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Spatial-Random-Access-Enabled Video Coding for
Interactive Virtual Pan/Tilt/Zoom Functionality
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Abstract—High-spatial-resolution videos offer the possibility of
viewing an arbitrary region-of-interest (RoI) interactively. Zoom
functionality enables watching high-resolution content even on
displays of lower spatial resolution. If arbitrary regions corre-
sponding to arbitrary zoom factors can be served to the user, the
transmission and/or decoding of the entire high-spatial-resolution
video can be avoided. Moreover, if the video content can be
encoded such that arbitrary RoIs corresponding to different zoom
factors can be simply extracted from the compressed bitstream,
we can avoid dedicated video encoding for each user. We propose
such a video coding scheme that is vital in allowing the system
to scale to large numbers of remote users as well as to encode
and store the content for subsequent repeated playback. Apart
from generating a multi-resolution representation, our coding
scheme uses P slices from H.264/AVC. We study the tradeoff
in the choice of slice size. A larger slice size enables higher
coding efficiency for representing the entire scene but increases
the number of pixels that have to be transmitted. The optimal
slice size achieves the best tradeoff and minimizes the expected
transmission bitrate. Experimental results confirm the optimality
of our predicted slice size for various test cases. Furthermore,
we propose an improvement based on background extraction and
long-term memory motion-compensated prediction. Experiments
indicate up to 85% bitrate reduction while retaining efficient
random access capability.

Index Terms—Interactive video streaming, pan/tilt/zoom,
region-of-interest.

I. Introduction

H IGH-spatial-resolution digital video will be widely avail-
able at low cost in the near future. This development

is driven by increasing spatial resolution offered by digital
imaging sensors and increasing capacities of storage devices.
Furthermore, there exist algorithms for stitching a compre-
hensive high-resolution view from multiple cameras [1], [2].
Certain current products stitch a large panoramic view in real
time [3]. Also, image acquisition on spherical, cylindrical,
or hyperbolic image planes via multiple cameras can record
scenes with a wide field-of-view while the recorded data can
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be warped later to the desired viewing format [4]. An example
of such an acquisition device is [5].

Despite the availability of high-resolution video, challenges
in delivering this high-resolution content to the client are
posed by the limited resolution of displays and/or limited data
rate for communications. If the user were made to watch a
spatially downsampled version of the entire video scene, then
she might not be able to watch a local region-of-interest (RoI)
with the recorded high resolution. To overcome this problem,
we propose interactive virtual pan/tilt/zoom functionality while
viewing the video. Some practical scenarios where this kind of
interactivity is well-suited are: interactive playback of a high-
resolution video from a locally stored file, interactive TV for
watching content captured with very high detail (e.g., interac-
tive viewing of sports events), providing virtual pan/tilt/zoom
within a wide-angle and high-resolution scene from a surveil-
lance camera, and streaming instructional videos captured with
high spatial resolution (e.g., panel discussions, lecture videos).
A video clip that showcases interactive viewing of soccer in
a TV-like setting can be seen here [6].

In a streaming scenario, our proposed video coding scheme
allows transmitting user-selected RoIs, thus eliminating the
need to transmit the entire spatial extent of the scene in full
resolution. The encoding can either take place live or offline
beforehand. Additionally, our scheme allows limiting the
load of encoding irrespective of the number of users. The
entire recorded field-of-view can be encoded once, possibly
with multiple resolution layers to support different zoom
factors. Spatial resolution layers are coded using P slices1 of
H.264/AVC. This one-time encoding generates a repository
of slices, and relevant slices can be served to several users
depending on their individual RoIs. Thus, the coding scheme
allows the system to scale to large numbers of users; it avoids
a dedicated encoder for each user’s individual RoI sequence.
Another benefit is that requested RoIs can be extracted from
the bitstream even inside or at the edge of the network, closer
to the client-nodes. Ideally, the video delivery system should
be able to react to the user’s changing RoI with as little
latency as possible. The proposed coding scheme enables
access to a new region, with an arbitrary zoom factor, during
any frame interval instead of having to wait for the end of
a group of pictures (GoP) or having to transmit extra slices
from previous frames.

1We employ the following terminology: “slice” refers to a rectangular
portion of a video frame, whereas “tile” refers to the sequence of slices from
the same resolution layer and at the same position in each video frame.
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The spatial random access approach developed in this paper
is also relevant for the design of systems that employ image-
based-rendering (IBR) [7], [8] and manipulate the transmitted
imagery further to yield a novel view, e.g., teleimmersive
systems [9] and free viewpoint TV [10].

