s. = 4.65 A), while the one in the 
core was correct (r.m.s. = 0.92 A). The remaining 
residue types with r.m.s. values above 1.5 A were 
glutamine (2.20 8, n = 6), tryptophan (2.10 8, 
n = 1) and asparagine (1.61 8, n = 1); all were at 
the surface. Exposed residues seemed to pose prob- 
lems for the prediction method, not only because 
electrostatic interactions frequently were important 
for determining their conformations, but also 
because the program had no energy function repre- 
senting the hydrophobic effect, and often mispre- 
dieted residues by failing to bury them 
appropriately. This was the case for the tryptophan 
in cro, which in the native structure lies flat in 
a shallow groove on the surface. The program 
predicted it in the correct orientation, but 
erroneously raised it slightly from the groove. 

This clustering of errors in a small subset of 
surface residues prevailed over the entire set of 
predicted proteins. In the whole-protein predictions, 
the fraction of residues predicted within 2 A r.m.s. 
ranged from 71 to 81 o/O, while the fraction of x1 
angles within 40 degrees was 57 to 8976 (50 to 69% 
for x2). Once again, these ratios were markedly 
better in the buried-core predictions (app and tln): 
91 to 92%, 81 to 82% and 74 to 81%, respectively, 
for r.m.s. x1 and xZ. Lysine, arginine and glutamate 
were frequently the only residue types with errors 
larger than the overall value in each protein. 

To assess the accuracy of predictions of each 
residue type, we calculated a “quality factor” for 
each residue type by dividing the expected r.m.s. 
error for random conformations by the actual error 
of the predictions (Fig. 3). The quality factor thus 
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Table 2 
r.m.s. deviations (A) of predictions’ side-chain 

atoms from the X-ray structures 

Protein Overall Core residues 

cm 1.65 123 
pti 261 1.65 
ctf 1.86 1.15 
cro %39 1.15 
ms 166 1.24 
lz 1.62 1.08 
fxn 190 1.53 
tln 1.28 1.53 
am 1.12 1.53 
All cases 1.71 
Whole proteins only 1.97 
Core only 1.25 

Whole proteins only refers to the set of 7 proteins for which all 
side-chains with free chi torsions were predicted simultaneously. 
In app and tln only the most buried residues (about l/3 of each’s 
total sequence) were predicted; to prevent the unpredicted 
residues from constraining the predictions, their side-chain atom 
co-ordinates were wholly deleted prior to simulated annealing, 
leaving empty space in their place. 

indicates the ratio of improvement of the predic- 
tions’ r.m.s. over random. Intriguingly, large hydro- 
phobic side-chains were predicted best of all, 
especially tyrosine, phenylalanine, methionine, 
leucine and isoleucine. Charged residues, parti- 
cularly lysine and arginine, and very small residues 
such as serine, threonine and cysteine had the 
lowest quality ratios. Poor prediction of serine and 
threonine residues resulted both from their small 
size (which gives them reduced steric hindrance) and 
the importance of hydrogen bonds for determining 
their conformation. Cysteine residues had a high 
error rate because the program made no effort to 
identify potential disulfide bridges, and effectively 
prohibited their formation by using the normal 
sulfur van der Waals radius for cysteine-cysteine 
interactions, which gives an energy minimum at an 
interatomic separation of 4.3 A. Where disulfides 
did occur in native structures, the prediction typi- 
cally placed one cysteine of the pair in the correct 
location, forcing the other into a rotamer 120” away 
from the correct position. Finally, comparison of 
residues’ quality factor against side-chain volume 
reveals a loose correlation between prediction accu- 
racy and the residues’ size, especially for hydro- 
phobic side-chains; charged and polar residues 
uniformly fell below this correlation line. 

