
12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 1 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

Using Spins
While the SPINS-client graphical user interface is a convenient choice for established problems such as 1D
grating couplers and waveguide-based devices, sometimes additional design flexibility is required.

Here we provide a closer look at the examples and go over the usage of the SPINS Python API.

Running an optimization in SPINS python API consists of 4 steps:

1. Creating a simulation space
2. Making the objecetive function
3. Setting the transformations
4. Running the optimization

These four steps seen in the code as the following:

def main() -> None:
 """Runs the optimization."""

 # Create the simulation space using the GDS files.
 sim_space = create_sim_space("sim_fg.gds", "sim_bg.gds")

 # Setup the objectives and all values that should be recorded (monitors).
 obj, monitors = create_objective(sim_space)

 # Create the list of operations that should be performed during
 # optimization. In this case, we use a series of continuous parametrizations
 # that approximate a discrete structure.
 trans_list = create_transformations(
 obj, monitors, sim_space, cont_iters=100, min_feature=100)

 # Execute the optimization and indicate that the current folder (".") is
 # the project folder. The project folder is the root folder for any
 # auxiliary files (e.g. GDS files). By default, all log files produced
 # during the optimization are also saved here. This can be changed by
 # passing in a third optional argument.
 plan = optplan.OptimizationPlan(transformations=trans_list)
 problem_graph.run_plan(plan, ".")

Below, we go over each of these steps in detail.

Simulation Space
As seen in the examples for the grating coupler and wavelength demultiplexer, the first step of optimiza-
tion creates the spins.invdes.problem_graph.simspace. The arguments to the function are the
eps_fg.gds and eps_bg.gds files.

Foreground/Background Permittivity
The files eps_fg.gds and eps_bg.gds are used to construct the “selection matrix.” While the selection ma-
trix is used in many contexts in SPINS, the surface-level purpose of the object is to denote the optimization

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 2 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

region.

This region over which optimization is to take place is given as the XOR between the regions specified by
the eps_fg.gds and eps_bg.gds.

Diagram showing how the optimized regions are specified using the foreground and background per-
mittivities.

The actual operations done to construct the selection matrix from these two GDS files is abstracted away.
However, to complete the description of the spins.invdes.problem_graph.simspace, additional infor-
mation on the material stack is required.

Material Stack and Design Layer
To be able to construct the entire permittivity distribution from the GDS files,
spins.invdes.problem_graph.optplan.schema_em.GdsEps, we must specify the
spins.invdes.problem_graph.optplan.schema_em.GdsMaterialStack.

A single material is specified through

mat_oxide = optplan.Material(index=optplan.ComplexNumber(real=1.5))

file:///Users/nvsapra/Spins/spins/build/_images/eps_fgbg.png

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 3 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

where spins.invdes.problem_graph.optplan.optplan.ComplexNumber provides the utility to specify
the real and imag parts of a material.

The material stack is specified below

mat_stack = optplan.GdsMaterialStack(
 background=mat_oxide,
 stack=[
 optplan.GdsMaterialStackLayer(
 foreground=mat_oxide,
 background=mat_oxide,
 gds_layer=[101, 0],
 extents=[-10000, -110],
),
 optplan.GdsMaterialStackLayer(
 foreground=optplan.Material(
 index=optplan.ComplexNumber(real=device_index)),
 background=mat_oxide,
 gds_layer=[100, 0],
 extents=[-110, 110],
),
],
)

where the stack is specified a list of
spins.invdes.problem_graph.optplan.schema_em.GdsMaterialStackLayer objects. The foreground
material specifies the material of all features explicitly defined in this layer (through a GDS file, for exam-
ple) and the background index is for the remaining regions. The gds_layer=[100, 0] (GDS layer 100,
datatype 0) specifies the design layer, the layer being optimized over, which is specially marked with layer
[100, 0]. The value for gds_layer for the other material layers of the stack are arbitrary and the user can
choose any value between 101-199 for the GDS layer (the first argument), while the GDS datatype (the
second argument), should be kept 0.

Lastly, the extent specifies the 3D layer height, and is specified in nanometers.