This paper is structured as follows. Section II reviews
related work and discusses the challenges in providing random
access. Section III presents the coding scheme and discusses
how to optimize the slice size. The optimal slice size min-
imizes transmission bitrate by striking the best compromise
between compression efficiency and superfluous pixel trans-
mission. Section IV presents an improvement of the coding
scheme based on background extraction and long-term mem-
ory motion-compensated prediction. Experiments indicate that
the proposed improvement can reduce bitrate by up to 85%
while retaining efficient random access capability.

II. Related Work

Taubman et al. [11] proposed a solution for interactive
browsing of images using JPEG2000. The multi-resolution
representation of an image using wavelets is leveraged to
provide pan/tilt/zoom. JPEG2000 encodes blocks of wavelet
transform coefficients independently. Consequently, every
coded block has influence on the reconstruction of a limited
number of pixels of the image. Moreover, the coding of each
block results in an independent, embedded bitstream, which
allows streaming any given block with a desired degree of
fidelity. Taubman et al. also developed the JPEG2000 over
Internet Protocol, for communication between client and server
that supports remote interactive browsing of JPEG2000 coded
images [12]. The server can keep track of the RoI trajectory of
the client as well as the parts of the bitstream that have already
been streamed to the client. Given a rate of transmission for
the current time interval, the server solves an optimization
problem to determine which parts of the bitstream should be
sent in order to maximize the quality of the current RoI. This
is similar to packet scheduling algorithms proposed in [13]
for streaming of video. It should be noted, however, that an
accurate model for the distortion reduction due to successful
delivery of any particular packet is necessary.

Video coding for spatial random access presents a special
challenge. To achieve good compression efficiency, video
compression schemes typically employ motion-compensated
interframe prediction for exploiting correlation among suc-
cessive frames [14]–[16]. However, the coding dependencies
among successive frames make it difficult to provide random
access for spatial browsing within the scene. The decoding of
a block of pixels requires that other reference frame blocks
used by the predictor have previously been decoded. These
reference frame blocks might lie outside the RoI and might
not have been transmitted or decoded earlier.

Coding, transmission, and rendering of high-resolution
panoramic videos using MPEG-4 is proposed in [17]. A
limited part of the entire scene is transmitted to the client
depending on the chosen viewpoint. In [17], only intraframe
coding is used to allow random access. The scene is subdi-
vided into slices which are coded independently. The authors

also considered interframe coding to improve compression
efficiency. However, they noted that this involves transmitting
slices from the past if the current slice requires those for
its decoding. A longer intraframe period entails significant
transmission overhead for slices from the latter frames in the
GoP, as this dependency chain grows. Besides the transmission
overhead, the reference frame blocks also entail growing
overhead of decoding.

Coding and streaming of images from an IBR representation
also entails the random access issue associated with interframe
coding. This applies both when the captured scene is static or
evolving in time. Interactive streaming of static light fields has
been studied by Ramanathan et al. in [18] and [19]. The above-
mentioned growing dependency chain is avoided by using
multiple representations coding based on two new picture
types defined in the H.264/AVC standard, SP, and SI picture
types [20]. Ramanathan et al. also extended rate-distortion
optimized packet scheduling, based on the framework in [13],
to multiple representations coding for light fields. However, in
their setup, only entire pictures from the light field data-set are
streamed and there is no provision of spatial random access
within a picture. Compression and streaming of static light
fields using distributed source coding has been investigated
in [21] and [22]. If adequate rate is spent for signaling
the non-key frame then identical reconstruction is guaranteed
independent of the “reference blocks” used as side information
at the receiver. Although this simplifies random access, the
coding efficiency is lower than hybrid video coding and the
problem of rate estimation while streaming is challenging.
Bauermann et al. conducted a detailed analysis of the decoding
complexity and the mean transmission bitrate for remote
access to arbitrary parts of compressed image-based scene
representations encoded using hybrid video coding [23], [24].
Their work, however, does not include a multi-resolution
representation of the image data-set and is restricted to static
imagery. Also, for saving transmission bitrate, apart from
knowing which pixel blocks are currently required, the server
also needs to know which pixel blocks have already been
transmitted to the user. The server uses this information to
stream a burst of reference pixel blocks. The variation of
instantaneous bitrate and decoding load are undesirable.

Recently, Kurutepe et al. [25] proposed live interac-
tive 3DTV based on dynamic light fields. They employed
application-layer peer-to-peer (P2P) multicast and delivered
a subset of views to a peer from a set of multiview videos
of the scene. Similar to [18] and [19], entire views are either
selected or dropped according to the peer’s viewpoint. Random
access to arbitrary views is provided by encoding the views
independently. Multicasting lowers the bandwidth requirement
at the server, however, the coded representation should consist
of logical substreams for which multicast groups can be
formed. Efficient random access is highly desirable since it
simplifies the peer’s task of deciding which multicast groups
to subscribe. Similar to [18] and [19], entire frames from the
data-set are streamed or not, and there is no provision of spatial
random access within a picture.

