Chip Genesgis

Creating Chip Generators for Efficient

Ofer Shacham (Stanford University / Chip Genesis Inc.)
Professor Mark Horowitz’s VLSI Group At Stanford

High Performance Embedded Computing (HPEC) 2011

September 22, 2011

" Explain what a ‘Chip Generator’ design methodology is
" Why it is needed
" Why it solves many problems

" Get you all to download and experiment with Genesis2 — a prototype tool
for creating chip generators

" |t's a “generator for generators”
" http://genesis2.stanford.edu/

September 22, 2011 shacham@stanford.edu 2

http://genesis2.stanford.edu/�

" Power is today’s greatest design constraint
" Power no longer scales with technology
" Hand-held/embedded devices drive the market
" At a fixed power budget: more ops/sec requires less energy/og

" Complexity is growing

" Number of devices/chip still scaling
= Algorithmic complexity grows

The need for
customization has
never been greate

010-

N

. 2005 "

Software

" NRE costs are out of control RTL Design & Verification

Source: Synopsys

[Fewer and fewer applications have markets big enough to justify the effort

September 22, 2011

shacham@stanford.edu

" The biggest issue is NOT design
" And also not masks

“
7’

. . \
" The biggest |s§w’o‘\{& J
= Systerp 7 \e((\“:.fe.,/software)
" Sy /e %‘Sg.aaﬁon
7 \t\\"(\ if o/timization
(Re8 wfos
<7

- 2005 -
2010-

Software

RTL Design:& Verification

Source: Synopsys

® QOur systems are so complex that they are very hard to reason about

" Building complex systems is... complicated. And we need to face that fact!

" We need not to encode the system, we need to encode the reasoning

A

We'll get back to
this a little later

September 22, 2011 shacham@stanford.edu

N \Nlan ()N

" Platform-based Design - Alberto Sangiovanni Vincentelli, 2001

Integrated circuits ... will most likely be developed
as an instance of a particular (micro-) architecture Architecture
platform. ...they will be derived from a specific Configuration
“family” of micro-architectures, possibly oriented
toward a particular class of problems, that can be

modified... by the system developer. (pg 6)
o | ??7?

\

- ?LUb || Opti.? |

An architecture platform instance is derived from
an architecture platform by choosing a set of
components from the ... library and/or by setting
parameters of re-configurable components of the Physical

library. (pg 7) Layout

September 22, 2011 shacham@stanford.edu 5

System-on-Chip Re-configurable System

" ‘Random’ configuration of pre- " Fixed configuration of run-time
defined, pre-verified, and fixed in flexible IP blocks
Verilog cement, IP blocks

September 22, 2011 shacham@stanford.edu 6

" A reconfigurable system can be modified / tailored to specific application
" At runtime (i.e., via software)
" Using the same set of resources

" For example, we created Stanford’s Smart Memories
" (Probably) the most reconfigurable CMP ever created

" Fixed architecture w/ mushy (programmable) blocks
" Does help / amortize the system complexity and reasoning problem!

1s31u0) ubisa@ uapNIS 0T.02SS1/60.0vVA

" Alas... BIG problem:
" The resource-mix is never optimal (un-utilized resources / missing resources)
" The configuration itself adds inefficiencies (registers, muxes, etc.)

September 22, 2011 shacham@stanford.edu 7

Need to Rethink Our Ways Again:

Parameters
and

Constraints \
The right way to “top” platform

create an Architectural
Architecture Platform Tgmlp?;:tg 8? Mapping tools
IS not in RTL, but in

. Generator , .
something that ottom” platform
compiles into RTL
RTL &

Verification
Collateral

September 22, 2011 shacham@stanford.edu 8

Need to Rethink Our Ways Again:
i 21100 onN 1O |

So this is a “virtually”
reconfigurable chip

Fixed architecture with mushy
(programmable) blocks

Parameters
and

Constraints
“top” platform

[A\
Ek <
fex B
| <>
O e

N Z~

Architectural
Template &
Generator

Mapping tools

i

D E e
OB

Description that encodes
system dependencies &
trade-offs

RTL &
Verification
Collateral

ottom” platform

September 22, 2011 shacham@stanford.edu

Put Our Understandmg of The System In S

Parameters
" Unlike logic/high-level and
synthesis, generators Constraints

are domain specific Defines how software}

_ , handles the system
" Each design group likely

want to create theirown [Architectural
generator Template &

® But also use other’s, Generator
lower level, generators

Encodes how |

components
work together

" Need a consistent way

for building generators RTL &
(we'll get back to this a little later) Verification
Collateral

