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Abstract: 

 
Background: Both genetic and environmental factors contribute to triglyceride, LDL-

cholesterol (LDL-C), and HDL-cholesterol (HDL-C) levels.  While genome-wide 

association studies are currently testing the genetic factors systematically, testing and 

reporting one or a few factors at a time can lead to fragmented literature for 

environmental chemical factors. We screened for correlation between environmental 

factors and lipid levels, utilizing four independent surveys with information on 188 

environmental factors from the Centers of Disease Control (CDC) National Health and 

Nutrition Examination Survey (NHANES), collected between 1999 and 2006.   

Methods: We used linear regression to correlate each environmental chemical factor to 

triglycerides, LDL-C, and HDL-C adjusting for age, age-squared, sex, ethnicity, 

socioeconomic status, and body mass index. Final estimates were adjusted for waist 

circumference, diabetes status, blood pressure, and survey. Multiple comparisons were 

controlled for by estimating the false discovery rate and significant findings were 

tentatively validated in an independent survey.   

Results: We identified and validated 29, 9, and 17 environmental factors correlated with 

triglycerides, LDL-C and HDL-C levels, respectively. Findings include hydrocarbons and 

nicotine associated with lower HDL-C and vitamin E (γ-tocopherol) associated with 

unfavorable lipid levels. Higher triglycerides and lower HDL-C were correlated with 

higher levels of fat-soluble contaminants (e.g., polychlorinated biphenyls and 

dibenzofurans). Nutrients and vitamin markers (e.g. vitamins B, D, and carotenes) , were 

associated with favorable triglyceride and HDL-C levels. 
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Conclusions: Our systematic association study has enabled us to postulate about broad 

environmental correlation to lipid levels.  While subject to confounding and reverse 

causality bias, these findings merit evaluation in additional cohorts. 
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Key Messages: 

Unlike current-day genomic studies, systematic studies to dissect the connection between 

environmental factors and disease risk factors, such as serum lipid levels, are lacking.  

Here, we systematically correlate serum and urine biomarkers of environmental factors 

with cholesterol and triglyceride levels, uncovering a spectrum of persistent pollutants 

and nutrients connected with the risk factors. Such an investigation is one way to 

prioritize factors for follow-up validation study. 
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Introduction: 

Serum lipid levels are risk factors for coronary heart disease (CHD), atherosclerosis, type 

2 diabetes, and stroke. Both genetic and environmental factors influence lipid level 

phenotypes.  Lipid level variation can be influenced by genetics1, 2.  On the other hand, 

environmental factors also play a role.  For example, lifestyle factors such as physical 

exercise, smoking, and diet have well-documented relationships with lipid levels 3-7.  

There are a number of reports connecting lipid levels, cardiovascular disease, type 2 

diabetes, and the metabolic syndrome with specific persistent pollutants, such as dioxins, 

organochlorinated pesticides, dibenzofurans, and polychlorinated biphenyls 8-14.  Other 

less tangible environmental factors, such as air pollution15 may also have an adverse 

relationship with lipid levels.  

 

While extensive efforts are underway to dissect genetic components with genome-wide 

association studies (GWAS)16, similar studies to systematically identify specific 

environmental factors are lacking. Results of epidemiologic studies, which typically test 

one or a few factors at a time, may be further distorted by selective reporting of subsets of 

analyses, outcomes, and adjustments.  It has been postulated that this contributes to a 

fragmented, ultimately unreliable literature 17-22. More importantly, the phenomenon of 

environmental exposure is complex and influenced by differences in individuals, time, 

place, and other exposures 19. Humans are exposed to not a few but many environmental 

adverse or protective factors simultaneously. Due to this complexity, the net effects due 

to environmental factors on human health may be miscalculated when considering a few 

factors at a time.  Protective effects of environmental factors are not usually considered in 
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context of adverse effects of other co-existing factors, potentially leading to lack of 

physiological coherence and public health relevance.  Health surveys and bio-monitoring 

projects23, in which multiple environmental factors are simultaneously measured, 

provides an opportunity to hypothesize about how a system of environmental factors 

relate to disease and other characteristics among the general population24. 

 

We conduct a more systematic approach to associating multiple environmental chemical 

factors with serum lipid levels, similar to a GWAS25, utilizing the National Health and 

Nutrition Examination Survey (NHANES), a nationally representative health survey26. 

Instead of testing a few associations at a time, we evaluate 188 environmental factors for 

association to lipid levels while accounting for the multiplicity of comparisons. The 

emerging significant associations are then validated in an independent NHANES dataset.  

Further, we conduct systematic sensitivity analyses among the measured confounders to 

estimate bias.   

 

Using such an analytic procedure, we have found and validated 29, 9, and 17 markers for 

environmental chemical factors correlated with triglycerides, LDL-cholesterol and, HDL-

cholesterol respectively, including a spectrum of persistent organic pollutants, nutrients, 

and vitamins. Many of these factors have been explored before in association to related 

diseases, such as type 2 diabetes, obesity, lipid levels, and the metabolic syndrome 10-14, 

27.  However, each of these studies addresses issues of model adjustment, variable coding, 

and assessment of effects in different ways, possibly leading to conflicting study results 

28. In this systematic study, we propose one type of analytic process to unify and 
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standardize these analyses.   Specifically, we assess how environmental factors are 

correlated among themselves and with changes in serum lipid levels, while consistently 

adjusting for other factors such as age, sex, ethnicity, socioeconomic status, and body 

mass index.   
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Methods: 

Data 

We downloaded all available NHANES laboratory and questionnaire data for 1999-2000, 

2001-2002, 2003-2004, and 2005-2006 surveys.  Laboratory data included serum and 

urine measures of environmental factors and clinical measures including lipid levels.  