Background extraction for motion-compensated prediction
has been proposed in [26]. Sprite coding defined in MPEG-4
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Fig. 1. Graphical user interface. The client’s display shows the thumbnail and the RoI. The effect of changing the zoom factor can be seen by comparing
the two screenshots. Each screenshot shows a frame of the panoramic Cardgame video sequence used in our experiments.

Fig. 2. Video coding scheme. The thumbnail video constitutes a base layer and is coded with H.264/AVC using I, P, and B pictures. The reconstructed base
layer video frames are upsampled by a suitable factor and used as prediction signal for encoding video corresponding to the higher resolution layers. Higher
resolution layers are coded using P slices.

Visual (MPEG-4 Part 2) allows coding the background either
fully or partly for subsequent use as reference in predictive
coding. The term “sprite” is more general and covers any
transmitted video object that can be warped and/or cropped
in certain ways for use by the motion predictor. However,
unlike our proposed scheme, the compression schemes in the
literature employing background extraction are not designed
to provide virtual pan/tilt/zoom functionality.

III. Spatial-Random-Access-Enabled Video Coding

We have developed a graphical user interface which allows
the user to select the RoI while watching the video. The
RoI location and zoom factor are controlled by operating
the mouse. The application supports continuous zoom to
provide smooth control of the zoom factor. In addition to the
RoI, we also display a thumbnail overview with an overlaid
rectangle indicating the location of the RoI. Screenshots of the
client’s display are shown in Fig. 1.

A. Coding Scheme Based on Upward Prediction and Slices

Fig. 2 shows the video coding scheme. The thumbnail
overview constitutes a base layer video and is coded with
H.264/AVC using I, P, and B pictures. The reconstructed base
layer video frames are upsampled by a suitable factor and
used as prediction signal for encoding video corresponding

to the higher resolution layers. Each frame belonging to a
higher resolution layer is coded using a grid of rectangular
P slices. Employing upward prediction from only the thumb-
nail enables efficient random access to local regions within any
spatial resolution. For a given frame interval, the display of
the client is rendered by transmitting the corresponding frame
from the base layer and few P slices from exactly one higher
resolution layer. We transmit slices from that resolution layer
which corresponds closest to the user’s current zoom factor.
At the client’s side, the corresponding RoI from this resolution
layer is resampled to correspond to the user’s zoom factor. We
may store few spatial resolution layers at the server but can still
render smooth zoom control. If a required enhancement layer
P slice is unavailable at the client, for example, due to loss
in the network, we perform error concealment by upsampling
portions of the thumbnail video.

In our experiments, the spatial resolution layers stored
at the server are dyadically spaced. Hence, the recon-
structed thumbnail frame needs to be upsampled by powers
of two horizontally and vertically to generate the corre-
sponding prediction signals. For upsampling the luminance
component, we employ the six-tap filter having the coeffi-
cients (1, −5, 20, 20, −5, 1) /32 as defined in H.264/AVC. For
chroma, we employ a simple two-tap filter with equal coeffi-
cients. The upsampling procedure is repeated an appropriate
number of times depending on the resolution layer. Although
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we choose these parameters for our experiments, our design
can incorporate arbitrarily spaced resolution layers and also
arbitrary procedures for upsampling the reconstructed base
layer. Also, at the client’s side, for resampling the corre-
sponding RoI from the chosen resolution layer, any technique
can be accommodated. In our experiments, we use bilinear
interpolation.

B. Comparison with Current Video Compression Standards

The coding scheme proposed above uses H.264/AVC build-
ing blocks but itself is not standard compliant. State-of-the-art
video compression standards, H.264/AVC and SVC, provide
tools like slices but no straightforward method for spatial
random access since their main focus has been compression
efficiency of full-frame video and resilience to losses. SVC
supports both slices as well as spatial resolution layers. Alas,
SVC allows only single-loop decoding whereas upward predic-
tion from intercoded base-layer frames implies multiple-loop
decoding, and hence is not supported by the standard. If the
base layer frame is intercoded, then SVC allows predicting the
motion-compensation residual at the higher-resolution layer
from the residual at the base layer. However, interframe predic-
tion dependencies across tiles belonging to a high-resolution
layer hamper spatial random access. Note that for employing
SVC, the motion vectors (MVs) can be chosen to avoid inter-
tile dependencies. Also note that instead of SVC, AVC could
be employed separately for the high-resolution layers with the
MVs similarly restricted to eliminate inter-tile dependencies.
This is very similar to treating the tiles as separate video
sequences. An obvious drawback is the redundancy between
the high-resolution tiles and the base layer. A second drawback
is that after RoI change, a newly needed tile can only be
decoded starting from an intracoded slice. However, note
that B slices could also be employed for the high-resolution
layers.