September 22, 2011 shacham@stanford.edu 10

App. Specific
Configuration

-

~

J

/

Heterogeneous

RTL

September 22, 2011

High
Performance Low Power
Configuration Configuration

Architectural
Template &
Generator

Aggressive

RTL Simple” RTL

shacham@stanford.edu 11

Simulator

September 22, 2011

Architectural
Description

Hardware
Optimization &
Generation

shacham@stanford.edu

Enerqgy
Budget

y

Tradeoff

AN

D

~N

12

" Hardware and software co-optimization framework for DSP applications
" Given a transformation, Spiral can easily explore the implementation space
" Final result is optimal hardware and software for a given algorithm + constraints

Software Hardware
Generation Generation
D'Alberto, Milder et. al., IEEE Comp. Soc., 2007 Milder, Franchetti, Hoe and Piischel, DAC, 2008

http://www.spiral.net/hardware/dftgen.html

September 22, 2011 shacham@stanford.edu 13

http://www.spiral.net/hardware/dftgen.html�

- Nl HAarowAare ()Ntim

Programmatic
System
Description

-

EILD

fa

f[>4(

J

Per- | Feedback |
Application
Configuration
XML Program |
O o (—_?
S 3 O K%
S == S ©w ©
2 2= b PR
S @ 3 o
\ . J +(Semi) Automatic

* Keep flexibility in sub modules e Standardize interfacing with

* Encode cross-module
dependencies

* Encode validation and
software dependencies

* Encode physical / backend
dependencies

September 22, 2011

configuration tools
* Formal interface for architect /
application designer / end client
* Repeat until target reached
* Repeat for different chips

shacham@stanford.edu

14

" We Created Genesis?2
" So we (and you!) can build generators

" Premise: Keep it simple — Genesis2 is just an extension for SystemVerilog
" Works like a pre-processor (* but actually is doing a little more)
" Remove artificial “synthesizability” limitations from the elaboration code
" Make elaboration explicit; software-like

" Expressive: Encapsulate design trade-offs in blocks (make generators!)
" Goal is for each block to have a small elaboration program — a “constructor”
" Enable late, externally driven, tweaking of knobs

" Instead of coding modules, we write programs that produce modules

September 22, 2011 shacham@stanford.edu 15

module ‘'mname’ (

File: BitReverse.vp

// my $width= parameter(File: OneHotMux.vp

module ‘'mname" (

my Sassoc = parameter(Name >’CACHE_ASSOC/, GWIDTH’, Val=>4);
List=>[1,2,4,8], XWIDT‘H', Val=>4);
- VaI=>4); idth-1":0],

);

| |||lJul. |U5|L [.PIIIU)_VVIULII'_L U7 SCT,
//; foreach my Sidx my Sfu NcC = pal’ameter(Name=>'TW|D_FUNC',
assign data_out[Sic List=>[‘cos’, ‘sin’],
data_in[Swidth Val=>"cos’);
// } | P ;A:n (4711

" my $width = parameter(Name=>'BIT_WIDTH’,
Min=>4, Max=>16, Step=>2
Val=>6);

| endcase

my Sinit_arr= parameter(Name=>ROM_CONTENT’,

Val=>[lg); Initial param value
el I is an empty list!

j

September 22, 2011 shacham@stanford.edu 16

" What would adding a processor require? c Pro’lrlocolpc
= More MB's; Bigger PC; More fabric ontroller (PC)

® Changing a proc (e.g., scalar to vliw)? —>)
" Change the word width of the bus and Po > MB
P 0
the relevant memory block g
v |
L +
o i 2 3! > &
What about changing the protocol? Or A = S Y
adding a new memory operation? S| 9 £9
C < =
[8 W
= Conclusion: : c
" Meaningful changes are not just local. —> VB
They require system-wide modifications Py R K
" Need to encode the system reasoning. ———

Work done with Andrew Danowitz and Megan Wachs

September 22, 2011 shacham@stanford.edu 17

" Hierarchical: Build bigger generators out of smaller generators

" Remember: each generator is the encoding of its designer’s thought process
and the encapsulation of many design trade-offs

" So instantiate the generator; Not just one instance of “cemented” Verilog

" Scope: Open the system scope to the individual generators
" To resolve structural constraints between modules

4 Sub-Generator Instance)

name ¥ "AME o inter to relevant
my SCacheObj = generate(‘Cache’, ‘Dcache’, /P processor

. PROCESSOR => $ProcObj);

/

® Still need to control the internal knobs of the cache from the outside world
" E.g., way Size, associativity, etc.