Each survey is an independent, non-overlapping sampling of participants representative 

of the general United States population.  We analyzed factors that were a direct 

measurement of an extrinsic environmental factor (e.g. amount of pesticide or heavy 

metal in urine or blood).  We did not consider intrinsic physiological measures (e.g. red 

blood cell count or albumin) or responses to questionnaires except for sensitivity 

analyses.  

 

We used three of the four surveys (1999-2000, 2001-2002, 2005-2006) for testing for 

multiple environmental factors in association to lipid levels and reserved one survey 

(2003-2004) for validation testing of findings.  Because each survey had a different set 

and number of environmental factors measured, we selected 2003-2004 as the validation 

survey as it had the largest number of shared factors with each of the other surveys, 

maximizing the number of factors that could be validated.    

 

We eliminated 119 factor variables from our analyses whose majority of observations 

were under the NCHS documented limit of detection or, for categorical factor variables, 

varied little.  Specifically, we omitted continuous variables if 99% of the observations 
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were deemed below the threshold limit of detection.  For categorical factor variables, we 

omitted those that had 99% of observations belonging to one category.  After the 

elimination of these 119 such factor variables, we were left with 169 variables from the 

1999-2000 survey, 182 from 2001-2002, 96 from 2005-2006, and 258 from the 2003-

2004 (validation) survey.  Next, we selected factors from each survey that were present in 

the validation survey. This left us with a total of 188 unique factors that could be 

validated, of which 126 were from the 1999-2000 survey, 157 from 2001-2002, and 65 

from 2005-2006.  Using a categorization provided by NHANES, we binned these factors 

into 26 “classes” of related factors (Figure 1A, Supplementary Table 1).   

 

Different environmental factors were measured in varying numbers of participants: 109-

3610 (median 938), 101-3388 (median 896), and 222-7485 (median 1958) individuals for 

triglyceride, LDL-C, and HDL-C levels respectively (Figure 1B). Individuals are selected 

randomly based on their demographic characteristics for the complex, stratified survey29. 

Serum triglyceride levels were measured in the morning after >8.5 hours’ fasting.  LDL-

C levels were derived from total cholesterol and direct HDL-C measurements used the 

Friedewald calculation 30.   

 

Correlation between factors 

We computed the pairwise partial Pearson correlation coefficient between each 

environmental factors using the test and validation surveys separately, adjusting for age 

and body mass index in addition to creatinine levels for urinary measures. Because we 

had 188 environmental factors, the total number of possible pairs of factors (and 
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correlations) equals 17,578 (188x187/2); however, 4455 (25%) of all possible pairs of 

factors were not measured in same overlapping individuals and as a result, their 

correlations could not be computed.  We assessed correlations between factors in the test 

and validation cohorts separately and compared their relative strength by estimating 

percentiles of the entire distribution of correlations.  We also compared correlations 

within classes (or “intra-class” correlation) and between classes (“inter-class”) 

correlations. For factors measured in more than one of the test surveys, their coefficient 

was combined using a meta-analytic random effects method. 

 

Correlation of environmental factors with lipid levels 

The systematic analysis encompasses multiple steps (Figure 1C-H).  First, survey-

weighted linear regressions are performed, whereby log10 transformed lipid levels are 

dependent variables, modeled as a function of each environmental factor and age, age-

squared, sex, body mass index (BMI), ethnicity, and socioeconomic status (SES) (Figure 

1C). For SES we used the tertile of poverty index (participant’s household income 

divided by the time-adjusted poverty threshold), as previously described25. Ethnicity was 

coded in 5 groups (Mexican American, Non-Hispanic Black, Non-Hispanic White, Other 

Hispanic, Other).  We used R survey module for all survey-weighted analyses 31 with 

appropriate pseudo-strata, pseudo-sampling units, and weights to accommodate the 

complex sampling of the data.   

 

 Chemical exposure data arising from mass spectrometry or absorption measurements 

were log-transformed. We used z-scores (standard deviations from the mean) to compare 
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effect sizes; specifically, effect sizes for these variables denote change in lipid levels for a 

change in 1 standard deviation of exposure.  For binary variables, such as 

presence/absence assays for infectious agents, effect sizes denote change in lipid levels 

for those with presence of a factor versus those without. 

 

We calculated the false discovery rate (FDR), the estimated proportion of false 

discoveries made versus the number of total discoveries made for a given significance 

level α, to control for multiple hypothesis testing (Figure 1D)32. We created a “null 

distribution” of regression test statistics for each survey separately, permuting the 

triglycerides, HDL-C, and LDL-C levels 1000 times and refitting the linear regression 

models, collecting the test statistics for the coefficients corresponding to the 

environmental factor.  In other words, the distributions of the lipid levels were not 

changed, but randomly assigned to different individuals in the survey. 

 

The FDR is the ratio of the number of coefficients called significant at a given level α in 

the null distribution and the number of results called significant from our real screen (see 

Supplementary Methods). We used FDR<5% to select significant associations.  We used 

an independent survey, the 2003-2004 survey, to validate significant findings (Figure 

1D).  We considered a significant factor as “tentatively validated” if it was significant (p 

< 0.05) in the validation survey.  

 

We then fit a final linear regression model with data combined from the 4 independent 

NHANES surveys for a tentatively validated environmental factor, attaining an overall 
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estimate and p-value (Figure 1E).  We utilized the larger sample size to adjust for 

additional co-variates that we were unable to adjust for in the single survey analyses (due 

to limited residual degrees of freedom) that also influence lipid levels. In addition to 

initial covariates, we also adjusted for waist circumference, type 2 diabetes status 

(approximated by fasting blood glucose ≥ 126 mg/dL), systolic and diastolic blood 

pressure (mm Hg), and survey. To estimate how much of the variance was described by 

each environmental factor, we estimated the change in the coefficient of determination 

(R2) adding that factor versus a model including only the adjusting factors (Figure 1F). 

