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My Goal Today Is… 
 
 
 Explain what a ‘Chip Generator’ design methodology is 
 Why it is needed 
 Why it solves many problems 

 
 Get you all to download and experiment with Genesis2 – a prototype tool 

for creating chip generators 
 It’s a “generator for generators” 
 http://genesis2.stanford.edu/ 
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Disruptive Forces Changing The IC Industry 
 Power is today’s greatest design constraint 
 Power no longer scales with technology 
 Hand-held/embedded devices drive the market 
 At a fixed power budget: more ops/sec requires less energy/op ! 

 
 Complexity is growing 
 Number of devices/chip still scaling 
 Algorithmic complexity grows 
 NRE costs are out of control 
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Fewer and fewer applications have markets big enough to justify the effort 



The Biggest Issue 
 The biggest issue is NOT design 
 And also not masks 

 
 The biggest  issues are: 
 System firmware (i.e., software) 
 System validation 
 System optimization 

 
 Our systems are so complex that they are very hard to reason about 
 Building complex systems is… complicated. And we need to face that fact! 
 We need not to encode the system, we need to encode the reasoning 
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A Wise Man Once Said… 
Platform-based Design – Alberto Sangiovanni Vincentelli, 2001  
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“Bottom” platform 

“top” platform 

Mapping tools 

Integrated circuits … will most likely be developed 
as an instance of a particular (micro-) architecture 

platform. …they will be derived from a specific 
“family” of micro-architectures, possibly oriented 

toward a particular class of problems, that can be 
modified… by the system developer. (pg 6) 

Sticking to an architecture family enables: 
•Software consistency/reuse 

•Verification consistency/reuse 
While we search the sub architectural space for 

an optimal configuration 

Physical 
Layout 

Netlist 

Place & Route 
Cell Lib Optimiser 

RTL 

Synthesis 
Circuit Lib Optimiser 

Architecture 
Configuration 

??? 
?? Lib Opti… ? An architecture platform instance is derived from 

an architecture platform by choosing a set of 
components from the … library and/or by setting 
parameters of re-configurable components of the 

library. (pg 7) 



System-on-Chip 
 ‘Random’ configuration of pre-

defined, pre-verified, and fixed in 
Verilog cement, IP blocks  

Re-configurable System 
 Fixed configuration of run-time 

flexible IP blocks 
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Industry Went Down Two Roads 



Why Reconfiguration Is Not Efficient? 
 A reconfigurable system can be modified / tailored to specific application 
 At runtime (i.e., via software) 
 Using the same set of resources 

 

 For example, we created Stanford’s Smart Memories 
 (Probably) the most reconfigurable CMP ever created 

 

 Fixed architecture w/ mushy (programmable) blocks 
 Does help / amortize the system complexity and reasoning problem! 

 

 Alas… BIG problem: 
 The resource-mix is never optimal (un-utilized resources / missing resources) 
 The configuration itself adds inefficiencies (registers, muxes, etc.) 
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Need to Rethink Our Ways Again: 
Move The Configuration Step To Design Time 
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Need to Rethink Our Ways Again: 
Move The Configuration Step To Design Time 
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Put Our Understanding of The System In 
A Tool – Chip Generator 

 

 Unlike logic/high-level 
synthesis, generators 
are domain specific 

 

 Each design group likely 
want to create their own 
generator 
 But also use other’s, 

lower level, generators 
 

 Need a consistent way 
for building generators 
(we’ll get back to this a little later) 
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Architectural 
Template & 
Generator 

One Generator Template Encapsulates Systems 

Aggressive 
RTL 

High 
Performance 
Configuration 

Low Power 
Configuration 

“Simple” RTL 

App. Specific 
Configuration 

Heterogeneous 
RTL 
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So We Can Explore The Design Space 

Architectural 
Description 

Hardware 
Optimization & 

Generation 
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Example: CMU’s Spiral FFT Generator 
 Hardware and software co-optimization framework for DSP applications 
 Given a transformation, Spiral can easily explore the implementation space 
 Final result is optimal hardware and software for a given algorithm + constraints 
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D’Alberto, Milder et. al., IEEE Comp. Soc., 2007 Milder, Franchetti, Hoe and Püschel, DAC, 2008 
http://www.spiral.net/hardware/dftgen.html  
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Generalizing Hardware Optimization & Generation 
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Standardizing The Creation Of Generators 
 We Created Genesis2 
 So we (and you!) can build generators 

