
http://www.c2s2.org

Creating Chip Generators for Efficient
Computing at Low NRE Design Costs

Ofer Shacham (Stanford University / Chip Genesis Inc.)
Professor Mark Horowitz’s VLSI Group At Stanford

High Performance Embedded Computing (HPEC) 2011

September 22, 2011

Chip Genesis

My Goal Today Is…

 Explain what a ‘Chip Generator’ design methodology is
 Why it is needed
 Why it solves many problems

 Get you all to download and experiment with Genesis2 – a prototype tool

for creating chip generators
 It’s a “generator for generators”
 http://genesis2.stanford.edu/

September 22, 2011 shacham@stanford.edu 2

http://genesis2.stanford.edu/�

Disruptive Forces Changing The IC Industry
 Power is today’s greatest design constraint
 Power no longer scales with technology
 Hand-held/embedded devices drive the market
 At a fixed power budget: more ops/sec requires less energy/op !

 Complexity is growing
 Number of devices/chip still scaling
 Algorithmic complexity grows
 NRE costs are out of control

3 September 22, 2011 shacham@stanford.edu

The need for
customization has
never been greater

So
ur

ce
: S

yn
op

sy
s

RTL Design & Verification

20
05

20
10

Software

Fewer and fewer applications have markets big enough to justify the effort

The Biggest Issue
 The biggest issue is NOT design
 And also not masks

 The biggest issues are:
 System firmware (i.e., software)
 System validation
 System optimization

 Our systems are so complex that they are very hard to reason about
 Building complex systems is… complicated. And we need to face that fact!
 We need not to encode the system, we need to encode the reasoning

September 22, 2011 shacham@stanford.edu 4

We’ll get back to
this a little later

So
ur

ce
: S

yn
op

sy
s

RTL Design & Verification

20
05

20
10

Software

A Wise Man Once Said…
Platform-based Design – Alberto Sangiovanni Vincentelli, 2001

September 22, 2011 shacham@stanford.edu 5

“Bottom” platform

“top” platform

Mapping tools

Integrated circuits … will most likely be developed
as an instance of a particular (micro-) architecture

platform. …they will be derived from a specific
“family” of micro-architectures, possibly oriented

toward a particular class of problems, that can be
modified… by the system developer. (pg 6)

Sticking to an architecture family enables:
•Software consistency/reuse

•Verification consistency/reuse
While we search the sub architectural space for

an optimal configuration

Physical
Layout

Netlist

Place & Route
Cell Lib Optimiser

RTL

Synthesis
Circuit Lib Optimiser

Architecture
Configuration

???
?? Lib Opti… ? An architecture platform instance is derived from

an architecture platform by choosing a set of
components from the … library and/or by setting
parameters of re-configurable components of the

library. (pg 7)

System-on-Chip
 ‘Random’ configuration of pre-

defined, pre-verified, and fixed in
Verilog cement, IP blocks

Re-configurable System
 Fixed configuration of run-time

flexible IP blocks

September 22, 2011 shacham@stanford.edu 6

Industry Went Down Two Roads

Why Reconfiguration Is Not Efficient?
 A reconfigurable system can be modified / tailored to specific application
 At runtime (i.e., via software)
 Using the same set of resources

 For example, we created Stanford’s Smart Memories
 (Probably) the most reconfigurable CMP ever created

 Fixed architecture w/ mushy (programmable) blocks
 Does help / amortize the system complexity and reasoning problem!

 Alas… BIG problem:
 The resource-mix is never optimal (un-utilized resources / missing resources)
 The configuration itself adds inefficiencies (registers, muxes, etc.)

September 22, 2011 shacham@stanford.edu 7

DAC’09/ISSCC’10 Student Design Contest

Need to Rethink Our Ways Again:
Move The Configuration Step To Design Time

September 22, 2011 shacham@stanford.edu 8

RTL &
Verification
Collateral

Parameters
and

Constraints

Architectural
Template &
Generator “Bottom” platform

“top” platform

Mapping tools

The right way to
create an

Architecture Platform
is not in RTL, but in

something that
compiles into RTL

Need to Rethink Our Ways Again:
Move The Configuration Step To Design Time

September 22, 2011 shacham@stanford.edu 9

RTL &
Verification
Collateral

Parameters
and

Constraints

Architectural
Template &
Generator “Bottom” platform

“top” platform

Mapping tools

Fixed architecture with mushy
(programmable) blocks

So this is a “virtually”
reconfigurable chip

Description that encodes
system dependencies &

trade-offs

D
ED

E

D
E

D
E D

E
D

E

D
E

D
E

D
E

Put Our Understanding of The System In
A Tool – Chip Generator

 Unlike logic/high-level
synthesis, generators
are domain specific

 Each design group likely
want to create their own
generator
 But also use other’s,

lower level, generators

 Need a consistent way
for building generators
(we’ll get back to this a little later)