Prior work on view random access, discussed in Section II,
employs multiple representations for coding an image. Simi-
larly, we can use multiple representations for coding a high-
resolution slice. This will allow us to use interframe coding
among successive high-resolution layer frames and to transmit
the appropriate representation for a slice depending on the
slices that have been transmitted earlier. Some representations
will exploit inter-tile correlation, thus lowering the trans-
mission bitrate. However, more storage will be required for
multiple representations. The benefit of the scheme in Fig. 2
is that knowing the current RoI is enough to decide which data
need to be transmitted unlike the case of multiple represen-
tations where the decision is conditional on prior transmitted
data.

In our proposed scheme, motion compensation among suc-
cessive frames is performed at the base layer. We also employ
displacement compensation with a small search range of about
four pixels to find the best match relative to the upsampled
base layer frame while coding the high-resolution P slices. The
total encoding load is determined by the maximum resolution
and the number of layers and can be estimated to be roughly
1.3 times the load of encoding just the highest resolution layer
using standard motion-compensated hybrid video coding.

Fig. 3. Depending on the slice size and the location of the RoI within the
given resolution layer, there is an overhead of pixels that are transmitted but
not used for rendering the client’s display. The shaded portion depicts the
pixel overhead in this example.

Fig. 4. Sequence of pixels is divided into 1-D “slices.” In this example, the
length of each slice is s = 4. The length of the 1-D “region-of-interest” is
R = 3.

C. Minimization of Mean Transmission Bitrate

For the coding scheme shown in Fig. 2, the slice size for
each resolution layer can be independently optimized given the
prediction residual for that layer. The strategy proposed here
can be independently used for all layers. Given a resolution
layer, we assume that the slices form a regular rectangular
grid, so that every slice is sw pixels wide and sh pixels tall.
The slices on the boundaries can have smaller dimensions due
to the layer dimensions not being integer multiples of the slice
dimensions.

The number of bits transmitted to the client, or decoded for
local playback, depends on the slice size as well as the user’s
RoI trajectory over the interactive viewing session. The quality
of the decoded video depends on the quantization parameter
(QP) used for encoding the slices. However, it should be noted
that for the same QP, almost the same quality is obtained
for different slice sizes, even though the number of bits is
different. Hence, given the QP, our goal is to choose the slice
size that minimizes the expected number of bits transmitted
and/or decoded per rendered pixel. The smaller the slice size
the worse is the coding efficiency. This is because of increased
number of slice headers, lack of context continuation across
slices for context adaptive coding, and inability to exploit inter-
pixel correlation across slices. On the other hand, a smaller
slice size entails lower pixel overhead. The pixel overhead
consists of pixels that have to be transmitted and/or decoded
because of the coarse slice division, but are not used to render
the client’s display. For example, the shaded pixels in Fig. 3
show the pixel overhead for the shown slice grid and location
of the RoI.

In the following analysis, we assume that the RoI location
can be changed with a granularity of one pixel both hori-
zontally and vertically. Also, every location is equally likely
to be selected. Depending on the application scenario, the
slices might be put in different transport layer packets. The
packetization overhead of layers below the application layer,
for example RTP/UDP/IP, has not been taken into account
but can be easily incorporated into the proposed optimization
framework.

1) Pixel Overhead: To simplify the analysis, we first
consider the 1-D case and then extend it to 2-D.
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a) Analysis in 1-D: Imagine an infinitely long sequence
of pixels. This sequence is divided into “slices” of length s.
For example, in Fig. 4, s = 4. Also given is the length of
the “region-of-interest,” denoted by R. Assume R = 3 in this
example. To calculate the pixel overhead, we are interested
in the probability distribution of the number of 1-D “slices”
that need to be transmitted. This can be obtained by testing
for locations within one slice, since the pattern repeats every
slice. For RoI locations w and x, we would need to transmit a
single slice, whereas for locations y and z, we would need to
transmit two slices. Let N be the random variable representing
the number of slices to be transmitted. Given s and R, we can
uniquely choose m, R∗ ∈ N such that m ≥ 0 and 1 ≤ R∗ ≤ s

and also the following relationship holds:

R = ms + R∗. (1)

By inspection, we find the p.m.f. of random variable N

Pr {N = m + 1} =
s − (R∗ − 1)

s

Pr {N = m + 2} =
R∗ − 1

s

and zero everywhere else. From the p.m.f. of N

E {N} = (m + 1)
s − (R∗ − 1)

s
+ (m + 2)

R∗ − 1

s

= (m + 1) +
R∗ − 1

s
. (2)

Let P be the random variable which denotes the number of
pixels that need to be transmitted

E {P} = s × E {N}
= (m + 1)s + R∗ − 1

= R + s − 1. (3)

The expected pixel overhead is s−1. It increases monotonically
with slice length s and surprisingly is independent of the length
R of the “region-of-interest.” Alas, the result is that simple
only for 1-D.