We also performed regressions on untransformed lipid levels to estimate raw effect size. 

 

Sensitivity analyses  

We conducted sensitivity analyses to account for recent food, alcohol, supplements, 

medications, exercise, and history of cardiovascular health (Figure 1G).  Sixty-two 

questionnaire items were used (Supplementary Table 2).  To evaluate the impact of these 

62 adjusting variables, we recomputed the regression models by adding each variable to 

our final model one-by-one and observed the change in the effect size for each 

environmental factor.   We also built a model adjusting for lipid-lowering drugs, 

supplement use, exercise, and self-report cardiovascular-related disease simultaneously.  

More details can be found in the Supplementary Document. 

 

Power calculations 
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We estimated 33 that our analyses had >80% median power for all surveys for detection 

of 5% change in HDL-C and LDL-C and 10% change of triglyceride levels for p-values 

corresponding to FDR of 5%. 
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Results: 

Demographic and baseline associations with lipid levels 

Tables 1-3 describe the multivariate relationship between baseline demographics and 

lipid levels.  As expected34, demographics, BMI, ethnicity, and SES are associated with 

lipid levels.  For example, consistent positive correlations existed between age and 

triglycerides (5-10% higher per 10 years, p-values<0.02), and BMI and triglycerides (2% 

higher per 1 unit of BMI, p-values<0.004), and consistent negative correlations between 

black ethnicity and triglycerides (13% lower vs. white, p-values<0.001) 35.  Consistent 

polynomial relationships existed between age and both HDL-C and LDL-C. Negative 

correlations existed between BMI and HDL-C (1% lower per BMI unit, p-

values<0.0001).  In addition, SES was associated with HDL-C (1-5% lower for lower vs. 

higher tertile, p-values<0.03).   These indicated that BMI, ethnicity, sex, SES, age, and 

age-squared were all covariates that needed to be controlled in our first stage analysis. 

 

Factor correlations 

We computed the partial Pearson correlation between each pair of environmental 

chemical factors tested where pair-wise data was available.  Of the 17,578 possible 

correlations, 13,123 correlations could be computed (see Methods).  These 13,123 

correlations were adjusted for BMI and age in addition to creatinine levels for urinary 

measures.  We computed the correlations in the test surveys and verified these 

correlations among the validation survey (p-value less than 0.05 for both test and 

validation surveys and with same sign); after this verification step, we were left with a 
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total of 11,672 confirmed correlations (Figure 2)   The 5th, 10th, 90th, and 95th percentile 

of verified partial Pearson correlations were -0.11, -0.07, 0.26, and 0.38 respectively 

(lower left panel histogram, Figure 2).   

 The intra-class partial correlations were higher than between-class correlations in 

both the test surveys and validation survey (test surveys: mean ρ= 0.26, t-test p < 1e-10; 

validation survey: mean ρ= 0.27, t-test p < 1e-10).  Specifically, the intra-class 

correlation for class PCBs was 0.41, 0.42 for dioxins, 0.5 for carotenoid nutrients, 0.2 for 

heavy metals, 0.2 for hydrocarbons, 0.3 for phytoestrogens, 0.3 for phthalates, and 0.2 for 

phenols for the test surveys.  We observed similar patterns among the validation survey. 

We observed several instances of large inter-class correlations, such as inverse 

correlations between carotenoid and vitamin E factors (trans-β-carotene and γ-tocopherol, 

ρ = -0.3).  We also observed positive correlations between cotinine and the heavy metals 

lead and cadmium (ρ> 0.3), and hydrocarbons 2- and 3-hydroxyflourene (ρ > 0.5).  

Similarly, we observed gross inter-class correlations between classes such as furans and 

dioxins (mean ρ=0.4), PCBs and dioxins (mean ρ=0.2), PCBs and organochlorine 

pesticides (mean ρ=0.2), and phthalates and hydrocarbons (mean ρ=0.2). 

 

Environment associations with lipid levels 

For triglyceride levels, 15 out of 126, 29 out of 157, and 12 out of 65 factors passed the 

requested threshold of significance (FDR < 5%) for the 1999-2000, 2001-2002, and 

2005-2006 surveys, respectively (Figure 3A).  For LDL-C, 2 out of 131, 10 out of 162, 

and 9 out of 65 were significant, respectively (Figure 3B).  For HDL-C, 1 out of 131, 26 

out of 162, and 15 out of 65 were significant (Figure 3C). We tentatively validated 
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significant findings from our screen, by searching for whether any of the factors 

significant in any of the three studies above were also significant in the fourth 

independent 2003-2004 survey at p < 0.05.  We found 29, 9, and 17 tentatively validated 

factors for triglycerides, LDL-C and HDL-C, respectively (Figure 3A, B, C).   

 

The data was combined across surveys for each tentatively validated factor and estimates 

were further adjusted for waist circumference, type 2 diabetes status, blood pressure, and 

survey, in addition to the age, age-squared, BMI, age, sex, SES, and ethnicity. The 

variance ascribed to baseline co-variates was 22-25% (triglycerides), 15-16% (LDL-C), 

and 23-26% (HDL-C).   Each of the tentatively validated environmental factors described 

an additional 0.7-18.4% (triglycerides), 1.8-14.1% (LDL-C), and 0.4-4.0% (HDL-C) of 

the variance in lipid levels (Supplementary Tables 3-5).   