September 22, 2011 shacham@stanford.edu 10

RTL &
Verification
Collateral

Parameters
and

Constraints

Architectural
Template &
Generator

Defines how software
handles the system

Encodes how
components

work together

Enables optimization
across the entire

system

Architectural
Template &
Generator

One Generator Template Encapsulates Systems

Aggressive
RTL

High
Performance
Configuration

Low Power
Configuration

“Simple” RTL

App. Specific
Configuration

Heterogeneous
RTL

September 22, 2011 shacham@stanford.edu 11

So We Can Explore The Design Space

Architectural
Description

Hardware
Optimization &

Generation

September 22, 2011 shacham@stanford.edu

Energy
Budget

Simulator
Tradeoff

Lib
D

E

Performance Power Usage

12

Example: CMU’s Spiral FFT Generator
 Hardware and software co-optimization framework for DSP applications
 Given a transformation, Spiral can easily explore the implementation space
 Final result is optimal hardware and software for a given algorithm + constraints

September 22, 2011 shacham@stanford.edu 13

D’Alberto, Milder et. al., IEEE Comp. Soc., 2007 Milder, Franchetti, Hoe and Püschel, DAC, 2008
http://www.spiral.net/hardware/dftgen.html

Software
Generation

Hardware
Generation

http://www.spiral.net/hardware/dftgen.html�

Generalizing Hardware Optimization & Generation

September 22, 2011 shacham@stanford.edu

Programmatic
System

Description
Synthesis

PNR

GDS2

• (Semi) Automatic

Circuit / Micro-
architecture
Optimization

• Keep flexibility in sub modules
• Encode cross-module

dependencies
• Encode validation and

software dependencies
• Encode physical / backend

dependencies

XML Program

• Standardize interfacing with
configuration tools

• Formal interface for architect /
application designer / end client

• Repeat until target reached
• Repeat for different chips

D
E

D
E

D
E

Feedback Per-
Application

Configuration

14

Standardizing The Creation Of Generators
 We Created Genesis2
 So we (and you!) can build generators

 Premise: Keep it simple – Genesis2 is just an extension for SystemVerilog
 Works like a pre-processor (* but actually is doing a little more)
 Remove artificial “synthesizability” limitations from the elaboration code
 Make elaboration explicit; software-like

 Expressive: Encapsulate design trade-offs in blocks (make generators!)
 Goal is for each block to have a small elaboration program – a “constructor”
 Enable late, externally driven, tweaking of knobs

 Instead of coding modules, we write programs that produce modules

September 22, 2011 shacham@stanford.edu 15

Genesis2 Code Snippets

September 22, 2011 shacham@stanford.edu 16

File: BitReverse.vp
module `mname` (
 //; my $width=parameter(Name=>’WIDTH’,
 //; List=>[1,2,4,8],
 //; Val=>4);
 input [`$width-1`:0] data_in,
 input [`$width-1`:0] data_out
);
 //; foreach my $idx (0 .. $width-1){
 assign data_out[`$idx`] =
 data_in[`$width-$idx-1`];
 //; }
endmodule

File: OneHotMux.vp
module `mname` (
 //; my $signal_width=parameter(Name=>’SIGWIDTH’, Val=>4);
 //; my $mux_width=parameter(Name=>’MUXWIDTH’, Val=>4);
 input logic [`$signal_width-1`:0] in [`$mux_width-1`:0],
 input logic [`$mux_width-1`:0] sel,
 output logic [`$signal_width-1`:0] out
);
 always_comb begin
 out = in[0]; // default
 unique case (1’b1)
 //; foreach my $idx (0 .. $mux_width-1){
 sel[`$idx`]: out = in [`$idx`];
 //; }
 endcase
 assert ($onehot(sel)) else $error(“Select sig is not one-hot”);
 end // always_comb begin
endmodule

my $assoc = parameter(Name=>’CACHE_ASSOC’,
 List=>[1,2,4,8],
 Val=>4);

my $func = parameter(Name=>’TWID_FUNC’,
 List=>[‘cos’, ‘sin’],
 Val=>’cos’);

my $width = parameter(Name=>’BIT_WIDTH’,
 Min=>4, Max=>16, Step=>2
 Val=>6);

my $init_arr= parameter(Name=>’ROM_CONTENT’,
 Val=>[]); Initial param value

is an empty list!

Example: Our Chip Multiprocessor Generator
 What would adding a processor require?
 More MB’s; Bigger PC; More fabric

 Changing a proc (e.g., scalar to vliw)?
 Change the word width of the bus and

the relevant memory block

 What about changing the protocol? Or
adding a new memory operation?