If R itself is a random variable, then for a given value of
R = r, (3) can be rewritten as

E {P |R = r} = r + s − 1. (4)

b) Analysis in 2-D: We define two new random vari-
ables, Pw, the number of columns to be transmitted and Ph,
the number of rows to be transmitted. Similarly, Rw and Rh

are random variables denoting the number of columns and
rows (among those transmitted) required to render the RoI
respectively. From the 1-D analysis, we obtain

E {Pw|Rw = rw} = rw + sw − 1

E {Ph|Rh = rh} = rh + sh − 1.

The number of transmitted pixels is also a random variable,
P = PwPh. Since Pw and Ph can be assumed to be condition-
ally independent given Rw, Rh, we can write

E {P |Rw = rw, Rh = rh} = (rw + sw − 1) (rh + sh − 1) . (5)

While Rw × Rh is the number of pixels among those
transmitted which are rendered in the RoI window, it is not
the size of the RoI window. The array of Rw × Rh pixels
is resampled to fit the fixed size dw × dh of the RoI display
window. Recall that this allows us to support arbitrary zoom
factors with small number of discretely spaced resolution
layers.

Random variable ZC denotes the continuous zoom factor
controlled by user input. Its value determines the value of the
discrete random variable ZD which is the zoom factor rounded
to a power of two. For example

ZD = 1, if (1 ≤ ZC < 1.5)

2, if (1.5 ≤ ZC < 4) . (6)

To render the RoI at some zoom factor ZC, we round to
discrete zoom factor ZD and retrieve the resolution layer
log2 (ZD)+1. The mismatch ZC/ZD is made up by resizing the
transmitted video after decoding. For our analysis, we need to
model the conditional pdf of ZC given the layer number. In
our modeling below, we assume that, given the layer number,
ZC is uniformly distributed. For example, if the optimization
is being carried out for the second layer in the example above,
then we assume that ZC is uniformly distributed between 1.5
and 4. Note that the distribution of the user-selected zoom
factor in practice might depend on sizes of certain salient
objects in the video. Nevertheless, we make the assumption
about ZC without performing any video content analysis.

Let dw and dh be constants denoting the width and height
of the RoI display portion on the client’s display, respectively.
The random variables Rw and Rh are determined by ZC as
follows:

Rw = dw

ZD

ZC

Rh = dh

ZD

ZC

. (7)

The expected values of Rw and Rh are given by

E {Rw} = dw × ZD × E

{
1

ZC

}

E {Rh} = dh × ZD × E

{
1

ZC

}

since the analysis is carried out given the layer number and
hence the discrete zoom factor, ZD. Now, we can apply iterated
expectations on (5) to yield

E {P} = (E {Rw} + sw − 1) (E {Rh} + sh − 1) . (8)

2) Optimal Slice Size: The average number of bits per pixel
for coding the prediction residual of a given resolution layer,
denoted by η (sw, sh), is a function of the slice size (sw, sh).
We also define the number of pixels transmitted per rendered
pixel as the relative pixel overhead ψ (sw, sh) = E{P}

dwdh
, where

E {P} is given by (8). The optimal slice size minimizes the
expected number of bits transmitted per rendered pixel and is
given by

(s
opt
w , s

opt
h ) = arg min

(sw,sh)
η(sw, sh) × ψ (sw, sh) . (9)

One way to obtain the function η (sw, sh) is through sample
encodings of the prediction residual by varying the slice
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Fig. 5. Model prediction versus empirical values for pixels transmitted per rendered pixel, ψ (sw, sh), shown for the three sequences, Cardgame, Making
Sense, and Soccer. The empirical values are obtained by averaging over 100 user-interaction trajectories for each sequence. The second y-axis shows the
bits per pixel for coding the residual of the high-resolution layer, η (sw, sh). The slice width and slice height in number of pixels are denoted by sw and sh,
respectively. (a) Cardgame sequence, layer 1 (PSNR ≈ 38.7 dB). (b) Cardgame sequence, layer 2 (PSNR ≈ 39.2 dB). (c) Making Sense sequence, layer 1
(PSNR ≈ 39.0 dB). (d) Making Sense sequence, layer 2 (PSNR ≈ 39.6 dB). (e) Soccer sequence, layer 1 (PSNR ≈ 35.5 dB). (f) Soccer sequence, layer 2
(PSNR ≈ 37.0 dB).

size. Alternatively, η (sw, sh) could also be predicted by an
analytical model to reduce the number of sample encodings.
Either way, (9) can be used to find the optimal slice size.