To resolve errors more clearly, we have prepared 
graphs of the r.m.s., x1 and x2 errors for each 
residue plotted against sequence position, for three 
proteins spanning the range of errors observed in 
the set: cro (2.39 A r.m.s.), lz (1.62 A) and app core 
(1.12 A) (Fig. 4). The plot of x1 errors for cro shows 

the dominance of lysine and arginine in prediction 
errors, as well as the assignment of incorrect 
rotamers for a surface threonine (101) and the 
phenylalanine previously noted. The x2 plot is more 
interesting. Apart from some assignments of 
charged and polar residues to incorrect rotamers, 
two leucines appear to have been flipped in x2 (139” 
for Leull3; - 152” for Leu120). Comparison of these 
conformations with the native reveals an interesting 
degeneracy in leucine’s side-chain conformations: if 
x1 is rotated 30” to 40” and x2 turned 150” to 140”, a 
conformation is produced which superimposes the 
Cd atoms nearly exactly on those of the initial 
structure, rendering it almost indistinguishable 
except for a slight shift of CY. In both Leul13 and 
Leu120 the predicted Cy positions are within 1 A of 
the native, while the Cd superimpose with an r.m.s. 
value of 96 A. 

The by-now familiar theme of mispredicted lysine 
and arginine residues emerges once again from plots 
of r.m.s., x1 and x2 errors for lz. A single tryptophan 
of the four was mispredicted; sandwiched between a 
lysine and an arginine side-chain in the native struc- 
ture, it was rotated into an incorrect rotamer in the 
solvent. Three of the six serine residues were 
predicted incorrectly: of these, two were totally 
exposed at the surface and one is involved in a 
hydrogen bond to a peptide N in the native struc- 
ture. Two of the five isoleucine residues were 
mispredicted (89 and 106), one at the surface. The 
x2 plot shows a similar pattern of errors dominated 
by arginine and polar residues (particularly gluta- 
mine and asparagine). An additional isoleucine error 
is revealed: Ile23, located at the protein surface, has 
its Cd’ rotated into the solvent. 

Plots of errors in the prediction of the 100 most 
buried side-chains of app show the method’s ability 
to sort out the complicated coupling of side-chain 
packing in the protein core, and to predict the 
conformations of the large side-chains that domi- 
nate it. The total r.m.s. error for the 16 phenylala- 
nine side-chains in app’s core is 0.91 A; only one is 
mispredicted (Phe32). It is placed and oriented in 
approximately the right position, but is about 2 A 
too close to Leu124. Any attempt at relieving bad 
contacts in the prediction (such as simple energy 

Figure 1. Comparisons of flavodoxin prediction (bold lines) verau8 the X-ray structure (thin lines); the main-chain is 
shown as a c” trace (broken lines). The prediction shown is the 190 A r.m.s. flavodoxin whole-protein prediction, the 
worst of the set of 7 predictions generated for flavodoxin. This prediction had nearly the highest level of error for core 
residues (150 A r.m.s.) in the entire set of test proteins. Core side-chains, especially large hydrophobic groups, were 
typically predicted within 1 A of the correct position (e.g. Trp95, Phe99, Phe66, TyrS, Phe85, Phe131, Ile116, Ile50), 
while surface aide-chains, especially charged residues, were poorly predicted by packing energy optimization (e.g. 
Lys133, Glu62, Glu65; Trp6 was flipped 180” in xZ so that it pointed in the opposite direction in the surface groove it 
occupies). Small side-chains such as serine, valine and threonine appeared to be weakly constrained by packing forces, 
and were often predicted in incorrect rotamers (e.g. Va135). 
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Figure 2. Histograms of prediction errors in each protein tested, measured as r.m.s. error/residue, xi angle deviations 
from the X-ray structure, and x2 angle deviations from the X-ray structure. In each case the bar graph represents the 
distribution of predicted residues over the range of observed error magnitudes, while the line plot indicates the 
cumulative fraction of residues over the range of errors. In general, f30 to !30c/o of the predicted side-chains were within 
2 A r.m.s. of correct, and within 40” of the correct xi angle. The 2 ctwes in which only core residues were predicted (app 
and tln) were significantly more accurate than the whole-protein predictions, reflecting the heightened importance of 
packing constraints in determining side-chain conformations in the core. 
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Table 3 
r.m.s. deviations of predicted side-chains from the X-ray structures, subdivided by residue type (r.m.s. error/ 

number of cases) 

