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" Explain what a ‘Chip Generator’ design methodology is
" Why it is needed
" Why it solves many problems

" Get you all to download and experiment with Genesis2 — a prototype tool
for creating chip generators

" |t's a “generator for generators”
" http://genesis2.stanford.edu/
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" Power is today’s greatest design constraint
" Power no longer scales with technology
" Hand-held/embedded devices drive the market
" At a fixed power budget: more ops/sec requires less energy/og

" Complexity is growing

" Number of devices/chip still scaling
= Algorithmic complexity grows

The need for
customization has
never been greate
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" NRE costs are out of control RTL Design & Verification

Source: Synopsys

[ Fewer and fewer applications have markets big enough to justify the effort
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" The biggest issue is NOT design
" And also not masks
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® QOur systems are so complex that they are very hard to reason about

" Building complex systems is... complicated. And we need to face that fact!

" We need not to encode the system, we need to encode the reasoning

A

We'll get back to
this a little later

September 22, 2011 shacham@stanford.edu




N \Nlan ()N

" Platform-based Design - Alberto Sangiovanni Vincentelli, 2001

Integrated circuits ... will most likely be developed
as an instance of a particular (micro-) architecture Architecture
platform. ...they will be derived from a specific Configuration
“family” of micro-architectures, possibly oriented
toward a particular class of problems, that can be

modified... by the system developer. (pg 6)
o | ??7?

\

- ?LUb || Opti.? |

An architecture platform instance is derived from
an architecture platform by choosing a set of
components from the ... library and/or by setting
parameters of re-configurable components of the Physical

library. (pg 7) Layout
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System-on-Chip Re-configurable System

" ‘Random’ configuration of pre- " Fixed configuration of run-time
defined, pre-verified, and fixed in flexible IP blocks
Verilog cement, IP blocks
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" A reconfigurable system can be modified / tailored to specific application
" At runtime (i.e., via software)
" Using the same set of resources

" For example, we created Stanford’s Smart Memories
" (Probably) the most reconfigurable CMP ever created

" Fixed architecture w/ mushy (programmable) blocks
" Does help / amortize the system complexity and reasoning problem!

1s31u0) ubisa@ uapNIS 0T.02SS1/60.0vVA

" Alas... BIG problem:
" The resource-mix is never optimal (un-utilized resources / missing resources)
" The configuration itself adds inefficiencies (registers, muxes, etc.)
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Need to Rethink Our Ways Again:

Parameters
and

Constraints \
The right way to “top” platform

create an Architectural
Architecture Platform Tgmlp?;:tg 8? Mapping tools
IS not in RTL, but in

. Generator , .
something that ottom” platform
compiles into RTL
RTL &

Verification
Collateral
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Need to Rethink Our Ways Again:
i 21100 onN 1O |

So this is a “virtually”
reconfigurable chip

Fixed architecture with mushy
(programmable) blocks

Parameters
and

Constraints
“top” platform
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Mapping tools
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Description that encodes
system dependencies &
trade-offs

RTL &
Verification
Collateral

ottom” platform
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Put Our Understandmg of The System In S

Parameters
" Unlike logic/high-level and
synthesis, generators Constraints

are domain specific Defines how software}

_ , handles the system
" Each design group likely

want to create theirown [ Architectural
generator Template &

® But also use other’s, Generator
lower level, generators

Encodes how |

components
work together

" Need a consistent way

for building generators RTL &
(we'll get back to this a little later) Verification
Collateral
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Simulator
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" Hardware and software co-optimization framework for DSP applications
" Given a transformation, Spiral can easily explore the implementation space
" Final result is optimal hardware and software for a given algorithm + constraints

Software Hardware
Generation Generation
D'Alberto, Milder et. al., IEEE Comp. Soc., 2007 Milder, Franchetti, Hoe and Piischel, DAC, 2008

http://www.spiral.net/hardware/dftgen.html
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* Keep flexibility in sub modules e Standardize interfacing with

