Accelerated Time of Flight Mass Spectrometry

Morteza Ibrahimi and Andrea Montanari

Department of Electrical Engineering, Stanford University

July, 2012

Time of flight mass spectrometry (TOFMS)

Ion packets are accelerated into flight tube

Impact detector at the end of the path Observed signal \rightarrow one **scan** of $\sqrt{m/z}$ spectrum

Simple depiction of a TOFMS (Figure courtesy of KORE Technology)

Obtaining a clean spectrum

One scan is too noisy ightarrow N pprox 100's-1000's scans are required

The trade off between mass accuracy/resolution and sensitivity/throughput

L: Length of the flight tube

Accelerated TOF (ATOF)

- $\bullet~{\rm TOF} \rightarrow {\rm Have}$ to collect many scans
- Each scan is a very sparse signal

Idea

Increase the repetition rate and allow the subsequent scans to overlap

Challenge

Recover spectrum from overlapped scans

ATOF requires little alteration to the existing hardware

- $\rightarrow\,$ Ion acceleration unit to fire at irregular pseudo-random intervals
- $\rightarrow\,$ More elaborate post-processing computation unit

Sample spectrum for conventional TOF and ATOF

Acceleration factor = 10

Sample spectrum for conventional TOF and ATOF

Acceleration factor = 10

Evaluating ATOF: Peak shapes

ATOF does not change or broaden the peak shapes

Evaluating ATOF: Performance criteria

ATOF vs CTOF

CTOF-scan: ConventiaonI TOF with same number of scans as ATOF CTOF-time: Conventional TOF with same amount of acquisition time as ATOF

ATOF Summary

 \diamondsuit Simple modification of the conventional TOF with minimal change in hardware

Our contribution:

- \diamondsuit An efficient algorithm for *online* reconstruction of spectrum
- \diamondsuit Can speed up a conventional TOF instrument by an order of magnitude