 

 Premise:  Keep it simple – Genesis2  is just an extension for SystemVerilog 
 Works like a pre-processor (* but actually is doing a little more) 
 Remove artificial “synthesizability” limitations from the elaboration code 
 Make elaboration explicit; software-like 

 

 Expressive: Encapsulate design trade-offs in blocks (make generators!) 
 Goal is for each block to have a small elaboration program – a “constructor” 
 Enable late, externally driven, tweaking of knobs 

 

 Instead of coding modules, we write programs that produce modules 
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Genesis2  Code Snippets 
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File: BitReverse.vp 
module `mname` ( 
 //; my $width=parameter(Name=>’WIDTH’,  
 //;         List=>[1,2,4,8], 
 //;         Val=>4); 
 input [`$width-1`:0] data_in, 
 input [`$width-1`:0] data_out 
); 
 //; foreach my $idx (0 .. $width-1){ 
 assign data_out[`$idx`] =  
    data_in[`$width-$idx-1`]; 
 //; } 
endmodule 

File: OneHotMux.vp 
module `mname` ( 
 //; my $signal_width=parameter(Name=>’SIGWIDTH’, Val=>4); 
 //; my $mux_width=parameter(Name=>’MUXWIDTH’, Val=>4); 
 input logic [`$signal_width-1`:0] in [`$mux_width-1`:0], 
 input logic [`$mux_width-1`:0] sel, 
 output logic [`$signal_width-1`:0] out 
); 
 always_comb begin 
  out = in[0]; // default 
  unique case (1’b1) 
  //; foreach my $idx (0 .. $mux_width-1){ 
   sel[`$idx`]: out = in [`$idx`]; 
  //; } 
  endcase 
  assert ($onehot(sel)) else $error(“Select sig is not one-hot”); 
 end // always_comb begin 
endmodule 

my $assoc = parameter(Name=>’CACHE_ASSOC’, 
            List=>[1,2,4,8], 
            Val=>4); 

my $func = parameter(Name=>’TWID_FUNC’, 
           List=>[‘cos’, ‘sin’], 
           Val=>’cos’); 

my $width = parameter(Name=>’BIT_WIDTH’, 
             Min=>4, Max=>16, Step=>2 
             Val=>6); 

my $init_arr= parameter(Name=>’ROM_CONTENT’, 
            Val=>[ ]  ); Initial param value 

is an empty list! 



Example: Our Chip Multiprocessor Generator 
 What would adding a processor require? 
 More MB’s; Bigger PC; More fabric 

 

 Changing a proc (e.g., scalar to vliw)? 
 Change the word width of the bus and 

the relevant memory block 
 

 What about changing the protocol? Or 
adding a new memory operation? 

 

 Conclusion: 
 Meaningful changes are not just local. 

They require system-wide modifications 
 Need to encode the system reasoning. 
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Work done with Andrew Danowitz and Megan Wachs 

 



Grow Beyond The Per-Module Scope 
 Hierarchical: Build bigger generators out of smaller generators 
 Remember: each generator is the encoding of its designer’s thought process 

and the encapsulation of many design trade-offs 
 So instantiate the generator;  Not just one instance of “cemented” Verilog 

 
 Scope: Open the system scope to the individual generators 
 To resolve structural constraints between modules 

 
 
 
 

 Still need to control the internal knobs of the cache from the outside world 
 E.g., way size, associativity, etc. 
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my $CacheObj  =  generate(‘Cache’, ‘Dcache’,  
             PROCESSOR => $ProcObj); 

pointer to relevant 
processor 

Sub-Generator 
name 

Instance 
name 



Standardized Parameter I/O Through XML 
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Genesis2 