Amino 
acid cm pti ctf WO 

Protein 

ms 12 fxn tln aPP All 

TOP 

TY~ 

Phe 

Met 

Ile 

LAXI 

Val 

CYs 

A% 

His 

LYs 

Gin 

Glu 

Asn 

Asp 

Thr 

ser 

0.3612 

@85/l 
@85/l 

@93/5 

@31/l 

03012 

1.53/6 
1.29/a 
3.4812 

212/l 

2.1212 

096/l 

1.37/6 
1.4912 
0.13/2 

1.80/4 
24312 
2.1714 
062/3 
030/l 

ON/2 

@44/2 

005/l 

1.2216 
1.69/3 
4.51/6 

2.7114 

@43/l 

26012 

1.56/3 
1.55/2 
1.81/2 

@12/3 

@38/l 

1.03/l 3.35/2 

0.5212 
0.5212 
150/7 
1.32/a 
089/B 
093/6 

1.04/l 

1.23/3 
1*39/l 
023/4 
0.2413 
1.10/s 
1.03/6 
@19/3 
@12/l 
0.18/l 
018/l 
44315 
1.2012 

%87/9 

1%4/g 

1.58/l 

05914 

214/l 
2.1411 
1.2112 

2.8716 

2.20/S 

1.2014 
@25/l 
1.61/l 

093/l 

1.03/5 

0.31/2 

%10/l 
%10/l 
@65/l 0.6516 

@82/3 
0.4613 
@46/3 
159/4 
1.36/3 
039/3 
@39/3 
0.2612 
009/l 
1.25/8 
1.31/5 
1.7418 
1.7418 
383/4 

1.06/4 
1.08/2 
290/10 

1.38/7 
@71/l 
1.98/5 

211/10 
2.4512 
1.21/5 
1.4712 
1.14/10 
1.5614 
1.27/15 
1.2012 

1.76/s 
@53/4 
0.87/6 
06613 
085/2 
@85/2 
0.6712 
06712 
1.79/5 
1.79/5 
@39/8 
0.3715 
@76/s 
0.1714 
@90/S 
1.0216 
2.38/14 
321/l 
@51/l 

1.81/5 

25416 
0.93/l 
091/3 
0.75/l 
1.33/10 
1.62/l 
0.78/S 
079/l 
1.2715 
@24/2 
1.19/6 
1.37/l 

40213 
2.8212 
@6G/3 
06712 
0.6615 
@66/5 
1.49/5 
1.6414 
099114 
1.05/12 
1.21/8 
@93/6 
1.56/10 
1.65/S 
1.15/3 
1.15/3 
1.7212 

2%9/10 
250/l 
20212 

1.83/19 
2.9812 
1.52/S 

1.80/9 

1.58/5 
@07/l 
1.14/8 
1.33/3 

0.8213 

1.7717 

1.06/7 

05212 

0.67113 

1.08/10 

060/14 

392/l 

201/5 

1.29/l 

043/l 

085/4 

1.62/3 

1.18/5 

@65/S 

1.16/13 

@91/3 

@89/8 

@91/16 

@26/7 

0.84117 

@91/20 

@23/l 

1.55/l 

@76/l 

216/6 

@85/l 

1.7214 

1.4218 

1.56/e 

1.41/e 

220115 
1.41/13 
1.17/37 
1.33/25 
1.29/41 
0.86137 
1.27117 
1.28112 
0.89/55 
o90/45 
1.00/63 
0.94/49 
0.97174 
@99/58 
1.32/33 
1.38/26 
340135 
2.6714 
1.58/l 1 
1.76/S 
272146 
1.68/3 
>01/29 
1.81/9 
1.73/48 
1.56/9 
1.70142 
1.81/12 
1.31/43 
1.33/16 
1.22149 
1.24124 
1.17155 
1.26127 