 

Effects for the tentatively validated associations are shown in Figure 4. We present here 

some of them in more detail. Effect sizes for continuous variables are for 1 SD of log-

transformed value of the environmental factor. 

 

Vitamins A and E: unfavorable association with lipid levels 

For all three lipids, we found a consistent association for lipid-soluble, anti-oxidant 

vitamins, such as vitamin A, E, and carotenoids (Figure 4 A-C, Supplementary Figure 1).  

For example, a form of vitamin A, retinol, was positively associated with triglycerides 

(p=6x10-21, effect=10% or 25 mg/dL higher triglycerides per 1SD) in all surveys 

examined.  Another form of vitamin A, retinyl palmitate was also positively associated 
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with triglycerides (p=6x10-21, effect=10%) and LDL-C (p=4x10-13, effect=5% or 6 

mg/dL).  Retinyl stearate was negatively associated with HDL-C (p=4x10-5, effect=-3% 

or -1 mg/dL).  

 

We observed a consistent association between forms of vitamin E (α and γ tocopherol) 

and lipid levels.  α-tocopherol strongly correlated with higher triglyceride and LDL-C 

levels (effect=35% (p=8x10-20) and 16% (p=7x10-19), or 67 and 16 mg/dL, respectively).  

γ-tocopherol was also correlated with higher triglycerides (effect=17% higher, p=10-17) 

and LDL-C (6% higher, p=3x10-14) levels, but also with lower HDL-C (effect = -2% , 

p=6x10-6). Tocopherols are highly lipophilic and their absorption is enhanced by 

triglycerides, though both were significant despite controlling for BMI and waist 

circumference. 

 

Carotenoids: favorable association with HDL-C and triglycerides and unfavorable 

association with LDL-C 

Both isomers of β-carotene, cis- and trans- were associated with lower triglyceride levels 

(p=10-6, effect=-7% or 12 mg/dL; p=10-8, effect=-10% or 16 mg/dL respectively).  

However, both isomers of carotene, in addition to other carotenoids such as β-

cryptoxanthin and lycopene were consistently associated with higher levels of both HDL-

C and LDL-C.  The effect was 5% (p=3x10-12) and 6% (p=5x10-11) for HDL-C and LDL-

C levels respectively for cis-β-carotene and 3% (p=10-10) and 12% (p=8x10-17) for 

lycopene.  
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Favorable lipid correlations with vitamins B, C, D, iron, mercury, and enterolactone   

We found serum levels of folate (vitamin B), C, D, iron, and mercury to be favorably 

associated with HDL-C (Figure 4C).  Effect sizes of vitamin, iron and mercury levels on 

HDL-C were similar, ranging from 3 to 4% (1-2 mg/dL) higher HDL-C (p<0.002). Last, 

we found enterolactone, a product of lignan metabolism in the intestine, to be associated 

with 10% (17mg/dL) lower triglyceride levels (p=2x10-7, Figure 4A).  

 

Persistent pollutants: unfavorable association with triglycerides and HDL-C 

Polychlorinated biphenyls (PCBs), dibenzofurans, and organochlorine pesticides, all 

persistent organic pollutants, were unfavorably associated with both triglyceride and 

HDL-C levels (Figures 4 A,C). Seven PCB factors were tentatively validated and the 

most significant cogeners PCB74 and PCB170 were associated with 15% (p=10-6) and 

19% (p=4x10-6) higher triglyceride levels.  Five organochlorine factors were tentatively 

validated, among which oxychlordane and trans-nonachlor changes were linked to 29% 

and 30% higher (p=5x10-9, 1x10-8) triglyceride levels.  Another organochlorine pesticide, 

heptachlor epoxide, was associated with 3% lower HDL-C (p=0.006).  

 

Markers for air pollution and nicotine: unfavorable association with HDL-C 

Several markers of air pollution and nicotine exposure were unfavorably associated with 

HDL-C (Figure 4C).  The polyaromatic hydrocarbon markers of fluorene, 3-

hydroxyfluorene and 2-hydroxyfluorene, were associated with 3% lower HDL-C 

(p=0.006 and p=0.004). Cotinine, a serum biomarker for nicotine, was associated also 

with a 3% lower HDL-C (p=2 x 10-6).  
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Sensitivity analyses with further adjustments 

For most questionnaire variable adjustments, we did not see a sizable difference in 

estimated coefficients or p-values for the environmental factors (Supplementary Figures 

2-4), including questionnaire items regarding self-report cardiovascular-related disease 

status and use of drugs.  Interestingly, some adjustments increased the effect size of the 

environmental factor.  For example, the association of cotinine, 3-, and 2-

hydroxyfluorene with HDL-C strengthened after adjustment for alcohol intake. 

Adjustment for fish and shellfish consumption strengthened the association between 

retinyl stearate and HDL-C and triglyceride levels.  Conversely, the effect of vitamin C 

and folate in relation to HDL-C decreased when taking supplement count, total fiber 

intake, and physical activity into account. Adjusting for supplement count decreased the 

effect of γ-tocopherol on HDL-C.  

 

Simultaneous adjustment for self-reported cardiovascular-related disease, supplement 

count, lipid-lowering drugs, and physical activity strengthened the association between 

tocopherols and pollutant factors and triglycerides, while attenuating the association to α-

carotene (Supplementary Figure 2).  For HDL-C levels, effects of cotinine, mercury, 3- 

and 2-flourene, folate, vitamin C, vitamin D, and γ-tocopherol were all attenuated > 15% 

(Supplementary Figure 4). However, the direction and significance of the effects were 

preserved throughout. 
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Discussion: 

By combing through a large number of environmental exposures using a systematic 

approach, we have found and validated multiple previously known environmental 

chemical factors correlated with serum lipid levels beyond the level of false discovery.  