* Encode cross-module
dependencies

* Encode validation and
software dependencies

* Encode physical / backend
dependencies
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configuration tools
* Formal interface for architect /
application designer / end client
* Repeat until target reached
* Repeat for different chips
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" We Created Genesis?2
" So we (and you!) can build generators

" Premise: Keep it simple — Genesis2 is just an extension for SystemVerilog
" Works like a pre-processor (* but actually is doing a little more)
" Remove artificial “synthesizability” limitations from the elaboration code
" Make elaboration explicit; software-like

" Expressive: Encapsulate design trade-offs in blocks (make generators!)
" Goal is for each block to have a small elaboration program — a “constructor”
" Enable late, externally driven, tweaking of knobs

" Instead of coding modules, we write programs that produce modules
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module ‘'mname’ (

File: BitReverse.vp

// my $width= parameter( File: OneHotMux.vp

module ‘'mname" (

my Sassoc = parameter(Name >’CACHE_ASSOC/, GWIDTH’, Val=>4);
List=>[1,2,4,8], XWIDT‘H', Val=>4);
- VaI=>4); idth-1":0],

);

| |||lJul. |U5|L [ .PIIIU)\_VVIULII'_L U7 SCT,
//; foreach my Sidx my Sfu NcC = pal’ameter(Name=>'TW|D_FUNC',
assign data_out[ Sic List=>[‘cos’, ‘sin’],
data_in[ Swidth Val=>"cos’);
// } | P ;A:n (4711

" my $width = parameter(Name=>'BIT_WIDTH’,
Min=>4, Max=>16, Step=>2
Val=>6);

| endcase

my Sinit_arr= parameter(Name=>ROM_CONTENT’,

Val=>[ lg); Initial param value
el I is an empty list!

j
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" What would adding a processor require? c Pro’lrlocolpc
= More MB's; Bigger PC; More fabric ontroller (PC)

® Changing a proc (e.g., scalar to vliw)? —> )
" Change the word width of the bus and Po > MB
P 0
the relevant memory block g
v |
L +
o i 2 3! > &
What about changing the protocol? Or A = S Y
adding a new memory operation? S| 9 £9
C < =
[ 8 W
= Conclusion: : c
" Meaningful changes are not just local. —> VB
They require system-wide modifications Py R K
" Need to encode the system reasoning. ———

Work done with Andrew Danowitz and Megan Wachs
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" Hierarchical: Build bigger generators out of smaller generators

" Remember: each generator is the encoding of its designer’s thought process
and the encapsulation of many design trade-offs

" So instantiate the generator; Not just one instance of “cemented” Verilog

" Scope: Open the system scope to the individual generators
" To resolve structural constraints between modules

4 Sub-Generator Instance )

name ¥ "AME o inter to relevant
my SCacheObj = generate(‘Cache’, ‘Dcache’, /P processor

. PROCESSOR => $ProcObj);

/

® Still need to control the internal knobs of the cache from the outside world
" E.g., way Size, associativity, etc.
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<cg_cmp>
<Parameters>
<num_cpus>2</num_cpus>
</Parameters>
<Sublnstances>
<pl>
<Parameters>
<type>r|sc</type>

ublns ances>
jiirame

<type>vI|W</type>
</Parameters>
<Sublnstances> ...
</Sublnstances>
<Ip2>
</Sublnstances>
<lcg_cmp>
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/Genesisz
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Elaboration
Program
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J

Refinement of the

architectural parameters
by application designer
and/or optimization tools
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<cg_cmp>
<Parameters>

<num_cpus>2</num_cpus>
</Parameters>
<Sublnstances>

<pl>

<Parameters>

<type>r|sc</type>

ublns ances>
<!arameterp u t

<type>vliw</type>
</Parameters>
<Sublnstances> ...
</Sublnstances>
<Ip2>
</SublInstances>
<lcg_cmp>

19
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. - - = " "
. Parameters for instance "top

User-tweakable parameters:
tst2dut_cfg_ifc dutltst cfg ifc MODE VERIF
ASSERTION ON
QUAD ID |0
TILE ID |0
DUT tb

NUM_PROCESSOR. |1
NUM_MEM_MATS 1

Immutable parameters:

Submit changes

[ Click here to download tar of current design (.vp and .xml files) (must first "Submit changes") ]

[ + Show walk-thru demo (CMP generator)

]

[ + Show download and embed options

]

[ Debug is OFF. Click here to turn on debugging. ]

September 22, 2011

This is the mode of the generation. 4lso, it's a VERY LONG COMMENT. ...
This is the assertion mode of the generation

In this example, can have up o 64 quads(!)