For all occurrences in each protein (upper line), and only those in the core (lower line) 

minimization) would probably correct this error. 
The remaining x1 errors are due primarily to aspar- 
tate and glutamine (which were involved in internal 
hydrogen bonds in the native structure), and the 
small side-chains serine, threonine and valine. Three 
of the four mispredicted serine residues had hydro- 
gen bonds in the native structure; the other was 
exposed at the surface. Of the four threonine 
residues placed in incorrect rotamers, three form 
hydrogen bonds to the main-chain in the native. 
Four of the 26 valine residues in app’s core were 
mispredicted; this probably reflects valine’s greater 
steric freedom, which makes it more difficult to 
predict by simple packing. The xz errors are mainly 
flips: His54 is rotated - 161” from the correct x2, so 
that it lies in the same volume as in the native 
structure, but has lost the proper hydrogen 
bonding. Leu39 is flipped so that Cy and one of the 
C’ are close12 aligned with the native, while the 
remaining C is about 1 A away from its native 
alternate. LeuI2l’s Cd atoms point out to the pro- 
tein surface, and appear weakly constrained by 
packing. Leu122’s error seems to have been caused 

by the shift in its neighbor Phe32 previously 
discussed. Finally, Leu284’s prediction is a simple 
flip nearly indistinguishable from the native, of the 
kind described above for cro. 

To assess the program’s reliability and consis- 
tency, we have generated seven separate predictions 
for one protein (4fxn), each starting from different 
random conformations. These runs converged well, 
giving a consistent prediction regardless of starting 
conformation. All of these predictions had overall 
predicted side-chain r.m.s. values from the native 
structure of 1.59 to 199 A, versus the random 
starting conformations’ side-chain r.m.s. value of 
396 to 334 A. The internal r.m.s. value between 
different predictions ranged 1.15 to 1.55 A, with 
very little deviation (92 to 0.8 A) in the predictions 
of hydrophobic side-chains such as phenylalanine, 
tyrosine, isoleucine, leucine and valine. In contrast, 
charged residues had internal r.m.s. deviations 
around 2 A. Starting from this observation that 
such residue types that were normally predicted 
poorly also had high internal r.m.s. deviations, we 
found that the internal r.m.s. deviation for each 
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Figure 3. Prediction quality factors for each residue 
type, plotted against side-chain volume. The quality 
factor q for each residue type htla been defined as the ratio 
of the r.m.s. for a random distribution of conformations 
divided by the overall r.m.s. of the predictions for that 
residue: 

Large hydrophobic side-chains were predicted most accu- 
rately, roughly proportionally to their size, while charged 
and polar side-chains were predicted less accurately. 
Cysteine residues were predicted less accurately than 
might be warranted by their size, due to the programs’ 
systematic disregard for disulfide bridges, while trypto- 
phan errors were often caused by the residue’s frequent 
exposure at the protein surface. 

residue over the set of predictions was a strong 
predictor of the accuracy of its predicted conforma- 
tions against the native structure (Fig. 5). In 
general, a residue’s r.m.s. from native was never 
significantly less than its internal r.m.s. deviation 
over the set of predictions from random starts. This 
observation provides a useful internal indication of 
probable errors that could offer a way to improved 
predictions. In general, the idea of using multiple 
predictions for detecting errors and improving accu- 
racy appears to be a powerful tool for modelling (M. 
Levitt, personal communication). 

4. Discussion 

These results provide relatively clear measures of 
how strongly packing constraints determine the 
side-chain conformations of different residue types 
(see overall data, Table 3, or quality factor data, 
Fig. 3). Hydrophobic side-chains inside proteins, 
especially large residues such as phenylalanine and 
tyrosine, are generally constrained to unique confor- 
mations by packing forces. When located at the 
protein surface, however, such side-chains often 
have alternative conformations which in actual pro- 
tein folding are ruled out by the hydrophobic effect. 
Small polar side-chains, such as serine and threo- 
nine, are typically constrained to one or two 
possible conformations, with hydrogen bonding 
selecting the appropriate one. Surface residues are 
poorly constrained by packing. 