We now present experimental results to demonstrate that
our model predicts the optimal slice size accurately without
requiring to capture user-interaction trajectories. In our experi-
ments, we obtain η (sw, sh) through a sample encoding of about
30 frames for each tested slice size configuration (sw, sh).

We use three video sequences for our experiments. The
width × height of the Cardgame2 and Making Sense2

2Stanford Center for Innovations and Learning, Stanford, CA, generously
provided these sequences.

sequences is 3584 × 512 pixels. For the Soccer3 sequence,
it is 2560 × 704 pixels. The RoI display is 480 × 240 pixels.
For all three sequences, the thumbnail video is obtained by
spatially downsampling the original by 4 both horizontally and
vertically. There are two high-resolution layers; the first layer
sequence is obtained by downsampling the original by 2 both
horizontally and vertically, while the second layer sequence
is simply the original video. All sequences are 25 frames/s.
Cardgame and Making Sense have 298 frames and Soccer
has 598 frames. We encode the thumbnail videos with an

3Fraunhofer Heinrich-Hertz Institute, Berlin, Germany, generously provided
this sequence.
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Fig. 6. Model prediction versus empirical values for bits transmitted per rendered pixel, shown for the three sequences, Cardgame, Making Sense, and
Soccer. The empirical values are obtained by averaging over 100 user-interaction trajectories for each sequence. The slice width and slice height in number
of pixels are denoted by sw and sh, respectively. (a) Cardgame sequence, layer 1 (PSNR ≈ 38.7 dB). (b) Cardgame sequence, layer 2 (PSNR ≈ 39.2 dB).
(c) Making Sense sequence, layer 1 (PSNR ≈ 39.0 dB). (d) Making Sense sequence, layer 2 (PSNR ≈ 39.6 dB). (e) Soccer sequence, layer 1 (PSNR ≈ 35.5 dB).
(f) Soccer sequence, layer 2 (PSNR ≈ 37.0 dB).

Fig. 7. Model prediction versus empirical values for zoom-adjusted relative pixel overhead, φ (sw, sh), shown for Making Sense sequence. The empirical
values are obtained by averaging over 100 user-interaction trajectories. The second y-axis shows the bits per pixel for coding the residual of the high-resolution
layer, η (sw, sh). The slice width and slice height in number of pixels are denoted by sw and sh, respectively. (a) Making Sense sequence, layer 1 (PSNR ≈
39.0 dB). (b) Making Sense sequence, layer 2 (PSNR ≈ 39.6 dB).



584 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 5, MAY 2011

Fig. 8. Improvement based on background extraction. Each high-resolution
layer frame has two references to choose from, the frame obtained by
upsampling the reconstructed thumbnail frame and the background frame from
the same layer in the background pyramid.

intraframe period of 15 frames using two consecutive B frames
between anchor frames. The PSNR at bitrate for Cardgame,
Making Sense, and Soccer is 39.1 dB at 162 kb/s, 39.6 dB at
201 kb/s, and 35.3 dB at 355 kb/s, respectively. For Cardgame
and Making Sense, we choose the QPs to yield a PSNR of 38–
40 dB for the high-resolution layers. For Soccer, the QPs yield
a PSNR of 35.5–37 dB.

Fig. 5 shows the relative pixel overhead, ψ (sw, sh) for the
three sequences. We compare the model prediction against
empirical values averaged over 100 user-interaction trajecto-
ries for each sequence. The trajectories were recorded while
interactively viewing the sequence using the graphical user
interface described in Section III. Each trajectory starts at a
random location with a random zoom factor, is 1 min long,
and the set of frames of the original sequence are looped to
play for 1 min. The user’s zoom factor, ZC, is allowed to vary
between 1 and 6. The thresholds given by (6) determine the
high-resolution layer for rendering the RoI.