Any number greater than 0, for illustration

no comment

RO CoMment

Work done with Steve Richardson, Megan Wachs, and Andrew Danowitz

shacham@stanford.ed
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" Power is today’s greatest design constrain = Calls for customization

" Costs of creating new systems prohibitive = Due to system complexity

" Chip Generators encapsulate the designer’s understanding of the system,
as well as the design trade-offs

" Constrained architecture built off (design-time) flexible blocks
" The artifact produce is the process of making a chip, not a design instance

" Genesis? is a simple extension to SystemVerilog that enables and
standardize the creation of hierarchical chip generators

Genesis2 can be downloaded from http://genesis2.stanford.edu/
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THANK YOU!
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BACKUP SLIDES
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System
definition

Pool of fixed
IP blocks

51l
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. No sense of system
» Each optimized for

different power, perf.,

and area targets

System
Integration

e
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» Custom glue logic
* Custom verification
 Custom software

/1 $$3$
Too late to make

Not reusable

Growing costs
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any change
(customize/optimize)
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End Result 1
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Traditional Chip Genesis
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End_ R_esu_lt 2:

" Example: Best processor architecture configuration at various power /
performance budgets

Source: Omid J. Azizi,
PhD Thesis, Stanford 2010
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End Result 3:

2100 N A N a\Y/a

4 Enhanced Design Process

] Architectural
Architectural Template 9“

Description

\ (Chip Generator) Target Design
(Semi-Random) ‘ 0 <>
Arch 't_eC!:u ral Verif-only Design #1
Descriptions
" Enhanced Verification Process .e.‘. .
" Make corner cases into common cases Verif-only Design #2
" Concept already used for concurrent software verif. 00000
. . &5
® Shorten the long verification tail = a2 ‘
Verif-only Design

#n
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THE END OF DENNARD SCALING
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April 19, 1965

Electronics, Volume 38 Number 8
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GATE VOLTAGE [V]
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DRAIN VOLTAGE [v] DRAIN VOLTAGE [v] | JSSC Oct 74, pg 256

" |n this ideal scaling (o0 < 1)
" Vscalesto aV, L scales to alL, W scales to aW
" So: C scales to a.C,
" E =VI/Lis constant, so i scales to au (i/m is stable)
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®Qver three decades of constant field (Dennard) scaling
"\/ scales to aV, L scales to alL, W scales to aW (a<1)

"Everybody wins:

" Get more transistors, more gates 1/o?
" Gates get faster, delay scales as o
" Energy per switch is reduced o

"For the same power and area as the previous design
" Compute grows as 1/o®

" Architects use this to improve computer performance
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RANDOM BACKUP SLIDES
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® Conventional System-on-Chip Design:

" Designer creates system from complex components
" |P components are designed in advance
" End with a new connection of fixed components

" SoC designer has to connect multiple IP blocks:

" |nterface adapters between different blocks
" Complex verification

" Chip Generator:
" Designer tunes parts in a “fixed” system architecture
" Fixed design of squashy components
" Functional interfaces remain constant
" Reusable validation

September 22, 2011 shacham@stanford.edu
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" Well, yes and no

" No: | don't expect it will take application code and “compile” it

" Yes: Each time we create a generator we essentially define a “language”
that accepts an architectural “description,” and “compiles” it to silicon

" Designers today encode results; We don’t encode our knowledge

" We think of many alternatives in a design; then choose one
" For the next application perhaps another alternative is best

" We optimize designs at each level, but then freeze them
" What happens if we let the design remain flexible?

" Instead, embed explicit elaboration instructions into modules
" Same function that constructors provide for classes
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Compiled by Walden C. Rhines, CEO, Mento Graphics
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