These results also indicate the importance of 
packing for determining the internal structure of 
proteins. Perhaps the most interesting result of this 
work is that there do not appear to be significant 
alternative ways of packing a given sequence of 
side-chains into the internal architecture established 
by the main-chain fold. Indeed, the native core 
structure appears to be a global minimum for 
packing energy, without significant alternatives. 
The observation that van der Waals interactions 
alone are sufficient to predict accurately and 
comprehensively the internal structure of proteins, 
in all of the cases examined so far, strongly suggests 
this conclusion. The convergence of the multiple 
flavodoxin predictions, from completely different 
starting points, to a single predicted core structure 
shows both that the program is successfully 
exploring the full conformational space, and that 
the energy function representing core packing inter- 
actions has a global minimum. The fact that this 
minimum matches the native structure confirms 
this view. This result is consistent with experi- 
mental and theoretical work indicating the impor- 
tance of packing in determining core structure 
(Richards, 1977; Ponder & Richards, 1987; Lim & 
Sauer, 1989; Karpusas et al., 1989; Gregoret & 
Cohen, 1990). Specifically, it suggests that packing 
constraints enforce a one-to-one correspondence 
between the main-chain fold and the pattern of side- 
chain packing that constitutes the protein core. 

With this in mind, it may not be surprising that 
our method provides dramatically more accurate 
predictions of core side-chain conformation than 
existing methods, despite its total ignorance of 
electrostatics, the hydrophobic effect or statistical 
relationships (such as rotamers) commonly used to 
predict side-chains. It correctly predicts around 
80% of core side-chains (within 1 A r.m.s. of the 
correct position); most importantly, it correctly 
places nearly all large hydrophobic side-chains (Trp, 
Phe, Tyr, Ile, Leu) buried in the core. In sharp 
contrast with other methods, for which large side- 
chains are typically most problematic (Reid & 
Thornton, 1989), with 30 to 40% correctly 
predicted (2.41 A r.m.s. error for flavodoxin side- 
chain atoms), most of our method’s mistakes in 
protein cores are small side-chains, which have 
greater steric freedom and are often strongly deter- 
mined by hydrogen bonding. Since it is the large 
side-chains which dominate the overall packing of 
the core, this accuracy bias towards larger residues 
is advantageous. Finally, the speed and simplicity 
of this method, which can be run from start to end 
in a day, allows multiple predictions to be generated 
using different starting points, as a means for identi- 
fying residues whose predictions are likely to be 
unreliable. 

Although in this paper we have only presented 
data on prediction of side-chains in the context of 
correct main-chain co-ordinates, it is only logical to 
consider application of this method to homology 
modeling. The most obvious difficulty would be 
main-chain shifts which naturally occur when 
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Figure 5. Internal deviations in multiple predictions of 
flavodoxin, against the overall deviation of these predic- 
tions from the X-ray structure. Seven predictions of 
flavodoxin were generated from different random starting 
points; here the internal pairwise deviation over the 7 
predictions is plotted for each residue against its r.m.s. 
deviation from the X-ray structure. Nearly all of the large 
hydrophobic side-chains in the core were predicted in the 
same conformation in all predictions (internal r.m.s. 
< 1 A), and closely matched the native structure. 
Exposed side-chains, especially charged residues, had 
both much higher internal deviation within the prediction 
set and much higher error relative to the native structure. 

mutations are introduced. Earlier theoretical 
studies have proposed that the general architecture 
of proteins should remain rigid, and that permissible 
mutations should preserve the volume of the protein 
interior (Ponder & Richards, 1987). However, recent 
experimental studies have shown that mutations 
changing the internal volume are permitted (Lim & 
Saucr, 1989), accommodated by shifts of not only 
side-chain but also main-chain atoms. Such main- 
chain shifts pose an acute problem for methods that 
use simple distance cut-off values to identify accept- 
able versus unacceptable packings (Ponder & 
Richards, 1987). Since this annealing method 
uses instead a sharply truncated 6 to 12 potential 
(7 kcal/mol maximum value per interaction pair) for 
assessing packings, and explores the full set of 
torsions for all side-chains simultaneously, it still 
seeks to identify the best possible packing even if 
this involves apparently “unacceptable” collisions 
with its starting main-chain model. The current 
version of the program allows side-chains to 
approach within 1 A of main-chain atoms, to allow 
for potential shifts in main-chain co-ordinates of 1 
to 2 A from the starting model. Since proteins with 
a high degree of homology typically have main- 
chain differences for their core residues of less than 
1 A (Chothia & Lesk, 1986; Blundell et al., 1987), 
this may provide sufficient flexibility for prediction 
in proteins produced by site-directed mutagenesis, 
and for proteins with significant homology. It is 
possible that successive cycles of side-chain predic- 

tion and main-chain relaxation (energy minimiz- 
ation with the side-chain torsions held fixed to their 
predicted values) could provide a method for both 
coping with and predicting main-chain shifts in 
homology modeling. We are currently testing such 
approaches for homologs with 20% or greater 
sequence identity, and examining the method’s 
sensitivity to errors in the starting main-chain 
model. 