Populations are exposed to many environmental factors, both harmful and beneficial. It is 

possible that by studying a few of these factors, we may miss major factors that truly 

influence disease.  Further, by examining multiple factors, we may capture the relative 

effect of different factors as compared with others. This approach gives a broader, 

inclusive perspective of benefits and harms that may enhance the interpretation and 

overall public health relevance of this literature. Such an investigation is made possible 

by health survey data assaying multiple environmental factors; these surveys are critical 

to understanding their relationship with characteristics in the general population24. 

 

By using transparent reporting and estimation of the false discovery rate, this approach 

bypasses the problem of selectively testing and reporting one or a few associations at a 

time that has been debated as a source of biased results and false positives in 

epidemiological studies 19, 20, 22, 28, 36.   We use the breadth of environmental factor and 

phenotypic measures to conduct extensive sensitivity and correlation analyses, which are 

critical given the complex physiological web of correlation apparent in environmental 

epidemiological study 19.  Relatedly, such a systematic display of large number of 

associations (Figure 3) may enable us to create hypotheses regarding how multiple 

chemical factors, might jointly contribute to phenotypic states37.  While we have focused 

here on modeling main effects, a next analytical step might include evaluating how 
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mixtures of environmental factors are connected to lipid levels.  However, assessing 

interactions between environmental factors will add another layer of complexity, 

potentially requiring more power for their study. 

 

We acknowledge that the approach has drawbacks.  First, in our current scenario, some 

factors were present in more surveys than others and therefore have additional 

opportunity for tentative validation (defined as FDR less than 5% in test cohorts and p-

value less than 0.05 in validation cohort), potentially leading to a bias in factors found.  

Second, the method calls for multiple testing on different types of factors without 

consideration of priors and a strict FDR threshold is applied, giving way to the possibility 

of false negatives 38, 39.   Nevertheless, just as systematic genome-wide studies have had 

utility in finding novel genetic loci associated with complex disease 16, this strategy 

provides an opportunity to find novel markers of exposure and prioritize their validation 

in follow-up studies. 

 

Our findings reveal complex relationships between serum lipid levels and fat-soluble 

antioxidant vitamins A and E and carotenoids. Randomized studies and meta-analyses40-

44 have shown these vitamins to have no benefits or even confer harm when given in high 

doses, in contrast to previous favorable associations in observational studies 45, 46.  The 

unfavorable lipid profile that we observed with vitamin E forms is consistent with 

observational data, and possibly consistent with the randomized evidence on clinical 

outcomes. 47 
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We observed an association of vitamins B (folate), C and D, mercury, and iron, to higher 

HDL-C levels. Folate 48 and vitamin D 49 have previously been associated with higher 

HDL-C. Fish, a source of cardioprotective omega-3 fatty acids, are also a large source of 

mercury50; however, we did not observe a large change in effect size of mercury when 

accounting for consumption of fish. These nutrients and metals may be to some extent 

surrogate markers of “healthy diet” behaviors; however what exactly constitutes “healthy 

diets” is currently very difficult to define, in contrast to earlier claims 51, 52. The strength 

of the association for these dietary markers is similar on HDL-C, ranging from 1-3 mg/dL 

for a standardized change per factor. These are small effects and it is unclear whether 

cumulatively they could have a much larger impact in raising HDL-C level, given the 

correlations between these markers (Figure 2).  

 

We also identified enterolactone to be strongly associated with favorable triglyceride 

levels in this study.  Enterolactone is a metabolite of lignans, which are found in foods 

such as flaxseed, and have been associated with favorable cholesterol profiles in this form 

53, 54. Again, it is unclear what role, if any, this marker plays as a surrogate of “healthy 

diets” and effects on heart disease have been inconsistent 55. 

 

We found markers of hydrocarbons, 2- and 3-hydroxyfluorene to be strongly associated 

with unfavorable HDL-C levels.  While others have shown the association of these 

metabolites to self-report cardiovascular disease with the NHANES data 56, to our 

knowledge the association with HDL-C is novel.  Relatedly, we also found a marker of 

nicotine, cotinine, to have a similar association with HDL-C.  Particulate matter air 
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pollution, composed of many types of hydrocarbons, and smoking long have been a 

major concern for cardiovascular-related diseases 15, 57, 58. Smoking is well known to 

influence HDL-C levels 59, 60 and acute and chronic exposures to tobacco smoke have 

been shown to decrease HDL-C substantially 61.  The high correlation of the hydrocarbon 

markers to cotinine suggests that these associations might all indicate exposure to 

cigarette smoke.    

 

We also have reconfirmed the correlation between banned-use persistent pollutants, such 

as organochlorine pesticides, dibenzofurans  and polychlorinated biphenyls, with adverse 

lipid profiles, such as large increase of triglycerides and large decrease in HDL-C. These 

environmental factors have already been implicated in other metabolic-related and 

cardiovascular diseases and among several populations.  For example, PCB170 and 

heptachlor epoxide have been associated with type 2 diabetes and hypertension in these 

surveys25, 62.  Similarly, PCBs and dibenzofurans have been associated with metabolic 

syndrome in a Japanese population 63.   

 

We acknowledge that these associations might be confounded due to the fat solubility of 

these pollutants.  Nevertheless, there have been efforts to elucidate causal relationships 

using differing analytic methods and ecological data.  For example, in a recent study 

considering causal pathways and confounding bias via structural equation modeling, 

investigators found a relationship between polychlorinated biphenyls and lipid levels 

consistent with forward causality for a native population with high exposure of these 

pollutants in upstate New York 8.  Another study found an ecological relationship 
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between cardiovascular-related hospitalization rates in areas close to PCB pollution 9. 