September 22, 2011 shacham@stanford.edu 18

<cg_cmp>
<Parameters>
<num_cpus>2</num_cpus>
</Parameters>
<Sublnstances>
<pl>
<Parameters>
<type>r|sc</type>

ublns ances>
jiirame

<type>vI|W</type>
</Parameters>
<Sublnstances> ...
</Sublnstances>
<Ip2>
</Sublnstances>
<lcg_cmp>

September 22, 2011

/Genesisz

(@

Elaboration
Program

\&

J

Refinement of the

architectural parameters
by application designer
and/or optimization tools

shacham@stanford.edu

<cg_cmp>
<Parameters>

<num_cpus>2</num_cpus>
</Parameters>
<Sublnstances>

<pl>

<Parameters>

<type>r|sc</type>

ublns ances>
<!arameterp u t

<type>vliw</type>
</Parameters>
<Sublnstances> ...
</Sublnstances>
<Ip2>
</SublInstances>
<lcg_cmp>

19

http://www-vlsi.stanford.edu/genesis/�
https://www-vlsi.stanford.edu/ig/�

. - - = " "
. Parameters for instance "top

User-tweakable parameters:
tst2dut_cfg_ifc dutltst cfg ifc MODE VERIF
ASSERTION ON
QUAD ID |0
TILE ID |0
DUT tb

NUM_PROCESSOR. |1
NUM_MEM_MATS 1

Immutable parameters:

Submit changes

[Click here to download tar of current design (.vp and .xml files) (must first "Submit changes")]

[+ Show walk-thru demo (CMP generator)

]

[+ Show download and embed options

]

[Debug is OFF. Click here to turn on debugging.]

September 22, 2011

This is the mode of the generation. 4lso, it's a VERY LONG COMMENT. ...
This is the assertion mode of the generation

In this example, can have up o 64 quads(!)

Any number greater than 0, for illustration

no comment

RO CoMment

Work done with Steve Richardson, Megan Wachs, and Andrew Danowitz

shacham@stanford.ed

u 20

http://www-vlsi.stanford.edu/genesis/scratch/cmpdemo-21416.php�

September 22, 2011

cmu.edu/g

shacham@stanford.edu

Aisianun uojay aibaure) ‘nyz Buinid) Aq paubisag

21

http://genesis.web.ece.cmu.edu/gui/scratch/mydesign-11576.php�

" Power is today’s greatest design constrain = Calls for customization

" Costs of creating new systems prohibitive = Due to system complexity

" Chip Generators encapsulate the designer’s understanding of the system,
as well as the design trade-offs

" Constrained architecture built off (design-time) flexible blocks
" The artifact produce is the process of making a chip, not a design instance

" Genesis? is a simple extension to SystemVerilog that enables and
standardize the creation of hierarchical chip generators

Genesis2 can be downloaded from http://genesis2.stanford.edu/

September 22, 2011 shacham@stanford.edu 22

http://genesis2.stanford.edu/�

THANK YOU!

September 22, 2011 shacham@stanford.edu 23

BACKUP SLIDES

September 22, 2011 shacham@stanford.edu 24

System
definition

Pool of fixed
IP blocks

51l
/\mﬁ

. No sense of system
» Each optimized for

different power, perf.,

and area targets

System
Integration

e
eI

\A_ 3_7)

» Custom glue logic
* Custom verification
 Custom software

/1 $$3$
Too late to make

Not reusable

Growing costs

S|seu1u/(s
~ dNd
¢Sas

. Sem| Automatic
- -The focus of the
entire EDA industry

any change
(customize/optimize)

September 22, 2011

Time

shacham@stanford.edu

End Result 1

M Market Segment 5
M Market Segment 4
400 - i Market Segment 3
 Market Segment 2
2300 -
O
L
o
=200 -
=)
N
S
£100 -
o
=
0 -

Traditional Chip Genesis

September 22, 2011 shacham@stanford.edu 26

End_ R_esu_lt 2:

" Example: Best processor architecture configuration at various power /
performance budgets

Source: Omid J. Azizi,
PhD Thesis, Stanford 2010

September 22, 2011 shacham@stanford.edu 27

End Result 3:

2100 N A N a\Y/a

4 Enhanced Design Process

] Architectural
Architectural Template 9“

Description

\ (Chip Generator) Target Design
(Semi-Random) ‘ 0 <>
Arch 't_eC!:u ral Verif-only Design #1
Descriptions
" Enhanced Verification Process .e.‘. .
" Make corner cases into common cases Verif-only Design #2
" Concept already used for concurrent software verif. 00000
. . &5
® Shorten the long verification tail = a2 ‘
Verif-only Design