One difficulty in the development and comparison 
of prediction methods is the lack of completely 
satisfactory measures of predictions’ accuracy. 
Statistics on x angle errors give disproportionate 
weight to smaller residues, since they include no 
information about side-chain size in the composite 
measurement. Thus, the critical issue of whether the 
big side-chains that dominate the core are correctly 
packed is simply absent from these measures. The x 
error statistics for the flavodoxin prediction shown 
in Figure 1, for example, are comparable to those 
obtained for the prediction by Reid & Thornton 
(1989), yet direct examination of the core residues 
shows them to be dramatically different in accuracy 
(for comparison, see their Figs 4 and 5). r.m.s. 
deviations, on the other hand, are singularly slip- 
pery whenever data involving more than one 
residue type are being compared. An r.m.s. error of 
1 A has a dramatically different meaning for a serine 
than for a tyrosine residue; yet calculation of the 
overall r.m.s. mixes them in a single composite as if 
they were equivalent (although it does accord them 
appropriate weighting, in proportion to the number 
of atoms in each side-chain). As a result, the signifi- 
cance of a given r.m.s. value is different for different 
sequences. Furthermore, the relationship between 
r.m.s. value and human modelers’ concept of “accu- 
racy” is both highly compressed and non-linear. In 
the flavodoxin case, for example, completely 
random conformations have an average r.m.s. of 
3.1 A, while the r.m.s. value for our core prediction 
(with 80 to 90% of the side-chains correctly placed) 
is 15 a. In general, how should one interpret a 1.9 A 
r.m.s.? We wish to suggest that this question does 
not have a clear-cut answer, one must always probe 
further into the specifics of what was wrong, and 
what was right, usually by direct examination on 
graphics. 

Finally, we wish to indicate some of the lines of 
work we are currently pursuing to extend and 
improve this method. The most obvious gap in the 
program is its total lack of provisions for prediction 
of surface residues. We are testing two different 
approaches. First, we are testing combination of 
this energy-based algorithm with statistical 
methods for side-chain prediction based on a library 
of 80 protein structures, which have proven 
successful for surface residue prediction (r.m.s. error 
of 1.76 A for side-chain predictions on a similar set 
of proteins; M. Levitt, personal communication). 
Since conserved residues tend to preserve very 
similar conformations in homologous proteins (Lesk 
& Chothia, 1986), it may be possible to use the 
degree of conservation for each sequence position 
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(derived from multiple sequence alignment) to bias 
the random walk towards likely conformations, and 
thus improve the accuracy of the method. Second, 
we are adding electrostatics and the hydrophobic 
effect to our current program’s potential function, 
for direct prediction of exposed residues within the 
main program. These additions are likely to 
improve its accuracy for buried residues as well, 
especially those involved in internal hydrogen 
bonds. In light of the observed prevalence of 
internal hydrogen bonds (Baker & Hubbard, 1984), 
inclusion of such interactions is essential for accu- 
rate prediction of these residues. A further problem 
experienced in the predictions reported here was the 
program’s occasional attempts to relieve steric colli- 
sions by rotating hydrophobic side-chains com- 
pletely into the solvent. If it is to be used for 
modeling surface residues, especially in homology 
modeling, the method must take the hydrophobic 
effect into account. In light of available algorithms 
for identifying potential disulfides (Pabo & 
Suchanek, 1986; Matsumura et aZ., 1989), we are 
including recognition of disulfide bridges as well. 
Our main project, however, is incorporating main- 
chain movement explicitly in the prediction 
method, which may ultimately prove a more accu- 
rate basis for homology modeling than cyclic side- 
chain and main-chain optimization. 
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