To completely specify the spins.invdes.problem_graph.simspace, all that remains is denoting the simu-
lation region, as done below

if SIM_2D:
 # If the simulation is 2D, then we just take a slice through the
 # device layer at z = 0. We apply periodic boundary conditions along
 # the z-axis by setting PML thicknes to zero.
 sim_region = optplan.Box3d(
 center=[0, 0, 0], extents=[5000, 5000, GRID_SPACING])
 pml_thickness = [10, 10, 10, 10, 0, 0]
else:
 sim_region = optplan.Box3d(center=[0, 0, 0], extents=[5000, 5000, 2000])
 pml_thickness = [10, 10, 10, 10, 10, 10]

return optplan.SimulationSpace(
 name="simspace_cont",
 mesh=optplan.UniformMesh(dx=GRID_SPACING),
 eps_fg=optplan.GdsEps(gds=gds_fg, mat_stack=mat_stack),
 eps_bg=optplan.GdsEps(gds=gds_bg, mat_stack=mat_stack),
 sim_region=sim_region,

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 4 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

 selection_matrix_type="direct_lattice",
 boundary_conditions=[optplan.BlochBoundary()] * 6,
 pml_thickness=pml_thickness,
)

Objective Functions

Overlaps
SPINS provides objects such as spins.invdes.problem_graph.optplan.schema_em.Overlap which in-
herently support operations such as addition, subtraction, scalar multiplication, and absolute value,
spins.invdes.problem_graph.optplan.schema_function.abs. This functionality assists in the creation
of objective functions which often take the form of overlap integrals between simulated fields and a target
mode.

This usage of operations on the
spins.invdes.problem_graph.optplan.schema_em.WaveguideModeOverlap and
spins.invdes.problem_graph.optplan.schema_em.Overlap object to build an objective function can be
seen here

Create modal overlaps at the two output waveguides.
overlap_1550 = optplan.WaveguideModeOverlap(
 center=[1730, -500, 0],
 extents=[GRID_SPACING, 1500, 600],
 mode_num=0,
 normal=[1, 0, 0],
 power=1.0,
)
overlap_1300 = optplan.WaveguideModeOverlap(
 center=[1730, 500, 0],
 extents=[GRID_SPACING, 1500, 600],
 mode_num=0,
 normal=[1, 0, 0],
 power=1.0,
)

which are used to define the objective function below

for wlen, overlap in zip([1300, 1550], [overlap_1300, overlap_1550]):

 ...

 overlap = optplan.Overlap(simulation=sim, overlap=overlap)

 power = optplan.abs(overlap)**2
 power_objs.append(power)
 monitor_list.append(
 optplan.SimpleMonitor(name="power{}".format(wlen), function=power))

Spins minimizes the objective function, so to make `power` maximized,
we minimize `1 - power`.
obj = 0
for power in power_objs:

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 5 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

 obj += (1 - power)**2

Here, an overlap is created, modified to relate to the power through the waveguide, and then turned into
an objective function. Note, while these operations are taking place, the final obj object is still of type
spins.invdes.problem_graph.optplan.schema_em.Overlap.

Simulation and Sources
As seen above, the spins.invdes.problem_graph.optplan.schema_em.Overlap object requires a
spins.invdes.problem_graph.optplan.schema_em.FdfdSimulation to provide information regarding
the source, solver, wavelength, sim_space, and permittivity epsilon to be used.

We define a sim object for each
spins.invdes.problem_graph.optplan.schema_em.WaveguideModeOverlap object, and use the sim ob-
ject in the arguments for the spins.invdes.problem_graph.optplan.schema_em.Overlap.

power_objs = []
Keep track of metrics and fields that we want to monitor.
monitor_list = []
for wlen, overlap in zip([1300, 1550], [overlap_1300, overlap_1550]):
 epsilon = optplan.Epsilon(
 simulation_space=sim_space,
 wavelength=wlen,
)
 sim = optplan.FdfdSimulation(
 source=wg_source,
 # Use a direct matrix solver (e.g. LU-factorization) on CPU for
 # 2D simulations and the GPU Maxwell solver for 3D.
 solver="local_direct" if SIM_2D else "maxwell_cg",
 wavelength=wlen,
 simulation_space=sim_space,
 epsilon=epsilon,
)
 # Take a field slice through the z=0 plane to save each iteration.
 monitor_list.append(
 optplan.FieldMonitor(
 name="field{}".format(wlen),
 function=sim,
 normal=[0, 0, 1],
 center=[0, 0, 0],
))
 if wlen == 1300:
 # Only save the permittivity at 1300 nm because the permittivity
 # at 1550 nm is the same (as a constant permittivity value was
 # selected in the simulation space creation process).
 monitor_list.append(
 optplan.FieldMonitor(
 name="epsilon",
 function=epsilon,
 normal=[0, 0, 1],
 center=[0, 0, 0]))