Fig. 6 shows the bits transmitted per rendered pixel for the
three sequences. For a given sequence and resolution layer,
the comparison in Figs. 5 and 6 for different slice sizes is
made for the same QP and hence similar PSNR. Although the
model predicts the optimal slice size fairly accurately, it can
underestimate or overestimate the transmitted bitrate. This is
because the popular slices that constitute the salient objects
in the video could entail high or low bitrate compared to the
average. Also, the location of the objects can bias the pixel
overhead to the high or low side, whereas the model uses
the average overhead. For certain zoom factors chosen by the
user, the “accessed”/transmitted pixels could be less than the
number of rendered pixels. This can be seen in Fig. 5 where
the relative pixel overhead, ψ (sw, sh), goes below one. Hence,
we also compute the zoom-adjusted relative pixel overhead,
φ (sw, sh) = E

{
PwPh

RwRh

}
. This quantity is always greater than

one

φ (sw, sh) =[
(sw − 1)E

{
1

Rw

}
+ 1

] [
(sh − 1)E

{
1

Rh

}
+ 1

]

where

E

{
1

Rw

}
=

E {ZC}
dwZD

E

{
1

Rh

}
=

E {ZC}
dhZD

.

Fig. 7 shows the zoom-adjusted relative pixel overhead,
φ (sw, sh), for the Making Sense sequence. We observed that
the model prediction is close to the empirical values for all
three sequences. Thus, the analysis presented in this section
enables estimating various quantities related to “accessed”
portions from the scene representation without recording user-
interaction trajectories and measuring these quantities from
long bitstreams encoded for various slice sizes. This helps
system dimensioning of an interactive video transmission
system.

IV. Background Extraction and Long-Term

Memory Motion-Compensated Prediction

The coding scheme proposed in Section III exploits tem-
poral correlation by performing motion compensation among
successive frames of the thumbnail video. Temporal predic-
tion among successive frames of the high-resolution layers
is avoided to enable efficient random access. Although it
enables efficient random access, upward prediction using the
reconstructed thumbnail frames might result in substantial
residual energy for high spatial frequencies. In this section, we
propose creating a background frame [27], [28] for each high-
resolution layer and employing long-term memory motion-
compensated prediction (LTM MCP) [29] to exploit the cor-
relation between this frame and each high-resolution frame to
be encoded. The background frame is intracoded. As shown
in Fig. 8, high-resolution P slices have two references to
choose from, upward prediction and the background frame.
If a transmitted high-resolution P slice refers to the back-
ground frame, then relevant I slices from the background
frame are transmitted only if they have not been transmitted
earlier. This is different from [26], in which the encoder
uses only those parts of the background for prediction that
exist in the decoder’s multi-resolution background pyramid.
The encoder mimics the decoder in [26], which builds a
background pyramid out of all previously received frames.
Background extraction algorithms as well as detection and
update of changed background portions have been previously
studied, for example in [30], and are not the focus of this paper.

Since a moving camera might hamper spatial browsing
experience, the camera is static in our sequences. A simple
temporal median operator [27] yields a plausible background
frame. Out of the first 150 frames, we include every fifth
frame for the median operation. Fig. 9 shows the result for
Cardgame, Making Sense, and Soccer. Although some sta-
tionary objects remain in the background frame, this helps the
coding efficiency. In our experiments, the background frame is
not updated after its creation at the start. This is typical with a
static camera. For example, in a soccer game, the background
typically changes due to illumination change, which happens
infrequently. The background frame is intracoded with the
same slice structure as the other frames from the layer. Fig. 10
shows the coding bitrate reduction due to this approach. The
figure is shown for slice size of

(
sw

16 × sh

16

)
= 4×16 for layer 1

and
(

sw

16 × sh

16

)
= 6 × 4 for layer 2 of Cardgame and Making

Sense. For Soccer, the slice size is
(

sw

16 × sh

16

)
= 4 × 4 for both

layers. For Cardgame, Fig. 11 shows the resulting transmission
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Fig. 9. Sample frame and background frame for layer 1 of Cardgame, Making Sense, and Soccer sequences.

Fig. 10. Bitrate reduction through background extraction (BE) and long-term memory motion-compensated prediction (LTM MCP), shown for the Cardgame,
Making Sense, and Soccer sequences. For both Cardgame and Making Sense, the slice size is

(
sw
16 × sh

16

)
= 4 × 16 for layer 1 and

(
sw
16 × sh

16

)
= 6 × 4 for

layer 2. For Soccer, the slice size is
(

sw
16 × sh

16

)
= 4 × 4 for both layers. (a) Cardgame sequence, layer 1. (b) Making Sense sequence, layer 1. (c) Soccer

sequence, layer 1. (d) Cardgame sequence, layer 2. (e) Making Sense sequence, layer 2. (f) Soccer sequence, layer 2.
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Fig. 11. Transmission bitrate is reduced after employing background extraction (BE) and long-term memory motion-compensated prediction (LTM MCP),
here shown for the two layers of Cardgame. The slice width and slice height in number of pixels are denoted by sw and sh, respectively. Transmission bitrate
values are obtained by counting bits required to transmit relevant high-resolution slices. The values are averaged over 100 user-interaction trajectories. (a)
Cardgame sequence, layer 1. (b) Cardgame sequence, layer 2.