#n
September 22, 2011 shacham@stanford.edu 28

THE END OF DENNARD SCALING

September 22, 2011 shacham@stanford.edu 29

April 19, 1965

Electronics, Volume 38 Number 8

[P TR N [N T S I ——
Wl s iy — OF O - o Ut g SN —

NMOILINNG O21VH93IN a3
SININTGIWOD 40 E38ACN
JHL 40 €907

TEOR

shacham@stanford.edu

30

September 22, 2011

GATE VOLTAGE [V]

o3k
— L————‘
k- ! &
boo 1000R K lyy -20OCA
L sWeB %““ K L wWe
x - e
Ve TV 3 ~ Veub -V
y, =08V Z gl 2 ¥, =073V
=
[}
|
e C : i i 1 i
0 5 0 5 20 0 I 2 3 4
DRAIN VOLTAGE [v] DRAIN VOLTAGE [v] | JSSC Oct 74, pg 256

" |n this ideal scaling (o0 < 1)
" Vscalesto aV, L scales to alL, W scales to aW
" So: C scales to a.C,
" E =VI/Lis constant, so i scales to au (i/m is stable)

September 22, 2011 shacham@stanford.edu 31

®Qver three decades of constant field (Dennard) scaling
"\/ scales to aV, L scales to alL, W scales to aW (a<1)

"Everybody wins:

" Get more transistors, more gates 1/o?
" Gates get faster, delay scales as o
" Energy per switch is reduced o

"For the same power and area as the previous design
" Compute grows as 1/o®

" Architects use this to improve computer performance

September 22, 2011 shacham@stanford.edu 32

RANDOM BACKUP SLIDES

September 22, 2011 shacham@stanford.edu 33

® Conventional System-on-Chip Design:

" Designer creates system from complex components
" |P components are designed in advance
" End with a new connection of fixed components

" SoC designer has to connect multiple IP blocks:

" |nterface adapters between different blocks
" Complex verification

" Chip Generator:
" Designer tunes parts in a “fixed” system architecture
" Fixed design of squashy components
" Functional interfaces remain constant
" Reusable validation

September 22, 2011 shacham@stanford.edu

34

" Well, yes and no

" No: | don't expect it will take application code and “compile” it

" Yes: Each time we create a generator we essentially define a “language”
that accepts an architectural “description,” and “compiles” it to silicon

" Designers today encode results; We don’t encode our knowledge

" We think of many alternatives in a design; then choose one
" For the next application perhaps another alternative is best

" We optimize designs at each level, but then freeze them
" What happens if we let the design remain flexible?

" Instead, embed explicit elaboration instructions into modules
" Same function that constructors provide for classes

September 22, 2011 shacham@stanford.edu 35

Compiled by Walden C. Rhines, CEO, Mento Graphics

September 22, 2011 shacham@stanford.edu 36

September 22, 2011 shacham@stanford.edu 37

September 22, 2011 shacham@stanford.edu 38

	Creating Chip Generators for Efficient Computing at Low NRE Design Costs
	My Goal Today Is…
	Disruptive Forces Changing The IC Industry
	The Biggest Issue
	A Wise Man Once Said…
	Industry Went Down Two Roads
	Why Reconfiguration Is Not Efficient?
	Need to Rethink Our Ways Again:�Move The Configuration Step To Design Time
	Need to Rethink Our Ways Again:�Move The Configuration Step To Design Time
	Put Our Understanding of The System In A Tool – Chip Generator
	One Generator Template Encapsulates Systems
	So We Can Explore The Design Space
	Example: CMU’s Spiral FFT Generator
	Generalizing Hardware Optimization & Generation
	Standardizing The Creation Of Generators
	Genesis2 Code Snippets
	Example: Our Chip Multiprocessor Generator
	Grow Beyond The Per-Module Scope
	Standardized Parameter I/O Through XML
	Standard Graphical User Interface
	Genesis2 Now Also Used For CMU Generators
	Summary / Conclusions
	Thank you!
	Backup slides
	Why SoC Costs Are Out Of Control?
	End Result 1:�Better Amortized Cost Structure
	End Result 2:�Optimization At The System Level
	End Result 3: �Verification Team Also Leverages The Generator
	The End Of Dennard Scaling
	Historical Technology Scaling
	Dennard’s MOS Scaling (1974)
	The Triple Play of Historical Scaling
	Random Backup Slides
	Turn The Design Process Inside Out
	Silicon Compilers Again?
	Semiconductors Logic Design Starts
	Semiconductor Market Size
	Semiconductor Market Breakdown (2010)