 overlap = optplan.Overlap(simulation=sim, overlap=overlap)

 power = optplan.abs(overlap)**2

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 6 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

 power_objs.append(power)
 monitor_list.append(
 optplan.SimpleMonitor(name="power{}".format(wlen), function=power))

Additionally, a spins.invdes.problem_graph.optplan.schema_em.WaveguideModeSource is specified at
the start of the function.

wg_source = optplan.WaveguideModeSource(
 center=[-1770, 0, 0],
 extents=[GRID_SPACING, 1500, 600],
 normal=[1, 0, 0],
 mode_num=0,
 power=1.0,
)

Other sources can be used as well, for example a gaussian beam source is specified through the
spins.invdes.problem_graph.optplan.schema_em.GaussianSource class, and is used in the grating
coupler example:

 source=optplan.GaussianSource(
 polarization_angle=0,
 theta=np.deg2rad(-10),
 psi=np.pi / 2,
 center=[0, 0, wg_thickness + 700],
 extents=[14000, 14000, 0],
 normal=[0, 0, -1],
 power=1,
 w0=5200,
 normalize_by_sim=True,
),

Monitors
While not necessary to the optimization,
spins.invdes.problem_graph.optplan.schema_monitor.SimpleMonitor are used to specify which
quantities or fields are to be saved for later viewing by the viewer.

spins.invdes.problem_graph.optplan.schema_monitor.FieldMonitor is intended for fields like elec-
tric fields and permittivity distributions. The distinction with FieldMonitor vs SimpleMonitor is that they
can take slices and thus save a smaller amount of information. SimpleMonitor saves all values recorded by
the field, whatever they are and so are typically used for scalars

In the example code above, we see that the fields are saved for both wavelengths, the permittivity for a sin-
gle wavelength, and the power through the waveguide for both wavelengths.

Transformations
Transformations are what orchestrate the optimization in SPINS. Each
spins.invdes.problem_graph.optplan.optplan.Transformation is appended to a trans_list, trans-
formation list, which is run in series by the code. A transformation can specify how to run a stage of opti-
mization (continuous, discrete) or how to convert the parameterization from one form to another.

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 7 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

In the wavelength demultiplexer example, we see both use cases during continuous optimization. But first,
we need to define the trans_list and an initial parameterization.

Setup empty transformation list.
trans_list = []

First do continuous relaxation optimization.
This is done through cubic interpolation and then applying a sigmoid
function.
param = optplan.CubicParametrization(
 # Specify the coarseness of the cubic interpolation points in terms
 # of number of Yee cells. Feature size is approximated by having
 # control points on the order of `min_feature / GRID_SPACING`.
 undersample=3.5 * min_feature / GRID_SPACING,
 simulation_space=sim_space,
 init_method=optplan.UniformInitializer(min_val=0.6, max_val=0.9),
)

Continuous Optimization
In the wavelength demultiplexer example, only continuous optimization is carried out. However, during
the optimization, a sigmoid ramp is applied to the permittivity distribution, in order to bias the continuous
values towards more discrete structures.