Fig. 12. Number of I and P slices transmitted over the streaming session, when background extraction (BE) and long-term memory motion-compensated
prediction (LTM MCP) are employed. The data are plotted for a single user-interaction trajectory. Slice sizes are as in Fig. 10. For Cardgame and Making
Sense, we choose the QPs to yield around 40.6 dB PSNR for both layers. For Soccer, the PSNR is around 37.3 dB for layer 1 and 38.5 dB for layer 2. (a)
Cardgame sequence. (b) Making Sense sequence. (c) Soccer sequence.

Fig. 13. Model prediction versus empirical values for bits transmitted per rendered pixel, shown for the Making Sense sequence, encoded using background
extraction (BE) and long-term memory motion-compensated prediction (LTM MCP). The empirical values are obtained by averaging over 100 user-interaction
trajectories. The slice width and slice height in number of pixels are denoted by sw and sh, respectively. (a) Making Sense sequence, layer 1 (PSNR ≈ 40.6
dB). (b) Making Sense sequence, layer 2 (PSNR ≈ 40.6 dB).

bitrate reduction. For Fig. 10, the slice sizes chosen are either
optimal or close to optimal. If the mean transmission bitrates
corresponding to two slice sizes are close, we prefer the larger
slice size for reasons noted in Section V.

For the high-resolution layers, Fig. 12 shows the number
of transmitted I slices from the background pyramid and the
number of transmitted P slices. It shows the numbers for a
single user-interaction trajectory. For the first frame of the
streaming session, roughly equal numbers of I and P slices
are transmitted. Subsequently, I slices need to be transmitted
sporadically in time and generally fewer in number than at
the start. Although not shown here, when averaged over 100

trajectories, the profiles of the transmitted I and P slices
appear smoother; the number of P slices is almost constant
and matches the expected number of transmitted P slices
that can be computed from analysis similar to Section III-C.
The average number of transmitted I slices is highest at the
start and is about 1% of the number of transmitted P slices
thereafter.

We model the bits transmitted per rendered pixel as before.
However, for simplicity, the cost of transmitting I slices is
counted in the coding bitrate, η(sw, sh), but not in the number
of pixels transmitted per rendered pixel, ψ(sw, sh). As shown
in Fig. 13, the model matches closely with the empirical
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values for the Making Sense sequence. The model matches
well for the other two sequences as well. It should be noted
that the change in the optimal slice size after employing the
background frame is small, and the slice size that is optimal
for the earlier scheme still yields a mean transmission bitrate
very close to that corresponding to the new optimal slice size.
Hence, we choose the same slice size for comparing the coding
bitrates of the two schemes in Fig. 10.

V. Conclusion and Further Work

We proposed a spatial-random-access-enabled video coding
scheme that eliminates the need to transmit and/or decode
the entire video scene in high spatial resolution. The RoI
can be switched during any frame interval without wait-
ing for the end of the GoP or having to transmit extra
slices from the past. The coding scheme allows the system
to scale with the number of clients; it avoids encoding each
client’s RoI sequence individually. Another benefit is that
requested RoIs can be extracted from the bitstream even inside
or at the edge of the network, closer to the client-nodes. The
random access aspects presented in this paper also apply to
the design of other IBR-based interactive streaming systems.

We optimized the slice size to minimize the transmis-
sion bitrate. Our model accurately predicts the optimal slice
size without requiring to capture user-interaction trajectories.
We proposed an improvement of the coding scheme based
on background extraction and long-term memory motion-
compensated prediction. Experiments indicate that both the
coding bitrate as well as the transmission bitrate can be
reduced by up to 85% while retaining efficient random access
capability. This improvement, however, entails transmitting
some I slices from the background pyramid that might be
required for decoding the current high-resolution P slice.
Nevertheless, the cost of doing this is amortized over the
streaming session.

For reducing latency in a streaming scenario, we proposed
predicting the user’s RoI in advance [31], [32] and pre-fetching
relevant data. A bigger slice size adds robustness against inac-
curate RoI prediction, although it might increase transmission
bitrate. Also, if the packetization overhead associated with
layers below the application layer is considered, for example
when each slice needs to be put in a different transport layer
packet, then a bigger slice size might be optimal. A sample
scenario is application-layer P2P multicast to a population
of peers where each peer can subscribe/unsubscribe requisite
tiles according to its RoI. In [33] and [34], we proposed
forming a multicast group for each slice. In this scenario, data
from disjoint slices are preferably transmitted/forwarded in
different transport layer packets. In the RoI P2P system, the
peer’s task of deciding which multicast groups to subscribe is
simplified thanks to efficient random access of the underlying
video coding scheme.
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