Nonetheless, the etiological relationships between persistent pollutants and the metabolic 

syndrome, type 2 diabetes, and cardiovascular diseases remains elusive 64, 65.  However, 

current etiological speculation includes the role of these pollutants interfering with 

PPARs, transcription factors known to be involved in lipid homeostasis66, and/or 

influencing change in DNA methylation67, 68.  Persistent pollutants were recently 

associated with atherosclerosis in the elderly in Sweden independent of serum lipid 

levels, suggesting a direct pollutant effect on atherosclerosis 69.  Further investigation of 

these pollutants and consideration of other phenotypes along the causal pathway for 

cardiovascular-related diseases is warranted. 

 

Elucidating both influence of persistent pollutants on lipids and quantifying their amount 

in serum lipids remains an issue of debate70, 71.  For example, there are methods to 

quantify persistent pollutants via adjustment with serum lipids 72, 73; but differing 

methods of adjustment of these factors could lead to conflicting results70.  Porta et al, in 

investigating the influence of organochlorine pesticides on pancreatic carcinoma, indicate 

that linear adjustment may be inappropriate in some cases71.  Assessments between 

persistent pollutants and serum lipid levels as described here may address some of these 

issues. 

 

Factor variability must be characterized to ensure their adequate analytical modeling. For 

example, we considered BMI as having a confounding role and included it as an 

adjustment in our models.  However, BMI may lie on the causal pathway towards adverse 
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lipid profiles. The inter-relationship among lipid levels, BMI, and persistent pollutant 

factors is complex74, differing in the context of sex and demographics75, clinical 

characteristics76, and after changes in weight (e.g. after bariatric surgery77 and overall 

weight gain78).   Inter-individual differences in pharmacokinetics also play a role in this 

complex relationship79.  The choice of how to model adjusting variables ultimately 

influences inferences.  Long-term longitudinal investigations 79, 80 and causal inference 

methods may be more suitable to understand causal pathways, if any, underlying the 

correlation of these environmental factors with lipid levels and other phenotypes.  

 

There are some important limitations in a study using cross-sectional measurements and 

the observed correlations are far from causal. These associations may reflect a complex 

web of physiological correlation and/or reverse causality. For example, α-tocopherol and 

carotenes are transported in serum with HDL and LDL 81-83 and accurate measurement of 

serum α-tocopherol is dependent on serum lipids 84. In this regard, the strong association 

between α-tocopherol and LDL and triglycerides might be considered a true positive 

result.  On the other hand, given the lack of evidence for γ-tocopherol or retinol 

associating with lipoprotein complexes, their association might be due to reverse 

causality, or increased anti-oxidant consumption among those who know about their 

adverse lipid level profile.  However, given that vitamin E consumption has been found 

to increase mortality in meta-analysis44, the large effect sizes suggest that prospective 

studies may be scrutinized for any potentially adverse effects  of vitamin E on lipid levels 

and other metabolic disorders, such as type 2 diabetes 25.  
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Like vitamins, we must consider how the distribution of persistent pollutants among 

biomolecules in serum may influence our analyses.   Persistent pollutants have a unique 

signature in plasma LDL and HDL; for example, PCBs are primarily carried in LDL 

while their metabolites are evenly carried in both LDL and HDL85. Furthermore, 

ascertaining levels of pollutant found in tissue other than serum may be eventually 

required to understand pathology.  To this end, there are reports of concordance between 

concentrations of persistent pollutants found in different adipose tissues, such as between 

breast and abdominal adipose tissue86.  There appears to be concordance between levels 

of DDE in found in serum and breast adipose tissue87; however, relative estimation varies 

based on the type of adjustment methods used. 

 

Another issue includes the measurement of pollutant environmental factors themselves.  

For example, limits of detection varied across different NHANES surveys.  To address 

this, we filtered out variables that had a majority of undetectable measurements; however, 

results may be biased due to imbalance in measurement techniques and differing 

thresholds.  In the future, factor measurement should be standardized, as proposed by the 

PhenX project, to ensure comparability of results among different studies and cohorts 88.  

Environmental exposure biomonitoring data from other public health surveys might be 

able to aid in this effort and the National Academy of Science Committee on Human 

Biomonitoring for Environmental Toxicants lists examples of such efforts23. 

 

Despite these limitations, we have shown here a systematic approach to create robust 

hypotheses regarding association of environmental factors to disease. Further studies 
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should focus on elucidating their role in disease, if any.
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Tables 
 