 Conclusion:
 Meaningful changes are not just local.

They require system-wide modifications
 Need to encode the system reasoning.

September 22, 2011 shacham@stanford.edu 17

P0

PN

MB0

MBK

Protocol
Controller (PC)

N
 P

ro
ce

ss
or

s

K
M

em
or

y
Bl

oc
ks

Cu
st

om
 C

on
ne

ct
iv

it
y

Fa
br

ic

Work done with Andrew Danowitz and Megan Wachs

Grow Beyond The Per-Module Scope
 Hierarchical: Build bigger generators out of smaller generators
 Remember: each generator is the encoding of its designer’s thought process

and the encapsulation of many design trade-offs
 So instantiate the generator; Not just one instance of “cemented” Verilog

 Scope: Open the system scope to the individual generators
 To resolve structural constraints between modules

 Still need to control the internal knobs of the cache from the outside world
 E.g., way size, associativity, etc.

September 22, 2011 shacham@stanford.edu 18

my $CacheObj = generate(‘Cache’, ‘Dcache’,
 PROCESSOR => $ProcObj);

pointer to relevant
processor

Sub-Generator
name

Instance
name

Standardized Parameter I/O Through XML

September 22, 2011 shacham@stanford.edu

Genesis2

Elaboration
Program

<cg_cmp>
<Parameters>

<num_cpus>2</num_cpus>
</Parameters>
<SubInstances>

<p1>
<Parameters>

<type>risc</type>
</Parameters>
<SubInstances> …
</SubInstances>

</p1>
<p2>

<Parameters>
<type>vliw</type>

</Parameters>
<SubInstances> …
</SubInstances>

</p2>
</SubInstances>

</cg_cmp>

<cg_cmp>
<Parameters>

<num_cpus>2</num_cpus>
</Parameters>
<SubInstances>

<p1>
<Parameters>

<type>risc</type>
</Parameters>
<SubInstances> …
</SubInstances>

</p1>
<p2>

<Parameters>
<type>vliw</type>

</Parameters>
<SubInstances> …
</SubInstances>

</p2>
</SubInstances>

</cg_cmp>

XML
Input

XML
Output

Refinement of the
architectural parameters
by application designer

and/or optimization tools

19

http://www-vlsi.stanford.edu/genesis/�
https://www-vlsi.stanford.edu/ig/�

Standard Graphical User Interface

September 22, 2011 shacham@stanford.edu 20

Work done with Steve Richardson, Megan Wachs, and Andrew Danowitz

http://www-vlsi.stanford.edu/genesis/scratch/cmpdemo-21416.php�

Genesis2 Now Also Used For CMU Generators

September 22, 2011 shacham@stanford.edu 21

cmu.edu/g
Designed by Qiuling Zhu, Carnegie Mellon University

http://genesis.web.ece.cmu.edu/gui/scratch/mydesign-11576.php�

Summary / Conclusions
 Power is today’s greatest design constrain Calls for customization

 Costs of creating new systems prohibitive Due to system complexity

 Chip Generators encapsulate the designer’s understanding of the system,

as well as the design trade-offs
 Constrained architecture built off (design-time) flexible blocks
 The artifact produce is the process of making a chip, not a design instance

 Genesis2 is a simple extension to SystemVerilog that enables and

standardize the creation of hierarchical chip generators

Genesis2 can be downloaded from http://genesis2.stanford.edu/

September 22, 2011 shacham@stanford.edu 22

http://genesis2.stanford.edu/�

THANK YOU!

September 22, 2011 shacham@stanford.edu 23

BACKUP SLIDES

September 22, 2011 shacham@stanford.edu 24

Why SoC Costs Are Out Of Control?

September 22, 2011 shacham@stanford.edu

Time

Pool of fixed
IP blocks

System
definition

System
Integration

• No sense of system
• Each optimized for

different power, perf.,
and area targets

• Custom glue logic
• Custom verification
• Custom software

$$$
Too late to make

any change
(customize/optimize)

Synthesis
PNR

GDS2

• (Semi) Automatic
• The focus of the

entire EDA industry

Not reusable
Growing costs

25

End Result 1:
Better Amortized Cost Structure

0

100

200

300

400

Traditional Chip Genesis

No
rm

ali
ze

d
 N

RE
 C

os
t

Market Segment 5
Market Segment 4
Market Segment 3
Market Segment 2

September 22, 2011 shacham@stanford.edu 26

End Result 2:
Optimization At The System Level
 Example: Best processor architecture configuration at various power /

performance budgets

September 22, 2011 shacham@stanford.edu

So
ur

ce
: O

mi
d J

. A
ziz

i,
Ph

D
Th

es
is,

 S
tan

for
d

20
10

27

End Result 3:
Verification Team Also Leverages The Generator

 Enhanced Verification Process
 Make corner cases into common cases
 Concept already used for concurrent software verif.