In the example code this is seen through iterating over num_stages, where a stage of optimization is fol-
lowed by spins.invdes.problem_graph.optplan.schema_opt.CubicParamSigmoidStrength to update
the parameterization.

iters = max(cont_iters // num_stages, 1)
for stage in range(num_stages):
 trans_list.append(
 optplan.Transformation(
 name="opt_cont{}".format(stage),
 parametrization=param,
 transformation=optplan.ScipyOptimizerTransformation(
 optimizer="L-BFGS-B",
 objective=obj,
 monitor_lists=optplan.ScipyOptimizerMonitorList(
 callback_monitors=monitors,
 start_monitors=monitors,
 end_monitors=monitors),
 optimization_options=optplan.ScipyOptimizerOptions(
 maxiter=iters),
),
))

 if stage < num_stages - 1:
 # Make the structure more discrete.
 trans_list.append(
 optplan.Transformation(
 name="sigmoid_change{}".format(stage),
 parametrization=param,
 # The larger the sigmoid strength value, the more "discrete"
 # structure will be.
 transformation=optplan.CubicParamSigmoidStrength(

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 8 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

 value=4 * (stage + 1)),
))
return trans_list

Discrete Optimization
While not provided in open-source SPINS-B, the method to optimize with a discrete parameterization (lev-
el-set parameterization) is also done by appending elements into the trans_list. First a transformation
to convert from the continuous parameterization to level-set parameterization is appended, followed by
optimization iterations with the updated parameterization.

Running Optimization
With a simulation space, objective function, and transformation list defined, we can begin our
optimization!

At this point we can generate the computational graph completely describing the optimization with the
line:

Execute the optimization and indicate that the current folder (".") is
the project folder. The project folder is the root folder for any
auxiliary files (e.g. GDS files). By default, all log files produced
during the optimization are also saved here. This can be changed by
passing in a third optional argument.
plan = optplan.OptimizationPlan(transformations=trans_list)

and subsequently run the graph with

problem_graph.run_plan(plan, ".")

This will begin optimization as specified by the trans_list, saving as the output the monitors defined ear-
lier. If the parameterization supports it, additionally a GDS file of the final permittivity will be saved as
well.

Examples

Wavelength Demultiplexer
The example code and descriptions found above are used in the context of the following files:

wdm.py

sim_fg.gds

sim_bg.gds

 1
 2

"""Optimizes a 2-way demultiplexer.

file:///Users/nvsapra/Spins/spins/build/_downloads/b0e9e5e234589c2e0ed891bb97dee178/wdm2.py
file:///Users/nvsapra/Spins/spins/build/_downloads/146663c002cd2491ab43cfb7eb931100/sim_fg.gds
file:///Users/nvsapra/Spins/spins/build/_downloads/3d1fc2798b3035d2f1d6d2f6ec0b682b/sim_bg.gds

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 9 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60

This example shows how to optimize 2 um x 2 um 2-way demultiplexer that splits
1550 nm and 1300 nm light. This is shown diagrmatically below:

 | |___
 --- ____ out0
 in --- |___
 | ____ out1
 |______|

By changing the `SIM_2D` global variable, the simulation can be done in either
2D or 3D. 2D simulations are performed on the CPU whereas 3D simulations require
using the GPU-based Maxwell electromagnetic solver.

Note that to run the 3D optimization, the 3D solver must be setup and running
already.

To process the optimization data, see the IPython notebook contained in this
folder.
"""
from typing import List, Tuple

import numpy as np

from spins.invdes import problem_graph
from spins.invdes.problem_graph import optplan

Yee cell grid spacing in nanometers.
GRID_SPACING = 40
If `True`, perform the simulation in 2D. Else in 3D.
SIM_2D = True
Silicon refractive index to use for 2D simulations. This should be the
effective index value.
SI_2D_INDEX = 2.20
Silicon refractive index to use for 3D simulations.
SI_3D_INDEX = 3.45

def main() -> None:
 """Runs the optimization."""
 # Create the simulation space using the GDS files.
 sim_space = create_sim_space("sim_fg.gds", "sim_bg.gds")

 # Setup the objectives and all values that should be recorded (monitors).
 obj, monitors = create_objective(sim_space)

 # Create the list of operations that should be performed during
 # optimization. In this case, we use a series of continuous parametrizations
 # that approximate a discrete structure.
 trans_list = create_transformations(
 obj, monitors, sim_space, cont_iters=100, min_feature=100)

 # Execute the optimization and indicate that the current folder (".") is
 # the project folder. The project folder is the root folder for any
 # auxiliary files (e.g. GDS files). By default, all log files produced
 # during the optimization are also saved here. This can be changed by
 # passing in a third optional argument.
 plan = optplan.OptimizationPlan(transformations=trans_list)

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 10 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

 problem_graph.run_plan(plan, ".")

def create_sim_space(gds_fg: str, gds_bg: str) -> optplan.SimulationSpace:
 """Creates the simulation space.