 1999-2000 (N=3002) 2001-2002 (N=3610) 
 estimate (95% CI) p-value estimate (95% CI) p-value 
Sex (vs. Male) -0.026 (-0.061,0.008) 0.1 -0.061 (-0.089,-0.033) 0.002 
Age (10 years)     
Age 0.044 (0.011,0.076) 0.02 0.052 (0.019,0.085) 0.009 
Age^2 -0.00017 (-0.00047,0.00013) 0.2 -0.00026 (-0.00061,8.7e-05) 0.1 
Ethnicity (vs. white)    
Black -0.14 (-0.19,-0.098) 9x10-4 -0.13 (-0.17,-0.079) 0.001 
Mexican-American 0.011 (-0.049,0.071) 0.6 0.0088 (-0.036,0.053) 0.6 
Other Hispanic -0.034 (-0.075,0.0074) 0.08 0.038 (-0.1,0.18) 0.5 
Other -0.027 (-0.098,0.044) 0.3 0.03 (-0.046,0.11) 0.4 
SES (vs. high tertile)    
SES (medium) 0.011 (-0.032,0.055) 0.5 0.018 (-0.011,0.047) 0.2 
SES (low) 0.027 (-0.018,0.072) 0.2 0.037 (-0.0034,0.077) 0.07 
BMI (10 units) 0.11 (0.078,0.15) 9x10-4 0.093 (0.059,0.13) 0.001 
 2005-2006 (N=2912) validation: 2003-2004 (N=3449) 
Sex (vs. Male) -0.043 (-0.072,-0.013) 0.01 -0.056 (-0.078,-0.033) 0.001 
Age (10 years)     
Age 0.046 (0.016,0.076) 0.01 0.078 (0.055,0.1) 3x10-4 
Age^2 -2e-04 (-0.00052,0.00011) 0.2 -0.00061 (-0.00082,-0.00039) 8x10-4 
Ethnicity (vs. white)    
Black -0.13 (-0.16,-0.1) 9x10-5 -0.13 (-0.17,-0.097) 2x10-4 
Mexican-American 0.019 (-0.014,0.051) 0.2 0.0074 (-0.033,0.048) 0.7 
Other Hispanic -0.02 (-0.081,0.041) 0.4 0.03 (-0.046,0.11) 0.4 
Other 0.044 (-0.019,0.11) 0.1 -0.012 (-0.089,0.065) 0.7 
SES (vs. high tertile)    
SES (medium) 0.0044 (-0.031,0.04) 0.8 0.005 (-0.028,0.038) 0.7 
SES (low) 0.026 (-0.017,0.069) 0.2 0.035 (-0.0063,0.077) 0.08 
BMI (10 units) 0.095 (0.071,0.12) 2x10-4 0.099 (0.069,0.13) 4x10-4 

 
Table 1.  Estimates of multivariate linear regression model predicting 
log10(triglycerides) as a function of sex, age, age-squared, ethnicity (in reference to 
whites), an estimate of SES (in reference to high SES), and body mass index for each 
survey.  95% confidence interval and p-value of associations are also shown.  N is 
unweighted sample size. 
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 1999-2000 (N=2743) 2001-2002 (N=3318) 
 estimate (95% CI) p-value estimate (95% CI) p-value 
Sex (vs. Male) -0.015 (-0.034,0.0043) 0.1 -0.016 (-0.028,-0.0049) 0.01 
Age (10 years)     
Age 0.059 (0.042,0.076) 7x10-4 0.058 (0.042,0.073) 2x10-4 
Age^2 -0.00046 (-0.00066,-0.00027) 0.003 -0.00048 (-0.00065,-0.00032) 7x10-4 
Ethnicity (vs. white)    
Black -0.015 (-0.036,0.0065) 0.1 -0.0087 (-0.032,0.014) 0.4 
Mexican-American -0.012 (-0.028,0.0047) 0.1 -0.019 (-0.037,-0.0013) 0.04 
Other Hispanic -0.013 (-0.034,0.0081) 0.2 -0.015 (-0.041,0.011) 0.2 
Other -0.0098 (-0.041,0.021) 0.4 0.01 (-0.036,0.056) 0.6 
SES (vs. high tertile)    
SES (medium) -0.0028 (-0.027,0.021) 0.8 0.0044 (-0.019,0.028) 0.6 
SES (low) 0.0094 (-0.014,0.033) 0.3 0.01 (-0.013,0.033) 0.3 
BMI (10 units) 0.022 (0.006,0.038) 0.02 0.014 (0.0048,0.023) 0.01 
 2005-2006 (N=2853) validation: 2003-2004 (N=3389) 
Sex (vs. Male) -0.0024 (-0.018,0.013) 0.7 -0.0054 (-0.022,0.012) 0.4 
Age (10 years)     
Age 0.098 (0.079,0.12) 4x10-5 0.065 (0.049,0.081) 1x10-4 
Age^2 -9e-04 (-0.0011,-7x10-4) 9x10-5 -0.00055 (-0.00072,-0.00038) 4x10-4 
Ethnicity (vs. white)    
Black -0.012 (-0.04,0.015) 0.3 -0.012 (-0.028,0.0033) 0.1 
Mexican-American 0.0014 (-0.023,0.026) 0.9 0.0082 (-0.012,0.028) 0.3 
Other Hispanic 0.035 (-0.011,0.081) 0.1 -0.019 (-0.097,0.059) 0.6 
Other -0.026 (-0.067,0.015) 0.2 -0.026 (-0.055,0.003) 0.07 
SES (vs. high tertile)    
SES (medium) -0.013 (-0.035,0.0089) 0.2 0.0087 (-0.014,0.032) 0.4 
SES (low) -0.0023 (-0.02,0.015) 0.7 0.013 (-0.01,0.036) 0.2 
BMI (10 units) 0.0078 (-0.0034,0.019) 0.1 0.015 (-0.0029,0.034) 0.08 