Elaboration 
Program 

<cg_cmp>
<Parameters>

<num_cpus>2</num_cpus>
</Parameters>
<SubInstances>

<p1>
<Parameters>

<type>risc</type>
</Parameters>
<SubInstances> …
</SubInstances>

</p1>
<p2>

<Parameters>
<type>vliw</type>

</Parameters>
<SubInstances> …
</SubInstances>

</p2>
</SubInstances>

</cg_cmp> 

<cg_cmp>
<Parameters>

<num_cpus>2</num_cpus>
</Parameters>
<SubInstances>

<p1>
<Parameters>

<type>risc</type>
</Parameters>
<SubInstances> …
</SubInstances>

</p1>
<p2>

<Parameters>
<type>vliw</type>

</Parameters>
<SubInstances> …
</SubInstances>

</p2>
</SubInstances>

</cg_cmp> 

XML 
Input 

XML 
Output 

Refinement of the 
architectural parameters 
by application designer 

and/or optimization tools 
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Standard Graphical User Interface 
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Work done with Steve Richardson, Megan Wachs, and Andrew Danowitz 

http://www-vlsi.stanford.edu/genesis/scratch/cmpdemo-21416.php�


Genesis2  Now Also Used For CMU Generators 

September 22, 2011 shacham@stanford.edu 21 

cmu.edu/g 
Designed by Qiuling Zhu, Carnegie Mellon University 

http://genesis.web.ece.cmu.edu/gui/scratch/mydesign-11576.php�


Summary / Conclusions 
 Power is today’s greatest design constrain  Calls for customization 

 
 Costs of creating new systems prohibitive  Due to system complexity 

 
 Chip Generators  encapsulate the designer’s understanding of the system, 

as well as the design trade-offs 
 Constrained architecture built off (design-time) flexible blocks 
 The artifact produce is the process of making a chip, not a design instance 

 
 Genesis2  is a simple extension to SystemVerilog that enables and 

standardize the creation of hierarchical chip generators 
 

Genesis2  can be downloaded from http://genesis2.stanford.edu/  
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THANK YOU! 
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BACKUP SLIDES 
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Why SoC Costs Are Out Of Control? 
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End Result 1: 
Better Amortized Cost Structure 
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End Result 2: 
Optimization At The System Level 
 Example: Best processor architecture configuration at various power / 

performance budgets 
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End Result 3:  
Verification Team Also Leverages The Generator 

 Enhanced Verification Process 
 Make corner cases into common cases 
 Concept already used for concurrent software verif. 

 Shorten the long verification tail 
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Verif-only Design #2 
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Descriptions 

Enhanced Design Process 
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THE END OF DENNARD SCALING 
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Historical Technology Scaling  
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Dennard’s MOS Scaling (1974) 

 In this ideal scaling (α < 1) 
 V scales to αV, L scales to αL, W scales to αW 
 So: C scales to αC,   
 E = V/L is constant, so i scales to αi (i/m is stable) 
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The Triple Play of Historical Scaling 
Over three decades of constant field (Dennard) scaling 
V scales to αV, L scales to αL, W scales to αW (α<1) 

 

Everybody wins: 
 Get more transistors, more gates  1/α2 

 Gates get faster, delay scales as  α 
 Energy per switch is reduced   α3   

 

For the same power and area as the previous design  
Compute grows as 1/α3   

 

 Architects use this to improve computer performance 
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RANDOM BACKUP SLIDES 

September 22, 2011 shacham@stanford.edu 33 



Turn The Design Process Inside Out 
 Conventional System-on-Chip Design: 
 Designer creates system from complex components 
 IP components are designed in advance 
 End with a new connection of fixed components 

 SoC designer has to connect multiple IP blocks: 
 Interface adapters between different blocks 
 Complex verification 

 Chip Generator: 
 Designer tunes parts in a “fixed” system architecture 
 Fixed design of squashy components  

 Functional interfaces remain constant 
 Reusable validation 
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Silicon Compilers Again? 
 Well, yes and no 
 No: I don’t expect it will take application code and “compile” it 
 Yes: Each time we create a generator we essentially define a “language” 

that accepts an architectural “description,” and “compiles” it to silicon 
 

 Designers today encode results; We don’t encode our knowledge 
 We think of many alternatives in a design; then choose one 

 For the next application perhaps another alternative is best 

 We optimize designs at each level, but then freeze them 
 What happens if we let the design remain flexible? 

 

 Instead, embed explicit elaboration instructions into modules 
 Same function that constructors provide for classes  
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Semiconductors Logic Design Starts 
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Compiled by Walden C. Rhines, CEO, Mento Graphics 
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Semiconductor Market Size 
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Semiconductor Market Breakdown (2010) 
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