 Shorten the long verification tail

September 22, 2011 shacham@stanford.edu

Verif-only Design #2

Verif-only Design
#n

Target Design

Verif-only Design #1

Architectural
Description

Architectural
Template

(Chip Generator)

(Semi-Random)
Architectural
Descriptions

Enhanced Design Process

28

THE END OF DENNARD SCALING

September 22, 2011 shacham@stanford.edu 29

Historical Technology Scaling

September 22, 2011 shacham@stanford.edu 30

Dennard’s MOS Scaling (1974)

 In this ideal scaling (α < 1)
 V scales to αV, L scales to αL, W scales to αW
 So: C scales to αC,
 E = V/L is constant, so i scales to αi (i/m is stable)

September 22, 2011 shacham@stanford.edu 31

JSSC Oct 74, pg 256

The Triple Play of Historical Scaling
Over three decades of constant field (Dennard) scaling
V scales to αV, L scales to αL, W scales to αW (α<1)

Everybody wins:
 Get more transistors, more gates 1/α2

 Gates get faster, delay scales as α
 Energy per switch is reduced α3

For the same power and area as the previous design
Compute grows as 1/α3

 Architects use this to improve computer performance

September 22, 2011 shacham@stanford.edu 32

RANDOM BACKUP SLIDES

September 22, 2011 shacham@stanford.edu 33

Turn The Design Process Inside Out
 Conventional System-on-Chip Design:
 Designer creates system from complex components
 IP components are designed in advance
 End with a new connection of fixed components

 SoC designer has to connect multiple IP blocks:
 Interface adapters between different blocks
 Complex verification

 Chip Generator:
 Designer tunes parts in a “fixed” system architecture
 Fixed design of squashy components

 Functional interfaces remain constant
 Reusable validation

shacham@stanford.edu September 22, 2011 34

Silicon Compilers Again?
 Well, yes and no
 No: I don’t expect it will take application code and “compile” it
 Yes: Each time we create a generator we essentially define a “language”

that accepts an architectural “description,” and “compiles” it to silicon

 Designers today encode results; We don’t encode our knowledge
 We think of many alternatives in a design; then choose one

 For the next application perhaps another alternative is best

 We optimize designs at each level, but then freeze them
 What happens if we let the design remain flexible?

 Instead, embed explicit elaboration instructions into modules
 Same function that constructors provide for classes

35 September 22, 2011 shacham@stanford.edu

Semiconductors Logic Design Starts

September 22, 2011 shacham@stanford.edu

Compiled by Walden C. Rhines, CEO, Mento Graphics

36

Semiconductor Market Size

September 22, 2011 shacham@stanford.edu 37

Semiconductor Market Breakdown (2010)

September 22, 2011 shacham@stanford.edu 38

	Creating Chip Generators for Efficient Computing at Low NRE Design Costs
	My Goal Today Is…
	Disruptive Forces Changing The IC Industry
	The Biggest Issue
	A Wise Man Once Said…
	Industry Went Down Two Roads
	Why Reconfiguration Is Not Efficient?
	Need to Rethink Our Ways Again:�Move The Configuration Step To Design Time
	Need to Rethink Our Ways Again:�Move The Configuration Step To Design Time
	Put Our Understanding of The System In A Tool – Chip Generator
	One Generator Template Encapsulates Systems
	So We Can Explore The Design Space
	Example: CMU’s Spiral FFT Generator
	Generalizing Hardware Optimization & Generation
	Standardizing The Creation Of Generators
	Genesis2 Code Snippets
	Example: Our Chip Multiprocessor Generator
	Grow Beyond The Per-Module Scope
	Standardized Parameter I/O Through XML
	Standard Graphical User Interface
	Genesis2 Now Also Used For CMU Generators
	Summary / Conclusions
	Thank you!
	Backup slides
	Why SoC Costs Are Out Of Control?
	End Result 1:�Better Amortized Cost Structure
	End Result 2:�Optimization At The System Level
	End Result 3: �Verification Team Also Leverages The Generator
	The End Of Dennard Scaling
	Historical Technology Scaling
	Dennard’s MOS Scaling (1974)
	The Triple Play of Historical Scaling
	Random Backup Slides
	Turn The Design Process Inside Out
	Silicon Compilers Again?
	Semiconductors Logic Design Starts
	Semiconductor Market Size
	Semiconductor Market Breakdown (2010)