 
Table 2.  Estimates of multivariate linear regression model predicting log10(LDL-C) as a 
function of sex, age, age-squared, ethnicity, SES, and BMI for each survey.    
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HDL-C 1999-2000 (N=6386) 2001-2002 (N=7485) 
 estimate (95% CI) p-value estimate (95% CI) p-value 
Sex (vs. Male) 0.068 (0.059,0.077) 3x10-5 0.076 (0.066,0.087) 9x10-6 
Age (10 years)     
Age 0.02 (0.0082,0.032) 0.009 0.027 (0.018,0.035) 4x10-4 
Age^2 -0.00012 (-0.00022,-1.6x10-5) 0.03 -0.00018 (-0.00027,-8.5x10-5) 0.004 
Ethnicity (vs. white)    
Black 0.047 (0.03,0.064) 0.002 0.048 (0.034,0.061) 3x10-4 
Mexican-American 0.016 (-0.0019,0.034) 0.07 0.0067 (-0.0022,0.016) 0.1 
Other Hispanic -0.016 (-0.039,0.0069) 0.1 -0.0039 (-0.028,0.02) 0.7 
Other 0.0073 (-0.027,0.042) 0.6 0.0056 (-0.018,0.029) 0.6 
SES (vs. high tertile)    
SES (medium) -0.0054 (-0.021,0.01) 0.4 -0.017 (-0.034,0.00065) 0.06 
SES (low) -0.018 (-0.032,-0.0035) 0.03 -0.03 (-0.048,-0.012) 0.008 
BMI (10 units) -0.06 (-0.069,-0.05) 6x10-5 -0.063 (-0.071,-0.056) 4x10-6 
 2005-2006 (N=7278) validation: 2003-2004 (N=6969) 
Sex (vs. Male) 0.075 (0.063,0.086) 2x10-5 0.078 (0.067,0.088) 8x10-6 
Age (10 years)     
Age 0.016 (0.0065,0.026) 0.008 0.017 (0.0084,0.026) 0.004 
Age^2 -1e-04 (-0.00022,1.3x10-5) 0.07 -1e-04 (-0.00019,-1.3x10-5) 0.03 
Ethnicity (vs. white)    
Black 0.042 (0.026,0.058) 0.001 0.041 (0.031,0.05) 1x10-4 
Mexican-American -0.00017 (-0.011,0.011) 1 -0.0048 (-0.019,0.0088) 0.4 
Other Hispanic 0.0048 (-0.015,0.025) 0.6 -0.008 (-0.035,0.019) 0.5 
Other -0.0028 (-0.023,0.018) 0.7 -0.0039 (-0.033,0.025) 0.7 
SES (vs. high tertile)    
SES (medium) -0.012 (-0.022,-0.003) 0.02 -0.0098 (-0.019,-0.00066) 0.04 
SES (low) -0.023 (-0.035,-0.012) 0.003 -0.019 (-0.03,-0.0076) 0.008 
BMI (10 units) -0.061 (-0.07,-0.053) 9x10-6 -0.058 (-0.069,-0.047) 4x10-5 

 
Table 3.  Estimates of multivariate linear regression model predicting log10(HDL-C) as a 
function of sex, age, age-squared, ethnicity, SES, and BMI for each survey.   
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Figure 1. Summary of Environmental Factors and Analytic Method. A.) Summary of 

the 26 factor classes and the number of factors within them for each NHANES test 

survey.  B.) 100-7,500 individuals had their HDL-C, LDL-C and triglyceride levels 

measured for each of these factors in each survey; these lipid levels were log transformed 

to assume normality for least squares regression.  C.) Each of these 126, 157, and 65 

factors was tested for association with the logarithm base 10 of HDL-C, LDL-C, and 

triglyceride levels with a linear regression model adjusted for age, age-squared, sex, BMI, 

ethnicity, and SES. D.) We estimated the FDR by computing the empirical null 

distribution by permuting the lipid levels; a FDR of 0.05 was considered significant. We 

deemed a factor to be tentatively validated if it was found to be significant in the 

validation survey with p-value ≤ 0.05 and an effect in the same direction. E.) We 

estimated a final coefficient for tentatively validated factors by combining all surveys and 

adjusting for age, age-squared, sex, ethnicity, SES, BMI, waist circumference, type 2 

diabetes status (Fasting Blood Glucose ≥ 126 mg/dL), blood pressure, and survey. F.) We 

estimated the coefficient of determination (R2) for the final, combined models.  G.) We 

re-computed our final models, adding 62 self-report variables one-by-one to attempting to 

check the validity of the environmental effect.  
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Figure 2.  Partial Pearson Correlation between environmental factors.  Partial 

Pearson correlation, adjusted by age and BMI (and creatinine for factors measured in 

urine) for each of the 188 factors were computed for each survey separately. We 

combined correlations between survey using a meta-analytic random-effects between 

surveys and displayed them in a heatmap above, grouped and ordered by environmental 

“class”, colored as in Figure 1A.  Pairs of factors where correlations could not be 

computed are shown in gray. 
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Figure 3. Significance of association (-log10(False Discovery Rate)) for each of 188 

factors by survey in association to A.) triglycerides, B.) LDL-C, C.) HDL-C.  Y-axis 

indicates -log10(False Discovery Rate) of the adjusted linear regression coefficient for 

each of the environmental factors. Colors represent different environmental classes as 

represented in Figure 1A. Red line corresponds to FDR of 0.05.  Findings validated in the 

2003-2004 survey are seen in the open markers.   



 42 

 

 

Figure 4. Forest plots for validated environmental factors associated with A.) 

triglycerides, B.) LDL-C, C.) HDL-C.  Survey (labeled as 1999-2000, 2001-2002, 

2005-2006, filled points) denotes the NHANES survey in which the specific factor was 

found to be significant (FDR < 0.05) in a model adjusting for age, age-squared, SES, 

ethnicity, sex, BMI.  “Validation” indicates the estimates found for the significant factor 

in the validation survey.  Combined survey (unfilled points) denotes the estimate attained 
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when combining all surveys available for exposure in a model adjusting for age, age-

squared, SES, ethnicity, sex, BMI, waist circumference, Type 2 diabetes status, blood 

pressure, and survey. Percent change (x-axis) is the percent change of lipid level for a 

change in 1SD of logged exposure value.  Effect size (in mg/dL) attained when fitting the 

untransformed lipids to the model.  Symbols proportional to sample size and colors 

represent different environmental classes as represented in Figure 1A.  For triglycerides 

and HDL-C only the 10 most significant factors are shown; forest plots of all validated 

factors are seen in Supplementary Figure 1. 
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