 The simulation space contains information about the boundary conditions,
 gridding, and design region of the simulation. The material stack is
 220 nm of silicon surrounded by oxide. The refractive index of the silicon
 changes based on whether the global viarble `SIM_2D` is set.

 Args:
 gds_fg: Location of the foreground GDS file.
 gds_bg: Location of the background GDS file.

 Returns:
 A `SimulationSpace` description.
 """
 mat_oxide = optplan.Material(index=optplan.ComplexNumber(real=1.5))
 if SIM_2D:
 device_index = SI_2D_INDEX
 else:
 device_index = SI_3D_INDEX

 mat_stack = optplan.GdsMaterialStack(
 background=mat_oxide,
 stack=[
 optplan.GdsMaterialStackLayer(
 foreground=mat_oxide,
 background=mat_oxide,
 gds_layer=[101, 0],
 extents=[-10000, -110],
),
 optplan.GdsMaterialStackLayer(
 foreground=optplan.Material(
 index=optplan.ComplexNumber(real=device_index)),
 background=mat_oxide,
 gds_layer=[100, 0],
 extents=[-110, 110],
),
],
)

 if SIM_2D:
 # If the simulation is 2D, then we just take a slice through the
 # device layer at z = 0. We apply periodic boundary conditions along
 # the z-axis by setting PML thicknes to zero.
 sim_region = optplan.Box3d(
 center=[0, 0, 0], extents=[5000, 5000, GRID_SPACING])
 pml_thickness = [10, 10, 10, 10, 0, 0]
 else:
 sim_region = optplan.Box3d(center=[0, 0, 0], extents=[5000, 5000, 2000])
 pml_thickness = [10, 10, 10, 10, 10, 10]

 return optplan.SimulationSpace(
 name="simspace_cont",
 mesh=optplan.UniformMesh(dx=GRID_SPACING),
 eps_fg=optplan.GdsEps(gds=gds_fg, mat_stack=mat_stack),

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 11 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

 eps_bg=optplan.GdsEps(gds=gds_bg, mat_stack=mat_stack),
 sim_region=sim_region,
 selection_matrix_type="direct_lattice",
 boundary_conditions=[optplan.BlochBoundary()] * 6,
 pml_thickness=pml_thickness,
)

def create_objective(sim_space: optplan.SimulationSpace
) -> Tuple[optplan.Function, List[optplan.Monitor]]:
 """Creates the objective function to be minimized.

 The objective is `(1 - p1300)^2 + (1 - p1550)^2` where `p1300` and `p1500`
 is the power going from the input port to the corresponding output port
 at 1300 nm and 1500 nm. Note that in an actual device, one should also add
 terms corresponding to the rejection modes as well.

 Args:
 sim_space: Simulation space to use.

 Returns:
 A tuple `(obj, monitors)` where `obj` is a description of objective
 function and `monitors` is a list of values to monitor (save) during
 the optimization process.
 """
 # Create the waveguide source at the input.
 wg_source = optplan.WaveguideModeSource(
 center=[-1770, 0, 0],
 extents=[GRID_SPACING, 1500, 600],
 normal=[1, 0, 0],
 mode_num=0,
 power=1.0,
)
 # Create modal overlaps at the two output waveguides.
 overlap_1550 = optplan.WaveguideModeOverlap(
 center=[1730, -500, 0],
 extents=[GRID_SPACING, 1500, 600],
 mode_num=0,
 normal=[1, 0, 0],
 power=1.0,
)
 overlap_1300 = optplan.WaveguideModeOverlap(
 center=[1730, 500, 0],
 extents=[GRID_SPACING, 1500, 600],
 mode_num=0,
 normal=[1, 0, 0],
 power=1.0,
)

 power_objs = []
 # Keep track of metrics and fields that we want to monitor.
 monitor_list = []
 for wlen, overlap in zip([1300, 1550], [overlap_1300, overlap_1550]):
 epsilon = optplan.Epsilon(
 simulation_space=sim_space,
 wavelength=wlen,
)
 sim = optplan.FdfdSimulation(

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 12 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

 source=wg_source,
 # Use a direct matrix solver (e.g. LU-factorization) on CPU for
 # 2D simulations and the GPU Maxwell solver for 3D.
 solver="local_direct" if SIM_2D else "maxwell_cg",
 wavelength=wlen,
 simulation_space=sim_space,
 epsilon=epsilon,
)
 # Take a field slice through the z=0 plane to save each iteration.
 monitor_list.append(
 optplan.FieldMonitor(
 name="field{}".format(wlen),
 function=sim,
 normal=[0, 0, 1],
 center=[0, 0, 0],
))
 if wlen == 1300:
 # Only save the permittivity at 1300 nm because the permittivity
 # at 1550 nm is the same (as a constant permittivity value was
 # selected in the simulation space creation process).
 monitor_list.append(
 optplan.FieldMonitor(
 name="epsilon",
 function=epsilon,
 normal=[0, 0, 1],
 center=[0, 0, 0]))

 overlap = optplan.Overlap(simulation=sim, overlap=overlap)

 power = optplan.abs(overlap)**2
 power_objs.append(power)
 monitor_list.append(
 optplan.SimpleMonitor(name="power{}".format(wlen), function=power))

 # Spins minimizes the objective function, so to make `power` maximized,
 # we minimize `1 - power`.
 obj = 0
 for power in power_objs:
 obj += (1 - power)**2

 monitor_list.append(optplan.SimpleMonitor(name="objective", function=obj))

 return obj, monitor_list

def create_transformations(
 obj: optplan.Function,
 monitors: List[optplan.Monitor],
 sim_space: optplan.SimulationSpaceBase,
 cont_iters: int,
 num_stages: int = 3,
 min_feature: float = 100,
) -> List[optplan.Transformation]:
 """Creates a list of transformations for the device optimization.

 The transformations dictate the sequence of steps used to optimize the
 device. The optimization uses `num_stages` of continuous optimization. For
 each stage, the "discreteness" of the structure is increased (through

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 13 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

 controlling a parameter of a sigmoid function).

 Args:
 opt: The objective function to minimize.
 monitors: List of monitors to keep track of.
 sim_space: Simulation space ot use.
 cont_iters: Number of iterations to run in continuous optimization
 total acorss all stages.
 num_stages: Number of continuous stages to run. The more stages that
 are run, the more discrete the structure will become.
 min_feature: Minimum feature size in nanometers.

 Returns:
 A list of transformations.
 """
 # Setup empty transformation list.
 trans_list = []

 # First do continuous relaxation optimization.
 # This is done through cubic interpolation and then applying a sigmoid
 # function.
 param = optplan.CubicParametrization(
 # Specify the coarseness of the cubic interpolation points in terms
 # of number of Yee cells. Feature size is approximated by having
 # control points on the order of `min_feature / GRID_SPACING`.
 undersample=3.5 * min_feature / GRID_SPACING,
 simulation_space=sim_space,
 init_method=optplan.UniformInitializer(min_val=0.6, max_val=0.9),
)

 iters = max(cont_iters // num_stages, 1)
 for stage in range(num_stages):
 trans_list.append(
 optplan.Transformation(
 name="opt_cont{}".format(stage),
 parametrization=param,
 transformation=optplan.ScipyOptimizerTransformation(
 optimizer="L-BFGS-B",
 objective=obj,
 monitor_lists=optplan.ScipyOptimizerMonitorList(
 callback_monitors=monitors,
 start_monitors=monitors,
 end_monitors=monitors),
 optimization_options=optplan.ScipyOptimizerOptions(
 maxiter=iters),
),
))

 if stage < num_stages - 1:
 # Make the structure more discrete.
 trans_list.append(
 optplan.Transformation(
 name="sigmoid_change{}".format(stage),
 parametrization=param,
 # The larger the sigmoid strength value, the more "discrete"
 # structure will be.
 transformation=optplan.CubicParamSigmoidStrength(
 value=4 * (stage + 1)),

12/19/19, 8:54 AMUsing Spins — spins 0.1.0 documentation

Page 14 of 14file:///Users/nvsapra/Spins/spins/build/spins_usage.html

293
294
295
296
297
298

))
 return trans_list

if __name__ == "__main__":
 main()

